Перевод: со всех языков на русский

с русского на все языки

нулевой+элемент

  • 41 element of group 0

    1. химический элемент нулевой группы

     

    химический элемент нулевой группы

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    element of group 0
    A group of monatomic gaseous elements forming group 18 (formerly group 0) of the periodic table: helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and radon (Rn). (Source: DICCHE)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > element of group 0

  • 42 datum

    ['deɪtəm]
    4) Морской термин: донная (величина), нуль поста
    7) Строительство: отметка над уровнем моря, абсолютная отметка, основание системы координат, условный нуль отсчёта высот, уровенная поверхность (в аэрофотосъёмке), условная нулевая отметка, неподвижная точка для отметки уровня, принятая за нуль, свая, забитая до отказа
    8) Математика: информация, отметка (pl. data)
    9) Железнодорожный термин: база для отметки уровня
    14) Вычислительная техника: базис, данное, единица информации, начальная отметка, данное (КОБОЛ, ПЛ/1), данные (КОБОЛ, ПЛ/1)
    16) Картография: данная исходная величина, нулевой уровень, нуль высот, основа ( данной) системы координат, датум (базовый геодезический параметр)
    19) Холодильная техника: данный, заданный
    20) Петрография: уровень
    23) Нефтегазовая техника опорный горизонт
    24) Нефтепромысловый: нулевая условная отметка
    26) Контроль качества: (за)данная величина
    28) Авиационная медицина: параметр, показатель
    29) Макаров: базовая плоскость, отсчётный, реперные опорные данные, точка приведения, базовый (исходный, принятый за начало отсчёта), (pl.: data) базовая точка
    30) Мелиорация: условная отметка
    31) Печатные платы: реперная точка
    32) Общая лексика: нулевой уровень (глубин, высот), основа системы координат

    Универсальный англо-русский словарь > datum

  • 43 saddle point

    1. седловая точка

     

    седловая точка
    В математическом программировании точка, где функция Лагранжа (см. Лагранжиан) достигает максимума по исходным переменным (прямой задачи) и минимума по множителям Лагранжа. При некоторых условиях в задачах выпуклого и линейного программирования оказывается возможным заменить исходную задачу задачей разыскания С.т. функции Лагранжа, поскольку существование такой точки — необходимое и достаточное условие оптимальности решения. Вообще в математике С.т. соответствует случаям, когда значение функции двух переменных представляет собой одновременно максимум относительно одной переменной (вектора переменных) и минимум относительно других (другого вектора переменных). Поясним это на функции двух переменных. Представьте себе седло: некоторая его точка находится ниже всех остальных, расположенных в направлении вдоль лошади, и в то же время — выше всех точек, расположенных в поперечном направлении (отсюда и название “С.т.”). См. рис. С.1. С.т. матрицы — элемент akl матрицы (aij), удовлетворяющий условию: (Обозначения см. в статьях Матрица, Минимакс, Максимин.) В теории игр С.т. (седловой элемент) — это наибольший элемент столбца матрицы игры, который одновременно является наименьшим элементом соответствующей строки (в игре двух лиц с нулевой суммой). В этой точке, следовательно, максимин одного игрока равен минимаксу другого; С.т. есть точка равновесия. Выбор игроком стратегии, не соответствующей С.т., в конце концов нанесет ему ущерб, если он имеет дело с опытным противником (который со своей стороны выберет С.т.). Рис. С.1 Седловая точка функции двух переменных
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > saddle point

  • 44 floor

    1. перекрытие
    2. этаж

    acceptable floor — покрытие пола, удовлетворяющее требованиям технических условий; приемлемое покрытие пола

    basement floor — подвальное перекрытие; подвальный этаж

    beam-and-slab floor — железобетонное балочное перекрытие, ребристое железобетонное перекрытие

    bedroom floor — этаж с гостиничными номерами ; спальный этаж

    cellular-steel floor — перекрытие из тонколистового стального настила с каналами замкнутого профиля и верхней монолитной бетонной плиты

    cement-wood floor — пол из арболита; покрытие пола из арболита

    3. брит. этаж над цокольным этажом, второй этаж

    floor height — высота этажа; высота перекрытия

    4. амер. этаж на уровне нулевой отметки, первый этаж

    ground floor — цокольный этаж, первый этаж

    heavily loaded floor — перекрытие, несущее тяжёлую нагрузку

    heavy duty floor — пол, подвергаемый воздействию тяжёлых эксплуатационных нагрузок

    5. балочное перекрытие
    6. пол, укладываемый по лагам или балкам

    kitchen floor — этаж, где размещён пищеблок

    Omnia floor — сборно-монолитное железобетонное перекрытие «Омниа»

    one-way floor — железобетонное плитное перекрытие, армированное в одном направлении

    open-web joist floor — перекрытие из лёгких стальных сквозных прогонов и верхней железобетонной плиты

    skip joist system floor — ребристое железобетонное перекрытие со значительными интервалами между рёбрами

    floor screed — чистый пол; стяжка (пола)

    7. монолитное безбалочное железобетонное перекрытие
    8. монолитный бетонный пол на грунтовом основании

    I felt the floor trembling — я почувствовал, что пол дрожит

    9. сборное железобетонное перекрытие из сплошных плит
    10. пол из сборных сплошных бетонных плит

    sparkproof floor — пол, не создающий искры

    11. деревянное основание пола; чёрный пол
    12. бетонное основание пола

    timber floor — деревянный пол; деревянное перекрытие

    13. типовой этаж
    14. типовое железобетонное перекрытие

    English-Russian big polytechnic dictionary > floor

  • 45 minimax

    1. минимакс

     

    минимакс
    В теории решений, теории игр (матричных) - наименьший из всех максимальных элементов строк платежной матрицы. Критерий минимакса в игре двух лиц с нулевой суммой симметричен критерию максимина и также означает осторожный подход игрока, выбирающего решение, которое гарантирует ему минимальный уровень максимально возможного (для каждой стратегии противника) проигрыша. Критерий записывается так: где i — номера строк; j — номера столбцов; Uij — выигрыш первого или потери второго игрока для элемента, находящегося на пересечении i-й строки и j-го столбца. Элемент платежной матрицы, в котором максимин первого игрока и М. второго равны, — седловая точка игры. Принцип, по которому поведение или стратегии выбираются из расчета наихудшего для себя поведения противника, получил название принципа М. Теорема о минимаксе является основной в теории игр двух лиц с нулевой суммой. Согласно этой теореме любая конечная игра имеет решение, если допускается использование смешанных стратегий (для бесконечных игр теорема о М. не выполняется). Развитием критерия М. является критерий минимаксных потерь («критерий Сэвиджа«, правило наименьшего риска). В соответствии с этим правилом для каждого столбца платежной матрицы рассчитывается разность между значением строки и максимальным значением («риск«): платежная матрица преобразуется в «матрицу потерь«. К ней применяется минимаксный критерий, выбору подлежит стратегия, которая минимизирует наибольший риск.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > minimax

  • 46 identity

    [aɪˈdentɪtɪ]
    additive identity вчт. нулевой аддитивный элемент corporate identity фирменный стиль identity идентичность identity личность identity подлинность identity тождественность identity тождество mistaken identity ошибочное опознание mistaken identity ошибочное установление личности mistaken: identity ошибочный; mistaken identity юр. ошибочное опознание multiplicative identity вчт. единичный элемент умножения prove one's identity удостоверять личность

    English-Russian short dictionary > identity

  • 47 phase

    1. этап
    2. цветовой тон (в телевидении)
    3. фазный проводник
    4. фаза электротехнического изделия
    5. фаза колебания
    6. фаза гармонических колебаний (вибрации)
    7. фаза гармонических колебаний
    8. фаза (термодинамика)
    9. фаза
    10. провод линии

     

    провод линии

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    фаза
    Проводник, пучок проводников, ввод, обмотка или иной элемент многофазной системы переменного тока, являющийся токоведущим при нормальном режиме работы.
    [ ГОСТ 24291-90

    фаза электрической сети
    фаза
    Название провода, пучка проводов, вывода, обмотки или иного элемента многофазной системы переменного тока, являющегося токоведущим при нормальной работе
    [ОСТ 45.55-99]

    фаза
    Часть многофазной системы электрических цепей, в которой может протекать один из электрических токов многофазной системы электрических токов.
    [ ГОСТ Р 52002-2003]

    EN

    phase
    the designation of any conductor, bundle of conductors, terminal, winding or any other element of a polyphase system, which is intended to be energized under normal use
    [IEV number 601-03-09]

    FR

    phase
    désignation d'un conducteur, d'un faisceau de conducteurs, de bornes, d'enroulements ou de tout autre élément d'un réseau polyphasé et susceptible d'être sous tension en service normal
    [IEV number 601-03-09]

    Тематики

    EN

    DE

    FR

     

    фаза
    Гомогенная часть гетерогенной термодинамической системы, ограниченная поверхностью раздела.
    [Сборник рекомендуемых терминов. Выпуск 103. Термодинамика. Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    Тематики

    EN

    DE

    FR

     

    фаза гармонических колебаний
    фаза

    Аргумент функции, описывающей гармонические колебания.
    [Сборник рекомендуемых терминов. Выпуск 106. Механические колебания. Академия наук СССР. Комитет научно-технической терминологии. 1987 г.]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

    FR

     

    фаза гармонических колебаний (вибрации)
    фаза

    Аргумент синуса, которому пропорционально значение колеблющейся величины (характеризующей вибрацию) при гармонических колебаниях (вибрации) (см. термин гармонические колебания (вибрация)).
    Пояснения
    1)Некоторые величины и зависимости, характеризующие вибрацию, могут относиться к перемещению, скорости, ускорению, силе и другим колеблющимся величинам. Если возможны различные толкования, следует дать соответствующее уточнение, например «размах виброперемещения», «амплитуда силы», «амплитудно-частотная характеристика виброускорения».
    2)Термины и определения для близких понятий, различающиеся лишь отдельными словами, совмещены, причем слова, которые отличают второе понятие, заключены в скобки. Для получения первого термина и его определения опускаются слова, записанные в скобках. Для получения второго термина и его определения проводится замена соответствующих слов словами, записанными в скобках. Например, термин периодические колебания (вибрация) содержит два термина с определениями:
    периодические колебания - колебания, при которых каждое значение колеблющейся величины повторяется через равные интервалы времени;
    периодическая вибрация - вибрация, при которой каждое значение колеблющейся величины, характеризующей вибрацию, повторяется через равные интервалы времени.
    [ ГОСТ 24346-80]

    Тематики

    Синонимы

    EN

    DE

    FR

     

    фаза колебания
    1. Мгновенное состояние колебания, выраженное через значение угла в радианах.
    2. Мгновенное состояние колебания, выраженное через значение аргумента описывающей его синусоидальной функции. Единицы измерения радианы или градусы.
    Примечание
    Термин применим только для колебаний, описываемых законом, содержащим синусоидальную функцию времени.
    [BS EN 1330-4:2000. Non-destructive testing - Terminology - Part 4: Terms used in ultrasonic testing]
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    Тематики

    • виды (методы) и технология неразр. контроля

    EN

     

    фаза электротехнического изделия
    Часть многофазного электротехнического изделия (устройства), предназначенная для включения в одну из фаз многофазной системы электрических цепей.
    [ ГОСТ 18311-80]

    Тематики

    Синонимы

    EN

     

    фазный проводник
    L

    Линейный проводник, используемый в электрической цепи переменного тока.
    [ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]

    фазный проводник
    L

    Линейный проводник, используемый в электрической цепи переменного тока.
    Термин «фазный проводник» признан недопустимым Международным электротехническим словарем (МЭС). Вместо него МЭС предписывает применять термин «линейный проводник». Однако рассматриваемый термин целесообразно использовать в национальной нормативной и правовой документации.
    Фазный проводник представляет собой частный случай линейного проводника, применяемого в электрической цепи переменного тока. Фазные проводники совместно с нейтральными проводниками и PEN-проводниками используют в электроустановках зданий для обеспечения электроэнергией применяемого в них электрооборудования переменного тока.
    [ http://www.volt-m.ru/glossary/letter/%D4/view/87/]

    EN

    line conductor
    phase conductor (in AC systems) (deprecated)
    pole conductor (in DC systems) (deprecated)

    conductor which is energized in normal operation and capable of contributing to the transmission or distribution of electric energy but which is not a neutral or mid-point conductor
    [IEV number 195-02-08]

    FR

    conducteur de ligne
    conducteur de phase (déconseillé)

    conducteur sous tension en service normal et capable de participer au transport ou à la distribution de l'énergie électrique, mais qui n'est ni un conducteur de neutre ni un conducteur de point milieu
    [IEV number 195-02-08]

    Параллельные тексты EN-RU

     

    Ensure in the installation that the Neutral will never be disconnected before the supplying AC lines.
    [Delta Energy Systems]

    Электроустановка должна быть устроена таким образом, чтобы отключение нулевого рабочего проводника происходило только после того, как будут отключены фазные проводники.
    [Перевод Интент]

    If the phase currents are connected correctly...
    [Schneider Electric]

    Если  фазные проводники подключены правильно...
    [Перевод Интент]

    Phases must at least be marked L1, L2, L3, at the end and at connection points.
    [Schneider Electric]

    Фазные проводники должны иметь маркировку L1, L2, L3 по крайней мере на концах и в точках присоединения.
    [Перевод Интент]

    6.6.28. В трех- или двухпроводных однофазных линиях сетей с заземленной нейтралью могут использоваться однополюсные выключатели, которые должны устанавливаться в цепи фазного провода, или двухполюсные, при этом должна исключаться возможность отключения одного нулевого рабочего проводника без отключения фазного.
    [ПУЭ]

    ОПН (или РВ) на ВЛИ должны быть присоединены к фазному проводу посредством прокалывающих зажимов
    [Методические указания по защите распределительных электрических сетей]

    2.4.19. На опорах допускается любое расположение фазных проводов независимо от района климатических условий. Нулевой провод, как правило, следует располагать ниже фазных проводов. Провода наружного освещения, прокладываемые на опорах совместно с проводами ВЛ, должны располагаться, как правило, над нулевым проводом.
    [ПУЭ]

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    FR

     

    цветовой тон
    оттенок
    фаза
    фаза сигнала цветности

    Одна из характеристик различения цветов. Цветовой тон определяет цвет на основе его положения в спектре, т.е. красный, синий, зеленый или желтый и пр. Цветовой тон — это одна из трех характеристик цвета в телевидении: см. также «насыщенность» и «яркость». В видеосигналах систем NTSC и PAL информация о цветовом тоне каждой точки изображения передается соответствующей мгновенной фазой поднесущей активного видеосигнала.
    [ http://www.vidimost.com/glossary.html]

    Тематики

    • телевидение, радиовещание, видео

    EN

     

    этап
    Определенная стадия эксплуатации системы или организации связи, например, фаза установления соединения, осуществляемая в начале сеанса связи. См. implementation ~.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

    15 фаза

    Проводник, пучок проводников, ввод, обмотка или иной элемент многофазной системы переменного тока, являющийся токоведущим при нормальном режиме работы

    601-03-09

    de Aussenleiter

    en phase

    fr phase

    Источник: ГОСТ 24291-90: Электрическая часть электростанции и электрической сети. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > phase

  • 48 null

    nʌl прил.
    1) юр. недействительный, не имеющий законной силы null and void render null Syn: void
    2., invalid II
    2) а) незначительный, несущественный the influence on that element was absolutely null ≈ влияние на этот элемент было практически ничтожным Syn: insignificant, ineffective б) несуществующий Syn: non-existent
    3) невыразительный, нехарактерный Syn: inexpressive, expressionless (математика) нуль преим. (юридическое) недействительный - * and void не имеющий законной силы или утративший ее;
    (юридическое) ничтожный( об аннулированном договоре) - ballot-papers * and void недействительные бюллетени (при голосовании) - the marriage was * брак был признан недействительным - to render * аннулировать;
    свести на нет не имеющий значения;
    безрезультатный отсутствующий, нулевой - the effect is thus * никакого эффекта, таким образом, не получается преим. (юридическое) аннулировать, погашать, делать недействительным - the election was *ed выборы были признаны недействительными null аннулированный ~ аннулировать ~ делать недействительным ~ не имеющий значения ~ недействительный ~ недействительный;
    null and void потерявший законную силу( о договоре) ;
    to render null аннулировать ~ несуществующий ~ нехарактерный, невыразительный ~ вчт. нуль ~ вчт. пустой ~ недействительный;
    null and void потерявший законную силу (о договоре) ;
    to render null аннулировать void: null and ~ не имеющий законной силы null and ~ недействительный null and ~ ничтожный, не имеющий юридической силы null and ~ утративший юридическую силу ~ недействительный;
    null and void потерявший законную силу (о договоре) ;
    to render null аннулировать

    Большой англо-русский и русско-английский словарь > null

  • 49 C

    1. cable - кабель; телеграмма;
    2. calibration - калибровка; градуировка; тарирование;
    3. call - вызов; позывной;
    4. calorie - калория; килокалория;
    5. calyx - чашечка;
    6. candela - кандела; кд;
    7. candle - свеча; св;
    8. canine tooth - клык;
    9. capacitance - ёмкостное сопротивление; ёмкость; электрическая ёмкость;
    10. capacitor - конденсатор; электрическая конденсатор;
    11. capacity - вместимость; допустимый диапазон чисел; ёмкость; мощность; нагрузка; объём; продуктивность; производительность; пропускная способность; разрядность; способность; электрическая ёмкость;
    12. carbon - углерод;
    13. carrier - тележка; транспортер;
    14. case - коробка; ящик; корпус; регистр;
    15. cathode - катод;
    16. cell - элемент, ячейка;
    17. Celsius - по Цельсию; температурная шкала Цельсия;
    18. center - центр; пост; середина;
    19. centi - санти-;
    20. centigrade - по шкале Цельсия; стоградусный; шкала Цельсия;
    21. central - центральный; средний;
    22. centralized - централизованный;
    23. centrifugal - центрифуга;
    24. ceratoid artery - сонная артерия;
    25. cervical - цервикальный; шейный; затылочный;
    26. changes - изменения;
    27. channel - русло; естественный водоток; канал; протока; борозда; канавка; выемка;
    28. chirp - ЛЧМ-импульс; метод сжатия импульсов; метод сжатия импульсов с использованием линейной частотной модуляции; паразитная частотная модуляция несущей; паразитная ЧМ несущей; радиоимпульс с линейной частотной модуляцией; радиоимпульс с линейной ЧМ; радиоимпульс с частотной модуляцией; ЧМ-импульс;
    29. chord - хорда; спинная струна; связка; канатик; тяж;
    30. chrominance - вектор цветности; сектор цветности; сигнал цветности;
    31. cilia - жгутики; реснички;
    32. circuit - схема; цепь; контур; канал; линия;
    33. circa - приблизительно; около; почти;
    34. class - класс; разряд; группа; категория; сорт; качество;
    35. clay - глина; глинозём; глинистая почва;
    36. clear - очищать; гасить; устанавливать в исходное состояние; сброшенный; нулевой; открытый;
    37. clockwise - по часовой стрелке;
    38. closed - закрытый; замкнутый; включенный; "передача окончена";
    39. coarse - крупный; грубый;
    40. cobalt - кобальт;
    41. code - код;
    42. coefficient - коэффициент; константа; постоянная;
    43. coil - катушка индуктивности; катушка; обмотка; секция обмотки;
    44. cold - холод;
    45. collector - коллектор; коллекторная область;
    46. color - цвет; окраска;
    47. commercial agriculture - товарное сельскохозяйственное производство;
    48. communication(s) - связь; средства связи; коммуникация; сообщение; передача;
    49. compass - компас;
    50. compensator - компенсатор;
    51. complement - комплемент;
    52. compression - прессование; сжатие; уплотнение; компрессия;
    53. computer - вычислительное устройство; компьютер; счётно-решающее устройство; электронно-вычислительная машина; ЭВМ;
    54. computing - вычисление; счёт; расчёт;
    55. concentration - концентрация; крепость раствора; обогащение; скопление;
    56. condenser - конденсатор; конденсор;
    57. conductivity - коэффициент проводимости; проводимость; удельная электрическая проводимость; удельная электропроводность;
    58. conductor - проводник; провод; жила кабеля;
    59. confidential - секретный; не подлежащий оглашению; гриф "секретно";
    60. configuration - конфигурация; компоновка; схема;
    61. congo - конго (сорт алмазов);
    62. constant - постоянная величина; константа; коэффициент;
    63. contact - контакт;
    64. container - контейнер; резервуар; канистра;
    65. contra - против;
    66. contraction - усадка;
    67. control - контроль; орган управления; регулирование; регулятор; управление; устройство управления;
    68. control room - пост управления; центральный пост на подводной лодке;
    69. controlled atmosphere - искусственный климат; климат с регулируемой температурой;
    70. controls - органы управления; органы регулирования;
    71. copper - медь;
    72. core - магнитный сердечник;
    73. corpus luteum - жёлтое тело;
    74. correct - устранять, корректировать;
    75. Coulomb - кулон; Кл;
    76. course - курс; простирание;
    77. course angle - курсовой угол;
    78. crosscut - квершлаг;
    79. cubic - кубический;
    80. Curie - кюри;
    81. current - поток; текущая запись; электрический ток; действующий; текущий;
    82. cuspid - клык;
    83. cycle - кругооборот; период; период пульсации; такт; цикл;
    84. cycles per second - число циклов в секунду; герц; Гц;
    85. cylinder - цилиндр; барабан; молотильный барабан;
    86. cysteine - цистеин;
    87. cytosine - цитозин;
    88. heat capacity - теплоёмкость;
    89. normality - нормальность;
    90. velocity of electromagnetic waves - скорость распространения электромагнитных волн;
    91. velocity of light - скорость света;
    92. военное обозначение управляющих устройств;
    93. цилиндрический буй

    Англо-русский словарь технических аббревиатур > C

  • 50 elementer i gruppe 0

    химический элемент нулевой группы

    Danish-russian dictionary > elementer i gruppe 0

  • 51 ædelgas

    химический элемент нулевой группы

    Danish-russian dictionary > ædelgas

  • 52 nul

    прил.
    1) общ. незначительный, ни один, тупой, ничтожество (mot grossier), неощутимый, несущественный, дерьмовый, безрезультатный, бессодержательный, пустой, недействительный, неопределённое значение, ничтожный, (перед сущ.) никакой, никто, отсутствие информации, элемент сообщения, не несущий информации
    2) разг. ноль без палочки, пешка, прыщ на ровном месте, пустое место, тля, отставной козы барабанщик
    3) матем. нулевой
    4) выч. несуществующий, атрибут неопределённого значения (в КОДАСИЛ)

    Французско-русский универсальный словарь > nul

  • 53 zero

    а) число; цифра
    б) символ нуля, символ 0,-символ с кодом ASCII 30h
    в) нулевая точка; начало координат
    а) приравнивать нулю; полагать равным нулю; присваивать значение "0"
    б) вчт очищать; сбрасывать
    3) нулевой; равный нулю
    4) нуль или минимум (принимаемого) сигнала; нуль или минимум диаграммы направленности (напр. антенны)
    5) шкальный нуль; нулевое деление шкалы (напр. индикатора измерительного прибора) || устанавливать на нуль, устанавливать на нулевое деление шкалы (напр. стрелку индикатора измерительного прибора)
    - zero of polynomial
    - absolute zero
    - aleph-zero
    - algebraic zero
    - binary zero
    - Boolean zero
    - complex zero
    - computer zero
    - decimal zero
    - degenerate zero
    - disturbed zero
    - double zero
    - false zero
    - floating zero
    - function zero
    - fuzzy zero
    - imaginary zero
    - inferred zero
    - leading zeros
    - minus zero
    - multiple zero
    - negative zero
    - no zero
    - nondegenerate zero
    - nonsignificant zero
    - pattern zero
    - plus zero
    - positive zero
    - range zero
    - real zero
    - simple zero
    - single-ended zero
    - structural zeros
    - suppressed zero
    - time zero
    - trailing zeros

    English-Russian electronics dictionary > zero

  • 54 0 taldeko elementu

    химический элемент нулевой группы

    Euskal-errusiar hiztegi > 0 taldeko elementu

  • 55 falloff

    спад, затухание
    1. Элемент или диапазон источника света, интенсивность которого уменьшена или сведена к нулю.
    2. Параметр прозрачности, определяющий уровень прозрачности граничных областей объекта.
    3. Коэффициент, при котором источник света или уровень прозрачности приближается к нулевой отметке.

    English-Russian terms in computer graphics and 3D > falloff

  • 56 While the City Sleeps

       1956 – США (100 мин)
         Произв. RKO (Берт. Э. Фридлоб)
         Реж. ФРИЦ ЛАНГ
         Сцен. Кейси Робинсон по роману Чарлза Айнстайна «Кровавая шпора» (The Bloody Spur)
         Опер. Эрнест Ласло
         Муз. Хершел Бёрк Гилберт
         В ролях Дэйна Эндрюз (Эдвард Мобли), Ронда Флеминг (Дороти Кайн), Джордж Сандерз (Марк Лавинг), Томас Митчелл (Джон Дэй Гриффит), Винсент Прайс (Уолтер Кайн-мл.), Сэлли Форрест (Нэнси Лиггетт), Ида Лупино (Милдред Доннер), Джон Бэрримор-мл. (Роберт Мэннерз, «убийца с губной помадой»), Джеймс Крейг (Гарри Крицер), Роберт Уорвик (Эймос Кайн), Ралф Питерз (Миди), Владимир Соколов (Джордж Пильски), Мей Марш (миссис Мэннерз), Сэнди Уайт (Джудит Фентон, первая жертва).
       После смерти Эймоса Кайна, создателя охватившей всю территорию США медиа-империи, жемчужиной которой является газета «Нью-Йорк Сентинел», его сын и наследник Уолтер Кайн-мл., не обладающий ни малейшим опытом работы в журналистике, без труда догадывается, что 4 главных сотрудника газеты – директор пресс-агентства Марк Лавинг, главный редактор Гриффит, фоторедактор Гарри Крицер и ведущий обозреватель Эдвард Мобли – его презирают. Чтобы придать своей фигуре значение в их глазах, он создает пост «генерального директора» газеты и объявляет, что доверит его тому, кто наилучшим образом докажет свою профессиональную пригодность, а именно – первым отыщет «убийцу с губной помадой», который недавно расправился с одинокой женщиной и оставил на стене ее квартиры надпись «Спросите у моей матери». Возможно, убийца совершил или готовится совершить другие схожие преступления, поэтому незадолго перед смертью Эймос Кайн проявлял живой интерес к его фигуре.
       Мобли, талантливый журналист, но лишенный особых амбиций (так, по крайней мере, он сам о себе говорит), не участвует в соревновании напрямую. Однако каждый официальный конкурент – Лавинг, Гриффит и Крицер – пытается залучить его на свою сторону, в том числе из-за его обширных связей в полиции. Мобли помолвлен с Нэнси Лиггетт, секретаршей Лавинга. Та советует ему примкнуть к Гриффиту – по ее мнению, самому честному человеку в этой троице. Мобли связывается со своим приятелем из полиции лейтенантом Кауфменом и узнает от него о молодой учительнице, убитой при тех же обстоятельствах, что и 1-я жертва. В это время Лавинг не сидит сложа руки и через Миди, ведущего в газете отдел криминальной хроники, раздобывает секретные сведения: оказывается, полиция арестовала консьержа в здании, где жила 1-я жертва. На какое-то время Лавинг уверен, что преимущество за ним. Однако эти сведения поступили из неофициального источника и так и не получают подтверждения. Опасаясь обвинений в клевете, Лавинг вынужден через свое агентство препятствовать их распространению.
       Мобли рассказывает Гриффиту об убийстве учительницы. Как честный профессионал, Гриффит передает информацию агентству Лавинга. В своей ежедневной телепередаче Мобли идет на решительный шаг и обращается к преступнику, представляя его молодым и сильным человеком, который любит комиксы с криминальным сюжетом, находится в сложных отношениях с матерью и одержим ненавистью к женщинам. Преступник действительно слушает обращение Мобли; он в общих чертах соответствует описанию. Мобли делает все возможное, чтобы обозлить и спровоцировать убийцу. Затем он просит Нэнси, которую, не спросив, назвал в эфире своей невестой, побыть приманкой для следующего нападения «убийцы с губной помадой». Тем временем Лавинг не теряет надежды заручиться помощью Мобли. Он поручает своей любовнице, журналистке «Сентинел» Милдред Доннер, соблазнить Мобли и переманить на их сторону. Милдред с удовольствием берется за это задание и старается изо всех сил, однако в тот вечер Мобли напивается до беспамятства и не способен ни на что, кроме поцелуев в такси. Эта афера только вызовет ревность со стороны Нэнси, но не принесет никакой пользы Лавингу.
       3-й претендент, Гарри Крицер, тратит гораздо меньше усилий, чем его соперники. Любовник и протеже Дороти, супруги Уолтера Кайна, он полагает, что в его руках находится самый сильный козырь. Поставив своего человека на пост, созданный мужем, Дороти хочет отомстить Уолтеру за презрительное отношение к ее уму и за то, что своей женитьбой он якобы «купил» ее. Продвинувшись вперед благодаря сведениям, полученным от Гриффита, Лавинг заключает важный контракт с телевидением. Он как никогда верит в свою победу. Нэнси, ревнуя жениха к Милдред, отказывается помогать Мобли в поисках убийцы. Но – слишком поздно: убийца уже вычислил ее квартиру, расположенную на одной лестничной клетке с холостяцкой квартирой Крицера, где тот обычно встречается с Дороти. Убийца стучится в дверь Нэнси и подражает голосу Мобли. Но именно потому, что преступник притворяется убедительно, Нэнси не хочет открывать дверь жениху. Вне себя от ярости убийца врывается в квартиру Крицера как раз, когда в нее входит Дороти. Он нападает на Дороти и пытается ее задушить. Дороти защищается как львица и укрывается у Нэнси. Убийца спасается бегством. Нэнси из окна указывает Мобли и лейтенанту Кауфмену, куда побежал убийца. Наконец, после долгого преследования в тоннеле метрополитена убийца пойман. «Честный» Гриффит, первым узнав о его аресте от Мобли, спешно готовит специальный выпуск. Он выйдет в свет прежде, чем Лавинг окажется в курсе дела; там не будет ни одной фотографии – специально, чтобы держать в стороне Крицера.
       Стремясь довести публикацию до совершенства, Гриффит пускает Милдред по следам женщины, пережившей нападение, – т. е. Дороти. Милдред застает Дороти и Крицера на выходе из квартиры Нэнси. Втроем они составляют план, которому суждено принести победу и пост генерального директора Крицеру. Мобли исполнен отвращения и подает в отставку. Отправившись с Нэнси в свадебное путешествие во Флориду, он узнает из прессы, что Кайн вернулся к своему 1-му решению. Генеральным директором назначен Гриффит, Милдред становится личной секретаршей Кайна, Крицер – послом по особым поручениям концерна Кайна, а сам Мобли повышен до должности главного редактора «Сентинел».
         Предпоследний американский фильм Ланга. Одна из вершин его карьеры; по нашему мнению – лучшая его картина. На основе романа, но в еще большей степени – на основе вырезок из газетной хроники происшествий, которые он собирал всю жизнь (даже закончив работать в кино), Ланг совместно с Кейси Робинсоном написал один из самых сложных сценариев в своей карьере. Кропотливая подготовка к съемкам позволила при более чем среднем бюджете сохранить в проекте именитых актеров (Джордж Сандерз, Ида Лупино, Томас Митчелл, Ронда Флеминг и др.): каждый проводил на съемочной площадке лишь 4–5 дней, и несмотря на это у зрителя складывается впечатление, будто они присутствуют на всем протяжении действия. (Только Дэйна Эндрюз пробыл на съемках дольше прочих).
       Амбиции фильма огромны; его стиль строг и энергичен, ни один элемент не выставляется напоказ. Ланг хочет представить зрителю довольно широкую панораму американского общества, построенного, по его мнению, на соперничестве и преступлении. Как дошло до того, что соперничество и преступление оказались неразрывно связаны друг с другом, – вот вопрос, на который он пытается ответить; отсюда и особенности его стиля, подчиняющиеся эстетике необходимости, которую ни один режиссер не доводил так далеко. Ланг – творец-одиночка, требовательный к себе и к другим, но при этом он нисколько не выпадал из самого новаторского направления американского кинематографа. Пока город спит использует и даже впитывает плоды революции, совершенной годом ранее фильмом Целуй меня до смерти, Kiss Me Deadly. Теперь в сюжете нет ни положительных героев, ни злодеев. Беспощадный дух соревнования уравнял все личности на нулевой отметке морали и сочувствия к ближнему. Если пристально рассмотреть (чем и занимается фильм) поведение каждого персонажа истории, можно убедиться, что они либо не имеют никакого представления о морали, либо, что еще хуже, жертвуют остатками совести ради своих амбиций – такое поведение считается нормой в их обществе. В этом смысле преступник, за которым они с таким усердием охотятся в погоне за важным постом, становится для них не только добычей, но и зеркалом. Оказывается, что он даже больше достоин жалости.
       В этом фильме Ланг доводит до абсолютного совершенства свое мастерство стыковки планов. При помощи фрагментов диалога, визуальных элементов, кого-либо из персонажей или же того или иного драматургического действия, сцены выстраиваются одна за другой согласно ритму и логической последовательности, словно подчиняющимся какому-то року. На деле же этот рок порождается действиями главных героев, слишком озабоченных тем, как бы устранить, использовать или уничтожить соперников. Их перекрестные интриги сплетаются в огромную паутину, где в итоге запутываются все. Высшее проявление изящества режиссуры – стеклянные перегородки в редакции, разделяющие персонажей, оставляя их в поле зрения друг друга, а камере давая возможность вплотную показывать различные сцены, связанные в постоянном взаимодействии. Этот плетеный узор оформлен в превосходных металлических тонах и ярком, хирургически точном освещении. После множественных перевоплощений и метаморфоз, переосмысленных через опыт и стиль кропотливого и гениального режиссера, экспрессионистский микрокосм предстает в этом фильме – быть может, в последний раз – лишенным всего наносного, в чистом виде, с удивительной выразительностью, абстракцией и сосредоточенностью. Это кусочек ада, где люди суетятся, считая себя деятельными и свободными, находясь под неусыпным взором режиссера, чья единственная цель – наблюдать за реальностью со стороны и демонстрировать ее другим.
       N.B. Определить формат фильма, как и в случае со следующей картиной Ланга Вне обоснованных сомнений, Beyond a Reasonable Doubt, – непростая задача, разрешить которую можно, лишь подойдя к ней с эстетической точки зрения. Фильм был снят не в формате «Cinemascope»: сначала он демонстрировался в «Superscope» (широкий формат студии «RKO», требовавший лабораторной обработки пленки), затем – в обычном формате. Который из них лучше? Мы полагаем, что широкий формат: в нем движения камеры и интерьеры редакции газеты выглядят наиболее впечатляюще. Несмотря на то что «Superscope» создавался в лабораторных условиях после съемок, Ланг знал с самого начала, что фильм выйдет в широком формате, и потому выстраивал режиссуру, исходя из этого факта. То же относится и к фильму Вне обоснованных сомнений: достаточно упомянуть лишь 1-ю сцену, где приговоренный к смерти идет к электрическому стулу – совершенно очевидно, что она задумана специально под широкий формат.
       Анализ фотографий к фильму доказывает, что некоторое количество сцен были вырезаны или сокращены при окончательном монтаже, чтобы сделать действие более сжатым, что подтверждается концепцией фильма. Немного жаль исчезновения одной сцены: той, где герои Джеймса Крейга, Ронды Флеминг и Иды Лупино вступали в небольшой заговор (предпосылки к чему мы видим на лестничной клетке у квартиры Сэлли Форрест). Без этой сцены кажется излишне загадочным следующий эпизод (где Джеймс Крейг заносчиво разговаривает с Винсентом Прайсом, а Ида Лупино объявляет Сандерзу и Митчеллу, что те пришли к финишу последними), и это чуть нарушает цельность общей конструкции фильма, требующей, чтобы ни один из основных персонажей не терял связь с другими. Контакт между героинями Ронды Флеминг и Иды Лупино был возможен только в этой сцене.
       Относительно редки дружественные и благоприятные отзывы о Ланге от людей, работавших с ним в 50-е гг., в его американский период. Поэтому слова оператора Эрнеста Ласло можно ценить на вес золота. Он сказал Фредерику У. Отту (Frederick W. Ott, The Films of Fritz Lang, The Citadel Press, Secausus, N.J., 1979): «Фриц Ланг был настоящим художником и профессионалом и в этом превосходил даже Вильгельма Дитерле. У меня сложилось четкое впечатление, что он знает в совершенстве все этапы создания фильма. Конечно, он мог быть довольно крут как руководитель, но если вы грамотно и с энтузиазмом делали свою работу, он становился для вас лучшим другом, о каком можно было только мечтать. Я был восхищен его профессионализмом, как и большинство актеров и членов съемочной группы. У нас были напряженные моменты, в особенности – с Дэйной Эндрюзом и Джоном Бэрримором-мл., но в целом съемки прошли гладко». См. также воспоминания режиссера монтажа Джина Фаулера-мл. в книге Альфреда Айбеля о Фрице Ланге (Alfred Eibel, Fritz Lang, Présence du cinéma, 1964).

    Авторская энциклопедия фильмов Жака Лурселля > While the City Sleeps

  • 57 element of group 0

    English-Russian dictionary of popular words > element of group 0

  • 58 noble gas

    English-Russian dictionary of popular words > noble gas

  • 59 SPD

    1. устройство защиты от импульсных перенапряжений

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > SPD

  • 60 surge offering

    1. устройство защиты от импульсных перенапряжений

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > surge offering

См. также в других словарях:

  • Нулевой элемент — Нейтральный элемент бинарной операции  элемент, который оставляет любой другой элемент неизменным при применении этой бинарной операции к этим двум элементам. Содержание 1 Определение 2 Замечания 3 Примеры 4 См. также …   Википедия

  • элемент таблицы МOБ — элемент матрицы МОБ См. таблицу к статье Межотраслевой баланс, МОБ. Этот элемент имеет двойной смысл: он выступает, с одной стороны, как часть затрат отрасли, с другой стороны как часть выпуска продукции. Если между двумя отраслями,… …   Справочник технического переводчика

  • Элемент таблицы МOБ — то же: Элемент матрицы МОБ[I. O. matrix element] см. таблицу к статье Межотраслевой баланс, МОБ. Этот элемент имеет двойной смысл: он выступает, с одной стороны, как часть затрат отрасли, с другой стороны как часть выпуска продукции. Если между …   Экономико-математический словарь

  • Нулевой вектор — (нуль вектор) вектор, начало которого совпадает с его концом. Нулевой вектор имеет норму 0 и обозначается или . Нулевой вектор определяет тождественное движение пространства, при котором каждая точка пространства переходит в себя. С нулевым… …   Википедия

  • Значащий элемент матрицы МОБ — [non zero significant element of I.O. matrix] элемент, отличающийся от нуля. В межотраслевом балансе отличие от нуля показывает, что отрасли i и j, «встречающиеся» в элементе xij, имеют между собой технологическую связь: продукция… …   Экономико-математический словарь

  • значащий элемент матрицы МОБ — Элемент, отличающийся от нуля. В межотраслевом балансе отличие от нуля показывает, что отрасли i и j, «встречающиеся» в элементе xij, имеют между собой технологическую связь: продукция отрасли i выступает в качестве одного из видов затрат на… …   Справочник технического переводчика

  • химический элемент нулевой группы — — [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] EN element of group 0 A group of monatomic gaseous elements forming group 18 (formerly group 0) of the periodic table: helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe) …   Справочник технического переводчика

  • Обратимый элемент — Не следует путать с единичным элементом. Обратимым элементом, а также единицей кольца или делителем единицы, называется всякий элемент кольца, для которого существует обратный элемент относительно умножения, то есть такой элемент , что , где e… …   Википедия

  • Фосфор, химический элемент — (хим.; Phosphore франц., Phosphor нем., Phosphorus англ. и лат., откуда обозначение P, иногда Ph; атомный вес 31 [В новейшее время атомный вес Ф. найден (van der Plaats) такой: 30,93 путем восстановления определенным весом Ф. металлического… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Список вымышленных элементов, материалов, изотопов и атомных частиц — описывает химические элементы, материалы, изотопы, атомные и субатомные частицы, которые существуют только в произведениях художественной литературы (как правило, фэнтези или научная фантастика). Некоторые из предметов описаний, перечисленных… …   Википедия

  • Кольцо (математика) — У этого термина существуют и другие значения, см. Кольцо. В абстрактной алгебре кольцо  это один из наиболее часто встречающихся видов алгебраической структуры. Простейшими примерами колец являются алгебры чисел (целых, вещественных,… …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»