Перевод: с английского на все языки

со всех языков на английский

(subject+field)

  • 41 Fermi, Enrico

    [br]
    b. 29 September 1901 Rome, Italy
    d. 28 November 1954 Chicago, USA
    [br]
    Italian nuclear physicist.
    [br]
    Fermi was one of the most versatile of twentieth-century physicists, one of the few to excel in both theory and experiment. His greatest theoretical achievements lay in the field of statistics and his theory of beta decay. His statistics, parallel to but independent of Dirac, were the key to the modern theory of metals and the statistical modds of the atomic nucleus. On the experimental side, his most notable discoveries were artificial radioactivity produced by neutron bombardment and the realization of a controlled nuclear chain reaction, in the world's first nuclear reactor.
    Fermi received a conventional education with a chemical bias, but reached proficiency in mathematics and physics largely through his own reading. He studied at Pisa University, where he taught himself modern physics and then travelled to extend his knowledge, spending time with Max Born at Göttingen. On his return to Italy, he secured posts in Florence and, in 1927, in Rome, where he obtained the first Italian Chair in Theoretical Physics, a subject in which Italy had so far lagged behind. He helped to bring about a rebirth of physics in Italy and devoted himself to the application of statistics to his model of the atom. For this work, Fermi was awarded the Nobel Prize in Physics in 1938, but in December of that year, finding the Fascist regime uncongenial, he transferred to the USA and Columbia University. The news that nuclear fission had been achieved broke shortly before the Second World War erupted and it stimulated Fermi to consider this a way of generating secondary nuclear emission and the initiation of chain reactions. His experiments in this direction led first to the discovery of slow neutrons.
    Fermi's work assumed a more practical aspect when he was invited to join the Manhattan Project for the construction of the first atomic bomb. His small-scale work at Columbia became large-scale at Chicago University. This culminated on 2 December 1942 when the first controlled nuclear reaction took place at Stagg Field, Chicago, an historic event indeed. Later, Fermi spent most of the period from September 1944 to early 1945 at Los Alamos, New Mexico, taking part in the preparations for the first test explosion of the atomic bomb on 16 July 1945. President Truman invited Fermi to serve on his Committee to advise him on the use of the bomb. Then Chicago University established an Institute for Nuclear Studies and offered Fermi a professorship, which he took up early in 1946, spending the rest of his relatively short life there.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Physics 1938.
    Bibliography
    1962–5, Collected Papers, ed. E.Segrè et al., 2 vols, Chicago (includes a biographical introduction and bibliography).
    Further Reading
    L.Fermi, 1954, Atoms in the Family, Chicago (a personal account by his wife).
    E.Segrè, 1970, Enrico Fermi, Physicist, Chicago (deals with the more scientific aspects of his life).
    LRD

    Biographical history of technology > Fermi, Enrico

  • 42 Maudslay, Henry

    [br]
    b. 22 August 1771 Woolwich, Kent, England
    d. 15 February 1831 Lambeth, London, England
    [br]
    English precision toolmaker and engineer.
    [br]
    Henry Maudslay was the third son of an ex-soldier and storekeeper at Woolwich Arsenal. At the age of 12 he was employed at the Arsenal filling cartridges; two years later he was transferred to the woodworking department, adjacent to the smithy, to which he moved when 15 years old. He was a rapid learner, and three years later Joseph Bramah took him on for the construction of special tools required for the mass-production of his locks. Maudslay was thus employed for the next eight years. He became Bramah's foreman, married his housekeeper, Sarah Tindale, and, unable to better himself, decided to leave and set up on his own. He soon outgrew his first premises in Wells Street and moved to Margaret Street, off Oxford Street, where some examples of his workmanship were displayed in the window. These caught the attention of a visiting Frenchman, de Bacquancourt; he was a friend of Marc Isambard Brunel, who was then in the early stages of designing the block-making machinery later installed at Portsmouth dockyard.
    Brunel wanted first a set of working models, as he did not think that the Lords of the Admiralty would be capable of understanding engineering drawings; Maudslay made these for him within the next two years. Sir Samuel Bentham, Inspector-General of Naval Works, agreed that Brunel's system was superior to the one that he had gone some way in developing; the Admiralty approved, and an order was placed for the complete plant. The manufacture of the machinery occupied Maudslay for the next six years; he was assisted by a draughtsman whom he took on from Portsmouth dockyard, Joshua Field (1786–1863), who became his partner in Maudslay, Son and Field. There were as many as eighty employees at Margaret Street until, in 1810, larger premises became necessary and a new works was built at Lambeth Marsh where, eventually, there were up to two hundred workers. The new factory was flanked by two houses, one of which was occupied by Maudslay, the other by Field. The firm became noted for its production of marine steam-engines, notably Maudslay's table engine which was first introduced in 1807.
    Maudslay was a consummate craftsman who was never happier than when working at his bench or at a machine tool; he was also one of the first engineers to appreciate the virtues of standardization. Evidence of this appreciation is to be found in his work in the development of the Bramah lock and then on the machine tools for the manufacture of ship's blocks to Marc Brunel's designs; possibly his most important contribution was the invention in 1797 of the metal lathe. He made a number of surface plates of the finest quality. The most celebrated of his numerous measuring devices was a micrometer-based machine which he termed his "Lord Chancellor" because, in the machine shop, it represented the "final court of appeal", measuring to one-thousandth of an inch.
    [br]
    Further Reading
    1934–5, "Maudslay, Sons \& Field as general engineers", Transactions of the Newcomen Society 15, London.
    1963, Engineering Heritage, Vol. 1, London: Institution of Mechanical Engineers. L.T.C.Rolt, 1965, Tools for the Job, London: Batsford.
    W.Steeds, 1969, A History of Machine Tools 1700–1910, Oxford: Oxford University Press.
    IMcN

    Biographical history of technology > Maudslay, Henry

  • 43 Abel, Sir Frederick August

    [br]
    b. 17 July 1827 Woolwich, London, England
    d. 6 September 1902 Westminster, London, England
    [br]
    English chemist, co-inventor of cordite find explosives expert.
    [br]
    His family came from Germany and he was the son of a music master. He first became interested in science at the age of 14, when visiting his mineralogist uncle in Hamburg, and studied chemistry at the Royal Polytechnic Institution in London. In 1845 he became one of the twenty-six founding students, under A.W.von Hofmann, of the Royal College of Chemistry. Such was his aptitude for the subject that within two years he became von Hermann's assistant and demonstrator. In 1851 Abel was appointed Lecturer in Chemistry, succeeding Michael Faraday, at the Royal Military Academy, Woolwich, and it was while there that he wrote his Handbook of Chemistry, which was co-authored by his assistant, Charles Bloxam.
    Abel's four years at the Royal Military Academy served to foster his interest in explosives, but it was during his thirty-four years, beginning in 1854, as Ordnance Chemist at the Royal Arsenal and at Woolwich that he consolidated and developed his reputation as one of the international leaders in his field. In 1860 he was elected a Fellow of the Royal Society, but it was his studies during the 1870s into the chemical changes that occur during explosions, and which were the subject of numerous papers, that formed the backbone of his work. It was he who established the means of storing gun-cotton without the danger of spontaneous explosion, but he also developed devices (the Abel Open Test and Close Test) for measuring the flashpoint of petroleum. He also became interested in metal alloys, carrying out much useful work on their composition. A further avenue of research occurred in 1881 when he was appointed a member of the Royal Commission set up to investigate safety in mines after the explosion that year in the Sealham Colliery. His resultant study on dangerous dusts did much to further understanding on the use of explosives underground and to improve the safety record of the coal-mining industry. The achievement for which he is most remembered, however, came in 1889, when, in conjunction with Sir James Dewar, he invented cordite. This stable explosive, made of wood fibre, nitric acid and glycerine, had the vital advantage of being a "smokeless powder", which meant that, unlike the traditional ammunition propellant, gunpowder ("black powder"), the firer's position was not given away when the weapon was discharged. Although much of the preliminary work had been done by the Frenchman Paul Vieille, it was Abel who perfected it, with the result that cordite quickly became the British Army's standard explosive.
    Abel married, and was widowed, twice. He had no children, but died heaped in both scientific honours and those from a grateful country.
    [br]
    Principal Honours and Distinctions
    Grand Commander of the Royal Victorian Order 1901. Knight Commander of the Most Honourable Order of the Bath 1891 (Commander 1877). Knighted 1883. Created Baronet 1893. FRS 1860. President, Chemical Society 1875–7. President, Institute of Chemistry 1881–2. President, Institute of Electrical Engineers 1883. President, Iron and Steel Institute 1891. Chairman, Society of Arts 1883–4. Telford Medal 1878, Royal Society Royal Medal 1887, Albert Medal (Society of Arts) 1891, Bessemer Gold Medal 1897. Hon. DCL (Oxon.) 1883, Hon. DSc (Cantab.) 1888.
    Bibliography
    1854, with C.L.Bloxam, Handbook of Chemistry: Theoretical, Practical and Technical, London: John Churchill; 2nd edn 1858.
    Besides writing numerous scientific papers, he also contributed several articles to The Encyclopaedia Britannica, 1875–89, 9th edn.
    Further Reading
    Dictionary of National Biography, 1912, Vol. 1, Suppl. 2, London: Smith, Elder.
    CM

    Biographical history of technology > Abel, Sir Frederick August

  • 44 Arsonval, Jacques Arsène d'

    SUBJECT AREA: Medical technology
    [br]
    b. 8 June 1851 Boric, France
    d. 31 December 1940 Boric, France
    [br]
    French physician and physicist noted for his invention of the reflecting galvanometer and for contributions to electrotherapy.
    [br]
    After studies at colleges in Limoges and later in Paris, Arsonval became a doctor of medicine in 1877. In 1882 the Collège de France established a laboratory of biophysics with Arsonval as Director, and he was Professor from 1894.
    His most outstanding scientific contributions were in the field of biological applications of electricity. His interest in muscle currents led to a series of inventions to assist in research, including the moving-coil galvanometer. In 1881 he made a significant improvement to the galvanometer by reversing the magnetic elements. It had been usual to suspend a compass needle in the centre of a large, stationary coil, but Arsonval's invention was to suspend a small, light coil between the poles of a powerful fixed magnet. This simple arrangement was independent of the earth's magnetic field and insensitive to vibration. A great increase in sensitivity was achieved by attaching a mirror to the coil in order to reflect a spot of light. For bacterial-research purposes he designed the first constant-temperature incubator controlled by electricity. His experiments on the effects of high-frequency, low-voltage alternating currents on animals led to the first high-frequency heat-therapy unit being established in 1892, and later to methods of physiotherapy becoming a professional discipline.
    [br]
    Principal Honours and Distinctions
    Académie des Sciences, Prix Montyon 1882. Chevalier de la Légion d'honneur 1884. Grand Cross 1931.
    Bibliography
    1882, Comptes rendus de l'Académie des Sciences 94:1347–50 (describes the galvanometer).
    1903, Traité de physique biologique, 2 vols, Paris (an account of his technological work).
    Further Reading
    C.C.Gillispie (ed.), 1970, Dictionary of Scientific Biography, Vol. 1, New York, pp. 302–5.
    D.O.Woodbury, 1949, A Measure for Greatness, New York.
    GW

    Biographical history of technology > Arsonval, Jacques Arsène d'

  • 45 Belidor, Bernard Forest de

    SUBJECT AREA: Weapons and armour
    [br]
    b. 1698 Catalonia, Spain
    d. 8 September 1761 Paris, France
    [br]
    French engineer and founder of the science of modern ballistics.
    [br]
    Belidor was the son of a French army officer, who died when he was six months old, and was thereafter brought up by a brother officer. He soon demonstrated a scientific bent, and gravitated to Paris, where he became involved in the determination of the Paris meridian. He was then appointed Professor at the artillery school at La Fère, where he began to pursue the science of ballistics in earnest. He was able to disprove the popular theory that range was directly proportional to the powder charge, and also argued that the explosive power of a charge was greatest at the end of the explosion; he advocated spherical chambers in order to take advantage of this. His ideas made him unpopular with the "establishment", especially the Master of the King's artillery, and he was forced to leave France for a time, becoming a consultant to authorities in Bohemia and Bavaria. However, he was reinstated, and in 1758 he was appointed Royal Inspector of Artillery, a post that he held until his death.
    Belidor also made a name for himself in hydraulics and influenced design in this field for more than a century after his death. In addition, he was the first to make practical application of integral calculus.
    [br]
    Bibliography
    Belidor was the author of several books, of which the most significant were: 1739, La Science des ingénieurs, Paris (reprinted several times, the last edition being as late as 1830).
    1731, Le Bombardier françois, Paris: L'lmprimerie royale.
    1737, Architecture hydraulique, 2 vols, Paris.
    Further Reading
    R.S.Kirby and P.G.Laurson, 1932, The Early History of Modern Civil Engineering, New Haven: Yale University Press (describes his work in the field of hydraulics).
    D.Chandler, 1976, The An of Warfare in the Age of Marlborough, London: Batsford (mentions the ballistics aspect).
    CM

    Biographical history of technology > Belidor, Bernard Forest de

  • 46 Berezin, Evelyn

    [br]
    b. 1925 New York, USA
    [br]
    American pioneer in computer technology.
    [br]
    Born into a poor family in the Bronx, New York City, Berezin first majored in business studies but transferred her interest to physics. She graduated in 1946 and then, with the aid of an Atomic Energy Commission fellowship, she obtained her PhD in cosmic ray physics at New York University. When the fellowship expired, opportunities in the developing field of electronic data processing seemed more promising than thise in physics. Berezin entered the firm of Electronic Computer Corporation in 1951 and was asked to "build a computer", although few at that time had actually seen one; the result was the Elecom 200. In 1953, for Underwood Corporation, she designed the first office computer, although it was never marketed, as Underwood sold out to Olivetti.
    Berezin's next position was as head of logic design for Teleregister Corporation in the late 1950s. Here, she led a team specializing in the design of on-line systems. Her most notable achievement was the design of a nationwide online computer reservation system for United Airlines, the first system of this kind and the precursor of similar on-line systems. It was installed in the early 1960s and was the first large non-military on-line interactive system.
    In the 1960s Berezin moved to the Digitronics Corporation as manager of logic design, her work here resulted in the first high-speed commercial digital communications terminal. Also in the 1960s, her involvement in Data Secretary, a challenger to the IBM editing typewriter, makes it possible to regard her as one of the pioneers of word processing. In 1976 Berezin transferred from the electronic data and computing field to that of financial management.
    [br]
    Further Reading
    A.Stanley, 1993, Mothers and Daughters of Invention, Meruchen, NJ: Scarecrow Press, 651–3.
    LRD

    Biographical history of technology > Berezin, Evelyn

  • 47 Goldmark, Peter Carl

    [br]
    b. 2 December 1906 Budapest, Hungary
    d. 7 December 1977 Westchester Co., New York, USA
    [br]
    Austro-Hungarian engineer who developed the first commercial colour television system and the long-playing record.
    [br]
    After education in Hungary and a period as an assistant at the Technische Hochschule, Berlin, Goldmark moved to England, where he joined Pye of Cambridge and worked on an experimental thirty-line television system using a cathode ray tube (CRT) for the display. In 1936 he moved to the USA to work at Columbia Broadcasting Laboratories. There, with monochrome television based on the CRT virtually a practical proposition, he devoted his efforts to finding a way of producing colour TV images: in 1940 he gave his first demonstration of a working system. There then followed a series of experimental field-sequential colour TV systems based on segmented red, green and blue colour wheels and drums, where the problem was to find an acceptable compromise between bandwidth, resolution, colour flicker and colour-image breakup. Eventually he arrived at a system using a colour wheel in combination with a CRT containing a panchromatic phosphor screen, with a scanned raster of 405 lines and a primary colour rate of 144 fields per second. Despite the fact that the receivers were bulky, gave relatively poor, dim pictures and used standards totally incompatible with the existing 525-line, sixty fields per second interlaced monochrome (black and white) system, in 1950 the Federal Communications Commission (FCC), anxious to encourage postwar revival of the industry, authorized the system for public broadcasting. Within eighteen months, however, bowing to pressure from the remainder of the industry, which had formed its own National Television Systems Committee (NTSC) to develop a much more satisfactory, fully compatible system based on the RCA three-gun shadowmask CRT, the FCC withdrew its approval.
    While all this was going on, Goldmark had also been working on ideas for overcoming the poor reproduction, noise quality, short playing-time (about four minutes) and limited robustness and life of the long-established 78 rpm 12 in. (30 cm) diameter shellac gramophone record. The recent availability of a new, more robust, plastic material, vinyl, which had a lower surface noise, enabled him in 1948 to reduce the groove width some three times to 0.003 in. (0.0762 mm), use a more lightly loaded synthetic sapphire stylus and crystal transducer with improved performance, and reduce the turntable speed to 33 1/3 rpm, to give thirty minutes of high-quality music per side. This successful development soon led to the availability of stereophonic recordings, based on the ideas of Alan Blumlein at EMI in the 1930s.
    In 1950 Goldmark became a vice-president of CBS, but he still found time to develop a scan conversion system for relaying television pictures to Earth from the Lunar Orbiter spacecraft. He also almost brought to the market a domestic electronic video recorder (EVR) system based on the thermal distortion of plastic film by separate luminance and coded colour signals, but this was overtaken by the video cassette recorder (VCR) system, which uses magnetic tape.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Morris N.Liebmann Award 1945. Institute of Electrical and Electronics Engineers Vladimir K. Zworykin Award 1961.
    Bibliography
    1951, with J.W.Christensen and J.J.Reeves, "Colour television. USA Standard", Proceedings of the Institute of Radio Engineers 39: 1,288 (describes the development and standards for the short-lived field-sequential colour TV standard).
    1949, with R.Snepvangers and W.S.Bachman, "The Columbia long-playing microgroove recording system", Proceedings of the Institute of Radio Engineers 37:923 (outlines the invention of the long-playing record).
    Further Reading
    E.W.Herold, 1976, "A history of colour television displays", Proceedings of the Institute of Electrical and Electronics Engineers 64:1,331.
    KF

    Biographical history of technology > Goldmark, Peter Carl

  • 48 Izod, Edwin Gilbert

    SUBJECT AREA: Metallurgy
    [br]
    b. 17 July 1876 Portsmouth, England
    d. 2 October 1946 England
    [br]
    English engineer who devised the notched-bar impact test named after him.
    [br]
    After a general education at Vickery's School at Southsea, Izod (who pronounced his name Izzod, not Izod) started his career as a premium apprentice at the works of Maudslay, Sons and Field at Lambeth in January 1893. When in 1995 he was engaged in the installation of machinery in HMS Renown at Pembroke, he gained some notoriety for his temerity in ordering Rear Admiral J.A.Fisher, who had no pass, out of the main engine room. He subsequently worked at Portsmouth Dockyard where the battleships Caesar and Gladiator were being engined by Maudslay's. From 1898 to 1900 Izod worked as a Demonstrator in the laboratories of University College London, and he was then engaged by Captain H. Riall Sankey as his Personal Assistant at the Rugby works of Willans and Robinson. Soon after going to Rugby, Izod was asked by Sankey to examine a failed gun barrel and try to ascertain why it burst in testing. Conventional mechanical testing did not reveal any significant differences in the properties of good and bad material. Izod found, however, that, when specimens from the burst barrel were notched, gripped in a vice, and then struck with a hammer they broke in a brittle manner, whereas sounder material merely bent plastically. From these findings his well-known notched-bar impact test emerged. His address to the British Association in September 1903 described the test and his testing machine, and was subsequently published in Engineering. Izod never claimed any priority for this method of test, and generously acknowledged his predecessors in this field, Swedenborg, Fremont, Arnold and Bent Russell. The Izod Test was rapidly adopted by the English-speaking world, although Izod himself, being a busy man, did little to publicize his work, which was introduced to the engineering world largely through the efforts of Captain Sankey. Izod became Assistant Managing Director at Willans, and in 1910 was appointed Chief Consulting Mechanical and Electrical Engineer to the Central Mining Corporation at Johannesburg. He became Managing Director of the Rand Mines in 1918, and returned to the UK in 1927 to become the Managing Director of Weymann Motor Bodies Ltd of Addlestone. As Chairman of this company he extended its activitiesconsiderably.
    [br]
    Principal Honours and Distinctions
    MBE. Member of the Iron and Steel Institute.
    Further Reading
    1903, "Testing brittleness of steel", Engineering (25 September): 431–2.
    ASD

    Biographical history of technology > Izod, Edwin Gilbert

  • 49 Nasmyth, James Hall

    [br]
    b. 19 August 1808 Edinburgh, Scotland
    d. 7 May 1890 London, England
    [br]
    Scottish mechanical engineer and inventor of the steam-hammer.
    [br]
    James Nasmyth was the youngest son of Alexander Nasmyth (1758–1840), the portrait and landscape painter. According to his autobiography he was named James Hall after his father's friend, the geologist Sir James Hall (1761–1832), but he seems never to have used his second name in official documents. He received an elementary education at Edinburgh High School, but left at the age of 12. He attended evening classes at the Edinburgh School of Arts for the instruction of Mechanics between 1821 and 1825, and gained experience as a mechanic at an early age in his father's workshop. He shared these early experiences with his brother George, who was only a year or so older, and in the 1820s the brothers built several model steam engines and a steam-carriage capable of carrying eight passengers on the public roads. In 1829 Nasmyth obtained a position in London as personal assistant to Henry Maudslay, and after Maudslay's death in February 1831 he remained with Maudslay's partner, Joshua Field, for a short time. He then returned to Edinburgh, where he and his brother George started in a small way as general engineers. In 1834 they moved to a small workshop in Manchester, and in 1836, with the aid of financial backing from some Manchester businessmen, they established on a site at Patricroft, a few miles from the city, the works which became known as the Bridgewater Foundry. They were soon joined by a third partner, Holbrook Gaskell (1813–1909), who looked after the administration of the business, the firm then being known as Nasmyths Gaskell \& Co. They specialized in making machine tools, and Nasmyth invented many improvements so that they soon became one of the leading manufacturers in this field. They also made steam locomotives for the rapidly developing railways. James Nasmyth's best-known invention was the steam-hammer, which dates from 1839 but was not patented until 1842. The self-acting control gear was probably the work of Robert Wilson and ensured the commercial success of the invention. George Nasmyth resigned from the partnership in 1843 and in 1850 Gaskell also resigned, after which the firm continued as James Nasmyth \& Co. James Nasmyth himself retired at the end of 1856 and went to live at Penshurst, Kent, in a house which he named "Hammerfield" where he devoted his time mainly to his hobby of astronomy. Robert Wilson returned to become Managing Partner of the firm, which later became Nasmyth, Wilson \& Co. and retained that style until its closure in 1940. Nasmyth's claim to be the sole inventor of the steam-hammer has been disputed, but his patent of 1842 was not challenged and the fourteen-year monopoly ensured the prosperity of the business so that he was able to retire at the age of 48. At his death in 1890 he left an estate valued at £243,805.
    [br]
    Bibliography
    1874, with J.Carpenter, The Moon Considered as a Planet, a World, and a Satellite, London.
    1883, Autobiography, ed. Samuel Smiles, London.
    Further Reading
    R.Wailes, 1963, "James Nasmyth—Artist's Son", Engineering Heritage, vol. I, London, 106–11 (a short account).
    J.A.Cantrell, 1984, James Nasmyth and the Bridgewater Foundry: A Study of Entrepreneurship in the Early Engineering Industry, Manchester (a full-length critical study).
    ——1984–5, "James Nasmyth and the steam hammer", Transactions of the Newcomen Society 56:133–8.
    RTS

    Biographical history of technology > Nasmyth, James Hall

  • 50 Poulsen, Valdemar

    [br]
    b. 23 November 1869 Copenhagen, Denmark
    d. 23 July 1942 Gentofte, Denmark
    [br]
    Danish engineer who developed practical magnetic recording and the arc generator for continuous radio waves.
    [br]
    From an early age he was absorbed by phenomena of physics to the exclusion of all other subjects, including mathematics. When choosing his subjects for the final three years in Borgedydskolen in Christianshavn (Copenhagen) before university, he opted for languages and history. At the University of Copenhagen he embarked on the study of medicine in 1889, but broke it off and was apprenticed to the machine firm of A/S Frichs Eftf. in Aarhus. He was employed between 1893 and 1899 as a mechanic and assistant in the laboratory of the Copenhagen Telephone Company KTAS. Eventually he advanced to be Head of the line fault department. This suited his desire for experiment and measurement perfectly. After the invention of the telegraphone in 1898, he left the laboratory and with responsible business people he created Aktieselskabet Telegrafonen, Patent Poulsen in order to develop it further, together with Peder Oluf Pedersen (1874– 1941). Pedersen brought with him the mathematical background which eventually led to his professorship in electronic engineering in 1922.
    The telegraphone was the basis for multinational industrial endeavours after it was demonstrated at the 1900 World's Exhibition in Paris. It must be said that its strength was also its weakness, because the telegraphone was unique in bringing sound recording and reproduction to the telephone field, but the lack of electronic amplifiers delayed its use outside this and the dictation fields (where headphones could be used) until the 1920s. However, commercial interest was great enough to provoke a number of court cases concerning patent infringement, in which Poulsen frequently figured as a witness.
    In 1903–4 Poulsen and Pedersen developed the arc generator for continuous radio waves which was used worldwide for radio transmitters in competition with Marconi's spark-generating system. The inspiration for this work came from the research by William Duddell on the musical arc. Whereas Duddell had proposed the use of the oscillations generated in his electric arc for telegraphy in his 1901 UK patent, Poulsen contributed a chamber of hydrogen and a transverse magnetic field which increased the efficiency remarkably. He filed patent applications on these constructions from 1902 and the first publication in a scientific forum took place at the International Electrical Congress in St Louis, Missouri, in 1904.
    In order to use continuous waves efficiently (the high frequency constituted a carrier), Poulsen developed both a modulator for telegraphy and a detector for the carrier wave. The modulator was such that even the more primitive spark-communication receivers could be used. Later Poulsen and Pedersen developed frequency-shift keying.
    The Amalgamated Radio-Telegraph Company Ltd was launched in London in 1906, combining the developments of Poulsen and those of De Forest Wireless Telegraph Syndicate. Poulsen contributed his English and American patents. When this company was liquidated in 1908, its assets were taken over by Det Kontinentale Syndikat for Poulsen Radio Telegrafi, A/S in Copenhagen (liquidated 1930–1). Some of the patents had been sold to C.Lorenz AG in Berlin, which was very active.
    The arc transmitting system was in use worldwide from about 1910 to 1925, and the power increased from 12 kW to 1,000 kW. In 1921 an exceptional transmitter rated at 1,800 kW was erected on Java for communications with the Netherlands. More than one thousand installations had been in use worldwide. The competing systems were initially spark transmitters (Marconi) and later rotary converters ( Westinghouse). Similar power was available from valve transmitters only much later.
    From c. 1912 Poulsen did not contribute actively to further development. He led a life as a well-respected engineer and scientist and served on several committees. He had his private laboratory and made experiments in the composition of matter and certain resonance phenomena; however, nothing was published. It has recently been suggested that Poulsen could not have been unaware of Oberlin Smith's work and publication in 1888, but his extreme honesty in technical matters indicates that his development was indeed independent. In the case of the arc generator, Poulsen was always extremely frank about the inspiration he gained from earlier developers' work.
    [br]
    Bibliography
    1899, British patent no. 8,961 (the first British telegraphone patent). 1903, British patent no. 15,599 (the first British arc-genera tor patent).
    His scientific publications are few, but fundamental accounts of his contribution are: 1900, "Das Telegraphon", Ann. d. Physik 3:754–60; 1904, "System for producing continuous oscillations", Trans. Int. El. Congr. St. Louis, Vol. II, pp. 963–71.
    Further Reading
    A.Larsen, 1950, Telegrafonen og den Traadløse, Ingeniørvidenskabelige Skrifter no. 2, Copenhagen (provides a very complete, although somewhat confusing, account of Poulsen's contributions; a list of his patents is given on pp. 285–93).
    F.K.Engel, 1990, Documents on the Invention of Magnetic Re cor ding in 1878, New York: Audio Engineering Society, reprint no. 2,914 (G2) (it is here that doubt is expressed about whether Poulsen's ideas were developed independently).
    GB-N

    Biographical history of technology > Poulsen, Valdemar

  • 51 Sullivan, Louis Henry

    [br]
    b. 3 September 1856 Boston, Massachusetts, USA
    d. 14 April 1924 Chicago, Illinois, USA
    [br]
    American architect whose work came to be known as the "Chicago School of Architecture" and who created a new style of architecture suited specifically to steel-frame, high-rise structures.
    [br]
    Sullivan, a Bostonian, studied at the Massachusetts Institute of Technology. Soon he joined his parents, who had moved to Chicago, and worked for a while in the office of William Le Baron Jenney, the pioneer of steel-frame construction. After spending some time studying at the Ecole des Beaux Arts in Paris, in 1875 Sullivan returned to Chicago, where he later met and worked for the Danish architect Dankmar Adler, who was practising there. In 1881 the two architects became partners, and during the succeeding fifteen years they produced their finest work and the buildings for which Sullivan is especially known.
    During the early 1880s in Chicago, load-bearing, metal-framework structures that made lofty skyscrapers possible had been developed (see Jenney and Holabird). Louis H.Sullivan initiated building design to stress and complement the metal structure rather than hide it. Moving onwards from H.H.Richardson's treatment of his Marshall Field Wholesale Store in Chicago, Sullivan took the concept several stages further. His first outstanding work, built with Adler in 1886–9, was the Auditorium Building in Chicago. The exterior, in particular, was derived largely from Richardson's Field Store, and the building—now restored—is of bold but simple design, massively built in granite and stone, its form stressing the structure beneath. The architects' reputation was established with this building.
    The firm of Sullivan \& Adler established itself during the early 1890s, when they built their most famous skyscrapers. Adler was largely responsible for the structure, the acoustics and function, while Sullivan was responsible for the architectural design, concerning himself particularly with the limitation and careful handling of ornament. In 1892 he published his ideas in Ornament in Architecture, where he preached restraint in its quality and disposition. He established himself as a master of design in the building itself, producing a rhythmic simplicity of form, closely related to the structural shape beneath. The two great examples of this successful approach were the Wainwright Building in St Louis, Missouri (1890–1) and the Guaranty Building in Buffalo, New York (1894–5). The Wainwright Building was a ten-storeyed structure built in stone and brick and decorated with terracotta. The vertical line was stressed throughout but especially at the corners, where pilasters were wider. These rose unbroken to an Art Nouveau type of decorative frieze and a deeply projecting cornice above. The thirteen-storeyed Guaranty Building is Sullivan's masterpiece, a simple, bold, finely proportioned and essentially modern structure. The pilaster verticals are even more boldly stressed and decoration is at a minimum. In the twentieth century the almost free-standing supporting pillars on the ground floor have come to be called pilotis. As late as the 1920s, particularly in New York, the architectural style and decoration of skyscrapers remained traditionally eclectic, based chiefly upon Gothic or classical forms; in view of this, Sullivan's Guaranty Building was far ahead of its time.
    [br]
    Bibliography
    Article by Louis H.Sullivan. Address delivered to architectural students June 1899, published in Canadian Architecture Vol. 18(7):52–3.
    Further Reading
    Hugh Morrison, 1962, Louis Sullivan: Prophet of Modern Architecture.
    Willard Connely, 1961, Louis Sullivan as He Lived, New York: Horizon Press.
    DY

    Biographical history of technology > Sullivan, Louis Henry

  • 52 Voelcker, John Christopher

    [br]
    b. 24 September 1822 Frankfurt am Main, Germany
    d. 5 December 1884 England
    [br]
    German analytical chemist resident in England whose reports on feedstuffs and fertilizers had a considerable influence on the quality of these products.
    [br]
    The son of a merchant in the city of his birth, John Christopher had delicate health and required private tuition to overcome the loss of his early years of schooling. At the age of 22 he went to study chemistry at Göttingen University and then worked for a short time for Liebig at Giessen. In 1847 he obtained a post as Analyst and Consulting Chemist at the Agricultural Chemistry Association of Scotland's Edinburgh office, and two years later he became Professor of Chemistry at the Royal Agricultural College in Cirencester, retaining this post until 1862. In 1855 he was appointed Chemist to the Bath and West Agricultural Society, and in that capacity organized lectures and field trials, and in 1857 he also became Consulting Chemist to the Royal Agricultural Society of England. Initially he studied the properties of farmyard manure and also the capacity of the soil to absorb ammonia, potash and sodium. As Consulting Chemist to farmers he analysed feedstuffs and manures; his assessments of artificial manures did much to force improvements in standards. During the 1860s he worked on milk and dairy products. He published the results of his work each year in the Journal of the Royal Agricultural Society of England. In 1877 he became involved in the field trials initiated and funded by the Duke of Bedford on his Woburn farm, and he continued his association with this venture until his death.
    [br]
    Principal Honours and Distinctions
    FRS. Founder and Vice-President, Institute of Chemistry of Great Britain and Northern Ireland 1877. Member Chemical Society 1849; he was a member of Council as well as its Vice-President at the time of his death. Member of the Board of Studies, Royal Agricultural College, Cirencester; Honorary Professor from 1882.
    Bibliography
    His papers are to be found in the Journal of the Royal Agricultural Society of England, for which he began to write reports in 1855, and also in the Journal of the Bath and West Society.
    Further Reading
    J.H.Gilbert, 1844, obituary, Journal of the Royal Agricultural Society of England, pp. 308–21 (a detailed account).
    Sir E.John Russell, A History of Agricultural Science in Great Britain.
    AP

    Biographical history of technology > Voelcker, John Christopher

  • 53 Bothe, Walter Wilhelm Georg Franz

    SUBJECT AREA: Weapons and armour
    [br]
    b. 8 January 1891 Oranienburg, Berlin, Germany
    d. 8 February 1957 Heidelberg, Germany
    [br]
    German nuclear scientist.
    [br]
    Bothe studied under Max Planck at the University of Berlin, gaining his doctorate in 1914. After military service during the First World War, he resumed his investigations into nuclear physics and achieved a breakthrough in 1929 when he developed a method of studying cosmic radiation by placing one Geiger counter on top of another. From this he evolved the means of high-speed counting known as "coincidence counting". The following year, in conjunction with Hans Becker, Bothe made a Further stride forward when they identified a very penetrative neutral particle by bombarding beryllium with alpha particles; this was a significant advance towards creating nuclear energy in that the neutral particle was what Chadwick later identified as the neutron.
    In 1934 Bothe's achievements were recognized by his appointment as Director of the Max Planck Institute for Medical Research, although this was after Planck himself had been deposed because of his Jewish sympathies. Bothe did, however, become primarily involved in Germany's pursuit of the atomic bomb and in 1944 constructed Germany's first cyclotron for accelerating nuclear particles. By that time Germany was faced with military defeat and Bothe was not able to develop his ideas further. Even so, for his work in the field of cosmic radiation Bothe shared the 1954 Nobel Prize for Physics with the naturalized Briton (formerly German) Max Born, whose subject was statistical mechanics.
    [br]
    Principal Honours and Distinctions
    Co-winner of the Nobel Prize for Physics 1954.
    CM

    Biographical history of technology > Bothe, Walter Wilhelm Georg Franz

  • 54 Brunschwig, Hieronymus

    SUBJECT AREA: Medical technology
    [br]
    b. c.1440 Strasbourg, Alsace
    d. 1512/13 Strasbourg, Alsace
    [br]
    German surgeon and chemist.
    [br]
    Brunschwig was a widely read and highly respected surgeon of the city of Strasbourg. He was a writer of two works, one on surgery and the other, of greater importance, on chemical distillation. In this he was the inheritor of a tradition of the practice of distillation going back to the first centuries AD. The most familiar chemical tradition in the Middle Ages was that of alchemy, devoted to the attempt to make gold. The appearance of a number of printed books of a severely practical nature after 1500, however, testifies to the existence of a practical tradition that had flourished alongside alchemy. Brunsch-wig's first essay in this field was printed in 1500 and dealt with the preparation of "simples", or remedies with a single active constituent. In 1507 he brought out a work on the distilling of "composites", remedies with two or more active constituents. In these works Brunschwig sought to present a comprehensive account of the various kinds of apparatus available and the methods of preparing medicines, together with an account of the diseases it was hoped to cure with them. It was one of the earliest printed books on a chemical subject and the earliest to include illustrations of chemical apparatus. The works were widely used and did much to turn chemistry away from its preoccupation with gold-making, towards the making of substances useful in medicine.
    [br]
    Further Reading
    The best account of Brunschwig's life and work is the introduction to Book of Distillation by Hieronymus Bruunschwig, 1971, introd. Harold J.Abrahams, New York, Johnson Reprint (the best account of Brunschwig's life and work).
    LRD

    Biographical history of technology > Brunschwig, Hieronymus

  • 55 Chubb, John

    [br]
    b. 1816 Portsea, Hampshire, England
    d. 30 October 1872 Brixton Rise, London, England.
    [br]
    English locksmith.
    [br]
    He succeeded his father, who had founded the family firm of Chubb \& Son, and patented many improvements to locks, safes, strong rooms and the like. He was elected a member of the Institution of Civil Engineers in 1845, where he delivered an important paper on locks and keys which included a list of all British patents in the field up to the date of the paper as well as of all communications on the same subject to the Royal Society of Arts; for this he was awarded the Telford Medal.
    John Chubb was followed into the family business by his three sons, John C.Chubb, George H.Chubb (who was created Lord Hayter of Chislehurst in 1928) and Henry W.Chubb.
    [br]
    Principal Honours and Distinctions
    Institution of Civil Engineers Telford Medal 1845. See also: Chubb, Charles.
    IMcN

    Biographical history of technology > Chubb, John

  • 56 Douglas, Donald Wills

    SUBJECT AREA: Aerospace
    [br]
    b. 6 April 1892 Brooklyn, New York, USA
    d. 1 February 1981 Palm Springs, California, USA
    [br]
    American aircraft designer best known for bis outstanding airliner', the DC-3.
    [br]
    In 1912 Donald Douglas went to the Massachusetts Institute of Technology to study aeronautical engineering. After graduating in this relatively new subject he joined the Glenn L.Martin Company as Chief Engineer. In 1920 he founded the Davis-Douglas Company in California to build an aircraft capable of flying across America non-stop: unfortunately, the Cloudster failed to achieve its target. Douglas reorganized the company in 1921 as the Douglas Company (later it became the Douglas Aircraft Company). In 1924 a team of US Army personnel made the first round-the-world flight in specially designed Douglas World Cruisers, a feat which boosted Douglas's reputation considerably. This reputation was further enhanced by his airliner, designed in 1935, that revolutionized air travel: the Douglas Commercial 3, or DC-3, of which some 13,000 were built. A series of piston-engined airliners followed, culminating in the DC-7. Meanwhile, in the military field, Douglas aircraft played a major part in the Second World War. In the jet age Douglas continued to produce a wide range of successful civil and military aircraft, and the company also moved into the rocket and guided missile business. In 1966 Donald W. Douglas was still Chairman of the company, with Donald W.Douglas Jr as President. In 1967 the company merged with the McDonnell Aircraft Company to become the giant McDonnell Douglas Corporation.
    [br]
    Principal Honours and Distinctions
    American Institute of Aeronautics and Astronautics; Daniel Guggenheim Medal 1939.
    Bibliography
    1935, "The development and reliability of the modern multi-engined airliner", Journal of the Royal Aeronautical Society, London (lecture).
    Further Reading
    B.Yenne, 1985, McDonnell Douglas: A Tale of Two Giants, London (pays some attention to both Douglas and McDonnell, but also covers the history of the companies and the aircraft they produced).
    René J.Francillon, 1979, McDonnell Douglas Aircraft since 1920, London; 1988, 2nd edn (a comprehensive history of the company's aircraft).
    JDS

    Biographical history of technology > Douglas, Donald Wills

  • 57 Gabor, Dennis (Dénes)

    [br]
    b. 5 June 1900 Budapest, Hungary
    d. 9 February 1979 London, England
    [br]
    Hungarian (naturalized British) physicist, inventor of holography.
    [br]
    Gabor became interested in physics at an early age. Called up for military service in 1918, he was soon released when the First World War came to an end. He then began a mechanical engineering course at the Budapest Technical University, but a further order to register for military service prompted him to flee in 1920 to Germany, where he completed his studies at Berlin Technical University. He was awarded a Diploma in Engineering in 1924 and a Doctorate in Electrical Engineering in 1927. He then went on to work in the physics laboratory of Siemens \& Halske. He returned to Hungary in 1933 and developed a new kind of fluorescent lamp called the plasma lamp. Failing to find a market for this device, Gabor made the decision to abandon his homeland and emigrate to England. There he joined British Thompson-Houston (BTH) in 1934 and married a colleague from the company in 1936. Gabor was also unsuccessful in his attempts to develop the plasma lamp in England, and by 1937 he had begun to work in the field of electron optics. His work was interrupted by the outbreak of war in 1939, although as he was not yet a British subject he was barred from making any significant contribution to the British war effort. It was only when the war was near its end that he was able to return to electron optics and begin the work that led to the invention of holography. The theory was developed during 1947 and 1948; Gabor went on to demonstrate that the theories worked, although it was not until the invention of the laser in 1960 that the full potential of his invention could be appreciated. He coined the term "hologram" from the Greek holos, meaning complete, and gram, meaning written. The three-dimensional images have since found many applications in various fields, including map making, medical imaging, computing, information technology, art and advertising. Gabor left BTH to become an associate professor at the Imperial College of Science and Technology in 1949, a position he held until his retirement in 1967. In 1971 he was awarded the Nobel Prize for Physics for his work on holography.
    [br]
    Principal Honours and Distinctions
    Royal Society Rumford Medal 1968. Franklin Institute Michelson Medal 1968. CBE 1970. Nobel Prize for Physics 1971.
    Bibliography
    1948. "A new microscopic principle", Nature 161:777 (Gabor's earliest publication on holography).
    1949. "Microscopy by reconstructed wavefronts", Proceedings of the Royal Society A197: 454–87.
    1951, "Microscopy by reconstructed wavefronts II", Proc. Phys. Soc. B, 64:449–69. 1966, "Holography or the “Whole Picture”", New Scientist 29:74–8 (an interesting account written after laser beams were used to produce optical holograms).
    Further Reading
    T.E.Allibone, 1980, contribution to Biographical Memoirs of Fellows of the Royal Society 26: 107–47 (a full account of Gabor's life and work).
    JW

    Biographical history of technology > Gabor, Dennis (Dénes)

  • 58 Kapp, Gisbert Johann Eduard Karl

    SUBJECT AREA: Electricity
    [br]
    b. 2 September 1852 Mauer, Vienna, Austria
    d. 10 August 1922 Birmingham, England
    [br]
    Austrian (naturalized British in 1881) engineer and a pioneer of dynamo design, being particularly associated with the concept of the magnetic circuit.
    [br]
    Kapp entered the Polytechnic School in Zurich in 1869 and gained a mechanical engineering diploma. He became a member of the engineering staff at the Vienna International Exhibition of 1873, and then spent some time in the Austrian navy before entering the service of Gwynne \& Co. of London, where he designed centrifugal pumps and gas exhausters. Kapp resolved to become an electrical engineer after a visit to the Paris Electrical Exhibition of 1881 and in the following year was appointed Manager of the Crompton Co. works at Chelmsford. There he developed and patented the dynamo with compound field winding. Also at that time, with Crompton, he patented electrical measuring instruments with over-saturated electromagnets. He became a naturalized British subject in 1881.
    In 1886 Kapp's most influential paper was published. This described his concept of the magnetic circuit, providing for the first time a sound theoretical basis for dynamo design. The theory was also developed independently by J. Hopkinson. After commencing practice as a consulting engineer in 1884 he carried out design work on dynamos and also electricity-supply and -traction schemes in Germany, Italy, Norway, Russia and Switzerland. From 1891 to 1894 much of his time was spent designing a new generating station in Bristol, officially as Assistant to W.H. Preece. There followed an appointment in Germany as General Secretary of the Verband Deutscher Electrotechniker. For some years he edited the Electrotechnische Zeitschrift and was also a part-time lecturer at the Charlottenberg Technical High School in Berlin. In 1904 Kapp was invited to accept the new Chair of Electrical Engineering at the University of Birmingham, which he occupied until 1919. He was the author of several books on electrical machine and transformer design.
    [br]
    Principal Honours and Distinctions
    Institution of Civil Engineers Telford Medal 1886 and 1888. President, Institution of Electrical Engineers 1909.
    Bibliography
    10 October 1882, with R.E.B.Crompton, British patent no. 4,810; (the compound wound dynamo).
    1886, "Modern continuous current dynamo electric machines and their engines", Proceedings of the Institution of Civil Engineers 83: 123–54.
    Further Reading
    D.G.Tucker, 1989, "A new archive of Gisbert Kapp papers", Proceedings of the Meeting on History of Electrical Engineering, IEE 4/1–4/11 (a transcript of an autobiography for his family).
    D.G.Tucker, 1973, Gisbert Kapp 1852–1922, Birmingham: Birmingham University (includes a bibliography of his most important publications).
    GW

    Biographical history of technology > Kapp, Gisbert Johann Eduard Karl

  • 59 Lobnitz, Frederick

    SUBJECT AREA: Ports and shipping
    [br]
    b. 7 September 1863 Renfrew, Scotland
    d. 7 December 1932 Crookston, Renfrewshire, Scotland
    [br]
    Scottish shipbuilder, expert in dredge technology.
    [br]
    Lobnitz was the son of Henry Christian Lobnitz. His father was born in Denmark in 1831, and had worked for some years in both England and Scotland before becoming a naturalized British subject. Ultimately Henry joined the Clyde shipyard of James Henderson \& Son and worked there until his death, by which time he was sole proprietor and the yard was called Lobnitz \& Co. By this time the shipyard was the acknowledged world leader in rock-cutting machinery.
    Frederick was given the opportunity to travel in Europe during the late 1870s and early 1880s. He studied at Bonn, Heidelberg and at the Zurich Polytechnic, and also served an apprenticeship at the Fairfield Shipyard of John Elder \& Co. of Glasgow. One of his first tasks was to supervise the construction and commissioning of a subaqueous rock excavator, and then he was asked to direct rock excavations at the Suez Canal.
    In 1888 Frederick Lobnitz was made a partner of the company by his father and was to remain with them until his death, at which time he was Chairman. By this time the shipyard was a private limited company and had continued to enhance its name in the specialized field of dredging. At that time the two greatest dredge builders in the world (and deadly rivals) were situated next to each other on the banks of the Clyde at Renfrew; in 1957 they merged as Simons-Lobnitz Ltd. In 1915 Lobnitz was appointed Deputy Director for Munitions in Scotland and one year later he became Director, a post he held until 1919. Having investigated the running of munitions factories in France, he released scarce labour for the war effort by staffing the plants under his control with female and unskilled labour.
    [br]
    Principal Honours and Distinctions
    Knighted 1920. Officier de la Légion d'honneur.
    Further Reading
    Fred M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuilding Cambridge: PSL.
    Lobnitz \& Co., n.d., Romance of Dredging.
    FMW

    Biographical history of technology > Lobnitz, Frederick

  • 60 Maxim, Sir Hiram Stevens

    [br]
    b. 5 February 1840 Brockway's Mills, Maine, USA
    d. 24 November 1916 Streatham, London, England
    [br]
    American (naturalized British) inventor; designer of the first fully automatic machine gun and of an experimental steam-powered aircraft.
    [br]
    Maxim was born the son of a pioneer farmer who later became a wood turner. Young Maxim was first apprenticed to a carriage maker and then embarked on a succession of jobs before joining his uncle in his engineering firm in Massachusetts in 1864. As a young man he gained a reputation as a boxer, but it was his uncle who first identified and encouraged Hiram's latent talent for invention.
    It was not, however, until 1878, when Maxim joined the first electric-light company to be established in the USA, as its Chief Engineer, that he began to make a name for himself. He developed an improved light filament and his electric pressure regulator not only won a prize at the first International Electrical Exhibition, held in Paris in 1881, but also resulted in his being made a Chevalier de la Légion d'honneur. While in Europe he was advised that weapons development was a more lucrative field than electricity; consequently, he moved to England and established a small laboratory at Hatton Garden, London. He began by investigating improvements to the Gatling gun in order to produce a weapon with a faster rate of fire and which was more accurate. In 1883, by adapting a Winchester carbine, he successfully produced a semi-automatic weapon, which used the recoil to cock the gun automatically after firing. The following year he took this concept a stage further and produced a fully automatic belt-fed weapon. The recoil drove barrel and breechblock to the vent. The barrel then halted, while the breechblock, now unlocked from the former, continued rearwards, extracting the spent case and recocking the firing mechanism. The return spring, which it had been compressing, then drove the breechblock forward again, chambering the next round, which had been fed from the belt, as it did so. Keeping the trigger pressed enabled the gun to continue firing until the belt was expended. The Maxim gun, as it became known, was adopted by almost every army within the decade, and was to remain in service for nearly fifty years. Maxim himself joined forces with the large British armaments firm of Vickers, and the Vickers machine gun, which served the British Army during two world wars, was merely a refined version of the Maxim gun.
    Maxim's interests continued to occupy several fields of technology, including flight. In 1891 he took out a patent for a steam-powered aeroplane fitted with a pendulous gyroscopic stabilizer which would maintain the pitch of the aeroplane at any desired inclination (basically, a simple autopilot). Maxim decided to test the relationship between power, thrust and lift before moving on to stability and control. He designed a lightweight steam-engine which developed 180 hp (135 kW) and drove a propeller measuring 17 ft 10 in. (5.44 m) in diameter. He fitted two of these engines into his huge flying machine testrig, which needed a wing span of 104 ft (31.7 m) to generate enough lift to overcome a total weight of 4 tons. The machine was not designed for free flight, but ran on one set of rails with a second set to prevent it rising more than about 2 ft (61 cm). At Baldwyn's Park in Kent on 31 July 1894 the huge machine, carrying Maxim and his crew, reached a speed of 42 mph (67.6 km/h) and lifted off its rails. Unfortunately, one of the restraining axles broke and the machine was extensively damaged. Although it was subsequently repaired and further trials carried out, these experiments were very expensive. Maxim eventually abandoned the flying machine and did not develop his idea for a stabilizer, turning instead to other projects. At the age of almost 70 he returned to the problems of flight and designed a biplane with a petrol engine: it was built in 1910 but never left the ground.
    In all, Maxim registered 122 US and 149 British patents on objects ranging from mousetraps to automatic spindles. Included among them was a 1901 patent for a foot-operated suction cleaner. In 1900 he became a British subject and he was knighted the following year. He remained a larger-than-life figure, both physically and in character, until the end of his life.
    [br]
    Principal Honours and Distinctions
    Chevalier de la Légion d'Honneur 1881. Knighted 1901.
    Bibliography
    1908, Natural and Artificial Flight, London. 1915, My Life, London: Methuen (autobiography).
    Further Reading
    Obituary, 1916, Engineer (1 December).
    Obituary, 1916, Engineering (1 December).
    P.F.Mottelay, 1920, The Life and Work of Sir Hiram Maxim, London and New York: John Lane.
    Dictionary of National Biography, 1912–1921, 1927, Oxford: Oxford University Press.
    CM / JDS

    Biographical history of technology > Maxim, Sir Hiram Stevens

См. также в других словарях:

  • subject field — noun a branch of knowledge in what discipline is his doctorate? teachers should be well trained in their subject anthropology is the study of human beings • Syn: ↑discipline, ↑subject, ↑subject area, ↑field, ↑ …   Useful english dictionary

  • field of study — noun a branch of knowledge in what discipline is his doctorate? teachers should be well trained in their subject anthropology is the study of human beings • Syn: ↑discipline, ↑subject, ↑subject area, ↑subject field, ↑ …   Useful english dictionary

  • subject area — noun a branch of knowledge in what discipline is his doctorate? teachers should be well trained in their subject anthropology is the study of human beings • Syn: ↑discipline, ↑subject, ↑subject field, ↑field, ↑ …   Useful english dictionary

  • subject — n 1 *citizen, national Antonyms: sovereign 2 Subject, matter, subject matter, argument, topic, text, theme, motive, motif, leitmotiv can mean the basic idea or the principal object of thought or attention in a discourse or artistic composition.… …   New Dictionary of Synonyms

  • Field — (f[=e]ld), n. [OE. feld, fild, AS. feld; akin to D. veld, G. feld, Sw. f[ a]lt, Dan. felt, Icel. fold field of grass, AS. folde earth, land, ground, OS. folda.] 1. Cleared land; land suitable for tillage or pasture; cultivated ground; the open… …   The Collaborative International Dictionary of English

  • Field — (f[=e]ld), n. [OE. feld, fild, AS. feld; akin to D. veld, G. feld, Sw. f[ a]lt, Dan. felt, Icel. fold field of grass, AS. folde earth, land, ground, OS. folda.] 1. Cleared land; land suitable for tillage or pasture; cultivated ground; the open… …   The Collaborative International Dictionary of English

  • Field artillery — Field Field (f[=e]ld), n. [OE. feld, fild, AS. feld; akin to D. veld, G. feld, Sw. f[ a]lt, Dan. felt, Icel. fold field of grass, AS. folde earth, land, ground, OS. folda.] 1. Cleared land; land suitable for tillage or pasture; cultivated ground; …   The Collaborative International Dictionary of English

  • Field basil — Field Field (f[=e]ld), n. [OE. feld, fild, AS. feld; akin to D. veld, G. feld, Sw. f[ a]lt, Dan. felt, Icel. fold field of grass, AS. folde earth, land, ground, OS. folda.] 1. Cleared land; land suitable for tillage or pasture; cultivated ground; …   The Collaborative International Dictionary of English

  • Field colors — Field Field (f[=e]ld), n. [OE. feld, fild, AS. feld; akin to D. veld, G. feld, Sw. f[ a]lt, Dan. felt, Icel. fold field of grass, AS. folde earth, land, ground, OS. folda.] 1. Cleared land; land suitable for tillage or pasture; cultivated ground; …   The Collaborative International Dictionary of English

  • Field cricket — Field Field (f[=e]ld), n. [OE. feld, fild, AS. feld; akin to D. veld, G. feld, Sw. f[ a]lt, Dan. felt, Icel. fold field of grass, AS. folde earth, land, ground, OS. folda.] 1. Cleared land; land suitable for tillage or pasture; cultivated ground; …   The Collaborative International Dictionary of English

  • Field day — Field Field (f[=e]ld), n. [OE. feld, fild, AS. feld; akin to D. veld, G. feld, Sw. f[ a]lt, Dan. felt, Icel. fold field of grass, AS. folde earth, land, ground, OS. folda.] 1. Cleared land; land suitable for tillage or pasture; cultivated ground; …   The Collaborative International Dictionary of English

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»