Перевод: со всех языков на все языки

со всех языков на все языки

данные+и+функции

  • 81 GOOSE

    1. широковещательное объектно-ориентированное сообщение о событии на подстанции

     

    GOOSE-сообщение
    -

    [Интент]

    широковещательное объектно-ориентированное сообщение о событии на подстанции

    Широковещательный высокоскоростной внеочередной отчет, содержащий статус каждого из входов, устройств пуска, элементов выхода и реле, реальных и виртуальных.
    Примечание. Этот отчет выдается многократно последовательно, как правило, сразу после первого отчета с интервалами 2, 4, 8,…, 60000 мс. Значение задержки первого повторения является конфигурируемым. Такой отчет обеспечивает выдачу высокоскоростных сигналов отключения с высокой вероятностью доставки.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    общие объектно-ориентированные события на подстанции
    -
    [ ГОСТ Р МЭК 61850-7-2-2009]

    GOOSE
    Generic Object Oriented Substation Event
    (стандарт МЭК 61850-8-1)
    Протокол передачи данных о событиях на подстанции.
    Один из трех протоколов передачи данных, предлагаемых к использованию в МЭК 61850.
    Фактически данный протокол служит для замены медных кабельных связей, предназначенных для передачи дискретных сигналов между устройствами.
    [ Цифровые подстанции. Проблемы внедрения устройств РЗА]

    EN

    generic object oriented substation event
    on the occurrence of any change of state, an IED will multicast a high speed, binary object, Generic Object Oriented Substation Event (GOOSE) report by exception, typically containing the double command state of each of its status inputs, starters, output elements and relays, actual and virtual.

    This report is re-issued sequentially, typically after the first report, again at intervals of 2, 4, 8…60000 ms. (The first repetition delay value is an open value it may be either shorter or longer).

    A GOOSE report enables high speed trip signals to be issued with a high probability of delivery
    [IEC 61850-2, ed. 1.0 (2003-08)]

    До недавнего времени для передачи дискретных сигналов между терминалами релейной защиты и автоматики (РЗА) использовались дискретные входы и выходные реле. Передача сигнала при этом осуществляется подачей оперативного напряжения посредством замыкания выходного реле одного терминала на дискретный вход другого терминала (далее такой способ передачи будем называть традиционным).
    Такой способ передачи информации имеет следующие недостатки:

    • необходимо большое количество контрольных кабелей, проложенных между шкафами РЗА,
    • терминалы РЗА должны иметь большое количество дискретных входов и выходных реле,
    • количество передаваемых сигналов ограничивается определенным количеством дискретных входов и выходных реле,
    • отсутствие контроля связи между терминалами РЗА,
    • возможность ложного срабатывания дискретного входа при замыкании на землю в цепи передачи сигнала.

    Информационные технологии уже давно предоставляли возможность для передачи информации между микропроцессорными терминалами по цифровой сети. Разработанный недавно стандарт МЭК 61850 предоставил такую возможность для передачи сигналов между терминалами РЗА.
    Стандарт МЭК 61850 использует для передачи данных сеть Ethernet. Внутри стандарта МЭК 61850 предусмотрен такой механизм, как GOOSE-сообщения, которые и используются для передачи сообщений между терминалами РЗА.
    Принцип передачи GOOSE-сообщений показан на рис. 1.

    5683

    Устройство-отправитель передает по сети Ethernet информацию в широковещательном диапазоне.
    В сообщении присутствует адрес отправителя и адреса, по которым осуществляется его передача, а также значение сигнала (например «0» или «1»).
    Устройство-получатель получит сообщение, а все остальные устройства его проигнорируют.
    Поскольку передача GOOSE-сообщений осуществляется в широковещательном диапазоне, т.е. нескольким адресатам, подтверждение факта получения адресатами сообщения отсутствует. По этой причине передача GOOSE-сообщений в установившемся режиме производится с определенной периодичностью.
    При наступлении нового события в системе (например, КЗ и, как следствие, пуска измерительных органов защиты) начинается спонтанная передача сообщения через увеличивающиеся интервалы времени (например, 1 мс, 2 мс, 4 мс и т.д.). Интервалы времени между передаваемыми сообщениями увеличиваются, пока не будет достигнуто предельное значение, определяемое пользователем (например, 50 мс). Далее, до момента наступления нового события в системе, передача будет осуществляется именно с таким периодом. Указанное проиллюстрировано на рис. 2.

    5684

    Технология повторной передачи не только гарантирует получение адресатом сообщения, но также обеспечивает контроль исправности линии связи и устройств – любые неисправности будут обнаружены по истечении максимального периода передачи GOOSE-сообщений (с точки зрения эксплуатации практически мгновенно). В случае передачи сигналов традиционным образом неисправность выявляется либо в процессе плановой проверки устройств, либо в случае неправильной работы системы РЗА.

    Еще одной особенностью передачи GOOSE-сообщений является использование функций установки приоритетности передачи телеграмм (priority tagging) стандарта Ethernet IEEE 802.3u, которые не используются в других протоколах, в том числе уровня TCP/IP. То есть GOOSE-сообщения идут в обход «нормальных» телеграмм с более высоким приоритетом (см. рис. 3).

    5685


    Однако стандарт МЭК 61850 декларирует передачу не только дискретной информации между терминалами РЗА, но и аналоговой. Это означает, что в будущем будет иметься возможность передачи аналоговой информации от ТТ и ТН по цифровым каналам связи. На данный момент готовых решений по передаче аналоговой информации для целей РЗА (в рамках стандарта МЭК 61850) ни один из производителей не предоставляет.
    Для того чтобы использовать GOOSE-сообщения для передачи дискретных сигналов между терминалами РЗА необходима достаточная надежность и быстродействие передачи GOOSE-сообщений. Надежность передачи GOOSE-сообщений обеспечивается следующим:

    • Протокол МЭК 61850 использует Ethernet-сеть, за счет этого выход из строя верхнего уровня АСУ ТП и любого из устройств РЗА не отражается на передаче GOOSE-сообщений оставшихся в работе устройств,
    • Терминалы РЗА имеют два независимых Ethernet-порта, при выходе одного из них из строя второй его полностью заменяет,
    • Сетевые коммутаторы, к которым подключаются устройства РЗА, соединяются в два независимых «кольца»,
    • Разные порты одного терминала РЗА подключаются к разным сетевым коммутаторам, подключенным к разным «кольцам»,
    • Каждый сетевой коммутатор имеет дублированное питание от разных источников,
    • Во всех устройствах РЗА осуществляется постоянный контроль возможности прохождения каждого сигнала. Это позволяет автоматически определить не только отказы цифровой связи, но и ошибки параметрирования терминалов.

    5686

    На рис. 4 изображен пример структурной схемы сети Ethernet (100 Мбит/c) подстанции. Отказ в передаче GOOSE-сообщения от одного устройства защиты другому возможен в результате совпадения как минимум двух событий. Например, одновременный отказ двух коммутаторов, к которым подключено одно устройство или одновременный отказ обоих портов одного устройства. Могут быть и более сложные отказы, связанные с одновременным наложением большего количества событий. Таким образом, единичные отказы оборудования не могут привести к отказу передачи GOOSEсообщений. Дополнительно увеличивает надежность то обстоятельство, что даже в случае отказа в передаче GOOSE-сообщения, устройство, принимающее сигнал, выдаст сигнал неисправности, и персонал примет необходимые меры для ее устранения.

    Быстродействие.
    В соответствии с требованиями стандарта МЭК 61850 передача GOOSE-сообщений должна осуществляться со временем не более 4 мс (для сообщений, требующих быстрой передачи, например, для передачи сигналов срабатывания защит, пусков АПВ и УРОВ и т.п.). Вообще говоря, время передачи зависит от топологии сети, количества устройств в ней, загрузки сети и загрузки вычислительных ресурсов терминалов РЗА, версии операционной системы терминала, коммуникационного модуля, типа центрального процессора терминала, количества коммутаторов и некоторых других аспектов. Поэтому время передачи GOOSE-сообщений должно быть подтверждено опытом эксплуатации.
    Используя для передачи дискретных сигналов GOOSE-сообщения необходимо обращать внимание на то обстоятельство, что при использовании аппаратуры некоторых производителей, в случае отказа линии связи, значение передаваемого сигнала может оставаться таким, каким оно было получено в момент приема последнего сообщения.
    Однако при отказе связи бывают случаи, когда сигнал должен принимать определенное значение. Например, значение сигнала блокировки МТЗ ввода 6–10 кВ в логике ЛЗШ при отказе связи целесообразно установить в значение «1», чтобы при КЗ на отходящем присоединении не произошло ложного отключения ввода. Так, к примеру, при проектировании терминалов фирмы Siemens изменить значение сигнала при отказе связи возможно с помощью свободно-программируемой CFCлогики (см. рис. 5).

    5687

    К CFC-блоку SI_GET_STATUS подводится принимаемый сигнал, на выходе блока мы можем получить значение сигнала «Value» и его статус «NV». Если в течение определенного времени не поступит сообщение со значением сигнала, статус сигнала «NV» примет значение «1». Далее статус сигнала и значение сигнала подводятся к элементу «ИЛИ», на выходе которого будет получено значение сигнала при исправности линии связи или «1» при нарушении исправности линии связи. Изменив логику, можно установить значение сигнала равным «0» при обрыве связи.
    Использование GOOSE-сообщений предъявляет специальные требования к наладке и эксплуатации устройств РЗА. Во многом процесс наладки становится проще, однако при выводе устройства из работы необходимо следить не только за выводом традиционных цепей, но и не забывать отключать передачу GOOSE-сообщений.
    При изменении параметрирования одного устройства РЗА необходимо производить загрузку файла параметров во все устройства, с которыми оно было связано.
    В нашей стране имеется опыт внедрения и эксплуатации систем РЗА с передачей дискретных сигналов с использованием GOOSE-сообщений. На первых объектах GOOSE-сообщения использовались ограниченно (ПС 500 кВ «Алюминиевая»).
    На ПС 500 кВ «Воронежская» GOOSEсообщения использовались для передачи сигналов пуска УРОВ, пуска АПВ, запрета АПВ, действия УРОВ на отключение смежного элемента, положения коммутационных аппаратов, наличия/отсутствия напряжения, сигналы ЛЗШ, АВР и т.п. Кроме того, на ОРУ 500 кВ и 110 кВ ПС «Воронежская» были установлены полевые терминалы, в которые собиралась информация с коммутационного оборудования и другая дискретная информация с ОРУ (рис. 6). Далее информация с помощью GOOSE-сообщений передавалась в терминалы РЗА, установленные в ОПУ подстанции (рис. 7, 8).
    GOOSE-сообщения также были использованы при проектировании уже введенных в эксплуатацию ПС 500 кВ «Бескудниково», ПС 750 кВ «Белый Раст», ПС 330кВ «Княжегубская», ПС 220 кВ «Образцово», ПС 330 кВ «Ржевская». Эта технология применяется и при проектировании строящихся и модернизируемых подстанций ПС 500 кВ «Чагино», ПС 330кВ «Восточная», ПС 330 кВ «Южная», ПС 330 кВ «Центральная», ПС
    330 кВ «Завод Ильич» и многих других.
    Основные преимущества использования GOOSE-сообщений:

    • позволяет снизить количество кабелей вторичной коммутации на ПС;
    • обеспечивает лучшую помехозащищенность канала связи;
    • позволяет снизить время монтажных и пусконаладочных работ;
    • исключает проблему излишнего срабатывания дискретных входов терминалов из-за замыканий на землю в цепях оперативного постоянного тока;
    • убирает зависимость количества передаваемых сигналов от количества дискретных входов и выходных реле терминалов;
    • обеспечивает возможность реконструкции и изменения связей между устройствами РЗА без прокладки дополнительных кабельных связей и повторного монтажа в шкафах;
    • позволяет использовать МП терминалы РЗА с меньшим количеством входов и выходов (уменьшение габаритов и стоимости устройства);
    • позволяет контролировать возможность прохождения сигнала (увеличивается надежность).

    Безусловно, для окончательных выводов должен появиться достаточный опыт эксплуатации. В настоящее время большинство производителей устройств РЗА заявили о возможности использования GOOSEсообщений. Стандарт МЭК 61850 определяет передачу GOOSE-сообщений между терминалами разных производителей. Использование GOOSE-сообщений для передачи дискретных сигналов – это качественный скачок в развитии систем РЗА. С развитием стандарта МЭК 61850, переходом на Ethernet 1 Гбит/сек, с появлением новых цифровых ТТ и ТН, новых выключателей с возможностью подключения их блока управления к шине процесса МЭК 61850, эффективность использования GOOSE-сообщений намного увеличится. Облик будущих подстанций представляется с минимальным количеством контрольных кабелей, с передачей всех сообщений между устройствами РЗА, ТТ, ТН, коммутационными аппаратами через цифровую сеть. Устройства РЗА будут иметь минимальное количество выходных реле и дискретных входов

    [ http://romvchvlcomm.pbworks.com/f/goosepaper1.pdf]


    В стандарте определены два способа передачи данных напрямую между устройствами: GOOSE и GSSE. Это тоже пример наличия двух способов для реализации одной функции. GOOSE - более новый способ передачи сообщений, разработан специально для МЭК 61850. Способ передачи сообщений GSSE ранее присутствовал в стандарте UCA 2.0, являющимся одним из предшественников МЭК 61850. По сравнению с GSSE, GOOSE имеет более простой формат (Ethernet против стека OSI протоколов) и возможность передачи различных типов данных. Вероятно, способ GSSE включили в МЭК 61850 для того, чтобы производители, имеющие в своих устройствах протокол UCA 2.0, могли сразу декларировать соответствие МЭК 61850. В настоящее время все производители используют только GOOSE для передачи сообщений между устройствами.
    Для выбора списка передаваемых данных в GOOSE, как и в отчѐтах, используются наборы данных. Однако тут требования уже другие. Время обработки GOOSE-сообщений должно быть минимальным, поэтому логично передавать наиболее простые типы данных. Обычно передаѐтся само значение сигнала и в некоторых случаях добавляется поле качества. Метка времени обычно включается в набор данных.
    ...
    В устройствах серии БЭ2704 в передаваемых GOOSE-сообщениях содержатся данные типа boolean. Приниматься могут данные типа boolean, dbpos, integer.
    Устоявшаяся тенденция существует только для передачи дискретной информации. Аналоговые данные пока передают немногие производители, и поэтому устоявшаяся тенденция в передаче аналоговой информации в данный момент отсутствует.
    [ Источник]


     

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > GOOSE

  • 82 DCE

    I [Distributed Computing Environment] среда распределенных вычислений (группа функций независимого от платформ промежуточного обеспечения компании Open Software Foundation для организации совместной работы распределенных программ, в частности, функции обслуживания распределенных файлов, присвоения имен, контроля за временем, обслуживания потоков, дистанционного вызова процедур и обеспечения безопасности) II [data communications equipment] аппаратура передачи данных;
    телекоммуникационное оборудование (один из двух типов устройств, соединяемых с последовательным интерфейсом RS-232;
    принимает данные от DTE-устройства и выполняет посреднические функции, преобразуя входной сигнал перед его отправкой получателю, см. тж DTE) III [data circuit-terminating equipment] оконечное оборудование (линии) передачи данных

    Большой англо-русский и русско-английский словарь > DCE

  • 83 hash value

    Вычислительная техника: значение хеш-функции, хеш-значение (значение хеш-функции (hash-function), преобразующей данные произвольной длины (обычно, строчку) в число фиксированного порядка.)

    Универсальный англо-русский словарь > hash value

  • 84 банк маркетингі

    Қаржы маркетингі сатушы-инвесторлардың қаржы активтерінің (ақшаның, бағалы қағаздардың, асыл металдар мен тастардың) өткізілуі үдерісін басқаруға жүйелі көзқарасы және сатып алушы-инвесторлардың қаржы активтерінің қорлануын басқаруға жүйелі көзқарасы болып табылады. Қаржы нарығы осы маркетингі қызметінің аясы болып табылады. Қаржы нарығындағы банк көрсететін қызметтерді немесе банк өнімдері мен қызмет көрсету нарығын қамтитын банк маркетингі қаржы нарығының құрамдас бөлігі болып саналады.

    Финансовый маркетинг представляет собой системный подход инвесторов-продавцов к управлению процессом реализации финансовых активов (денег, ценных бумаг, драгоценных металлов и камней) и системный подход инвесторов-покупателей к управлению накоплением финансовых активов. Сферой деятельности этого маркетинга является финансовый рынок. Составной частью финансового маркетинга считается банковский маркетинг, который затрагивает банковские услуги на финансовом рынке или рынок банковских продуктов и услуг.

    Банк маркетингі – мыналарды қамтитын үдеріс:

    Банковский маркетинг – это процесс, который включает в себя:

    - банк өнімін өндіруді жоспарлау;

    - планирование производства банковского продукта;

    - қаржы нарығын зерттеу;

    - исследование финансового рынка;

    - қарым-қатынасты жолға қою;

    - налаживание коммуникаций;

    - бағаны белгілеу;

    - установление цен;

    - банк өнімінің жылжытылуын ұйымдастыру;

    - организацию продвижения банковского продукта;

    - банк сервисінің қызметін өрістету.

    - развертывание службы банковского сервиса.

    Банк маркетингісінің негізгі міндеттері:

    Основными задачами банковского маркетинга являются:

    - сатып алушылардың банк өніміне қоятын талаптарын болжау;

    - прогнозирование требований покупателей к банковскому продукту;

    - банк өніміне сұранымды зерделеу;

    - изучение спроса на банковский продукт;

    - сатып алушылардың талаптарына сай келетін банк өнімін шығару;

    - выпуск банковского продукта, соответствующего требованиям покупателей;

    - бәсеке шарттарын ескере отырып банк өнімі бағасының деңгейін белгілеу;

    - установление уровня цен на банковский продукт с учетом условий конкуренции;

    - банкінің беделін көтеру;

    - повышение имиджа банка;

    - осы банк бақылайтын қаржы нарығының үлесін арттыру.

    - повышение доли финансового рынка, контролируемого данным банком.

    Банк маркетингісінің тұжырымдамасы қаржы нарығындағы банк қызметінің мақсатын сипаттайды. Банк өнімін сатып алушылардың мүдделері, қажетсінулері, мүмкіндіктері, ақша ресурстары алуан түрлі, тәуекел дәрежесі де әртүрлі. Сондықтан олардың нақты өнімге деген сұранымы да түрліше. Мұның мәнісі мынада: өз өнімін ұсынушы банк бұл өнімнің сатып алушылардың қандай тобына арналғанын және бұл өнімнің әлеуетті тұтынушылары қанша бола алатынын айқын білуге тиіс. Осыдан келіп банк қызметінің екі бағыты болуы ықтимал:

    Концепция банковского маркетинга характеризует цель деятельности банка на финансовом рынке. У покупателей банковского продукта разные интересы, потребности, возможности, денежные ресурсы и разная степень риска. Поэтому у них разный спрос на данные продукты. Это означает, что банк, предлагающий свой продукт, должен четко знать, на какую группу покупателей этот продукт рассчитан и сколько может быть потенциальных потребителей этого продукта. Отсюда возможны два направления деятельности банка:

    - жаппай, тұрақты сұранымға бағдарлануы, мұның өзі өнім бағасының (бағамы, пайыздық мөлшерлемесі) біршама төмен болуын, клиенттерге қызмет көрсетудің шектелуін және ұсақ сатып алушылардың кең қамтылуын көздейді;

    - ориентация на массовый, стабильный спрос, что предполагает относительно низкие цены (курсы, процентные ставки) на продукт, ограничение услуги по обслуживанию клиентов и больший охват мелких покупателей;

    - тұрақсыз сұранымға, яғни сатып алушылардың жекелеген топтарына бағдарлану, мұның өзі өнім бағасының (бағамы, пайыздық мөлшерлемесі) біршама жоғары болуын, клиенттерге неғұрлым кең ауқымда қызмет көрсетілуін және ұсақ сатып алушылардың аз қамтылуын көздейді.

    - ориентация на нестабильный спрос, т.е. на отдельные группы покупателей, что предполагает относительно высокие цены (курсы, процентные ставки) на продукт, более широкий круг услуг по обслуживанию клиентов и меньший охват покупателей.

    Маркетингілік қызмет:

    Маркетинговая деятельность – это комплекс действий:

    - тұтыну тұрпаттамасын әзірлеу жөніндегі;

    - по разработке типологии потребления;

    - сұранымды зерделеу жөніндегі;

    - по изучению спроса;

    - банк өнімін өндіруді жоспарлау және оның іске асыру жұмысын ұйымдастыру жөніндегі іс-қимылдар кешені.

    - по планированию производства банковского продукта и организации работы по его реализации.

    Банк өнімдеріне сұранымды сатып алушылардың психологиялық-физиологиялық қарымта жауабына қарай және сатып алушылар қажеттерінің қанағаттандырылу дәрежесіне қарай жіктелуі мүмкін.

    Спрос на банковские продукты можно классифицировать по психофизиологической реакции покупателей и по степени удовлетворения потребностей покупателей.

    Психологиялық-физиологиялық белгі бойынша мыналарға бөлінеді:

    По психофизиологическому признаку выделяют:

    - тиянақталған сұраным – банк ұдайы беріп тұратын банк өнімдерінің жекелеген түрлеріне тұрақты сұраным (банкідегі салымның ең аз сомасы 100 теңгеден аспайтын депозиттік салым, неғұрлым беделді банкілердің акциялары, т.б.);

    - фиксированный спрос – устойчивый спрос на отдельные виды банковских продуктов, постоянно предоставляемых банком (депозитные вклады в банках с минимальной суммой вклада не более 1000 тенге, акции наиболее престижных банков и др.);

    - баламалы сұраным – таңдау бойынша сұраным, мұнда салымшы өз мүмкіндіктерін, табыстылық, тиімділік, тәуекелдік дәрежесін талдағаннан кейін капиталды банк өніміне салу туралы шешім қабылдайды (валюталық депозиттер сияқты активтерге, трастыларға, салым сомасы 3000 теңгеден аспайтын депозиттік салымдарға, т.б. сұраным);

    - альтернативный спрос – спрос по выбору, когда вкладчик после анализа своих возможностей, степени доходности, выгодности, риска принимает решение о вложении капитала в банковский продукт (спрос на такие активы, как валютные депозиты, и трасты, депозитные вклады с суммой вклада не более 3000 тенге и др.);

    - серпінді сұраным – күтпеген жерден болатын сұраныс; мұнда басқа сатып алушылардың, таныстарының, жарнаманың немесе басқа да факторлардың ықпалымен өз таңдауын жасаған сатып алушы өз шешімін өзгертеді (дивиденді (пайызы) жоғары болады деп күтілген бағалы қағаздар, т.б. бойынша сұраным).

    - импульсный спрос – неожиданный спрос, когда покупатель, уже сделавший свой выбор под влиянием советов других покупателей, знакомых, рекламы или иных факторов, меняет свое решение (спрос на ценные бумаги, по которым обещают высокие дивиденды (проценты) и др.).

    Сатып алушылар қажеттерінің қанағаттандырылуы дәрежесіне қарай мыналарға бөлінеді:

    По степени удовлетворения потребностей покупателей можно выделить:

    - өткізілген сұраным (сұраным қызмет көрсету немесе банк өнімі сатып алушыға ұсынылған кезде қанағаттандырылды);

    - реализованный спрос (спрос удовлетворен, когда услуга или банковский продукт предъявлены покупателю);

    - қанағаттандырылмаған сұраным – сатуда жоқ немесе бар болғанымен ұсынымның көлемі бойынша сатып алушылардың сұрауынан артта қалған банк өнімдеріне сұраным;

    - неудовлетворенный спрос – спрос на банковские продукты, отсутствующие в продаже или существующие, но по объему предложения отстающие от запросов покупателей;

    - қалыптасушы сұраным, айқын көрініс таппаған сұраным.

    - формирующийся спрос, нечетко выраженный спрос.

    Рендит – бағалы қағаз табыстылығының салыстырмалы көрсеткіші. Акция рендиті акция бойынша төленген дивидендтің акцияның нарықтық бағамына пайыздық қатынасымен айқындалады. Рендит мөлшері жоғары болған сайын акция да табыстырақ.

    Рендит – это относительный показатель доходности ценной бумаги. Рендит акции определяется процентным отношением выплаченного по ней дивиденда к рыночному курсу акции. Чем выше размер рендита, тем доходнее акция.

    Спрэд – ұсынымның ең төмен бағасы мен сұранымның ең жоғары бағасының арасындағы алшақтық. Спрэдтің сұранымның ең жоғары бағасына қатынасы барыша төмен (әдетте 3%-ға дейін) бағалы қағаздар неғұрлым өтімді болып табылады.

    Спрэд – это разрыв между минимальной ценой предложения и максимальной ценой спроса. Наиболее ликвидными являются ценные бумаги, у которых отношение спрэда к максимальной цене спроса наименьшее (обычно до 3%).

    Банк маркетингісі үдерісі мынадай кезеңдерді қамтиды:

    Процесс банковского маркетинга включает следующие этапы:

    - нақты банк өнімін сатып алушылардың қажеттерін зерделеу;

    - изучение потребностей покупателей конкретного банковского продукта;

    - қаржы нарығын секторлар бойынша кешенді түрде зерттеу;

    - комплексное исследование финансового рынка по секторам;

    - банк маркетингісінің ағым-дағы және келешектегі іске асырылуы мүмкіндіктерін зерттеу;

    - исследование возможностей текущей и перспективной реализации банковского маркетинга;

    - маркетингіні жобалау;

    - планирование маркетинга;

    - банк инновациясының өміршеңдік циклін жоспарлау;

    - планирование жизненного цикла банковской инновации;

    - жарнама;

    - реклама;

    - банкілердің бөлімдері мен құрылымдық бөлімшелерінің жұмысын ұйымдастыру.

    - организация работы отделов и структурных подразделений банков.

    Банк маркетингісінің негізгі атқарымдары:

    Основными функциями банковского маркетинга являются:

    - ақпарат жинау;

    - сбор информации;

    - маркетингілік зерттеу;

    - маркетинговые исследования;

    - банк өнімдерін шығару және өткізу жөніндегі қызметті жоспарлау;

    - планирование деятельности по выпуску и реализации банковских продуктов;

    - жарнама;

    - реклама;

    - банк өнімдерін өткізу.

    - реализация банковских продуктов.

    Банк маркетингісінің жоспары банк өнімдерін, кәдуілгі және жаңа өнімдерін өткізу жоспары болып табылады. Бұл жоспар нақты уақыт кезеңінде қандай банк өнімін немесе қандай инновацияны, қай аумақта және қандай бағамен сату керек екенін айқындайды.

    План банковского маркетинга представляет собой план реализации банковских продуктов, традиционных и новых. Этот план определяет какой банковский продукт или какую инновацию, на какой территории и по какой цене следует продавать в данный период времени.

    Банк маркетингісінің стратегиясы:

    Стратегия банковского маркетинга заключается в:

    - банкінің белгілі бір банк өнімін шығару жөніндегі мүмкіндіктерін талдау үдерісінде;

    - анализе возможностей банка по выпуску того или иного банковского продукта;

    - өнім шығарудың мақсатын айқындауда;

    - определении цели выпуска продукта;

    - банк инновациясын негіздеу және оны сипаттауда;

    - обосновании банковской инновации и ее характеристики;

    - қаржы нарығын және банк өнімін ағымдағы кезеңде де, таяудағы келешекте де өткізу мүмкіндіктерін маркетингілік зерттеуде.

    - маркетинговых исследованиях финансового рынка и возможностей реализации банковского продукта как в текущем периоде, так и в ближайшей перспективе.

    Банк маркетингінің стратегиясында қандай тұжырымдамаларды бөліп көрсетуге болады?

    Банк маркетингісінің стратегиясында мына тұжырымдамаларды бөліп көрсету орынды:

    В стратегии банковского маркетинга целесообразно выделить следующие концепции:

    - қаржы нарығын бөліктемелеу;

    - сегментация финансового рынка;

    - нысаналы банк өнімін немесе қызмет көрсетуді таңдау;

    - выбор целевого банковского продукта или услуги;

    - нарыққа шығу әдістерін таңдау;

    - выбор методов выхода на рынок;

    - маркетингілік құралдарды таңдау;

    - выбор маркетинговых средств;

    - нарыққа шығу уақытын таңдау.

    - выбор времени выхода на рынок.

    * * *

    Казахско-русский экономический словарь > банк маркетингі

  • 85 Банковский маркетинг

    Финансовый маркетинг представляет собой системный подход инвесторов-продавцов к управлению процессом реализации финансовых активов (денег, ценных бумаг, драгоценных металлов и камней) и системный подход инвесторов-покупателей к управлению накоплением финансовых активов. Сферой деятельности этого маркетинга является финансовый рынок. Составной частью финансового маркетинга считается банковский маркетинг, который затрагивает банковские услуги на финансовом рынке или рынок банковских продуктов и услуг.

    Қаржы маркетингі сатушы-инвесторлардың қаржы активтерінің (ақшаның, бағалы қағаздардың, асыл металдар мен тастардың) өткізілуі үдерісін басқаруға жүйелі көзқарасы және сатып алушы-инвесторлардың қаржы активтерінің қорлануын басқаруға жүйелі көзқарасы болып табылады. Қаржы нарығы осы маркетингі қызметінің аясы болып табылады. Қаржы нарығындағы банк көрсететін қызметтерді немесе банк өнімдері мен қызмет көрсету нарығын қамтитын банк маркетингі қаржы нарығының құрамдас бөлігі болып саналады.

    Банковский маркетинг – это процесс, который включает в себя:

    Банк маркетингі – мыналарды қамтитын үдеріс:

    - планирование производства банковского продукта;

    - банк өнімін өндіруді жоспарлау;

    - исследование финансового рынка;

    - қаржы нарығын зерттеу;

    - налаживание коммуникаций;

    - қарым-қатынасты жолға қою;

    - установление цен;

    - бағаны белгілеу;

    - организацию продвижения банковского продукта;

    - банк өнімінің жылжытылуын ұйымдастыру;

    - развертывание службы банковского сервиса.

    - банк сервисінің қызметін өрістету.

    Основными задачами банковского маркетинга являются:

    Банк маркетингісінің негізгі міндеттері:

    - прогнозирование требований покупателей к банковскому продукту;

    - сатып алушылардың банк өніміне қоятын талаптарын болжау;

    - изучение спроса на банковский продукт;

    - банк өніміне сұранымды зерделеу;

    - выпуск банковского продукта, соответствующего требованиям покупателей;

    - сатып алушылардың талаптарына сай келетін банк өнімін шығару;

    - установление уровня цен на банковский продукт с учетом условий конкуренции;

    - бәсеке шарттарын ескере отырып банк өнімі бағасының деңгейін белгілеу;

    - повышение имиджа банка;

    - банкінің беделін көтеру;

    - повышение доли финансового рынка, контролируемого данным банком.

    - осы банк бақылайтын қаржы нарығының үлесін арттыру.

    Концепция банковского маркетинга характеризует цель деятельности банка на финансовом рынке. У покупателей банковского продукта разные интересы, потребности, возможности, денежные ресурсы и разная степень риска. Поэтому у них разный спрос на данные продукты. Это означает, что банк, предлагающий свой продукт, должен четко знать, на какую группу покупателей этот продукт рассчитан и сколько может быть потенциальных потребителей этого продукта. Отсюда возможны два направления деятельности банка:

    Банк маркетингісінің тұжырымдамасы қаржы нарығындағы банк қызметінің мақсатын сипаттайды. Банк өнімін сатып алушылардың мүдделері, қажетсінулері, мүмкіндіктері, ақша ресурстары алуан түрлі, тәуекел дәрежесі де әртүрлі. Сондықтан олардың нақты өнімге деген сұранымы да түрліше. Мұның мәнісі мынада: өз өнімін ұсынушы банк бұл өнімнің сатып алушылардың қандай тобына арналғанын және бұл өнімнің әлеуетті тұтынушылары қанша бола алатынын айқын білуге тиіс. Осыдан келіп банк қызметінің екі бағыты болуы ықтимал:

    - ориентация на массовый, стабильный спрос, что предполагает относительно низкие цены (курсы, процентные ставки) на продукт, ограничение услуги по обслуживанию клиентов и больший охват мелких покупателей;

    - жаппай, тұрақты сұранымға бағдарлануы, мұның өзі өнім бағасының (бағамы, пайыздық мөлшерлемесі) біршама төмен болуын, клиенттерге қызмет көрсетудің шектелуін және ұсақ сатып алушылардың кең қамтылуын көздейді;

    - ориентация на нестабильный спрос, т.е. на отдельные группы покупателей, что предполагает относительно высокие цены (курсы, процентные ставки) на продукт, более широкий круг услуг по обслуживанию клиентов и меньший охват покупателей.

    - тұрақсыз сұранымға, яғни сатып алушылардың жекелеген топтарына бағдарлану, мұның өзі өнім бағасының (бағамы, пайыздық мөлшерлемесі) біршама жоғары болуын, клиенттерге неғұрлым кең ауқымда қызмет көрсетілуін және ұсақ сатып алушылардың аз қамтылуын көздейді.

    Маркетинговая деятельность – это комплекс действий:

    Маркетингілік қызмет:

    - по разработке типологии потребления;

    - тұтыну тұрпаттамасын әзірлеу жөніндегі;

    - по изучению спроса;

    - сұранымды зерделеу жөніндегі;

    - по планированию производства банковского продукта и организации работы по его реализации.

    - банк өнімін өндіруді жоспарлау және оның іске асыру жұмысын ұйымдастыру жөніндегі іс-қимылдар кешені.

    Спрос на банковские продукты можно классифицировать по психофизиологической реакции покупателей и по степени удовлетворения потребностей покупателей.

    Банк өнімдеріне сұранымды сатып алушылардың психологиялық-физиологиялық қарымта жауабына қарай және сатып алушылар қажеттерінің қанағаттандырылу дәрежесіне қарай жіктелуі мүмкін.

    По психофизиологическому признаку выделяют:

    Психологиялық-физиологиялық белгі бойынша мыналарға бөлінеді:

    - фиксированный спрос – устойчивый спрос на отдельные виды банковских продуктов, постоянно предоставляемых банком (депозитные вклады в банках с минимальной суммой вклада не более 1000 тенге, акции наиболее престижных банков и др.);

    - тиянақталған сұраным – банк ұдайы беріп тұратын банк өнімдерінің жекелеген түрлеріне тұрақты сұраным (банкідегі салымның ең аз сомасы 100 теңгеден аспайтын депозиттік салым, неғұрлым беделді банкілердің акциялары, т.б.);

    - альтернативный спрос – спрос по выбору, когда вкладчик после анализа своих возможностей, степени доходности, выгодности, риска принимает решение о вложении капитала в банковский продукт (спрос на такие активы, как валютные депозиты, и трасты, депозитные вклады с суммой вклада не более 3000 тенге и др.);

    - баламалы сұраным – таңдау бойынша сұраным, мұнда салымшы өз мүмкіндіктерін, табыстылық, тиімділік, тәуекелдік дәрежесін талдағаннан кейін капиталды банк өніміне салу туралы шешім қабылдайды (валюталық депозиттер сияқты активтерге, трастыларға, салым сомасы 3000 теңгеден аспайтын депозиттік салымдарға, т.б. сұраным);

    - импульсный спрос – неожиданный спрос, когда покупатель, уже сделавший свой выбор под влиянием советов других покупателей, знакомых, рекламы или иных факторов, меняет свое решение (спрос на ценные бумаги, по которым обещают высокие дивиденды (проценты) и др.).

    - серпінді сұраным – күтпеген жерден болатын сұраныс; мұнда басқа сатып алушылардың, таныстарының, жарнаманың немесе басқа да факторлардың ықпалымен өз таңдауын жасаған сатып алушы өз шешімін өзгертеді (дивиденді (пайызы) жоғары болады деп күтілген бағалы қағаздар, т.б. бойынша сұраным).

    По степени удовлетворения потребностей покупателей можно выделить:

    Сатып алушылар қажеттерінің қанағаттандырылуы дәрежесіне қарай мыналарға бөлінеді:

    - реализованный спрос (спрос удовлетворен, когда услуга или банковский продукт предъявлены покупателю);

    - өткізілген сұраным (сұраным қызмет көрсету немесе банк өнімі сатып алушыға ұсынылған кезде қанағаттандырылды);

    - неудовлетворенный спрос – спрос на банковские продукты, отсутствующие в продаже или существующие, но по объему предложения отстающие от запросов покупателей;

    - қанағаттандырылмаған сұраным – сатуда жоқ немесе бар болғанымен ұсынымның көлемі бойынша сатып алушылардың сұрауынан артта қалған банк өнімдеріне сұраным;

    - формирующийся спрос, нечетко выраженный спрос.

    - қалыптасушы сұраным, айқын көрініс таппаған сұраным.

    Рендит – это относительный показатель доходности ценной бумаги. Рендит акции определяется процентным отношением выплаченного по ней дивиденда к рыночному курсу акции. Чем выше размер рендита, тем доходнее акция.

    Рендит – бағалы қағаз табыстылығының салыстырмалы көрсеткіші. Акция рендиті акция бойынша төленген дивидендтің акцияның нарықтық бағамына пайыздық қатынасымен айқындалады. Рендит мөлшері жоғары болған сайын акция да табыстырақ.

    Спрэд – это разрыв между минимальной ценой предложения и максимальной ценой спроса. Наиболее ликвидными являются ценные бумаги, у которых отношение спрэда к максимальной цене спроса наименьшее (обычно до 3%).

    Спрэд – ұсынымның ең төмен бағасы мен сұранымның ең жоғары бағасының арасындағы алшақтық. Спрэдтің сұранымның ең жоғары бағасына қатынасы барыша төмен (әдетте 3%-ға дейін) бағалы қағаздар неғұрлым өтімді болып табылады.

    Процесс банковского маркетинга включает следующие этапы:

    Банк маркетингісі үдерісі мынадай кезеңдерді қамтиды:

    - изучение потребностей покупателей конкретного банковского продукта;

    - нақты банк өнімін сатып алушылардың қажеттерін зерделеу;

    - комплексное исследование финансового рынка по секторам;

    - қаржы нарығын секторлар бойынша кешенді түрде зерттеу;

    - исследование возможностей текущей и перспективной реализации банковского маркетинга;

    - банк маркетингісінің ағым-дағы және келешектегі іске асырылуы мүмкіндіктерін зерттеу;

    - планирование маркетинга;

    - маркетингіні жобалау;

    - планирование жизненного цикла банковской инновации;

    - банк инновациясының өміршеңдік циклін жоспарлау;

    - реклама;

    - жарнама;

    - организация работы отделов и структурных подразделений банков.

    - банкілердің бөлімдері мен құрылымдық бөлімшелерінің жұмысын ұйымдастыру.

    Основными функциями банковского маркетинга являются:

    Банк маркетингісінің негізгі атқарымдары:

    - сбор информации;

    - ақпарат жинау;

    - маркетинговые исследования;

    - маркетингілік зерттеу;

    - планирование деятельности по выпуску и реализации банковских продуктов;

    - банк өнімдерін шығару және өткізу жөніндегі қызметті жоспарлау;

    - реклама;

    - жарнама;

    - реализация банковских продуктов.

    - банк өнімдерін өткізу.

    План банковского маркетинга представляет собой план реализации банковских продуктов, традиционных и новых. Этот план определяет какой банковский продукт или какую инновацию, на какой территории и по какой цене следует продавать в данный период времени.

    Банк маркетингісінің жоспары банк өнімдерін, кәдуілгі және жаңа өнімдерін өткізу жоспары болып табылады. Бұл жоспар нақты уақыт кезеңінде қандай банк өнімін немесе қандай инновацияны, қай аумақта және қандай бағамен сату керек екенін айқындайды.

    Стратегия банковского маркетинга заключается в:

    Банк маркетингісінің стратегиясы:

    - анализе возможностей банка по выпуску того или иного банковского продукта;

    - банкінің белгілі бір банк өнімін шығару жөніндегі мүмкіндіктерін талдау үдерісінде;

    - определении цели выпуска продукта;

    - өнім шығарудың мақсатын айқындауда;

    - обосновании банковской инновации и ее характеристики;

    - банк инновациясын негіздеу және оны сипаттауда;

    - маркетинговых исследованиях финансового рынка и возможностей реализации банковского продукта как в текущем периоде, так и в ближайшей перспективе.

    - қаржы нарығын және банк өнімін ағымдағы кезеңде де, таяудағы келешекте де өткізу мүмкіндіктерін маркетингілік зерттеуде.

    Банк маркетингінің стратегиясында қандай тұжырымдамаларды бөліп көрсетуге болады?

    В стратегии банковского маркетинга целесообразно выделить следующие концепции:

    Банк маркетингісінің стратегиясында мына тұжырымдамаларды бөліп көрсету орынды:

    - сегментация финансового рынка;

    - қаржы нарығын бөліктемелеу;

    - выбор целевого банковского продукта или услуги;

    - нысаналы банк өнімін немесе қызмет көрсетуді таңдау;

    - выбор методов выхода на рынок;

    - нарыққа шығу әдістерін таңдау;

    - выбор маркетинговых средств;

    - маркетингілік құралдарды таңдау;

    - выбор времени выхода на рынок.

    - нарыққа шығу уақытын таңдау.

    Русско-казахский экономический словарь > Банковский маркетинг

  • 86 DCE

    I сокр. от Distributed Computing Environment
    среда распределенных вычислений (группа функций независимого от платформ промежуточного обеспечения компании Open Software Foundation для организации совместной работы распределенных программ, в частности, функции обслуживания распределенных файлов, присвоения имен, контроля за временем, обслуживания потоков, дистанционного вызова процедур и обеспечения безопасности)
    II сокр. от data communications equipment
    аппаратура передачи данных; телекоммуникационное оборудование (один из двух типов
    устройств, соединяемых с последовательным интерфейсом RS-232; принимает данные от DTE-устройства и выполняет посреднические функции, преобразуя входной сигнал перед его отправкой получателю, см. тж DTE)
    III сокр. от data circuit-terminating equipment

    English-Russian dictionary of computer science and programming > DCE

  • 87 Банк маркетингі

    Қаржы маркетингі сатушы-инвесторлардың қаржы активтерінің (ақшаның, бағалы қағаздардың, асыл металдар мен тастардың) өткізілуі үдерісін басқаруға жүйелі көзқарасы және сатып алушы-инвесторлардың қаржы активтерінің қорлануын басқаруға жүйелі көзқарасы болып табылады. Қаржы нарығы осы маркетингі қызметінің аясы болып табылады. Қаржы нарығындағы банк көрсететін қызметтерді немесе банк өнімдері мен қызмет көрсету нарығын қамтитын банк маркетингі қаржы нарығының құрамдас бөлігі болып саналады.

    Финансовый маркетинг представляет собой системный подход инвесторов-продавцов к управлению процессом реализации финансовых активов (денег, ценных бумаг, драгоценных металлов и камней) и системный подход инвесторов-покупателей к управлению накоплением финансовых активов. Сферой деятельности этого маркетинга является финансовый рынок. Составной частью финансового маркетинга считается банковский маркетинг, который затрагивает банковские услуги на финансовом рынке или рынок банковских продуктов и услуг.

    Банк маркетингі – мыналарды қамтитын үдеріс:

    Банковский маркетинг – это процесс, который включает в себя:

    - банк өнімін өндіруді жоспарлау;

    - планирование производства банковского продукта;

    - қаржы нарығын зерттеу;

    - исследование финансового рынка;

    - қарым-қатынасты жолға қою;

    - налаживание коммуникаций;

    - бағаны белгілеу;

    - установление цен;

    - банк өнімінің жылжытылуын ұйымдастыру;

    - организацию продвижения банковского продукта;

    - банк сервисінің қызметін өрістету.

    - развертывание службы банковского сервиса.

    Банк маркетингісінің негізгі міндеттері:

    Основными задачами банковского маркетинга являются:

    - сатып алушылардың банк өніміне қоятын талаптарын болжау;

    - прогнозирование требований покупателей к банковскому продукту;

    - банк өніміне сұранымды зерделеу;

    - изучение спроса на банковский продукт;

    - сатып алушылардың талаптарына сай келетін банк өнімін шығару;

    - выпуск банковского продукта, соответствующего требованиям покупателей;

    - бәсеке шарттарын ескере отырып банк өнімі бағасының деңгейін белгілеу;

    - установление уровня цен на банковский продукт с учетом условий конкуренции;

    - банкінің беделін көтеру;

    - повышение имиджа банка;

    - осы банк бақылайтын қаржы нарығының үлесін арттыру.

    - повышение доли финансового рынка, контролируемого данным банком.

    Банк маркетингісінің тұжырымдамасы қаржы нарығындағы банк қызметінің мақсатын сипаттайды. Банк өнімін сатып алушылардың мүдделері, қажетсінулері, мүмкіндіктері, ақша ресурстары алуан түрлі, тәуекел дәрежесі де әртүрлі. Сондықтан олардың нақты өнімге деген сұранымы да түрліше. Мұның мәнісі мынада: өз өнімін ұсынушы банк бұл өнімнің сатып алушылардың қандай тобына арналғанын және бұл өнімнің әлеуетті тұтынушылары қанша бола алатынын айқын білуге тиіс. Осыдан келіп банк қызметінің екі бағыты болуы ықтимал:

    Концепция банковского маркетинга характеризует цель деятельности банка на финансовом рынке. У покупателей банковского продукта разные интересы, потребности, возможности, денежные ресурсы и разная степень риска. Поэтому у них разный спрос на данные продукты. Это означает, что банк, предлагающий свой продукт, должен четко знать, на какую группу покупателей этот продукт рассчитан и сколько может быть потенциальных потребителей этого продукта. Отсюда возможны два направления деятельности банка:

    - жаппай, тұрақты сұранымға бағдарлануы, мұның өзі өнім бағасының (бағамы, пайыздық мөлшерлемесі) біршама төмен болуын, клиенттерге қызмет көрсетудің шектелуін және ұсақ сатып алушылардың кең қамтылуын көздейді;

    - ориентация на массовый, стабильный спрос, что предполагает относительно низкие цены (курсы, процентные ставки) на продукт, ограничение услуги по обслуживанию клиентов и больший охват мелких покупателей;

    - тұрақсыз сұранымға, яғни сатып алушылардың жекелеген топтарына бағдарлану, мұның өзі өнім бағасының (бағамы, пайыздық мөлшерлемесі) біршама жоғары болуын, клиенттерге неғұрлым кең ауқымда қызмет көрсетілуін және ұсақ сатып алушылардың аз қамтылуын көздейді.

    - ориентация на нестабильный спрос, т.е. на отдельные группы покупателей, что предполагает относительно высокие цены (курсы, процентные ставки) на продукт, более широкий круг услуг по обслуживанию клиентов и меньший охват покупателей.

    Маркетингілік қызмет:

    Маркетинговая деятельность – это комплекс действий:

    - тұтыну тұрпаттамасын әзірлеу жөніндегі;

    - по разработке типологии потребления;

    - сұранымды зерделеу жөніндегі;

    - по изучению спроса;

    - банк өнімін өндіруді жоспарлау және оның іске асыру жұмысын ұйымдастыру жөніндегі іс-қимылдар кешені.

    - по планированию производства банковского продукта и организации работы по его реализации.

    Банк өнімдеріне сұранымды сатып алушылардың психологиялық-физиологиялық қарымта жауабына қарай және сатып алушылар қажеттерінің қанағаттандырылу дәрежесіне қарай жіктелуі мүмкін.

    Спрос на банковские продукты можно классифицировать по психофизиологической реакции покупателей и по степени удовлетворения потребностей покупателей.

    Психологиялық-физиологиялық белгі бойынша мыналарға бөлінеді:

    По психофизиологическому признаку выделяют:

    - тиянақталған сұраным – банк ұдайы беріп тұратын банк өнімдерінің жекелеген түрлеріне тұрақты сұраным (банкідегі салымның ең аз сомасы 100 теңгеден аспайтын депозиттік салым, неғұрлым беделді банкілердің акциялары, т.б.);

    - фиксированный спрос – устойчивый спрос на отдельные виды банковских продуктов, постоянно предоставляемых банком (депозитные вклады в банках с минимальной суммой вклада не более 1000 тенге, акции наиболее престижных банков и др.);

    - баламалы сұраным – таңдау бойынша сұраным, мұнда салымшы өз мүмкіндіктерін, табыстылық, тиімділік, тәуекелдік дәрежесін талдағаннан кейін капиталды банк өніміне салу туралы шешім қабылдайды (валюталық депозиттер сияқты активтерге, трастыларға, салым сомасы 3000 теңгеден аспайтын депозиттік салымдарға, т.б. сұраным);

    - альтернативный спрос – спрос по выбору, когда вкладчик после анализа своих возможностей, степени доходности, выгодности, риска принимает решение о вложении капитала в банковский продукт (спрос на такие активы, как валютные депозиты, и трасты, депозитные вклады с суммой вклада не более 3000 тенге и др.);

    - серпінді сұраным – күтпеген жерден болатын сұраныс; мұнда басқа сатып алушылардың, таныстарының, жарнаманың немесе басқа да факторлардың ықпалымен өз таңдауын жасаған сатып алушы өз шешімін өзгертеді (дивиденді (пайызы) жоғары болады деп күтілген бағалы қағаздар, т.б. бойынша сұраным).

    - импульсный спрос – неожиданный спрос, когда покупатель, уже сделавший свой выбор под влиянием советов других покупателей, знакомых, рекламы или иных факторов, меняет свое решение (спрос на ценные бумаги, по которым обещают высокие дивиденды (проценты) и др.).

    Сатып алушылар қажеттерінің қанағаттандырылуы дәрежесіне қарай мыналарға бөлінеді:

    По степени удовлетворения потребностей покупателей можно выделить:

    - өткізілген сұраным (сұраным қызмет көрсету немесе банк өнімі сатып алушыға ұсынылған кезде қанағаттандырылды);

    - реализованный спрос (спрос удовлетворен, когда услуга или банковский продукт предъявлены покупателю);

    - қанағаттандырылмаған сұраным – сатуда жоқ немесе бар болғанымен ұсынымның көлемі бойынша сатып алушылардың сұрауынан артта қалған банк өнімдеріне сұраным;

    - неудовлетворенный спрос – спрос на банковские продукты, отсутствующие в продаже или существующие, но по объему предложения отстающие от запросов покупателей;

    - қалыптасушы сұраным, айқын көрініс таппаған сұраным.

    - формирующийся спрос, нечетко выраженный спрос.

    Рендит – бағалы қағаз табыстылығының салыстырмалы көрсеткіші. Акция рендиті акция бойынша төленген дивидендтің акцияның нарықтық бағамына пайыздық қатынасымен айқындалады. Рендит мөлшері жоғары болған сайын акция да табыстырақ.

    Рендит – это относительный показатель доходности ценной бумаги. Рендит акции определяется процентным отношением выплаченного по ней дивиденда к рыночному курсу акции. Чем выше размер рендита, тем доходнее акция.

    Спрэд – ұсынымның ең төмен бағасы мен сұранымның ең жоғары бағасының арасындағы алшақтық. Спрэдтің сұранымның ең жоғары бағасына қатынасы барыша төмен (әдетте 3%-ға дейін) бағалы қағаздар неғұрлым өтімді болып табылады.

    Спрэд – это разрыв между минимальной ценой предложения и максимальной ценой спроса. Наиболее ликвидными являются ценные бумаги, у которых отношение спрэда к максимальной цене спроса наименьшее (обычно до 3%).

    Банк маркетингісі үдерісі мынадай кезеңдерді қамтиды:

    Процесс банковского маркетинга включает следующие этапы:

    - нақты банк өнімін сатып алушылардың қажеттерін зерделеу;

    - изучение потребностей покупателей конкретного банковского продукта;

    - қаржы нарығын секторлар бойынша кешенді түрде зерттеу;

    - комплексное исследование финансового рынка по секторам;

    - банк маркетингісінің ағым-дағы және келешектегі іске асырылуы мүмкіндіктерін зерттеу;

    - исследование возможностей текущей и перспективной реализации банковского маркетинга;

    - маркетингіні жобалау;

    - планирование маркетинга;

    - банк инновациясының өміршеңдік циклін жоспарлау;

    - планирование жизненного цикла банковской инновации;

    - жарнама;

    - реклама;

    - банкілердің бөлімдері мен құрылымдық бөлімшелерінің жұмысын ұйымдастыру.

    - организация работы отделов и структурных подразделений банков.

    Банк маркетингісінің негізгі атқарымдары:

    Основными функциями банковского маркетинга являются:

    - ақпарат жинау;

    - сбор информации;

    - маркетингілік зерттеу;

    - маркетинговые исследования;

    - банк өнімдерін шығару және өткізу жөніндегі қызметті жоспарлау;

    - планирование деятельности по выпуску и реализации банковских продуктов;

    - жарнама;

    - реклама;

    - банк өнімдерін өткізу.

    - реализация банковских продуктов.

    Банк маркетингісінің жоспары банк өнімдерін, кәдуілгі және жаңа өнімдерін өткізу жоспары болып табылады. Бұл жоспар нақты уақыт кезеңінде қандай банк өнімін немесе қандай инновацияны, қай аумақта және қандай бағамен сату керек екенін айқындайды.

    План банковского маркетинга представляет собой план реализации банковских продуктов, традиционных и новых. Этот план определяет какой банковский продукт или какую инновацию, на какой территории и по какой цене следует продавать в данный период времени.

    Банк маркетингісінің стратегиясы:

    Стратегия банковского маркетинга заключается в:

    - банкінің белгілі бір банк өнімін шығару жөніндегі мүмкіндіктерін талдау үдерісінде;

    - анализе возможностей банка по выпуску того или иного банковского продукта;

    - өнім шығарудың мақсатын айқындауда;

    - определении цели выпуска продукта;

    - банк инновациясын негіздеу және оны сипаттауда;

    - обосновании банковской инновации и ее характеристики;

    - қаржы нарығын және банк өнімін ағымдағы кезеңде де, таяудағы келешекте де өткізу мүмкіндіктерін маркетингілік зерттеуде.

    - маркетинговых исследованиях финансового рынка и возможностей реализации банковского продукта как в текущем периоде, так и в ближайшей перспективе.

    Банк маркетингінің стратегиясында қандай тұжырымдамаларды бөліп көрсетуге болады?

    Банк маркетингісінің стратегиясында мына тұжырымдамаларды бөліп көрсету орынды:

    В стратегии банковского маркетинга целесообразно выделить следующие концепции:

    - қаржы нарығын бөліктемелеу;

    - сегментация финансового рынка;

    - нысаналы банк өнімін немесе қызмет көрсетуді таңдау;

    - выбор целевого банковского продукта или услуги;

    - нарыққа шығу әдістерін таңдау;

    - выбор методов выхода на рынок;

    - маркетингілік құралдарды таңдау;

    - выбор маркетинговых средств;

    - нарыққа шығу уақытын таңдау.

    - выбор времени выхода на рынок.

    Қазақ-орыс анықтағыш-тілашар банктік жүйенің жұмыскерлерінің > Банк маркетингі

  • 88 Общее: прилагательное

    Имя прилагательное – это часть речи, обозначающая признак (качество, свойство) предмета. По своему значению все прилагательные делятся на качественные (qualitative Adjektive) и относительные (relative Adjektive).
    Качественные прилагательные обозначают абсолютный признак предмета, например:
    ■ свойства и качества, непосредственно воспринимаемые органами чувств, включая сюда физические качества людей и животных:
    • цвет: blau синий, голубой, rot красный, weiß белый;
    • размер: breit широкий, eng узкий, groß большой, klein маленький;
    • вкус/запах: bitter горький, sauer кислый, süß сладкий;
    • звук: laut громкий, leise тихий, schrill резкий, пронзительный;
    • осязательные ощущения: rau шероховатый, glatt гладкий, weich мягкий, hart твёрдый;
    • вес: leicht лёгкий, schwer тяжёлый;
    • физические качества людей и животных: blind слепой, gesund здоровый, krank больной.
    ■ свойства и качества, содержащие оценку:
    • моральную: böse злой, gut хороший, frech дерзкий;
    • эстетическую: hässlich некрасивый, herrlich прекрасный, schön красивый;
    • интеллектуальную: dumm глупый, klug умный, witzig остроумный.
    Относительные прилагательные обозначают свойство предмета через его отношение к другим предметам, обстоятельствам или действиям, например:
    • отношение к лицу: elterlich родительский, mütterlich материнский, väterlich отцовский;
    • отношение к неодушевленным предметам: golden золотой, betrieblich производственный, seiden шёлковый;
    • пространственные и временные отношения: dortig местный, heutig сегодняшний.
    Граница между качественными и относительными прилагательными является в значительной мере условной и непостоянной. Относительные прилагательные в переносном смысле становятся качественными:
    ein stählernes Gitter - стальная решетка
    ein stählerner Wille - стальная / несгибаемая воля
    ein goldener Ring - золотое кольцо
    goldene Hände - золотые руки
    В предложении прилагательные могут выступать в качестве:
    • определения:
    Die Insel hat einen geheimnisvollen Namen. - Остров имеет таинственное название.
    • именной части составного сказуемого:
    Der Name der Insel ist geheimnisvoll. - Название острова таинственное.
    • обстоятельства образа действия:
    Die Frau lächelte geheimnisvoll. - Женщина улыбнулась таинственно.
    • предикативного определения:
    Er lag krank zu / im Bett. - Он лежал больной в кровати.
    Er traf sie gesund und munter. - Он встретил её здоровой и бодрой.
    В функции именной части сказуемого и обстоятельства образа действия прилагательные употребляются в краткой несклоняемой форме. В качестве определения прилагательные, как правило, склоняются, согласуясь с определяемым существительным в роде, числе и падеже. В этом случае они располагаются перед определяемым существительным. В современном немецком языке встречаются также случаи употребления прилагательных, в краткой несклоняемой форме в функции определения. Такие случаи являются остатками прежнего употребления прилагательных:
    Gut Ding will Weile haben. - Что скоро, то не споро (посл.).
    O Täler weit, o Höhen (Eichendorff)! - О долины широкие, о холмы (Эйхендорф)!
    Прилагательные в зависимости от того, могут ли они употребляться в качестве определения и именной части сказуемого, делятся на три группы:
    I. Прилагательные, употребляемые как определение и как именная часть сказуемого. В зависимости от своей способности склоняться и образовывать степени сравнения эти прилагательные делятся на три подгруппы:
    1. Прилагательные, склоняемые и образующие степени сравнения. К этой подгруппе
    относятся многие качественные прилагательные: allgemein общий, billig дешёвый, gesund здоровый, fest твёрдый, klein маленький, schön красивый и др.;
    В эту же подгруппу входят прилагательные, обозначающие цвета, хотя они обычно образуют степени сравнения только в переносном значении:
    in der schwärzesten Zeit deutscher Geschichte (in der Zeit des Faschismus) - в самый мрачный период немецкой - истории (во времена фашизма)
    2. Прилагательные, склоняемые, но не образующие степеней сравнения. В эту подгруппу входят многие качественные прилагательные, по своему значению не допускающие образования степеней сравнения:
    fertig готовый, gemeinsam общий, heilbar излечимый, ledig холостой, незамужняя, stimmhaft звонкий, tot мёртвый, tödlich смертельный и т.д.
    3. Прилагательные, несклоняемые и не образующие степеней сравнения:
    beige бежевый (см. подробнее 4.1.5, п. 1, с. 255)
    II. Прилагательные, употребляемые только в качестве определения. В зависимости от своей способности склоняться и образовывать степени сравнения они также распадаются на три подгруппы:
    1. Прилагательные, склоняемые и образующие степени сравнения:
    а) прилагательные с пространственным (локальным) значением. В качестве части сказуемого и обстоятельства употребляются соответствующие наречия, которые могут выполнять также определительную функцию, но стоят в этом случае после существительного. Способность образовывать степени сравнения у этих прилагательных ограничена: они не образуют сравнительную степень, только превосходную:
    das obere Zimmer (прилагательное) - верхняя комната
    das oberste Zimmer (прилагательное) - самая верхняя комната
    Das Zimmer ist / liegt oben (наречие). - комната находится выше
    das Zimmer oben (наречие) - комната наверху
    * Прилагательное: * Наречие
    положительная / сравнительная / превосходная степень
    * äußer- внешн- / - / äußerst- крайн- * außen снаружи
    * inner- внутренн- / - / innerst- сам- сокровенн- * innen внутри
    * ober- верхн- / - / oberst- высш- * oben наверху
    * unter- нижн- / - / unterst- сам- нижн- * unten внизу
    * vorder- задн- / - / vorderst- сам- передн- * vorn впереди
    * hinter- задн- / - / hinterst- сам- задн- * hinten сзади
    б) прилагательные в сочетаниях типа starker Raucher, то есть с существительными, обозначающими действующее лицо. Прилагательное в таких сочетаниях характеризует действие, называемое существительным:
    der starke Raucher заядлый курильщик - ← er raucht stark он курит сильно
    Также: schlechter Esser плохой едок, sicherer Autofahrer уверенный водитель, ausgezeichneter Musikkenner отличный знаток музыки, scharfer Kritiker строгий критик, guter Redner хороший оратор, eleganter Tänzer элегантный танцор
    2. Прилагательные, склоняемые, но не образующие степеней сравнения. В эту подгруппу входят:
    а) прилагательные выражающие, прежде всего, отношения владения, отношение к какой-либо сфере и т.д.:
    ärztlich врачебный, betrieblich производственный, medizinisch медицинский, staatlich государственный, steuerlich налоговый, väterlich отцовский,
    В переносном значении (как качественные прилагатаельные) некоторые из них могут быть частью сказуемого и образовывать степени сравнения:
    die nervösen Störungen - нарушения на нервной почве
    Die Störungen sind nervös - Нарушения возникли на нервой почве
    der nervöse Student - нервный студент
    Der Student ist nervös. - Студент нервный.
    б) все прилагательные на - isch, образованные от названий стран и континентов и прилагательное deutsch. Если эти прилагательные обозначают не место происхождения / возникновения какого-либо предмета, а принадлежность к чему-либо, владение чем-либо, то они могут употребляться в качестве именной части сказуемого:
    der französische Wein - французское вино
    die nordamerikanischen Indianer - североамериканские индейцы / индейцы Северной Америки
    Die Insel Helgoland ist seit 1890 deutsch. - Остров Гельголанд с 1890 года принадлежит Германии.
    в) прилагательные на -ern/-en, обозначающие вещество, материал:
    bleiern свинцовый, gläsern стеклянный, hölzern деревянный, stählern стальной, steinern каменный, bronzen бронзовый, metallen металлический, samten бархатный, seiden шёлковый, wollen шерстяной:
    die goldene Uhr - золотые часы
    die gusseiserne Kugel - чугунный шар
    В переносном значении (как качественные прилагательные для выражения сравнения) эти прилагательные могут быть именной частью сказуемого:
    Meine Beine waren bleiern (=wie aus Blei). - Мои ноги были будто свинцовые.
    г) некоторые прилагательные, обозначающие временные и локальные отношения. В качестве части сказуемого употребляются соответствующие наречия, которые могут также выполнять определительную функцию, но стоят в этом случае после существительного. В отличие от прилагательных подгруппы II 1 а данные прилагательные не образуют степеней сравнения:
    das rechte Gebäude (прилагательное) - правое здание
    Das Gebäude ist rechts (наречие). - Здание находится справа.
    das Gebäude rechts (наречие) - здание справа
    baldig скорый, damalig тогдашний, ehemalig бывший, gestrig вчерашний, heutig сегодняшний, jetzig теперешний, morgig завтрашний, sofortig немедленный; auswärtig иногородний, внешний, diesseitig находящийся по эту сторону, hiesig здешний, местный, dortig тамошний; местный, jenseitig лежащий по ту сторону, противоположный (о береге), link- прав-, recht- лев-
    д) порядковые числительные (см. с. 297);
    е) прилагательные на - weise:
    3) Прилагательные, несклоняемые и не образующие степеней сравнения:
    а) прилагательные на -er, образованные от названий населённых пунктов и некоторых других географических названий:
    die Moskauer Metro - московское метро
    die Pariser Mode - парижская мода
    eine Schweizer Uhr - швейцарские часы
    die Thüringer Küche - тюрингская кухня
    б) прилагательные на -er, образованные от количественных числительных (см. с. 258):
    die achtziger Jahre (по новой орфографии также: die Achtzigerjahre) - восьмидесятые годы
    III. Прилагательные, употребляемые только в качестве именной части сказуемого, несклоняемые и не образующие степеней сравнения: angst страшно (см. подробнее п. 2, с. 258-259):
    Mir ist (es) angst. - Мне жутко. / Я боюсь.

    Грамматика немецкого языка по новым правилам орфографии и пунктуации > Общее: прилагательное

  • 89 программируемый логический контроллер

    1. speicherprogrammierbare Steuerung, f

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Русско-немецкий словарь нормативно-технической терминологии > программируемый логический контроллер

  • 90 automate programmable à mémoire

    1. программируемый логический контроллер

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Франко-русский словарь нормативно-технической терминологии > automate programmable à mémoire

  • 91 speicherprogrammierbare Steuerung, f

    1. программируемый логический контроллер

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Немецко-русский словарь нормативно-технической терминологии > speicherprogrammierbare Steuerung, f

  • 92 априорная информация

    1. prior information
    2. aprior information

     

    априорная информация
    Информация, которая была получена ранее рассматриваемого момента времени.
    Чаще всего таким моментом является проводимый эксперимент. После проведения эксперимента появляется апостериорная информация.
    [ http://www.morepc.ru/dict/]

    априорная информация
    Предварительные данные, представления исследователя, используемые при формировании экономико-математической модели. Их источником могут быть, во-первых, теоретические соображения (например, представление об отрицательной зависимости спроса от цены продукта в функции спроса), во-вторых, предшествующие статистические исследования, в которых уже оценивались некоторые элементы, в том числе параметры будущей модели (например, в функции спроса может использоваться априорная для данной модели оценка эластичности спроса от дохода). В современных условиях, когда накапливаются гигантские массивы информации, ее анализ, классификация и предварительная обработка становятся одним из решающих условий успешности построения и применения экономико-математических моделей.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > априорная информация

  • 93 демографические модели

    1. demographic models

     

    демографические модели
    Математические модели, описывающие процессы воспроизводства и миграции населения. В частности: а) модели, в которых важную роль играет возрастная структура населения — другие его параметры рассматриваются как функции этой структуры («демометрические функции»); б) демографические таблицы (таблицы рождаемости, смертности, плодовитости, количества браков и т.д.); в) модели воспроизводства населения, объединяющие таблицы смертности и плодовитости, которые широко применяются для прогнозных и аналитических расчетов. Для изучения режима воспроизводства населения в зависимости от различных факторов используется также идеализированная модель «стабильного населения». Получаемые с ее помощью данные могут вводиться в экономические модели (например, в модели теории производственных функций).
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > демографические модели

  • 94 диспетчерский пункт управления (в SCADA)

    1. MTU
    2. MS
    3. master terminal unit
    4. master station

     

    диспетчерский пункт управления
    диспетчерский пункт
    ДП
    главный терминал

    -
    [Интент]

    Master Terminal Unit (MTU), Master Station (MS) диспетчерский пункт управления (главный терминал); осуществляет обработку данных и управление высокого уровня, как правило, в режиме мягкого (квази-) реального времени; одна из основных функций обеспечение интерфейса между человеком-оператором и системой (HMI, MMI). В зависимости от конкретной системы MTU может быть реализован в самом разнообразном виде от одиночного компьютера с дополнительными устройствами подключения к каналам связи до больших вычислительных систем (мэйнфреймов) и/или объединенных в локальную сеть рабочих станций и серверов. Как правило, и при построении MTU используются различные методы повышения надежности и безопасности работы системы.

    4865
    Рис. 2. Основные структурные компоненты SCADA-системы

    Главной тенденцией развития MTU (диспетчерских пунктов управления) является переход большинства разработчиков SCADA-систем на архитектуру клиент-сервер, состоящую из 4-х функциональных компонентов.

    1. User (Operator) Interface (интерфейс пользователя/оператора) исключительно важная составляющая систем SCADA. Для нее характерны
    а) стандартизация интерфейса пользователя вокруг нескольких платформ;
    б) все более возрастающее влияние Windows NT;
    в) использование стандартного графического интерфейса пользователя (GUI);
    г) технологии объектно-ориентированного программирования: DDE, OLE, Active X, OPC (OLE for Process Control), DCOM;
    д) стандартные средства разработки приложений, наиболее популярные среди которых, Visual Basic for Applications (VBA), Visual C++;
    е) появление коммерческих вариантов программного обеспечения класса SCADA/MMI для широкого спектра задач. Объектная независимость позволяет интерфейсу пользователя представлять виртуальные объекты, созданные другими системами. Результат расширение возможностей по оптимизации HMI-интерфейса.

    2. Data Management (управление данными) - отход от узкоспециализированных баз данных в сторону поддержки большинства корпоративных реляционных баз данных (Microsoft SQL, Oracle). Функции управления данными и генерации отчетов осуществляются стандартными средствами SQL, 4GL; эта независимость данных изолирует функции доступа и управления данными от целевых задач SCADA, что позволяет легко разрабатывать дополнительные приложения по анализу и управлению данными.

    3. Networking & Services (сети и службы) - переход к использованию стандартных сетевых технологий и протоколов. Службы сетевого управления, защиты и управления доступом, мониторинга транзакций, передачи почтовых сообщений, сканирования доступных ресурсов (процессов) могут выполняться независимо от кода целевой программы SCADA, разработанной другим вендором.

    4. Real-Time Services (службы реального времени) - освобождение MTU от нагрузки перечисленных выше компонентов дает возможность сконцентрироваться на требованиях производительности для задач реального и квази-реального времени. Данные службы представляют собой быстродействующие процессоры, которые управляют обменом информацией с RTU и SCADA-процессами, осуществляют управление резидентной частью базы данных, оповещение о событиях, выполняют действия по управлению системой, передачу информации о событиях на интерфейс пользователя (оператора).

    [ http://www.mka.ru/?p=41524]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > диспетчерский пункт управления (в SCADA)

  • 95 математическое ожидание

    1. expected value
    2. expectation

     

    математическое ожидание

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    математическое ожидание
    Одна из численных характеристик случайной величины, часто называемая ее теоретической средней. Для дискретной случайной величины X математическое ожидание равно сумме произведений возможных значений этой величины на их вероятности: Мх= ?хР(х), а для непрерывной случайной величины — интегралу Обозначается обычно: Mx или Ex (в нашем словаре принято первое из этих обозначений). См. также Среднее значение. Математическое программирование [mathematical programming] - (см. также Оптимальное программирование) — раздел математики, который «… изучает методы решения задач на нахождение экстремума функций (показателя качества решения) при ограничениях в форме уравнений и неравенств»[1]. Оно объединяет различные математические методы и дисциплины исследования операций: линейное программирование, нелинейное программирование, динамическое программирование, выпуклое программирование, геометрическое программирование, целочисленное программирование и др. Общая задача М.п. состоит в нахождении оптимального (максимального или минимального) значения целевой функции, причем значения переменных должны принадлежать некоторой области допустимых значений (см. Область допустимых решений). В самом общем виде задача записывается так: U = f(x) ? max; x ? M, где x = (x1, x2,…, xn); M — область допустимых значений переменных x1,…, xn; f(x) — целевая функция. Частный случай задачи М.п. — «классическая задача». В ней область M представлена равенствами: g(x) = b, где g(x) — вектор функций ограничений, b — вектор констант ограничений. Названные выше разнообразные дисциплины отличаются друг от друга видом целевой функции f(x) и области М. Например, если f(x) и M — линейны, имеем задачу линейного программирования; если же дополнительно ставится условие, чтобы переменные были целочисленны, имеем задачу целочисленного программирования; если зависимость U от x (т.е. форма f) носит нелинейный характер — задачу нелинейного программирования. Развивающаяся область — стохастическое программирование, задачи которого в отличие от детерминированных характеризуются тем, что их исходные данные (все или часть) — суть случайные величины. [1] Математический аппарат экономического моделирования. М.: “Наука”, 1983, стр 8.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > математическое ожидание

  • 96 программируемый логический контроллер

    1. storage-programmable logic controller
    2. Programmable Logic Controller
    3. programmable controller
    4. PLC

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Русско-английский словарь нормативно-технической терминологии > программируемый логический контроллер

  • 97 промышленная сеть верхнего уровня

    1. terminal bus

     

    промышленная сеть верхнего уровня
    коммуникационная сеть верхнего уровня
    сеть операторского уровня
    Сеть верхнего уровня АСУ ТП.
    Сеть передачи данных между операторскими станциями, контроллерами и серверами.
    [ http://kazanets.narod.ru/NT_PART2.htm]

    В данной статье речь пойдет о коммуникационных сетях верхнего уровня, входящих в состав АСУ ТП. Их еще называют сетями операторского уровня, ссылаясь на трехуровневую модель распределенных систем управления.

    Сети верхнего уровня служат для передачи данных между контроллерами, серверами и операторскими рабочими станциями. Иногда в состав таких сетей входят дополнительные узлы: центральный сервер архива, сервер промышленных приложений, инженерная станция и т.д. Но это уже опции.

    Какие сети используются на верхнем уровне?
    В отличие от стандартов полевых шин, здесь особого разнообразия нет. Фактически, большинство сетей верхнего уровня, применяемых в современных АСУ ТП, базируется на стандарте Ethernet (IEEE 802.3) или на его более быстрых вариантах Fast Ethernet и Gigabit Ethernet. При этом, как правило, используется полный стек коммуникационных протоколов TCP/IP. В этом плане сети операторского уровня очень похожи на обычные ЛВС, применяемые в офисных приложениях. Широкое промышленное применение сетей Ethernet обусловлено следующими очевидными моментами:

    1.    Промышленные сети верхнего уровня объединяют множество операторских станций и серверов, которые в большинстве случаев представляют собой персональные компьютеры. Стандарт Ethernet отлично подходит для организации подобных ЛВС; для этого необходимо снабдить каждый компьютер лишь сетевым адаптером (NIC, network interface card). Коммуникационные модули Ethernet для промышленных контроллеров просты в изготовлении и легки в конфигурировании. Стоит отметить, что многие современные контроллеры уже имеют встроенные интерфейсы для подключения к сетям Ethernet.

    2.   На рынке существует большой выбор недорого коммуникационного оборудования для сетей Ethernet, в том числе специально адаптированного для промышленного применения.

    3.   Сети Ethernet обладают большой скоростью передачи данных. Например, стандарт Gigabit Ethernet позволяет передавать данные со скоростью до 1 Gb в секунду при использовании витой пары категории 5. Как будет понятно дальше, большая пропускная способность сети становится чрезвычайно важным моментом для промышленных приложений.

    4.   Очень частым требованием является возможность состыковки сети АСУ ТП с локальной сетью завода (или предприятия). Как правило, существующая ЛВС завода базируется на стандарте Ethernet. Использование единого сетевого стандарта позволяет упростить интеграцию АСУ ТП в общую сеть предприятия, что становится особенно ощутимым при реализации и развертывании систем верхнего уровня типа MES (Мanufacturing Еxecution System).

    Однако у промышленных сетей верхнего уровня есть своя специфика, обусловленная условиями промышленного применения. Типичными требованиями, предъявляемыми к таким сетям, являются:

    1.    Большая пропускная способность и скорость передачи данных. Объем трафика напрямую зависит от многих факторов: количества архивируемых и визуализируемых технологических параметров, количества серверов и операторских станций, используемых прикладных приложений и т.д.

    В отличие от полевых сетей жесткого требования детерминированности здесь нет: строго говоря, неважно, сколько времени займет передача сообщения от одного узла к другому – 100 мс или 700 мс (естественно, это не важно, пока находится в разумных пределах). Главное, чтобы сеть в целом могла справляться с общим объемом трафика за определенное время. Наиболее интенсивный трафик идет по участкам сети, соединяющим серверы и операторские станции (клиенты). Это связано с тем, что на операторской станции технологическая информация обновляется в среднем раз в секунду, причем передаваемых технологических параметров может быть несколько тысяч. Но и тут нет жестких временных ограничений: оператор не заметит, если информация будет обновляться, скажем, каждые полторы секунды вместо положенной одной. В то же время если контроллер (с циклом сканирования в 100 мс) столкнется с 500-милисекундной задержкой поступления новых данных от датчика, это может привести к некорректной отработке алгоритмов управления.

    2.    Отказоустойчивость. Достигается, как правило, путем резервирования коммуникационного оборудования и линий связи по схеме 2*N так, что в случае выхода из строя коммутатора или обрыва канала, система управления способна в кратчайшие сроки (не более 1-3 с) локализовать место отказа, выполнить автоматическую перестройку топологии и перенаправить трафик на резервные маршруты. Далее мы более подробно остановимся на схемах обеспечения резервирования.

    3.    Соответствие сетевого оборудования промышленным условиям эксплуатации. Под этим подразумеваются такие немаловажные технические меры, как: защита сетевого оборудования от пыли и влаги; расширенный температурный диапазон эксплуатации; увеличенный цикл жизни; возможность удобного монтажа на DIN-рейку; низковольтное питание с возможностью резервирования; прочные и износостойкие разъемы и коннекторы. По функционалу промышленное сетевое оборудование практически не отличается от офисных аналогов, однако, ввиду специального исполнения, стоит несколько дороже.
     

    4916
    Рис. 1. Промышленные коммутаторы SCALANCE X200 производства Siemens (слева) и LM8TX от Phoenix Contact (справа): монтаж на DIN-рейку; питание от 24 VDC (у SCALANCE X200 возможность резервирования питания); поддержка резервированных сетевых топологий.

    Говоря о промышленных сетях, построенных на базе технологии Ethernet, часто используют термин Industrial Ethernet, намекая тем самым на их промышленное предназначение. Сейчас ведутся обширные дискуссии о выделении Industrial Ethernet в отдельный промышленный стандарт, однако на данный момент Industrial Ethernet – это лишь перечень технических рекомендации по организации сетей в производственных условиях, и является, строго говоря, неформализованным дополнением к спецификации физического уровня стандарта Ethernet.

    Есть и другая точка зрения на то, что такое Industrial Ethernet. Дело в том, что в последнее время разработано множество коммуникационных протоколов, базирующихся на стандарте Ethernet и оптимизированных для передачи критичных ко времени данных. Такие протоколы условно называют протоколами реального времени, имея в виду, что с их помощью можно организовать обмен данными между распределенными приложениями, которые критичны ко времени выполнения и требуют четкой временной синхронизации. Конечная цель – добиться относительной детерминированности при передаче данных. В качестве примера Industrial Ethernet можно привести:

    1.    Profinet;
    2.    EtherCAT;
    3.    Ethernet Powerlink;
    4.    Ether/IP.

    Эти протоколы в различной степени модифицируют стандартный стек TCP/IP, добавляя в него новые алгоритмы сетевого обмена, диагностические функции, методы самокорректировки и функции синхронизации, оставляя при этом канальный и физический уровни Ethernet неизменными. Это позволяет использовать новые протоколы передачи данных в существующих сетях Ethernet с использованием стандартного коммуникационного оборудования.

    Теперь рассмотрим конкретные конфигурации сетей операторского уровня.
    На рисунке 2 показана самая простая – базовая конфигурация. Отказ любого коммутатора или обрыв канала связи ( link) ведет к нарушению целостности всей системы. Единичная точка отказа изображена на рисунке красным крестиком.

    4917
    Рис. 2. Нерезервированная конфигурация сети верхнего уровня

    Такая простая конфигурация подходит лишь для систем управления, внедряемых на некритичных участках производства (водоподготовка для каких-нибудь водяных контуров или, например, приемка молока на молочном заводе). Для более ответственных технологических участков такое решение явно неудовлетворительно.

    На рисунке 3 показана отказоустойчивая конфигурация с полным резервированием. Каждый канал связи и сетевой компонент резервируется. Обратите внимание, сколько отказов переносит система прежде, чем теряется коммуникация с одной рабочей станцией оператора. Но даже это не выводит систему из строя, так как остается в действии вторая, страхующая рабочая станция.

    4918
    Рис. 3. Полностью резервированная конфигурация сети верхнего уровня

    Резервирование неизбежно ведет к возникновению петлевидных участков сети – замкнутых маршрутов. Стандарт Ethernet, строго говоря, не допускает петлевидных топологий, так как это может привести к зацикливанию пакетов особенно при широковещательной рассылке. Но и из этой ситуации есть выход. Современные коммутаторы, как правило, поддерживают дополнительный прокол Spanning Tree Protocol (STP, IEEE 802.1d), который позволяет создавать петлевидные маршруты в сетях Ethernet. Постоянно анализируя конфигурацию сети, STP автоматически выстраивает древовидную топологию, переводя избыточные коммуникационные линии в резерв. В случае нарушения целостности построенной таким образом сети (обрыв связи, например), STP в считанные секунды включает в работу необходимые резервные линии, восстанавливая древовидную структуры сети. Примечательно то, что этот протокол не требует первичной настройки и работает автоматически. Есть и более мощная разновидность данного протокола Rapid Spanning Tree Protocol (RSTP, IEEE 802.1w), позволяющая снизить время перестройки сети вплоть до нескольких миллисекунд. Протоколы STP и RSTP позволяют создавать произвольное количество избыточных линий связи и являются обязательным функционалом для промышленных коммутаторов, применяемых в резервированных сетях.

    На рисунке 4 изображена резервированная конфигурация сети верхнего уровня, содержащая оптоволоконное кольцо для организации связи между контроллерами и серверами. Иногда это кольцо дублируется, что придает системе дополнительную отказоустойчивость.

    4919
    Рис. 4. Резервированная конфигурация сети на основе оптоволоконного кольца

    Мы рассмотрели наиболее типичные схемы построения сетей, применяемых в промышленности. Вместе с тем следует заметить, что универсальных конфигураций сетей попросту не существует: в каждом конкретном случае проектировщик вырабатывает подходящее техническое решение исходя из поставленной задачи и условий применения.

    [ http://kazanets.narod.ru/NT_PART2.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > промышленная сеть верхнего уровня

  • 98 протокол Modbus RTU

    1. Modbus RTU protocol

     

    протокол Modbus RTU
    -
    [Интент]

    3.5.1. Протокол MODBUS

    Протокол Modbus был предложен в 1979 году компанией Modicon. Он должен был служить протоколом реализации внутренних коммуникаций «точка-точка» между ПЛК Modicon и панелью программирования, предназначенной для ввода программ в этот ПЛК. Протокол Modbus построен по принципу открытой системы.

    Область применения этого протокола не ограничивается только промышленной автоматизацией, Modbus применяется во многих других областях, включая системы автоматизации зданий.

    Протокол Modbus предназначен для использования в сетевых структурах нескольких разновидностей, в том числе в разработанной компанией Modicon одноранговой сети Modbus Plus.

    Modbus представляет собой протокол, построенный по принципу master-slave (ведущий-ведомый). Modbus допускает наличие в структуре только одного ведущего устройства и от 1 до 247 ведомых. В качестве ведомого устройства обычно выступает ПЛК. Роль ведущего устройства обычно играет либо панель программирования, либо главный компьютер.

    Идеология протокола такова, что ведущему устройству адрес не присваивается, а ведомые пронумерованы от 1 до 247.

    Адрес «0» зарезервирован в качестве адреса широковещательной передачи сообщений, предназначенных всем ведомым устройствам. Такое сообщение получают все ведомые устройства, но ответ на него не предусмотрен.

    Сообщения-команды, исходящие от ведущего устройства, именуются запросами, а ответные сообщения, присылаемые ведомым устройством, ответами. Упрощенная структура формата сообщения, как запроса, так и ответа, показана ниже:

    Адрес устройства Код функции Данные Контрольная сумма

    Ведущее устройство не имеет адреса вообще, поэтому в поле адреса всегда указывается номер ведомого устройства. Если это запрос, то он направляется ведомому устройству с указанным адресом. Если сообщение является ответом, то оно поступает от ведомого устройства с проставленным в этом поле его адресом. Сообщение-запрос всегда содержит тот или иной код функции, например, код 03 – это функция «Чтение регистров хранения».

    В последнем поле каждого сообщения помещается код ошибки, формируемый устройством-отправителем, так что устройство-получатель может проверить целостность пришедшего сообщения.

    Протокол Modbus рассчитан на два режима последовательной передачи данных. Один именуется ASCII (American Standard Code for Information Interchange), а второй – режимом RTU (Remote Terminal Unit). Термин RTU ведет происхождение от SCADA-систем (Supervisor Control and Data Acquisition), в которых ведущее устройство, именуемое CTU (Central Terminal Unit), обменивается информацией с несколькими удаленными устройствами (RTU), находящимися от него на определенных расстояниях.

    Для каждого режима определена структура кадров сообщений и их синхронизация. В процессе передачи по каналам последовательной связи оба режима предусматривают асинхронную передачу, при которой имеется заранее определенная структура кадра и символы пересылаются последовательно – по одному в каждый момент.

    В табл. 3.11 и 3.12 показана отправка символа при использовании асинхронной последовательной передачи данных для обоих режимов с битом четности или без него.

    Таблица 3.11. Структура кадра для 7-битового режима ASCII
    Стартовый бит Бит четности Стоповый бит
    Стартовый бит Стоповый бит Стоповый бит

    Таблица 3.12. Структура кадра для 8-битового режима RTU
    Стартовый бит Бит четности Стоповый бит
    Стартовый бит Стоповый бит Стоповый бит

    Каждый символ передается как последовательность битов, причем время, затрачиваемое на передачу одного бита, обратно пропорционально скорости передачи данных. Например, при скорости 9600 бод время передачи 1 бита равно 104,1 мкс. Когда информация не передается, линии связи находится в маркерном (marking) состоянии. Противоположное ему состояние именуется заполненным (spacing). Когда линия переходит в заполненное состояние для побитовой передачи данных, каждому символу предшествует стартовый бит, а в конце идет один стоповый бит или больше, после этого линия возвращается в маркерное состояние.

    В промежутке между стартовым и стоповым битами осуществляется передача 7, в режиме ASCII, или 8, в режиме RTU, битов, составляющих символ, причем первым посылается младший бит (LSB). После символа идет либо бит четности, либо еще один стоповый бит. При этом пользователь имеет возможность выбирать один из трех вариантов: контроль на четность, или на нечетность, либо отсутствие контроля. В режиме ASCII передача одного символа требует передачи 10 битов, а в режиме RTU – 11. При асинхронной связи символы могут пересылаться либо вплотную, либо с временным интервалом между ними. Последовательности символов, образующих сообщения, имеют различные структуры в зависимости от режима – ASCII или RTU.

    [ Источник]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > протокол Modbus RTU

  • 99 хеш

    1. hash

     

    хеш
    хеш-значение
    выходное значение хеш-функции
    результат применения хеш-функции к данным

    Другой смысл термина - случайные данные; ненужная информация; "мусор"
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > хеш

  • 100 программируемый логический контроллер

    1. automate programmable à mémoire

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Русско-французский словарь нормативно-технической терминологии > программируемый логический контроллер

См. также в других словарях:

  • функции уровня присоединения в системе автоматизации подстанции — Функции системы управления подстанцией, которые используют данные одного присоединения и которые выполняются на основном оборудовании этого присоединения, связываясь через логический интерфейс 3 на уровне присоединения и через логические… …   Справочник технического переводчика

  • функции ОАМ на работающей сети — Действия по эксплуатации и техническому обслуживанию (ОАМ), выполняемые без перерыва передачи трафика, в предположении, что данные трафика остаются прозрачными для действий ОАМ. [http://www.iks media.ru/glossary/index.html?glossid=2400324]… …   Справочник технического переводчика

  • данные — 3.4 данные (data): Совокупность значений, присвоенных для основных мер измерений, производных мер измерений и (или) показателей. [ИСО/МЭК 15939:2007] Источник …   Словарь-справочник терминов нормативно-технической документации

  • Функции криминалистики —    общие типы решаемых криминалистической наукой задач в аспекте ее социальной функции научного обеспечения борьбы с преступностью. Ф.к. подразделяются на методологическую, объяснительную, синтезирующую и предсказательную.    Методологическая Ф.к …   Криминалистическая энциклопедия

  • ФУНКЦИИ ГТК — определены в п. 5 Положения о Государственном таможенном комитете РФ (утверждено Указом Президента РФ от 25 октября 1994 г. № 2014; действует в ред. Указа Президента РФ от 16 сентября 1999 г. № 1235). ГТК в соответствии с возложенными на него… …   Энциклопедия российского и международного налогообложения

  • ПОДКОРКОВЫЕ ФУНКЦИИ — ПОДКОРКОВЫЕ ФУНКЦИИ. Учение о функциях П. образований, развившееся на базе анат. клинических (по преимуществу) сравнительно анатомических и экспериментально физиологических исследований, насчитывает i.e много лет давности и не может считаться за …   Большая медицинская энциклопедия

  • Административный регламент Федеральной службы по экологическому, технологическому и атомному надзору по исполнению государственной функции по регистрации опасных производственных объектов и ведению государственного реестра опасных производственных объектов — Терминология Административный регламент Федеральной службы по экологическому, технологическому и атомному надзору по исполнению государственной функции по регистрации опасных производственных объектов и ведению государственного реестра опасных… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р МЭК 60880-2010: Атомные электростанции. Системы контроля и управления, важные для безопасности. Программное обеспечение компьютерных систем, выполняющих функции категории А — Терминология ГОСТ Р МЭК 60880 2010: Атомные электростанции. Системы контроля и управления, важные для безопасности. Программное обеспечение компьютерных систем, выполняющих функции категории А оригинал документа: 3.25 N версионное программное… …   Словарь-справочник терминов нормативно-технической документации

  • Криптографические хеш-функции — Хеширование (иногда хэширование, англ. hashing)  преобразование входного массива данных произвольной длины в выходную битовую строку фиксированной длины. Такие преобразования также называются хеш функциями или функциями свёртки, а их результаты… …   Википедия

  • Предел функции — x 1 0.841471 0.1 0.998334 0.01 0.999983 Хотя функция (sin x)/x в нуле не определена, когда x приближается к нулю, значение (sin x)/x становится сколь угодно близко к 1. Другими словами, предел функции (sin x)/x при x, стремящемся к …   Википедия

  • ГОСТ Р 53339-2009: Данные пространственные базовые. Общие требования — Терминология ГОСТ Р 53339 2009: Данные пространственные базовые. Общие требования оригинал документа: 3.1.1 базовый пространственный объект: Пространственный объект, пространственные данные о котором являются основой для удостоверения… …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»