Перевод: со всех языков на английский

с английского на все языки

Clyde

  • 1 Clyde

    Czech-English dictionary > Clyde

  • 2 Clyde Operational Headquarters

    Abbreviation: COH

    Универсальный русско-английский словарь > Clyde Operational Headquarters

  • 3 Clyde River, Baffin Island, NorthWest Territories, Canada

    Airports: YCY

    Универсальный русско-английский словарь > Clyde River, Baffin Island, NorthWest Territories, Canada

  • 4 Commander, Clyde Area

    Abbreviation: COMCLYDE (NATO)

    Универсальный русско-английский словарь > Commander, Clyde Area

  • 5 FM-90.5, Clyde, Ohio

    Radio: WHVT

    Универсальный русско-английский словарь > FM-90.5, Clyde, Ohio

  • 6 FM-93.7, Clyde, New York

    Radio: WCOV

    Универсальный русско-английский словарь > FM-93.7, Clyde, New York

  • 7 Woodward Clyde Federal Services

    Trademark term: WCFS

    Универсальный русско-английский словарь > Woodward Clyde Federal Services

  • 8 Клайд

    Новый русско-английский словарь > Клайд

  • 9 Клайд

    Clyde имя существительное:

    Русско-английский синонимический словарь > Клайд

  • 10 Napier, Robert

    SUBJECT AREA: Ports and shipping
    [br]
    b. 18 June 1791 Dumbarton, Scotland
    d. 23 June 1876 Shandon, Dunbartonshire, Scotland
    [br]
    Scottish shipbuilder one of the greatest shipbuilders of all time, known as the "father" of Clyde shipbuilding.
    [br]
    Educated at Dumbarton Grammar School, Robert Napier had been destined for the Church but persuaded his father to let him serve an apprenticeship as a blacksmith under him. For a while he worked in Edinburgh, but then in 1815 he commenced business in Glasgow, the city that he served for the rest of his life. Initially his workshop was in Camlachie, but it was moved in 1836 to a riverside factory site at Lancefield in the heart of the City and again in 1841 to the Old Shipyard in the Burgh of Govan (then independent of the City of Glasgow). The business expanded through his preparedness to build steam machinery, beginning in 1823 with the engines for the paddle steamer Leven, still to be seen a few hundred metres from Napier's grave in Dumbarton. His name assured owners of quality, and business expanded after two key orders: one in 1836 for the Honourable East India Company; and the second two years later for the Royal Navy, hitherto the preserve of the Royal Dockyards and of the shipbuilders of south-east England. Napier's shipyard and engine shops, then known as Robert Napier and Sons, were to be awarded sixty Admiralty contracts in his lifetime, with a profound influence on ship and engine procurement for the Navy and on foreign governments, which for the first time placed substantial work in the United Kingdom.
    Having had problems with hull subcontractors and also with the installation of machinery in wooden hulls, in 1843 Napier ventured into shipbuilding with the paddle steamer Vanguard, which was built of iron. The following year the Royal Navy took delivery of the iron-hulled Jackall, enabling Napier to secure the contract for the Black Prince, Britain's second ironclad and sister ship to HMS Warrior now preserved at Portsmouth. With so much work in iron Napier instigated studies into metallurgy, and the published work of David Kirkaldy bears witness to his open-handedness in assisting the industry. This service to industry was even more apparent in 1866 when the company laid out the Skelmorlie Measured Mile on the Firth of Clyde for ship testing, a mile still in use by ships of all nations.
    The greatest legacy of Robert Napier was his training of young engineers, shipbuilders and naval architects. Almost every major Scottish shipyard, and some English too, was influenced by him and many of his early foremen left to set up rival establishments along the banks of the River Clyde. His close association with Samuel Cunard led to the setting up of the company now known as the Cunard Line. Napier designed and engined the first four ships, subcontracting the hulls of this historic quartet to other shipbuilders on the river. While he contributed only 2 per cent to the equity of the shipping line, they came back to him for many more vessels, including the magnificent paddle ship Persia, of 1855.
    It is an old tradition on the Clyde that the smokestacks of ships are made by the enginebuilders. The Cunard Line still uses red funnels with black bands, Napier's trademark, in honour of the engineer who set them going.
    [br]
    Principal Honours and Distinctions
    Knight Commander of the Dannebrog (Denmark). President, Institution of Mechanical Engineers 1864. Honorary Member of the Glasgow Society of Engineers 1869.
    Further Reading
    James Napier, 1904, The Life of Robert Napier, Edinburgh, Blackwood.
    J.M.Halliday, 1980–1, "Robert Napier. The father of Clyde shipbuilding", Transactions of the Institution of Engineers and Shipbuilders in Scotland 124.
    Fred M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuilding, Cambridge: PSL.
    FMW

    Biographical history of technology > Napier, Robert

  • 11 Brown, Andrew

    SUBJECT AREA: Ports and shipping
    [br]
    b. October 1825 Glasgow, Scotland
    d. 6 May 1907 Renfrew, Scotland
    [br]
    Scottish engineer and specialist shipbuilder, dredge-plant authority and supplier.
    [br]
    Brown commenced his apprenticeship on the River Clyde in the late 1830s, working for some of the most famous marine engineering companies and ultimately with the Caledonian Railway Company. In 1850 he joined the shipyard of A. \& J.Inglis Ltd of Partick as Engineering Manager; during his ten years there he pioneered the fitting of link-motion valve gear to marine engines. Other interesting engines were built, all ahead of their time, including a three-cylinder direct-acting steam engine.
    His real life's work commenced in 1860 when he entered into partnership with the Renfrew shipbuilder William Simons. Within one year he had designed the fast Clyde steamer Rothesay Castle, a ship less than 200 ft (61 m) long, yet which steamed at c.20 knots and subsequently became a notable American Civil War blockade runner. At this time the company also built the world's first sailing ship with wire-rope rigging. Within a few years of joining the shipyard on the Cart (a tributary of the Clyde), he had designed the first self-propelled hopper barges built in the United Kingdom. He then went on to design, patent and supervise the building of hopper dredges, bucket ladder dredges and sand dredges, which by the end of the century had capacity of 10,000 tons per hour. In 1895 they built an enclosed hopper-type ship which was the prototype of all subsequent sewage-dumping vessels. Typical of his inventions was the double-ended screw-elevating deck ferry, a ship of particular value in areas where there is high tidal range. Examples of this design are still to be found in many seaports of the world. Brown ultimately became Chairman of Simons shipyard, and in his later years took an active part in civic affairs, serving for fifteen years as Provost of Renfrew. His influence in establishing Renfrew as one of the world's centres of excellence in dredge design and building was considerable, and he was instrumental in bringing several hundred ship contracts of a specialist nature to the River Clyde.
    [br]
    Principal Honours and Distinctions
    Vice-President, Institution of Engineers and Shipbuilders in Scotland.
    Bibliography
    A Century of Shipbuilding 1810 to 1910, Renfrew: Wm Simons.
    Further Reading
    F.M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuilding, Cambridge.
    FMW

    Biographical history of technology > Brown, Andrew

  • 12 Deas, James

    [br]
    b. 30 October 1827 Edinburgh, Scotland
    d. c.1900 Glasgow, Scotland
    [br]
    Scottish civil engineer responsible for the River Clyde in the period of expansion around the end of the nineteenth century.
    [br]
    On completing his schooling, Deas spent some years in a locomotive manufacturing shop in Edinburgh and then in a civil engineer's office. He selected the railway for his career, and moved upwards through the professional ranks, working for different companies until 1864 when he became Engineer-in-Chief of the Edinburgh \& Glasgow Railway. This later became the North British Railway and after some years, in 1869, Deas moved to the Clyde Navigation Trust as their Engineer. For thirty years he controlled the development of this great river, and with imaginative vision and determined hard work he saw a trebling in revenue, length of quayage and water area under the Trust's jurisdiction. His office worked on a wide range of problems, including civil engineering, maintenance of harbour craft and the drafting of reports for the many Parliamentary Acts required for the extension of Glasgow Harbour. To understand the immensity of the task, one must appreciate that the River Clyde then had sixty-five shipyards and could handle the largest ships afloat. This had come through the canalization of the old meandering and shallow stream and the difficult removal of the river bed's rock barriers.
    [br]
    Bibliography
    1876, The River Clyde, Glasgow.
    Further Reading
    John F.Riddell, 1979, Clyde Navigation, A History of the Development and Deepening of the River Clyde, Edinburgh: John Donald.
    FMW

    Biographical history of technology > Deas, James

  • 13 Elder, John

    [br]
    b. 9 March 1824 Glasgow, Scotland
    d. 17 September 1869 London, England
    [br]
    Scottish engineer who introduced the compound steam engine to ships and established an important shipbuilding company in Glasgow.
    [br]
    John was the third son of David Elder. The father came from a family of millwrights and moved to Glasgow where he worked for the well-known shipbuilding firm of Napier's and was involved with improving marine engines. John was educated at Glasgow High School and then for a while at the Department of Civil Engineering at Glasgow University, where he showed great aptitude for mathematics and drawing. He spent five years as an apprentice under Robert Napier followed by two short periods of activity as a pattern-maker first and then a draughtsman in England. He returned to Scotland in 1849 to become Chief Draughtsman to Napier, but in 1852 he left to become a partner with the Glasgow general engineering company of Randolph Elliott \& Co. Shortly after his induction (at the age of 28), the engineering firm was renamed Randolph Elder \& Co.; in 1868, when the partnership expired, it became known as John Elder \& Co. From the outset Elder, with his partner, Charles Randolph, approached mechanical (especially heat) engineering in a rigorous manner. Their knowledge and understanding of entropy ensured that engine design was not a hit-and-miss affair, but one governed by recognition of the importance of the new kinetic theory of heat and with it a proper understanding of thermodynamic principles, and by systematic development. In this Elder was joined by W.J.M. Rankine, Professor of Civil Engineering and Mechanics at Glasgow University, who helped him develop the compound marine engine. Elder and Randolph built up a series of patents, which guaranteed their company's commercial success and enabled them for a while to be the sole suppliers of compound steam reciprocating machinery. Their first such engine at sea was fitted in 1854 on the SS Brandon for the Limerick Steamship Company; the ship showed an improved performance by using a third less coal, which he was able to reduce still further on later designs.
    Elder developed steam jacketing and recognized that, with higher pressures, triple-expansion types would be even more economical. In 1862 he patented a design of quadruple-expansion engine with reheat between cylinders and advocated the importance of balancing reciprocating parts. The effect of his improvements was to greatly reduce fuel consumption so that long sea voyages became an economic reality.
    His yard soon reached dimensions then unequalled on the Clyde where he employed over 4,000 workers; Elder also was always interested in the social welfare of his labour force. In 1860 the engine shops were moved to the Govan Old Shipyard, and again in 1864 to the Fairfield Shipyard, about 1 mile (1.6 km) west on the south bank of the Clyde. At Fairfield, shipbuilding was commenced, and with the patents for compounding secure, much business was placed for many years by shipowners serving long-distance trades such as South America; the Pacific Steam Navigation Company took up his ideas for their ships. In later years the yard became known as the Fairfield Shipbuilding and Engineering Company Ltd, but it remains today as one of Britain's most efficient shipyards and is known now as Kvaerner Govan Ltd.
    In 1869, at the age of only 45, John Elder was unanimously elected President of the Institution of Engineers and Shipbuilders in Scotland; however, before taking office and giving his eagerly awaited presidential address, he died in London from liver disease. A large multitude attended his funeral and all the engineering shops were silent as his body, which had been brought back from London to Glasgow, was carried to its resting place. In 1857 Elder had married Isabella Ure, and on his death he left her a considerable fortune, which she used generously for Govan, for Glasgow and especially the University. In 1883 she endowed the world's first Chair of Naval Architecture at the University of Glasgow, an act which was reciprocated in 1901 when the University awarded her an LLD on the occasion of its 450th anniversary.
    [br]
    Principal Honours and Distinctions
    President, Institution of Engineers and Shipbuilders in Scotland 1869.
    Further Reading
    Obituary, 1869, Engineer 28.
    1889, The Dictionary of National Biography, London: Smith Elder \& Co. W.J.Macquorn Rankine, 1871, "Sketch of the life of John Elder" Transactions of the
    Institution of Engineers and Shipbuilders in Scotland.
    Maclehose, 1886, Memoirs and Portraits of a Hundred Glasgow Men.
    The Fairfield Shipbuilding and Engineering Works, 1909, London: Offices of Engineering.
    P.M.Walker, 1984, Song of the Clyde, A History of Clyde Shipbuilding, Cambridge: PSL.
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge: Cambridge University Press (covers Elder's contribution to the development of steam engines).
    RLH / FMW

    Biographical history of technology > Elder, John

  • 14 Lobnitz, Frederick

    SUBJECT AREA: Ports and shipping
    [br]
    b. 7 September 1863 Renfrew, Scotland
    d. 7 December 1932 Crookston, Renfrewshire, Scotland
    [br]
    Scottish shipbuilder, expert in dredge technology.
    [br]
    Lobnitz was the son of Henry Christian Lobnitz. His father was born in Denmark in 1831, and had worked for some years in both England and Scotland before becoming a naturalized British subject. Ultimately Henry joined the Clyde shipyard of James Henderson \& Son and worked there until his death, by which time he was sole proprietor and the yard was called Lobnitz \& Co. By this time the shipyard was the acknowledged world leader in rock-cutting machinery.
    Frederick was given the opportunity to travel in Europe during the late 1870s and early 1880s. He studied at Bonn, Heidelberg and at the Zurich Polytechnic, and also served an apprenticeship at the Fairfield Shipyard of John Elder \& Co. of Glasgow. One of his first tasks was to supervise the construction and commissioning of a subaqueous rock excavator, and then he was asked to direct rock excavations at the Suez Canal.
    In 1888 Frederick Lobnitz was made a partner of the company by his father and was to remain with them until his death, at which time he was Chairman. By this time the shipyard was a private limited company and had continued to enhance its name in the specialized field of dredging. At that time the two greatest dredge builders in the world (and deadly rivals) were situated next to each other on the banks of the Clyde at Renfrew; in 1957 they merged as Simons-Lobnitz Ltd. In 1915 Lobnitz was appointed Deputy Director for Munitions in Scotland and one year later he became Director, a post he held until 1919. Having investigated the running of munitions factories in France, he released scarce labour for the war effort by staffing the plants under his control with female and unskilled labour.
    [br]
    Principal Honours and Distinctions
    Knighted 1920. Officier de la Légion d'honneur.
    Further Reading
    Fred M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuilding Cambridge: PSL.
    Lobnitz \& Co., n.d., Romance of Dredging.
    FMW

    Biographical history of technology > Lobnitz, Frederick

  • 15 Клайд

    1) General subject: Clyde
    2) Geography: (р.) Clyde (Великобритания)

    Универсальный русско-английский словарь > Клайд

  • 16 Bell, Henry

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1767 Torphichen Mill, near Linlithgow, Scotland
    d. 1830 Helensburgh, Scotland
    [br]
    Scottish projector of the first steamboat service in Europe.
    [br]
    The son of Patrick Bell, a millwright, Henry had two sisters and an elder brother and was educated at the village school. When he was 9 years old Henry was sent to lodge in Falkirk with an uncle and aunt of his mother's so that he could attend the school there. At the age of 12 he left school and agreed to become a mason with a relative. In 1783, after only three years, he was bound apprentice to his Uncle Henry, a millwright at Jay Mill. He stayed there for a further three years and then, in 1786, joined the firm of Shaw \& Hart, shipbuilders of Borrowstoneness. These were to be the builders of William Symington's hull for the Charlotte Dundas. He also spent twelve months with Mr James Inglis, an engineer of Bellshill, Lanarkshire, and then went to London to gain experience, working for the famous John Rennie for some eighteen months. By 1790 he was back in Glasgow, and a year later he took a partner, James Paterson, into his new business of builder and contractor, based in the Trongate. He later referred to himself as "architect", and his partnership with Paterson lasted seven years. He is said to have invented a discharging machine for calico printing, as well as a steam dredger for clearing the River Clyde.
    The Baths Hotel was opened in Helensburgh in 1808, with the hotel-keeper, who was also the first provost of the town, being none other than Henry Bell. It has been suggested that Bell was also the builder of the hotel and this seems very likely. Bell installed a steam engine for pumping sea water out of the Clyde and into the baths, and at first ran a coach service to bring customers from Glasgow three days a week. The driver was his brother Tom. The coach was replaced by the Comet steamboat in 1812.
    While Henry was busy with his provost's duties and making arrangements for the building of his steamboat, his wife Margaret, née Young, whom he married in March 1794, occupied herself with the management of the Baths Hotel. Bell did not himself manufacture, but supervised the work of experts: John and Charles Wood of Port Glasgow, builders of the 43ft 6 in. (13.25 m)-long hull of the Comet; David Napier of Howard Street Foundry for the boiler and other castings; and John Robertson of Dempster Street, who had previously supplied a small engine for pumping water to the baths at the hotel in Helensburgh, for the 3 hp engine. The first trials of the finished ship were held on 24 July 1812, when she was launched from Wood's yard. A regular service was advertised in the Glasgow Chronicle on 5 August and was the first in Europe, preceded only by that of Robert Fulton in the USA. The Comet continued to run until 1820, when it was wrecked.
    Bell received little reward for his promotion of steam navigation, merely small pensions from the Clyde trustees and others. He was buried at the parish church of Rhu.
    [br]
    Further Reading
    Edward Morris, 1844, Life of Henry Bell.
    Henry Bell, 1813, Applying Steam Engines to Vessels.
    IMcN

    Biographical history of technology > Bell, Henry

  • 17 Denny, William

    SUBJECT AREA: Ports and shipping
    [br]
    b. 25 May 1847 Dumbarton, Scotland
    d. 17 March 1887 Buenos Aires, Argentina
    [br]
    Scottish naval architect and partner in the leading British scientific shipbuilding company.
    [br]
    From 1844 until 1962, the Clyde shipyard of William Denny and Brothers, Dumbarton, produced over 1,500 ships, trained innumerable students of all nationalities in shipbuilding and marine engineering, and for the seventy-plus years of their existence were accepted worldwide as the leaders in the application of science to ship design and construction. Until the closure of the yard members of the Denny family were among the partners and later directors of the firm: they included men as distinguished as Dr Peter Denny (1821(?)–95), Sir Archibald Denny (1860–1936) and Sir Maurice Denny (1886– 1955), the main collaborator in the design of the Denny-Brown ship stabilizer.
    One of the most influential of this shipbuilding family was William Denny, now referred to as William 3! His early education was at Dumbarton, then on Jersey and finally at the Royal High School, Edinburgh, before he commenced an apprenticeship at his father's shipyard. From the outset he not only showed great aptitude for learning and hard work but also displayed an ability to create good relationships with all he came into contact with. At the early age of 21 he was admitted a partner of the shipbuilding business of William Denny and Brothers, and some years later also of the associated engineering firm of Denny \& Co. His deep-felt interest in what is now known as industrial relations led him in 1871 to set up a piecework system of payment in the shipyard. In this he was helped by the Yard Manager, Richard Ramage, who later was to found the Leith shipyard, which produced the world's most elegant steam yachts. This research was published later as a pamphlet called The Worth of Wages, an unusual and forward-looking action for the 1860s, when Denny maintained that an absentee employer should earn as much contempt and disapproval as an absentee landlord! In 1880 he initiated an awards scheme for all company employees, with grants and awards for inventions and production improvements. William Denny was not slow to impose new methods and to research naval architecture, a special interest being progressive ship trials with a view to predicting effective horsepower. In time this led to his proposal to the partners to build a ship model testing tank beside the Dumbarton shipyard; this scheme was completed in 1883 and was to the third in the world (after the Admiralty tank at Torquay, managed by William Froude and the Royal Netherlands Navy facility at Amsterdam, under B.J. Tideman. In 1876 the Denny Shipyard started work with mild-quality shipbuilding steel on hulls for the Irrawaddy Flotilla Company, and in 1879 the world's first two ships of any size using this weight-saving material were produced: they were the Rotomahana for the Union Steamship Company of New Zealand and the Buenos Ayrean for the Allan Line of Glasgow. On the naval-architecture side he was involved in Denny's proposals for standard cross curves of stability for all ships, which had far-reaching effects and are now accepted worldwide. He served on the committee working on improvements to the Load Line regulations and many other similar public bodies. After a severe bout of typhoid and an almost unacceptable burden of work, he left the United Kingdom for South America in June 1886 to attend to business with La Platense Flotilla Company, an associate company of William Denny and Brothers. In March the following year, while in Buenos Aires, he died by his own hand, a death that caused great and genuine sadness in the West of Scotland and elsewhere.
    [br]
    Principal Honours and Distinctions
    President, Institution of Engineers and Shipbuilders in Scotland 1886. FRS Edinburgh 1879.
    Bibliography
    William Denny presented many papers to various bodies, the most important being to the Institution of Naval Architects and to the Institution of Engineers and Shipbuilders in Scotland. The subjects include: trials results, the relation of ship speed to power, Lloyd's Numerals, tonnage measurement, layout of shipyards, steel in shipbuilding, cross curves of stability, etc.
    Further Reading
    A.B.Bruce, 1889, The Life of William Denny, Shipbuilder, London: Hodder \& Stoughton.
    Denny Dumbarton 1844–1932 (a souvenir hard-back produced for private circulation by the shipyard).
    Fred M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuilding, Cambridge: PSL.
    FMW

    Biographical history of technology > Denny, William

  • 18 Linton, Hercules

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1 January 1836 Inverbervie, Kincardineshire, Scotland
    d. 15 May 1900 Inverbervie, Kincardineshire, Scotland
    [br]
    Scottish naval architect and shipbuilder; designer of the full-rigged ship Cutty Sark.
    [br]
    Linton came from a north-east Scottish family with shipbuilding connections. After education at Arbuthnott and then Arbroath Academy, he followed his father by becoming an apprentice at the Aberdeen shipyard of Alex Hall in January 1855. Thus must have been an inspiring time for him as the shipyards of Aberdeen were at the start of their rise to world renown. Hall's had just introduced the hollow, lined Aberdeen Bow which heralded the great years of the Aberdeen Clippers. Linton stayed on with Hall's until around 1863, when he joined the Liverpool Under-writers' Register as a ship surveyor; he then worked for similar organizations in different parts of England and Scotland. Early in 1868 Linton joined in partnership with William Dundas Scott and the shipyard of Scott and Linton was opened on the banks of the River Leven, a tributary of the Clyde, at Dumbarton. The operation lasted for about three years until bankruptcy forced closure, the cause being the age-old shipbuilder's problem of high capital investment with slow cash flow. Altogether, nine ships were built, the most remarkable being the record-breaking composite-built clipper ship Cutty Sark. At the time of the closure the tea clipper was in an advanced state of outfitting and was towed across the water to Denny's shipyard for completion. Linton worked for a while with Gourlay Brothers of Dundee, and then with the shipbuilders Oswald Mordaunt, of Woolston near Southampton, before returning to the Montrose area in 1884. His wife died the following year and thereafter Linton gradually reduced his professional commitments.
    [br]
    Further Reading
    Robert E.Brettle, 1969, The Cutty Sark, Her Designer and Builder. Hercules Linton 1836–1900, Cambridge: Heffer.
    Frank C.G.Carr, "The restoration of the Cutty Sark", Transactions of the Royal Institution
    of Naval Architects 108:193–216.
    Fred M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuilding, Cambridge: PSL.
    FMW

    Biographical history of technology > Linton, Hercules

  • 19 Miller, Patrick

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1731 Glasgow, Scotland
    d. 9 December 1815 Dalswinton, Dumfriesshire, Scotland
    [br]
    Scottish merchant and banker, early experimenter in powered navigation and in ship form.
    [br]
    In his own words, Patrick Miller was "without a sixpence" in his early youth; this is difficult to prove one way or another as he ended his life as Director and Deputy Governor of the Bank of Scotland. One thing is clear however, that from his earliest days, in common with most of his counterparts of the late eighteenth century, he was interested in experimental and applied science. Having acquired a substantial income from other sources, Miller was able to indulge his interest in ships and engineering. His first important vessel was the trimaran Edinburgh, designed by him and launched at Leith in 1786. Propulsion was man-powered using paddle wheels positioned in the spaces between the outer and central hulls. This led to several trials of similar craft on the Forth in the 1780s, and ultimately to the celebrated Dalswinton Loch trials. In 1785 Miller had purchased the Dumfriesshire estate of Dalswinton and commenced a series of experiments on agricultural development and other matters. With the help of William Symington he built a double-hull steamship with internal paddle wheels which was tested on the Loch in 1788. The 7.6 m (25 ft) long ship travelled at 5 mph (8 km/h) on her trials, and according to unsubstantiated tradition carried a group of well-known people including the poet Robert Burns (1759–1796).
    Miller carried out many more important experiments and in 1796 obtained a patent for the design of shallow-drafted ships able to carry substantial cargo on flat bottoms. His main achievement may have been to stimulate William Symington, who at the beginning of the nineteenth century went on to design and build two of the world's first important steamships, each named Charlotte Dundas, for service on the Forth and Clyde Canal.
    [br]
    Further Reading
    H.Philip Spratt, 1958, The Birth of the Steamboat, London: Griffiths. W.S.Harvey and G.Downs-Rose, 1980, William Symington, Inventor and Engine
    Builder, London: Northgate.
    F.M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuilding, Cambridge: PSL.
    FMW

    Biographical history of technology > Miller, Patrick

  • 20 Symington, William

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1764 Leadhills, Lanarkshire, Scotland
    d. 22 March 1831 Wapping, London, England
    [br]
    Scottish pioneer of steam navigation.
    [br]
    Symington was the son of the Superintendent of the Mines Company in Lanarkshire, and attended the local school. When he was 22 years old he was sent by Gilbert Meason, Manager of the Wanlockhead mines, to Edinburgh University. In 1779 he was working on the assembly of a Watt engine as an apprentice to his brother, George, and in 1786 he started experiments to modify a Watt engine in order to avoid infringing the separate condenser patent. He sought a patent for his alternative, which was paid for by Meason. He constructed a model steam road carriage which was completed in 1786; it was shown in Edinburgh by Meason, attracting interest but inadequate financial support. It had a horizontal cylinder and was non-condensing. No full-sized engine was ever built but the model secured the interest of Patrick Miller, an Edinburgh banker, who ordered an engine from Symington to drive an experimental boat, 25 ft (7.6 m) long with a dual hull, which performed satisfactorily on Dalswinton Loch in 1788. In the following year Miller ordered a larger engine for a bigger boat which was tried on the Forth \& Clyde Canal in December 1789, the component parts having been made by the Carron Company. The engine worked perfectly but had the effect of breaking the paddle wheels. These were repaired and further trials were successful but Miller lost interest and his experiments lapsed. Symington devoted himself thereafter to building stationary engines. He built other engines for mine pumping at Sanquhar and Leadhills before going further afield. In all, he built over thirty engines, about half of them being rotary. In 1800–1 he designed the engine for a boat for Lord Dundas, the Charlotte Dundas; this was apparently the first boat of that name and sailed on both the Forth and Clyde rivers. A second Charlotte Dundas with a horizontal cylinder was to follow and first sailed in January 1803 for the Forth \& Clyde Canal Company. The speed of the boat was only 2 mph (3 km/h) and much was made by its detractors of the damage said to be caused to the canal banks by its wash. Lord Dundas declined to authorize payment of outstanding accounts; Symington received little reward for his efforts. He died in the house of his son-in-law, Dr Robert Bowie, in Wapping, amidst heated controversy about the true inventor of steam navigation.
    [br]
    Further Reading
    W.S.Harvey and G.Downs-Rose, 1980, William Symington, Inventor and Engine- Builder, London: Mechanical Engineering Publications.
    IMcN

    Biographical history of technology > Symington, William

См. также в других словарях:

  • Clyde F.C. — Clyde Full name Clyde Football Club Nickname(s) The Bully Wee Founded 1877 Ground …   Wikipedia

  • Clyde — may refer to: Contents 1 Places named Clyde 2 People and animals named Clyde 3 In entertainment 4 See also …   Wikipedia

  • Clyde — bezeichnet: Clyde (Automarke), eine britische Automobilmarke (1902–1930) den Clyde (Fluss) in Schottland mehrere Flüsse namens Clyde River den FC Clyde, schottischer Profifußballverein das Monster Clyde in dem Spiel Pac Man Orte in den… …   Deutsch Wikipedia

  • Clyde — Clyde, CA U.S. Census Designated Place in California Population (2000): 694 Housing Units (2000): 267 Land area (2000): 0.140373 sq. miles (0.363564 sq. km) Water area (2000): 0.000000 sq. miles (0.000000 sq. km) Total area (2000): 0.140373 sq.… …   StarDict's U.S. Gazetteer Places

  • Clyde & Co — Headquarters London, United Kingdom No. of offices 23 in 15 countries …   Wikipedia

  • Clyde X — (born 1931 in Canton, Mississippi as Clyde Jones, also known as Imam Clyde Rahman)[1] was a religious leader associated with the Nation of Islam. Most of his work for the NOI was in St. Louis, Missouri and Cleveland, Ohio. Clyde X served in the U …   Wikipedia

  • Clyde — puede referirse a: Varios accidentes geográficos de Escocia: El Fiordo de Clyde. El Río Clyde. Una localidad en Estados Unidos: Clyde (Nueva York) Varias personas: Andy Clyde, actor estadounidense. Mark Clyde, futbolista norirlandés. Uno de los… …   Wikipedia Español

  • Clyde — Pour les articles homonymes, voir Clyde (homonymie). Clyde Caractéristiques Longueur …   Wikipédia en Français

  • Clyde FC — Clyde Football Club Clyde Football Club Généra …   Wikipédia en Français

  • Clyde — m English (esp. U.S.): apparently from the river in south west Scotland that runs through Glasgow, perhaps by way of a surname derived from the river name. The name is comparatively popular among West Indian and American Blacks; Dunkling points… …   First names dictionary

  • Clyde, CA — U.S. Census Designated Place in California Population (2000): 694 Housing Units (2000): 267 Land area (2000): 0.140373 sq. miles (0.363564 sq. km) Water area (2000): 0.000000 sq. miles (0.000000 sq. km) Total area (2000): 0.140373 sq. miles… …   StarDict's U.S. Gazetteer Places

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»