Перевод: со всех языков на английский

с английского на все языки

вызвать+изменения

  • 1 вызвать изменения

    Универсальный русско-английский словарь > вызвать изменения

  • 2 вызвать изменения

    Новый русско-английский словарь > вызвать изменения

  • 3 хотя опасно делать выводы, но некоторые изменения не могут не вызвать удивления

    Универсальный русско-английский словарь > хотя опасно делать выводы, но некоторые изменения не могут не вызвать удивления

  • 4 ионная металлизация

    1. ion plating

     

    ионная металлизация
    Общий термин, применяемый к процессу нанесения тонкого пленочного покрытия, при котором поверхность подложки и/или наносимое покрытие подвергается воздействию потока высокоэнергетических частиц (обычно газовых ионов), достаточному для того, чтобы вызвать изменения в приповерхностной области или свойствах покрытия.
    [ http://www.manual-steel.ru/eng-a.html]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > ионная металлизация

  • 5 симптомообразование

    В узком смысле симптом можно определить как проявление (болезни), отраженное в жалобах пациента, тогда как признак — это внешний индикатор патологии. Различия между двумя понятиями, таким образом, заключаются в противопоставлении субъективного (симптом) и объективного (признак). Если, однако, обратиться к семантике понятия симптом, то это слово толкуется более пространно и включает "...любые (телесные или психические) феномены, обстоятельства, изменения или состояния, возникающие вследствие заболевания, сопровождающие его или повреждения и указывающие на наличие таковых" (Oxford English Dictionary, с. 2111). Очевидно, что такое определение устраняет различия между признаком и симптомом.
    В отличие от черт характера симптомы, как правило, преходящи, чужды Я или даже "дисфоричны". Так, заторможенность — поведение, характеризующееся ограничением определенных областей функций Я, — может быть либо симптомом, либо чертой характера. При этом и заторможенность и соответствующие черты характера могут отвечать более широкому определению симптома. То и другое невозможно четко разграничить, и этот факт отражается в разном использовании термина в клинической практике.
    Психоневротические симптомы обусловлены бессознательными психическими конфликтами, возникающими на основе противоборствующих внутренних сил индивида. Такие силы состоят из вытесненных дериватов (бессознательных фантазий, побуждений, желаний) детских инстинктивных влечений (как сексуальных, так и агрессивных), особенно тех, что наиболее тесно связаны с эдиповой стадией развития. Вторым источником формирования конфликтов является препятствие морального или адаптивного типа, создаваемое психическими структурами (Я, Сверх-Я) на пути дериватов влечений, стремящихся попасть в область сознательного мышления и поведения.
    Однако не все бессознательные конфликты приводят к образованию симптома, поскольку большинство конфликтов может приобретать универсальный и неизбежный для индивида характер. В детстве конфликты влечений не всегда становятся причиной симптомов. Такие конфликты могут, например, вести к появлению стабильных защитных паттернов, играющих важную роль в процессах формирования характера. С другой стороны, они могут быть достаточно удачно разрешены — либо в виде приемлемого непосредственного удовлетворения инстинктивных влечений, либо путем сублимации.
    Если же равновесие между инстинктивными силами и силами вытеснения нарушается — либо при усилении первых, как это наблюдается в пубертате, либо при ослаблении вторых при физических заболеваниях, — вытесненные дериваты влечений начинают угрожать проникновением в область сознания, порождая чувство тревоги или вины. В такой ситуации интенсивность аффективного ответа индивида может выйти за рамки его сигнальной функции, что в конечном итоге приводит к формированию симптома. Развитие подобных симптомов осуществляется по закономерностям компромиссного образования, включающего как частичное "замещение" удовлетворения дериватов влечений и сопровождающих их бессознательных желаний, так и противодействие механизмов вытеснения и адаптации. Таким образом, компромиссное образование является неполной, хорошо замаскированной и нераспознаваемой формой выражения влечений.
    Важным элементом компромиссного комплекса является также само душевное страдание, связанное с наличием невротических симптомов. Страдание удовлетворяет бессознательную потребность Сверх-Я в наказании — потребность, связанную с частичным "симптоматическим" удовлетворением дериватов влечений. В то же время психоневротические симптомы позволяют больному в значительной степени избежать нежелательного чувства вины или тревоги, которое мог бы вызвать полный и незамаскированный прорыв дериватов инстинктивных влечений.
    Формирование психотических симптомов (хотя и сходное с невротическим) основано на конфликтах более ранних уровней развития Я и либидо. Эта группа симптомов отражает такие изменения взаимоотношения больного с другими объектами внешнего мира, которые в итоге приводят к нарушениям чувства реальности.
    Формирование конкретных симптомов и характеризующихся ими нозологических синдромов зависит от факторов конституционального предрасположения и влияний раннего жизненного опыта, что ведет к комплексу вариаций и зависит от природы невротического конфликта, задействующего конкретные инстинктивные силы и защиты, сильных и слабых сторон психического аппарата и его составляющих, включая структуру характера, а также от типа реакций и интенсивности стресса и травм в более позднем возрасте. Конкретную форму психологической болезни принято называть выбором невроза.
    \
    Лит.: [30, 45, 274, 694]

    Словарь психоаналитических терминов и понятий > симптомообразование

  • 6 инцидент

    1. incident

     

    инцидент
    Отказ или повреждение технических устройств, применяемых на опасном производственном объекте, отклонение от режима технологического процесса, нарушение положений Федеральных законов и иных нормативных правовых актов Российской Федерации, а также нормативных технических документов, устанавливающих правила работ на опасном производственном объекте.
    [Федеральный закон от 21. 07.1 997 № 116-ФЗ «О промышленной безопасности опасных производственных объектов»]
    [СТО Газпром РД 2.5-141-2005]

    инцидент
    Отказ машины и (или) оборудования, отклонение от режима технологического процесса, нарушение правил эксплуатации.

    инцидент
    Событие, вызванное человеческим или естественным фактором, которое требует деятельности аварийного персонала для прекращения или минимизации потерь, сохранения жизни, предотвращения повреждений собственности или сохранения естественных ресурсов.
    [ ГОСТ Р 53389-2009]

    инцидент
    Происшествие, которое может оказать умеренное воздействие на проведение Игр и потенциально привести к кризисной ситуации.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    инцидент

    Ситуация, которая может произойти и привести к нарушению деятельности организации, разрушениям, потерям, чрезвычайной ситуации или кризису в бизнесе
    [ ГОСТ Р 53647.1-2009]

    инцидент
    (ITIL Service Operation)
    Незапланированное прерывание или снижение качества ИТ-услуги. Сбой конфигурационной единицы, который еще не повлиял на услугу, также является инцидентом, как, например, сбой одного диска из массива зеркалирования.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    incident
    (ITIL Service Operation)
    An unplanned interruption to an IT service or reduction in the quality of an IT service. Failure of a configuration item that has not yet affected service is also an incident – for example, failure of one disk from a mirror set.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    incident
    Occurrence that may have a moderate impact on the Games and could potentially lead to a crisis.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

    2.7 инцидент (incident): Любое событие, которое не является частью стандартной операции услуги и которое вызывает или может вызвать прерывание или снижение качества предоставления услуги.

    Примечание - Это событие может вызывать обращения со следующими вопросами: «Как сделать, чтобы я...?».

    Источник: ГОСТ Р ИСО/МЭК 20000-1-2010: Информационная технология. Менеджмент услуг. Часть 1. Спецификация оригинал документа

    3.32 инцидент (incident): Любое непредвиденное или нежелательное событие, которое может нарушать деятельность или информационную безопасность [2].

    Примечание - К инцидентам информационной безопасности относятся:

    - утрата услуг, оборудования или устройств;

    - системные сбои или перегрузки;

    - ошибки пользователей;

    - несоблюдение политик или рекомендаций;

    - нарушение физических защитных мер;

    - неконтролируемые изменения систем;

    - сбои программного обеспечения и отказы технических средств;

    - нарушение правил доступа.

    Источник: ГОСТ Р ИСО/ТО 13569-2007: Финансовые услуги. Рекомендации по информационной безопасности

    3.32 инцидент (incident): Любое непредвиденное или нежелательное событие, которое может нарушать деятельность или информационную безопасность [2].

    Примечание - К инцидентам информационной безопасности относятся:

    - утрата услуг, оборудования или устройств;

    - системные сбои или перегрузки;

    - ошибки пользователей;

    - несоблюдение политик или рекомендаций;

    - нарушение физических защитных мер;

    - неконтролируемые изменения систем;

    - сбои программного обеспечения и отказы технических средств;

    - нарушение правил доступа.

    Источник: ГОСТ Р ИСО ТО 13569-2007: Финансовые услуги. Рекомендации по информационной безопасности

    2.20 инцидент (incident): Ситуация, которая может произойти и привести к нарушению деятельности организации, разрушениям, потерям, чрезвычайной ситуации или кризису в бизнесе.

    Источник: ГОСТ Р 53647.2-2009: Менеджмент непрерывности бизнеса. Часть 2. Требования оригинал документа

    2.18 инцидент (incident): Ситуация, которая может произойти и привести к нарушению деятельности организации, разрушениям, потерям, чрезвычайной ситуации или кризису в бизнесе.

    Источник: ГОСТ Р 53647.1-2009: Менеджмент непрерывности бизнеса. Часть 1. Практическое руководство оригинал документа

    3.12 инцидент (incident): Событие, реализация которого может привести к нарушению/разрушению деятельности организации, потерям, аварии или кризису.

    Источник: ГОСТ Р 53647.4-2011: Менеджмент непрерывности бизнеса. Руководящие указания по обеспечению готовности к инцидентам и непрерывности деятельности оригинал документа

    3.9 инцидент (incident): Событие(я), связанное(ые) с выполнением работы, в ходе или в результате которого(ых) возникают или могут возникнуть травма и иное ухудшение состояния здоровья (см. 3.8) (независимо от их тяжести) или смерть.

    Примечания

    1 Несчастный случай - это инцидент, который привел к травме, ухудшению состояния здоровья или смерти.

    2 Инцидент, который не привел к возникновению травмы, ухудшению состояния здоровья или смерти, может также называться «почти произошедшим инцидентом», «почти случившимся инцидентом», «предпосылкой к инциденту» или «опасным происшествием».

    3 Аварийная ситуация (см. 4.4.7) является частной разновидностью инцидента.

    Источник: ГОСТ Р 54934-2012: Системы менеджмента безопасности труда и охраны здоровья. Требования оригинал документа

    3.9 инцидент (incident): Событие(я), связанное(ые) с выполнением работы, в результате которого(ых) произошло или может произойти ухудшение состояния здоровья (см. 3.8) или травма (независимо от тяжести) или наступает смерть пострадавшего.

    Примечания

    1 Несчастный случай - это инцидент, который привел к травмированию, ухудшению здоровья или смерти.

    2 Инцидент, при котором не возникает травм, заболеваний или смерти, может также называться «опасное происшествие».

    3 Аварийная ситуация (см. 4.4.7) является особым видом инцидента.

    Источник: ГОСТ Р 54337-2011: Системы менеджмента охраны труда в организациях, выпускающих нанопродукцию. Требования оригинал документа

    Русско-английский словарь нормативно-технической терминологии > инцидент

  • 7 мутагенное соединение

    Универсальный русско-английский словарь > мутагенное соединение

  • 8 цитопатогенная доза

    [греч. kytos — сосуд, здесь — клетка; pathos — страдание, болезнь и genes — порождающий, рождающийся; греч. dosis — порция]
    количество вируса, способное вызвать деструктивные изменения инфицированных клеток, культивируемых вне организма.

    Толковый биотехнологический словарь. Русско-английский. > цитопатогенная доза

  • 9 управление (упр.)


    control (ctl)
    -, аварийное — emergency control
    -, автоматическое — automatic control
    -, автономное — independent control
    -, безбустерное — unassisted control, unpowered control
    -, боковое (полетом в горизонтальной плоскости) — lateral control
    -, бустерное — power(ed) control
    -, бустерное (необратимое) (рис. 20) — power-operated control
    при необратимом бустерном управлении поверхность управления отклоняется электрическим или гидравлическим приводом, без приложения физических усилий летчика. — in power-operated control the surface is moved electriсally or hydraulically with pilot's physical effort making no contribution.
    -, бустерное (обратимое) (рис. 20) — power-boost control
    при обратимом бустерном управлении поверхность управнения отклоняется электрическим или гидравлическим приводом и физическим усилием летчика. — in power-boost control, force needed to move surface is provided partly electrically or hydraulically and partly by pilot's physical effort.
    - воздушным движением (увд)air traffic control (atc)
    управление возд. движением направлено на предупреждение возможных столкновений ла между собой и препятствиями в зоне аэродрома, обеспечения регулируемого движения ла в зонах увд. — a service provided for the purpose of: preventing collisions between aircraft, and on the maneuvering area between aircraft and obstructions, and expediting and maintaining an oderly flow of air traffic.
    - выстрелом (катапультного кресла)seat ejection control
    - газом (двигателя)throttle control
    - газом двигателя, раздельное — separate throttle control (for each engine)
    -, гидравлическое — hydraulic control
    - двигателемengine control
    - двигателем (органы управления)engine controls
    - двигателем (система)engine control system
    -, двойное — dual control
    -, директорное (с помощью системы директорного управления) — flight director control
    -, дистанционное — remote control

    any system of control performed from a distance.
    -, дифференциальное — differential control
    - зажатое (о ручке или штурвальной колонке управления самолетом)fixed stick
    - закрылкамиflap control
    - заходом на посадкуapproach control
    -, кнопочное — push-button control
    - конусом воздухозаборникаair intake spike control
    - (комитет) контроля программ техобслуживания (при фаа)(faa) maintenance review board (mrb)
    - креном, ручное — manual bank /aileron/ control
    - курсовоеdirectional control
    - 'механизацией компрессораcompressor control system
    - на переходном режимеcontrol in transition
    - необратимоеirreversible control
    -, ножное — foot /pedal/ control
    - 'носовым колесомnosewheel steering (nose wheel steer)
    - обратимоеreversible control
    - общим шагом (несущего винта)collective pitch control
    управление о.ш. обеспечивоет одинаковое изменение шага всех лопастей несущ. винта независимо от их аэимутального положения. — collective pitch control provides equal alteration of blade pitch angle impossed on all blades independently of their azimuthal position.
    -, освобождение (о ручке или колонке управления самолетом) — free stick
    - от (посредством) автопилотаautopilot control
    - относительно поперечной осиlongitudinal control
    - относительно трех осей координатthree-axis control
    - парашютомparachute steering
    -, педальное — pedal control
    - передней опорой (шасси) — nosewheel steering (nosewheel steer, nlg steer)
    - переключением шин (эл.) — tie bus control
    - переставным стабилизатором, автоматическое (автоматом перестановки стабилизатора апс) — stabilizer /tailplane/ trimming (stab trim)
    - поворотом колес (передней опоры шасси)nosewheel steering (control)
    колеса передней опоры управняются гидравлически для изменения направления движения ла на земле. — the nosewheel steering is hydraulically actuated to provide directional control of the nose wheel(s).
    - поворотом колес передней стойки педалями руля направленияrudder pedal nosewheel steering
    - пограничным слоем (упс)boundary layer control (blc)
    один из способов увеличения подъемной силы крыла, осуществляемый путем отсасывания или сдувания пограничного слоя. — the boundary layer is contrailed by using either a pressure to act as a leading edge slot, of a suction to remove a portion of the boundary layer. the general purpose of blc is to obtain greater control over lift and drag forces.
    - пo директорным (командным) стрелкам (директорных приборов)(flight) control by using display of command bars
    - по крену — roll /bank/ control
    - пo курсуdirectional control
    - полетом (ла)flight control
    - полетом (ла) по углуaircraft attitude control
    -, поперечное — lateral control
    -, поперечное (автопилотом) — autopilot lateral (command) control
    -, последовательное — sequential control

    control by completion of a series of one or more events.
    - пo тангажуpitch control
    - пo углу рысканияyaw control
    -, программное — programed /scheduled/ control
    -, программное (пo времени) — time(d) control
    -, продольное — longitudinal control
    -, продольное автопилотом — autopilot vertical (command) со ntrol
    управление по вертикальной скорости или тангажу. — this control provides either vertical speed command or pitch command.
    -, путевое — directional control
    -, путевое (вертолетом) — helicopter directional control
    путевое управление вертелетом одновинтовой схемы осуществляется изменением шага лопастей хвостового винта, вертолетом соосной схемы - разностью крутящих моментов несущих винтов, вертолетом поперечной схемы - разностью наклонов векторов тяги несущих винтов. — directional control of tingle rotor helicopter is achieved by anti-torque rotor (tail rotor), of coaxial-rotor helicopter is accomplished by differential torque between two rotors, of side-by-side rotor helicopter is obtained by differential tilt of rotor thrusts.
    -, путевое (на земле) — directional control
    выдерживать направление движения при пробеге при помощи тормозов, руля направления, управлением носового колеса и обратной тягой. — maintain directional control with brakes, rudder, nosewheel steering and reverse thrust.
    - расходом топливаfuel management
    - расходом (и перекачкой) топлива из баковfuel management
    - реверсированием шага (возд.) винта — propeller reverse-pitch control
    - реверсом тягиthrust reverser control
    - рулем высотыelevator control
    - рулем направленияrudder control
    -, ручное (ручн) — manual control (man)
    - ручное (автономное) в обход "пересиливанием" автоматики — (manual) override control
    - с (к-л. пульта, панели) — control from

    entry of navigation data are controlled from the control display unit.
    - самолетом (в полете)airplane flight control
    - самолета, электродистанционное (электропроводное) — fly-by-wire control
    - забросами рулейovereontrolling
    -, сдвоенное — dual control
    - силовой установкойpower plant control
    - системой и контроль за ее работой (заголовок)(system) controls and indicators
    -, совмещенное — (autopilot) override control
    автономное действие в обход автоматики. оперативное вмешательство летчика в управление ла, управляемого автопилотом.
    -, совмещенное (от одного органа управления) — joint control
    -, спаренное — dual control
    - с помощью ручки (управления)stick control
    - тангажомpitch control
    - тангажом, ручное — manual pitch /elevator/ control
    - топливной системой (расходом и перекачкой топлива) — fuel (system) control, fuel management
    - тормозамиbrake control
    -, траекторное (с помощью системы траекторного или директорного управл.) — flight director control
    -, тросовое (система) — cable control system
    - триммеромtrim tab control
    -, тугое — stiff control
    перекручивание тросов управления рулем высоты от рулевой машинки может вызвать тугое управление рв в полете. — the kinking of the elevator servo cables could cause stiff elevator control in flight.
    -, электродистанционное (электропроводное) (ла) — fly-by-wire control (system)
    -, федеральное авиационное (сша) — federal aviation agency (faa)
    -, флетнерное — flettner control
    управление аналогичное управлению посредством серворуля. — flettner controls do not materially differ from servo controls.
    - форсажам (дв.) — power augmentation control
    - циклическим шагом (несущего винта)cyclic pitch control
    синусоидальное изменение шага лопастей за один оборот несущего винта. — by cyclic pitch control the blade pitch angle is varied sinusoidally with blade azimuth position.
    -, чувствительное — responsive control
    - шагом (возд. винта) — (propeller) pitch control
    - шассиlanding gear control
    -, штурвальное (режим) — manna? (flight control)
    при работе элеронов или руля направления в режиме штурвального управления, автопилот должен быть выключен. — the autopilot must not be operated while either or both the aileron and rudder is/are in manual.
    - элевонамиeleven control
    -, электрическое — electric control
    -, электропроводное, электрическое (самолетом) — fly-by-wire control
    - элеронамиaileron control
    взятие у. на себя — assumption of control
    органы у. — controls
    органы у. (ла) — flight controls
    органы у. двигателем — engine controls
    передача у. (от одного члена экипажа к другому) — transfer of control (from one to another crew member)
    переход на ручное у. — change-over to manual control
    потеря у. — loss of control
    брать у. на себя — take over /assume/ control
    kbc имеет право в любое время взять управление ла на себя, поставив в известность об этом других членов экипажа. — the captain may take over (or assume) control of the airplane at any time by calling "i have control".
    переходить на ручное (штурвальное) у. — change over to manual control
    пилотировать с помощью автоматического у. — fly automatically, fly under ap control
    пилотировать с помощью штурвального у. — fly manually
    реагировать на у. — respond to control

    Русско-английский сборник авиационно-технических терминов > управление (упр.)

  • 10 автоматическое повторное включение

    1. reclosure
    2. reclosing
    3. reclose
    4. autoreclosure
    5. autoreclosing
    6. automatic recluse
    7. automatic reclosing
    8. auto-reclosing
    9. ARC
    10. AR

     

    автоматическое повторное включение
    АПВ

    Коммутационный цикл, при котором выключатель вслед за его отключением автоматически включается через установленный промежуток времени (О - tбт - В).
    [ ГОСТ Р 52565-2006]

    автоматическое повторное включение
    АПВ

    Автоматическое включение аварийно отключившегося элемента электрической сети
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    (автоматическое) повторное включение
    АПВ


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    EN

    automatic reclosing
    automatic reclosing of a circuit-breaker associated with a faulted section of a network after an interval of time which permits that section to recover from a transient fault
    [IEC 61936-1, ed. 1.0 (2002-10)]
    [IEV 604-02-32]


    auto-reclosing
    the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
    [IEC 62271-100, ed. 2.0 (2008-04)]
    auto-reclosing (of a mechanical switching device)
    the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
    [IEV number 441-16-10]

    FR

    réenclenchement automatique
    refermeture du disjoncteur associé à une fraction de réseau affectée d'un défaut, par un dispositif automatique après un intervalle de temps permettant la disparition d'un défaut fugitif
    [IEC 61936-1, ed. 1.0 (2002-10)]
    [IEV 604-02-32]


    refermeture automatique
    séquence de manoeuvres par laquelle, à la suite d’une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
    [IEC 62271-100, ed. 2.0 (2008-04)]
    refermeture automatique (d'un appareil mécanique de connexion)
    séquence de manoeuvres par laquelle, à la suite d'une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
    [IEV number 441-16-10]

     
    Автоматическое повторное включение (АПВ), быстрое автоматическое обратное включение в работу высоковольтных линий электропередачи и электрооборудования высокого напряжения после их автоматического отключения; одно из наиболее эффективных средств противоаварийной автоматики. Повышает надёжность электроснабжения потребителей и восстанавливает нормальный режим работы электрической системы. Во многих случаях после быстрого отключения участка электрической системы, на котором возникло короткое замыкание в результате кратковременного нарушения изоляции или пробоя воздушного промежутка, при последующей подаче напряжения повторное короткое замыкание не возникает.   АПВ выполняется с помощью автоматических устройств, воздействующих на высоковольтные выключатели после их аварийного автоматического отключения от релейной защиты. Многие из этих автоматических устройств обеспечивают АПВ при самопроизвольном отключении выключателей, например при сильных сотрясениях почвы во время близких взрывов, землетрясениях и т. п. Эффективность АПВ тем выше, чем быстрее следует оно за аварийным отключением, т. е. чем меньше время перерыва питания потребителей. Это время зависит от длительности цикла АПВ. В электрических системах применяют однократное АПВ — с одним циклом, двукратное — при неуспешном первом цикле, и трёхкратное — с тремя последовательными циклами. Цикл АПВ — время от момента подачи сигнала на отключение до замыкания цепи главными контактами выключателя — состоит из времени отключения и включения выключателя и времени срабатывания устройства АПВ. Длительность бестоковой паузы, когда потребитель не получает электроэнергию, выбирается такой, чтобы успело произойти восстановление изоляции (деионизация среды) в месте короткого замыкания, привод выключателя после отключения был бы готов к повторному включению, а выключатель к моменту замыкания его главных контактов восстановил способность к отключению поврежденной цепи в случае неуспешного АПВ. Время деионизации зависит от среды, климатических условий и других факторов. Время восстановления отключающей способности выключателя определяется его конструкцией и количеством циклов АПВ., предшествовавших данному. Обычно длительность 1-го цикла не превышает 0,5—1,5 сек, 2-го — от 10 до 15 сек, 3-го — от 60 до 120 сек.

    Наиболее распространено однократное АПВ, обеспечивающее на воздушных линиях высокого напряжения (110 кв и выше) до 86 %, а на кабельных линиях (3—10 кв) — до 55 % успешных включений. Двукратное АПВ обеспечивает во втором цикле до 15 % успешных включений. Третий цикл увеличивает число успешных включений всего на 3—5 %. На линиях электропередачи высокого напряжения (от 110 до 500 кВ) применяется однофазовое АПВ; при этом выключатели должны иметь отдельные приводы на каждой фазе.

    Применение АПВ экономически выгодно, т. к. стоимость устройств АПВ и их эксплуатации несравнимо меньше ущерба из-за перерыва в подаче электроэнергии.
    [ БСЭ]

     

    НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ АПВ

    Опыт эксплуатации сетей высокого напряжения показал, что если поврежденную линию электропередачи быстро отключить, т. е. снять с нее напряжение, то в большинстве случаев повреждение ликвидируется. При этом электрическая дуга, возникавшая в месте короткого замыкания (КЗ), не успевает вызвать существенных разрушений оборудования, препятствующих обратному включению линии под напряжение.
    Самоустраняющиеся повреждения принято называть неустойчивыми. Такие повреждения возникают в результате грозовых перекрытий изоляции, схлестывания проводов при ветре и сбрасывании гололеда, падения деревьев, задевания проводов движущимися механизмами.
    Данные о повреждаемости воздушных линий электропередачи (ВЛ) за многолетний период эксплуатации показывают, что доля неустойчивых повреждений весьма высока и составляет 50—90 %.
    При ликвидации аварии оперативный персонал производит обычно опробование линии путем включения ее под напряжение, так как отыскание места повреждения на линии электропередачи путем ее обхода требует длительного времени, а многие повреждения носят неустойчивый характер. Эту операцию называют повторным включением.
    Если КЗ самоустранилось, то линия, на которой произошло неустойчивое повреждение, при повторном включении остается в работе. Поэтому повторные включения при неустойчивых повреждениях принято называть успешными.
    На ВЛ успешность повторного включения сильно зависит от номинального напряжения линий. На линиях ПО кВ и выше успешность повторного включения значительно выше, чем на ВЛ 6—35 кВ. Высокий процент успешных повторных включений в сетях высокого и сверхвысокого напряжения объясняется быстродействием релейной защиты (как правило, не более 0,1-0,15 с), большим сечением проводов и расстояний между ними, высокой механической прочностью опор. [Овчинников В. В., Автоматическое повторное включение. — М.:Энергоатомиздат, 1986.— 96 с: ил. — (Б-ка электромонтера; Вып. 587). Энергоатомиздат, 1986]

    АВТОМАТИЧЕСКОЕ ПОВТОРНОЕ ВКЛЮЧЕНИЕ (АПВ)

    3.3.2. Устройства АПВ должны предусматриваться для быстрого восстановления питания потребителей или межсистемных и внутрисистемных связей путем автоматического включения выключателей, отключенных устройствами релейной защиты.

    Должно предусматриваться автоматическое повторное включение:

    1) воздушных и смешанных (кабельно-воздушных) линий всех типов напряжением выше 1 кВ. Отказ от применения АПВ должен быть в каждом отдельном случае обоснован. На кабельных линиях 35 кВ и ниже АПВ рекомендуется применять в случаях, когда оно может быть эффективным в связи со значительной вероятностью повреждений с образованием открытой дуги (например, наличие нескольких промежуточных сборок, питание по одной линии нескольких подстанций), а также с целью исправления неселективного действия защиты. Вопрос о применении АПВ на кабельных линиях 110 кВ и выше должен решаться при проектировании в каждом отдельном случае с учетом конкретных условий;

    2) шин электростанций и подстанций (см. 3.3.24 и 3.3.25);

    3) трансформаторов (см. 3.3.26);

    4) ответственных электродвигателей, отключаемых для обеспечения самозапуска других электродвигателей (см. 3.3.38).

    Для осуществления АПВ по п. 1-3 должны также предусматриваться устройства АПВ на обходных, шиносоединительных и секционных выключателях.

    Допускается в целях экономии аппаратуры выполнение устройства группового АПВ на линиях, в первую очередь кабельных, и других присоединениях 6-10 кВ. При этом следует учитывать недостатки устройства группового АПВ, например возможность отказа в случае, если после отключения выключателя одного из присоединений отключение выключателя другого присоединения происходит до возврата устройства АПВ в исходное положение.

    3.3.3. Устройства АПВ должны быть выполнены так, чтобы они не действовали при:

    1) отключении выключателя персоналом дистанционно или при помощи телеуправления;

    2) автоматическом отключении от релейной защиты непосредственно после включения персоналом дистанционно или при помощи телеуправления;

    3) отключении выключателя защитой от внутренних повреждений трансформаторов и вращающихся машин, устройствами противоаварийной автоматики, а также в других случаях отключений выключателя, когда действие АПВ недопустимо. АПВ после действия АЧР (ЧАПВ) должно выполняться в соответствии с 3.3.81.

    Устройства АПВ должны быть выполнены так, чтобы была исключена возможностью многократного включения на КЗ при любой неисправности в схеме устройства.

    Устройства АПВ должны выполняться с автоматическим возвратом.

    3.3.4. При применении АПВ должно, как правило, предусматриваться ускорение действия релейной защиты на случай неуспешного АПВ. Ускорение действия релейной защиты после неуспешного АПВ выполняется с помощью устройства ускорения после включения выключателя, которое, как правило, должно использоваться и при включении выключателя по другим причинам (от ключа управления, телеуправления или устройства АВР). При ускорении защиты после включения выключателя должны быть приняты меры против возможного отключения выключателя защитой под действием толчка тока при включении из-за неодновременного включения фаз выключателя.

    Не следует ускорять защиты после включения выключателя, когда линия уже включена под напряжение другим своим выключателем (т. е. при наличии симметричного напряжения на линии).

    Допускается не ускорять после АПВ действие защит линий 35 кВ и ниже, выполненных на переменном оперативном токе, если для этого требуется значительное усложнение защит и время их действия при металлическом КЗ вблизи места установки не превосходит 1,5 с.

    3.3.5. Устройства трехфазного АПВ (ТАПВ) должны осуществляться преимущественно с пуском при несоответствии между ранее поданной оперативной командой и отключенным положением выключателя; допускается также пуск устройства АПВ от защиты.

    3.3.6. Могут применяться, как правило, устройства ТАПВ однократного или двукратного действия (последнее - если это допустимо по условиям работы выключателя). Устройство ТАПВ двукратного действия рекомендуется принимать для воздушных линий, в особенности для одиночных с односторонним питанием. В сетях 35 кВ и ниже устройства ТАПВ двукратного действия рекомендуется применять в первую очередь для линий, не имеющих резервирования по сети.

    В сетях с изолированной или компенсированной нейтралью, как правило, должна применяться блокировка второго цикла АПВ в случае замыкания на землю после АПВ первого цикла (например, по наличию напряжений нулевой последовательности). Выдержка времени ТАПВ во втором цикле должна быть не менее 15-20 с.

    3.3.7. Для ускорения восстановления нормального режима работы электропередачи выдержка времени устройства ТАПВ (в особенности для первого цикла АПВ двукратного действия на линиях с односторонним питанием) должна приниматься минимально возможной с учетом времени погасания дуги и деионизации среды в месте повреждения, а также с учетом времени готовности выключателя и его привода к повторному включению.

    Выдержка времени устройства ТАПВ на линии с двусторонним питанием должна выбираться также с учетом возможного неодновременного отключения повреждения с обоих концов линии; при этом время действия защит, предназначенных для дальнего резервирования, учитываться не должно. Допускается не учитывать разновременности отключения выключателей по концам линии, когда они отключаются в результате срабатывания высокочастотной защиты.

    С целью повышения эффективности ТАПВ однократного действия допускается увеличивать его выдержку времени (по возможности с учетом работы потребителя).

    3.3.8. На одиночных линиях 110 кВ и выше с односторонним питанием, для которых допустим в случае неуспешного ТАПВ переход на длительную работу двумя фазами, следует предусматривать ТАПВ двукратного действия на питающем конце линии. Перевод линии на работу двумя фазами может производиться персоналом на месте или при помощи телеуправления.

    Для перевода линии после неуспешного АПВ на работу двумя фазами следует предусматривать пофазное управление разъединителями или выключателями на питающем и приемном концах линии.

    При переводе линии на длительную работу двумя фазами следует при необходимости принимать меры к уменьшению помех в работе линий связи из-за неполнофазного режима работы линии. С этой целью допускается ограничение мощности, передаваемой по линии в неполнофазном режиме (если это возможно по условиям работы потребителя).

    В отдельных случаях при наличии специального обоснования допускается также перерыв в работе линии связи на время неполнофазного режима.

    3.3.9. На линиях, отключение которых не приводит к нарушению электрической связи между генерирующими источниками, например на параллельных линиях с односторонним питанием, следует устанавливать устройства ТАПВ без проверки синхронизма.

    3.3.10. На одиночных линиях с двусторонним питанием (при отсутствии шунтирующих связей) должен предусматриваться один из следующих видов трехфазного АПВ (или их комбинаций):

    а) быстродействующее ТАПВ (БАПВ)

    б) несинхронное ТАПВ (НАПВ);

    в) ТАПВ с улавливанием синхронизма (ТАПВ УС).

    Кроме того, может предусматриваться однофазное АПВ (ОАПВ) в сочетании с различными видами ТАПВ, если выключатели оборудованы пофазным управлением и не нарушается устойчивость параллельной работы частей энергосистемы в цикле ОАПВ.

    Выбор видов АПВ производится, исходя из совокупности конкретных условий работы системы и оборудования с учетом указаний 3.3.11-3.3.15.

    3.3.11. Быстродействующее АПВ, или БАПВ (одновременное включение с минимальной выдержкой времени с обоих концов), рекомендуется предусматривать на линиях по 3.3.10 для автоматического повторного включения, как правило, при небольшом расхождении угла между векторами ЭДС соединяемых систем. БАПВ может применяться при наличии выключателей, допускающих БАПВ, если после включения обеспечивается сохранение синхронной параллельной работы систем и максимальный электромагнитный момент синхронных генераторов и компенсаторов меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины.

    Оценка максимального электромагнитного момента должна производиться для предельно возможного расхождения угла за время БАПВ. Соответственно запуск БАПВ должен производиться лишь при срабатывании быстродействующей защиты, зона действия которой охватывает всю линию. БАПВ должно блокироваться при срабатывании резервных защит и блокироваться или задерживаться при работе УРОВ.

    Если для сохранения устойчивости энергосистемы при неуспешном БАПВ требуется большой объем воздействий от противоаварийной автоматики, применение БАПВ не рекомендуется.

    3.3.12. Несинхронное АПВ (НАПВ) может применяться на линиях по 3.3.10 (в основном 110-220 кВ), если:

    а) максимальный электромагнитный момент синхронных генераторов и компенсаторов, возникающий при несинхронном включении, меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины, при этом в качестве практических критериев оценки допустимости НАПВ принимаются расчетные начальные значения периодических составляющих токов статора при угле включения 180°;

    б) максимальный ток через трансформатор (автотрансформатор) при угле включения 180° меньше тока КЗ на его выводах при питании от шин бесконечной мощности;

    в) после АПВ обеспечивается достаточно быстрая ресинхронизация; если в результате несинхронного автоматического повторного включения возможно возникновение длительного асинхронного хода, должны применяться специальные мероприятия для его предотвращения или прекращения.

    При соблюдении этих условий НАПВ допускается применять также в режиме ремонта на параллельных линиях.

    При выполнении НАПВ необходимо принять меры по предотвращению излишнего срабатывания защиты. С этой целью рекомендуется, в частности, осуществлять включение выключателей при НАПВ в определенной последовательности, например выполнением АПВ с одной из сторон линии с контролем наличия напряжения на ней после успешного ТАПВ с противоположной стороны.

    3.3.13. АПВ с улавливанием синхронизма может применяться на линиях по 3.3.10 для включения линии при значительных (примерно до 4%) скольжениях и допустимом угле.

    Возможно также следующее выполнение АПВ. На конце линии, который должен включаться первым, производится ускоренное ТАПВ (с фиксацией срабатывания быстродействующей защиты, зона действия которой охватывает всю линию) без контроля напряжения на линии (УТАПВ БК) или ТАПВ с контролем отсутствия напряжения на линии (ТАПВ ОН), а на другом ее конце - ТАПВ с улавливанием синхронизма. Последнее производится при условии, что включение первого конца было успешным (это может быть определено, например, при помощи контроля наличия напряжения на линии).

    Для улавливания синхронизма могут применяться устройства, построенные по принципу синхронизатора с постоянным углом опережения.

    Устройства АПВ следует выполнять так, чтобы имелась возможность изменять очередность включения выключателей по концам линии.

    При выполнении устройства АПВ УС необходимо стремиться к обеспечению его действия при возможно большей разности частот. Максимальный допустимый угол включения при применении АПВ УС должен приниматься с учетом условий, указанных в 3.3.12. При применении устройства АПВ УС рекомендуется его использование для включения линии персоналом (полуавтоматическая синхронизация).

    3.3.14. На линиях, оборудованных трансформаторами напряжения, для контроля отсутствия напряжения (КОН) и контроля наличия напряжения (КНН) на линии при различных видах ТАПВ рекомендуется использовать органы, реагирующие на линейное (фазное) напряжение и на напряжения обратной и нулевой последовательностей. В некоторых случаях, например на линиях без шунтирующих реакторов, можно не использовать напряжение нулевой последовательности.

    3.3.15. Однофазное автоматическое повторное включение (ОАПВ) может применяться только в сетях с большим током замыкания на землю. ОАПВ без автоматического перевода линии на длительный неполнофазный режим при устойчивом повреждении фазы следует применять:

    а) на одиночных сильно нагруженных межсистемных или внутрисистемных линиях электропередачи;

    б) на сильно нагруженных межсистемных линиях 220 кВ и выше с двумя и более обходными связями при условии, что отключение одной из них может привести к нарушению динамической устойчивости энергосистемы;

    в) на межсистемных и внутрисистемных линиях разных классов напряжения, если трехфазное отключение линии высшего напряжения может привести к недопустимой перегрузке линий низшего напряжения с возможностью нарушения устойчивости энергосистемы;

    г) на линиях, связывающих с системой крупные блочные электростанции без значительной местной нагрузки;

    д) на линиях электропередачи, где осуществление ТАПВ сопряжено со значительным сбросом нагрузки вследствие понижения напряжения.

    Устройство ОАПВ должно выполняться так, чтобы при выводе его из работы или исчезновении питания автоматически осуществлялся перевод действия защит линии на отключение трех фаз помимо устройства.

    Выбор поврежденных фаз при КЗ на землю должен осуществляться при помощи избирательных органов, которые могут быть также использованы в качестве дополнительной быстродействующей защиты линии в цикле ОАПВ, при ТАПВ, БАПВ и одностороннем включении линии оперативным персоналом.

    Выдержка временем ОАПВ должна отстраиваться от времени погасания дуги и деионизации среды в месте однофазного КЗ в неполнофазном режиме с учетом возможности неодновременного срабатывания защиты по концам линии, а также каскадного действия избирательных органов.

    3.3.16. На линиях по 3.3.15 ОАПВ должно применяться в сочетании с различными видами ТАПВ. При этом должна быть предусмотрена возможность запрета ТАПВ во всех случаях ОАПВ или только при неуспешном ОАПВ. В зависимости от конкретных условий допускается осуществление ТАПВ после неуспешного ОАПВ. В этих случаях предусматривается действие ТАПВ сначала на одном конце линии с контролем отсутствия напряжения на линии и с увеличенной выдержкой времени.

    3.3.17. На одиночных линиях с двусторонним питанием, связывающих систему с электростанцией небольшой мощности, могут применяться ТАПВ с автоматической самосинхронизацией (АПВС) гидрогенераторов для гидроэлектростанций и ТАПВ в сочетании с делительными устройствами - для гидро- и теплоэлектростанций.

    3.3.18. На линиях с двусторонним питанием при наличии нескольких обходных связей следует применять:

    1) при наличии двух связей, а также при наличии трех связей, если вероятно одновременное длительное отключение двух из этих связей (например, двухцепной линии):

    несинхронное АПВ (в основном для линий 110-220 кВ и при соблюдении условий, указанных в 3.3.12, но для случая отключения всех связей);

    АПВ с проверкой синхронизма (при невозможности выполнения несинхронного АПВ по причинам, указанным в 3.3.12, но для случая отключения всех связей).

    Для ответственных линий при наличии двух связей, а также при наличии трех связей, две из которых - двухцепная линия, при невозможности применения НАПВ по причинам, указанным в 3.3.12, разрешается применять устройства ОАПВ, БАПВ или АПВ УС (см. 3.3.11, 3.3.13, 3.3.15). При этом устройства ОАПВ и БАПВ следует дополнять устройством АПВ с проверкой синхронизма;

    2) при наличии четырех и более связей, а также при наличии трех связей, если в последнем случае одновременное длительное отключение двух из этих связей маловероятно (например, если все линии одноцепные), - АПВ без проверки синхронизма.

    3.3.19. Устройства АПВ с проверкой синхронизма следует выполнять на одном конце линии с контролем отсутствия напряжения на линии и с контролем наличия синхронизма, на другом конце - только с контролем наличия синхронизма. Схемы устройства АПВ с проверкой синхронизма линии должны выполняться одинаковыми на обоих концах с учетом возможности изменения очередности включения выключателей линии при АПВ.

    Рекомендуется использовать устройство АПВ с проверкой синхронизма для проверки синхронизма соединяемых систем при включении линии персоналом.

    3.3.20. Допускается совместное применение нескольких видов трехфазного АПВ на линии, например БАПВ и ТАПВ с проверкой синхронизма. Допускается также использовать различные виды устройств АПВ на разных концах линии, например УТАПВ БК (см. 3.3.13) на одном конце линии и ТАПВ с контролем наличия напряжения и синхронизма на другом.

    3.3.21. Допускается сочетание ТАПВ с неселективными быстродействующими защитами для исправления неселективного действия последних. В сетях, состоящих из ряда последовательно включенных линий, при применении для них неселективных быстродействующих защит для исправления их действия рекомендуется применять поочередное АПВ; могут также применяться устройства АПВ с ускорением защиты до АПВ или с кратностью действия (не более трех), возрастающей по направлению к источнику питания.

    3.3.22. При применении трехфазного однократного АПВ линий, питающих трансформаторы, со стороны высшего напряжения которых устанавливаются короткозамыкатели и отделители, для отключения отделителя в бестоковую паузу время действия устройства АПВ должно быть отстроено от суммарного времени включения короткозамыкателя и отключения отделителя. При применении трехфазного АПВ двукратного действия (см. 3.3.6) время действия АПВ в первом цикле по указанному условию не должно увеличиваться, если отключение отделителя предусматривается в бестоковую паузу второго цикла АПВ.

    Для линий, на которые вместо выключателей устанавливаются отделители, отключение отделителей в случае неуспешного АПВ в первом цикле должно производиться в бестоковую паузу второго цикла АПВ.

    3.3.23. Если в результате действия АПВ возможно несинхронное включение синхронных компенсаторов или синхронных электродвигателей и если такое включение для них недопустимо, а также для исключения подпитки от этих машин места повреждения следует предусматривать автоматическое отключение этих синхронных машин при исчезновении питания или переводить их в асинхронный режим отключением АГП с последующим автоматическим включением или ресинхронизацией после восстановления напряжения в результате успешного АПВ.

    Для подстанций с синхронными компенсаторами или синхронными электродвигателями должны применяться меры, предотвращающие излишние срабатывания АЧР при действии АПВ.

    3.3.24. АПВ шин электростанций и подстанций при наличии специальной защиты шин и выключателей, допускающих АПВ, должно выполняться по одному из двух вариантов:

    1) автоматическим опробованием (постановка шин под напряжение выключателем от АПВ одного из питающих элементов);

    2) автоматической сборкой схемы; при этом первым от устройства АПВ включается один из питающих элементов (например, линия, трансформатор), при успешном включении этого элемента производится последующее, возможно более полное автоматическое восстановление схемы доаварийного режима путем включения других элементов. АПВ шин по этому варианту рекомендуется применять в первую очередь для подстанций без постоянного дежурства персонала.

    При выполнении АПВ шин должны применяться меры, исключающие несинхронное включение (если оно является недопустимым).

    Должна обеспечиваться достаточная чувствительность защиты шин на случай неуспешного АПВ.

    3.3.25. На двухтрансформаторных понижающих подстанциях при раздельной работе трансформаторов, как правило, должны предусматриваться устройства АПВ шин среднего и низшего напряжений в сочетании с устройствами АВР; при внутренних повреждениях трансформаторов должно действовать АВР, при прочих повреждениях - АПВ (см. 3.3.42).

    Допускается для двухтрансформаторной подстанции, в нормальном режиме которой предусматривается параллельная работа трансформаторов на шинах данного напряжения, устанавливать дополнительно к устройству АПВ устройство АВР, предназначенное для режима, когда один из трансформаторов выведен в резерв.

    3.3.26. Устройствами АПВ должны быть оборудованы все одиночные понижающие трансформаторы мощностью более 1 MB·А на подстанциях энергосистем, имеющие выключатель и максимальную токовую защиту с питающей стороны, когда отключение трансформатора приводит к обесточению электроустановок потребителей. Допускается в отдельных случаях действие АПВ и при отключении трансформатора защитой от внутренних повреждений.

    3.3.27. При неуспешном АПВ включаемого первым выключателем элемента, присоединенного двумя или более выключателями, АПВ остальных выключателей этого элемента, как правило, должно запрещаться.

    3.3.28. При наличии на подстанции или электростанции выключателей с электромагнитным приводом, если от устройства АПВ могут быть одновременно включены два или более выключателей, для обеспечения необходимого уровня напряжения аккумуляторной батареи при включении и для снижения сечения кабелей цепей питания электромагнитов включения следует, как правило, выполнять АПВ так, чтобы одновременное включение нескольких выключателей было исключено (например, применением на присоединениях АПВ с различными выдержками времени).

    Допускается в отдельных случаях (преимущественно при напряжении 110 кВ и большом числе присоединений, оборудованных АПВ) одновременное включение от АПВ двух выключателей.

    3.3.29. Действие устройств АПВ должно фиксироваться указательными реле, встроенными в реле указателями срабатывания, счетчиками числа срабатываний или другими устройствами аналогичного назначения.
    [ ПУЭ]

    Тематики

    Обобщающие термины

    Синонимы

    Сопутствующие термины

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > автоматическое повторное включение

  • 11 человеко-машинный интерфейс

    1. operator-machine communication
    2. MMI
    3. man-machine interface
    4. man-machine communication
    5. human-machine interface
    6. human-computer interface
    7. human interface device
    8. human interface
    9. HMI
    10. computer human interface
    11. CHI

     

    человеко-машинный интерфейс (ЧМИ)
    Технические средства, предназначенные для обеспечения непосредственного взаимодействия между оператором и оборудованием и дающие возможность оператору управлять оборудованием и контролировать его функционирование.
    Примечание
    Такие средства могут включать приводимые в действие вручную органы управления, контрольные устройства, дисплеи.
    [ ГОСТ Р МЭК 60447-2000]

    человекомашинный интерфейс (ЧМИ)
    Технические средства контроля и управления, являющиеся частью оборудования, предназначенные для обеспечения непосредственного взаимодействия между оператором и оборудованием и дающие возможность оператору управлять оборудованием и контролировать его функционирование (ГОСТ Р МЭК 60447).
    Примечание
    Такие средства могут включать приводимые в действие вручную органы управления, контрольные устройства и дисплеи.
    [ ГОСТ Р МЭК 60073-2000]

    человеко-машинный интерфейс
    Средства обеспечения двусторонней связи "оператор - технологическое оборудование" (АСУ ТП). Название класса средств, в который входят подклассы:
    SCADA (Supervisory Control and Data Acquisition) - Операторское управление и сбор данных от технологического оборудования.
    DCS (Distributed Control Systems) - Распределенная система управления технологическим оборудованием.
    [ http://www.morepc.ru/dict/]

    Параллельные тексты EN-RU

    MotorSys™ iPMCC solutions can integrate a dedicated human-machine interface (HMI) or communicate via a personal computer directly on the motor starters.
    [Schneider Electric]

    Интеллектуальный центр распределения электроэнергии и управления электродвигателями MotorSys™ может иметь в своем составе специальный человеко-машинный интерфейс (ЧМИ). В качестве альтернативы используется обмен данным между персональным компьютером и пускателями.
    [Перевод Интент]


    HMI на базе операторских станций

    Самое, пожалуй, главное в системе управления - это организация взаимодействия между человеком и программно-аппаратным комплексом. Обеспечение такого взаимодействия и есть задача человеко-машинного интерфейса (HMI, human machine interface).

    На мой взгляд, в аббревиатуре “АСУ ТП” ключевым является слово “автоматизированная”, что подразумевает непосредственное участие человека в процессе реализации системой определенных задач. Очевидно, что чем лучше организован HMI, тем эффективнее человек сможет решать поставленные задачи.

    Как же организован HMI в современных АСУ ТП?
    Существует, как минимум, два подхода реализации функционала HMI:

    1. На базе специализированных рабочих станций оператора, устанавливаемых в центральной диспетчерской;
    2. На базе панелей локального управления, устанавливаемых непосредственно в цеху по близости с контролируемым технологическим объектам.

    Иногда эти два варианта комбинируют, чтобы достичь наибольшей гибкости управления. В данной статье речь пойдет о первом варианте организации операторского уровня.

    Аппаратно рабочая станция оператора (OS, operator station) представляет собой ни что иное как персональный компьютер. Как правило, станция снабжается несколькими широкоэкранными мониторами, функциональной клавиатурой и необходимыми сетевыми адаптерами для подключения к сетям верхнего уровня (например, на базе Industrial Ethernet). Станция оператора несколько отличается от привычных для нас офисных компьютеров, прежде всего, своим исполнением и эксплуатационными характеристиками (а также ценой 4000 - 10 000 долларов).
    На рисунке 1 изображена рабочая станция оператора системы SIMATIC PCS7 производства Siemens, обладающая следующими техническими характеристиками:

    Процессор: Intel Pentium 4, 3.4 ГГц;
    Память: DDR2 SDRAM до 4 ГБ;
    Материнская плата: ChipSet Intel 945G;
    Жесткий диск: SATA-RAID 1/2 x 120 ГБ;
    Слоты: 4 x PCI, 2 x PCI E x 1, 1 x PCI E x 16;
    Степень защиты: IP 31;
    Температура при эксплуатации: 5 – 45 C;
    Влажность: 5 – 95 % (без образования конденсата);
    Операционная система: Windows XP Professional/2003 Server.

    4876
    Рис. 1. Пример промышленной рабочей станции оператора.

    Системный блок может быть как настольного исполнения ( desktop), так и для монтажа в 19” стойку ( rack-mounted). Чаще применяется второй вариант: системный блок монтируется в запираемую стойку для лучшей защищенности и предотвращения несанкционированного доступа.

    Какое программное обеспечение используется?
    На станции оператора устанавливается программный пакет визуализации технологического процесса (часто называемый SCADA). Большинство пакетов визуализации работают под управлением операционных систем семейства Windows (Windows NT 4.0, Windows 2000/XP, Windows 2003 Server), что, на мой взгляд, является большим минусом.
    Программное обеспечение визуализации призвано выполнять следующие задачи:

    1. Отображение технологической информации в удобной для человека графической форме (как правило, в виде интерактивных мнемосхем) – Process Visualization;
    2. Отображение аварийных сигнализаций технологического процесса – Alarm Visualization;
    3. Архивирование технологических данных (сбор истории процесса) – Historical Archiving;
    4. Предоставление оператору возможности манипулировать (управлять) объектами управления – Operator Control.
    5. Контроль доступа и протоколирование действий оператора – Access Control and Operator’s Actions Archiving.
    6. Автоматизированное составление отчетов за произвольный интервал времени (посменные отчеты, еженедельные, ежемесячные и т.д.) – Automated Reporting.

    Как правило, SCADA состоит из двух частей:

    1. Среды разработки, где инженер рисует и программирует технологические мнемосхемы;
    2. Среды исполнения, необходимой для выполнения сконфигурированных мнемосхем в режиме runtime. Фактически это режим повседневной эксплуатации.

    Существует две схемы подключения операторских станций к системе управления, а точнее уровню управления. В рамках первой схемы каждая операторская станция подключается к контроллерам уровня управления напрямую или с помощью промежуточного коммутатора (см. рисунок 2). Подключенная таким образом операторская станция работает независимо от других станций сети, и поэтому часто называется одиночной (пусть Вас не смущает такое название, на самом деле таких станций в сети может быть несколько).

    4877
    Рис. 2. Схема подключения одиночных операторских станций к уровню управления.

    Есть и другой вариант. Часто операторские станции подключают к серверу или резервированной паре серверов, а серверы в свою очередь подключаются к промышленным контроллерам. Таким образом, сервер, являясь неким буфером, постоянно считывает данные с контроллера и предоставляет их по запросу рабочим станциям. Станции, подключенные по такой схеме, часто называют клиентами (см. рисунок 3).

    4878
    Рис. 3. Клиент-серверная архитектура операторского уровня.

    Как происходит информационный обмен?
    Для сопряжения операторской станции с промышленным контроллером на первой устанавливается специальное ПО, называемое драйвером ввода/вывода. Драйвер ввода/вывода поддерживает совместимый с контроллером коммуникационный протокол и позволяет прикладным программам считывать с контроллера параметры или наоборот записывать в него. Пакет визуализации обращается к драйверу ввода/вывода каждый раз, когда требуется обновление отображаемой информации или запись измененных оператором данных. Для взаимодействия пакета визуализации и драйвера ввода/вывода используется несколько протоколов, наиболее популярные из которых OPC (OLE for Process Control) и NetDDE (Network Dynamic Data Exchange). Обобщенно можно сказать, что OPC и NetDDE – это протоколы информационного обмена между различными приложениями, которые могут выполняться как на одном, так и на разных компьютерах. На рисунках 4 и 5 изображено, как взаимодействуют программные компоненты при различных схемах построения операторского уровня.  
    4879
    Рис. 4. Схема взаимодействия программных модулей при использовании одиночных станций.
     
    4880
    Рис. 5. Схема взаимодействия программных модулей при использовании клиент-серверной архитектуры.
    Как выглядит SCADA?
    Разберем простой пример. На рисунке 6 приведена абстрактная схема технологического процесса, хотя полноценным процессом это назвать трудно.
    4881
    Рис. 6. Пример операторской мнемосхемы.
    На рисунке 6 изображен очень упрощенный вариант операторской мнемосхемы для управления тех. процессом. Как видно, резервуар (емкость) наполняется водой. Задача системы - нагреть эту воду до определенной температуры. Для нагрева воды используется газовая горелка. Интенсивность горения регулируется клапаном подачи газа. Также должен быть насос для закачки воды в резервуар и клапан для спуска воды.

    На мнемосхеме отображаются основные технологические параметры, такие как: температура воды; уровень воды в резервуаре; работа насосов; состояние клапанов и т.д. Эти данные обновляются на экране с заданной частотой. Если какой-либо параметр достигает аварийного значения, соответствующее поле начинает мигать, привлекая внимание оператора.

    Сигналы ввода/вывода и исполнительные механизмы отображаются на мнемосхемах в виде интерактивных графических символов (иконок). Каждому типу сигналов и исполнительных механизмов присваивается свой символ: для дискретного сигнала это может быть переключатель, кнопка или лампочка; для аналогового – ползунок, диаграмма или текстовое поле; для двигателей и насосов – более сложные фейсплейты ( faceplates). Каждый символ, как правило, представляет собой отдельный ActiveX компонент. Вообще технология ActiveX широко используется в SCADA-пакетах, так как позволяет разработчику подгружать дополнительные символы, не входящие в стандартную библиотеку, а также разрабатывать свои собственные графические элементы, используя высокоуровневые языки программирования.

    Допустим, оператор хочет включить насос. Для этого он щелкает по его иконке и вызывает панель управления ( faceplate). На этой панели он может выполнить определенные манипуляции: включить или выключить насос, подтвердить аварийную сигнализацию, перевести его в режим “техобслуживания” и т.д. (см. рисунок 7).  
    4882
    Рис. 7. Пример фейсплейта для управления насосом.
      Оператор также может посмотреть график изменения интересующего его технологического параметра, например, за прошедшую неделю. Для этого ему надо вызвать тренд ( trend) и выбрать соответствующий параметр для отображения. Пример тренда реального времени показан на рисунке 8.
     
    4883
    Рис. 8. Пример отображения двух параметров на тренде реального времени.
    Для более детального обзора сообщений и аварийных сигнализаций оператор может воспользоваться специальной панелью ( alarm panel), пример которой изображен на рисунке 9. Это отсортированный список сигнализаций (alarms), представленный в удобной для восприятия форме. Оператор может подтвердить ту или иную аварийную сигнализацию, применить фильтр или просто ее скрыть.
    4884
    Рис. 9. Панель сообщений и аварийных сигнализаций.
    Говоря о SCADA, инженеры часто оперируют таким важным понятием как “тэг” ( tag). Тэг является по существу некой переменной программы визуализации и может быть использован как для локального хранения данных внутри программы, так и в качестве ссылки на внешний параметр процесса. Тэги могут быть разных типов, начиная от обычных числовых данных и кончая структурой с множеством полей. Например, один визуализируемый параметр ввода/вывода – это тэг, или функциональный блок PID-регулятора, выполняемый внутри контроллера, - это тоже тэг. Ниже представлена сильно упрощенная структура тэга, соответствующего простому PID-регулятору:

    Tag Name = “MyPID”;
    Tag Type = PID;

    Fields (список параметров):

    MyPID.OP
    MyPID.SP
    MyPID.PV
    MyPID.PR
    MyPID.TI
    MyPID.DI
    MyPID.Mode
    MyPID.RemoteSP
    MyPID.Alarms и т.д.

    В комплексной прикладной программе может быть несколько тысяч тэгов. Производители SCADA-пакетов это знают и поэтому применяют политику лицензирования на основе количества используемых тэгов. Каждая купленная лицензия жестко ограничивает суммарное количество тэгов, которые можно использовать в программе. Очевидно, чем больше тегов поддерживает лицензия, тем дороже она стоит; так, например, лицензия на 60 000 тэгов может обойтись в 5000 тыс. долларов или даже дороже. В дополнение к этому многие производители SCADA формируют весьма существенную разницу в цене между “голой” средой исполнения и полноценной средой разработки; естественно, последняя с таким же количеством тэгов будет стоить заметно дороже.

    Сегодня на рынке представлено большое количество различных SCADA-пакетов, наиболее популярные из которых представлены ниже:

    1.    Wonderware Intouch;
    2.    Simatic WinCC;
    3.    Iconics Genesis32;
    4.    Citect;
    5.    Adastra Trace Mode

    Лидирующие позиции занимают Wonderware Intouch (производства Invensys) и Simatic WinCC (разработки Siemens) с суммарным количеством инсталляций более 80 тыс. в мире. Пакет визуализации технологического процесса может поставляться как в составе комплексной системы управления, так и в виде отдельного программного продукта. В последнем случае SCADA комплектуется набором драйверов ввода/вывода для коммуникации с контроллерами различных производителей.   [ http://kazanets.narod.ru/HMI_PART1.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > человеко-машинный интерфейс

  • 12 сложный ландшафт

    1. complex terrain

    3.19 сложный ландшафт (complex terrain): Окружающий ландшафт, который имеет существенные изменения рельефа и препятствия на поверхности земли, которые могут вызвать искажение воздушного потока.

    Источник: ГОСТ Р 54418.12.1-2011: Возобновляемая энергетика. Ветроэнергетика. Установки ветроэнергетические. Часть 12-1. Измерение мощности, вырабатываемой ветроэлектрическими установками оригинал документа

    Русско-английский словарь нормативно-технической терминологии > сложный ландшафт

См. также в других словарях:

  • ТЕХНОЛОГИЧЕСКИЕ ИЗМЕНЕНИЯ — (technological change) Увеличение объема выпуска продукции в результате внедрения автоматизированных и компьютеризированных методов производства. Помимо роста выпуска продукции технологические изменения могут вызвать изменение соотношения… …   Словарь бизнес-терминов

  • СЕРДЦЕ — СЕРДЦЕ. Содержание: I. Сравнительная анатомия........... 162 II. Анатомия и гистология........... 167 III. Сравнительная физиология.......... 183 IV. Физиология................... 188 V. Патофизиология................ 207 VІ. Физиология, пат.… …   Большая медицинская энциклопедия

  • воздействие — 2.9 воздействие (impact): Результат нежелательного инцидента информационной безопасности. Источник …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 9.901.1-89: Единая система защиты от коррозии и старения. Металлы и сплавы. Общие требования к методам испытаний на коррозионное растрескивание — Терминология ГОСТ 9.901.1 89: Единая система защиты от коррозии и старения. Металлы и сплавы. Общие требования к методам испытаний на коррозионное растрескивание оригинал документа: 4.3. Влияние площади образцов Результаты испытаний на КР зависят …   Словарь-справочник терминов нормативно-технической документации

  • СЛЕПОЙ ОПЫТ — СЛЕПОЙ ОПЫТ, контрольное исследование, к рое ставится при биохим. и других анализах для определения величины ошибки, являющейся следствием загрязненности реактивов, неточности приборов и мерительной посуды, влияния t° на реакцию и т. д.… …   Большая медицинская энциклопедия

  • Тикло — Действующее вещество ›› Тиклопидин* (Ticlopidine*) Латинское название Ticlo АТХ: ›› B01AC05 Тиклопидин Фармакологическая группа: Антиагреганты Нозологическая классификация (МКБ 10) ›› G45 Преходящие транзиторные церебральные ишемические приступы… …   Словарь медицинских препаратов

  • Япония — I КАРТА ЯПОНСКОЙ ИМПЕРИИ. Содержание: I. Физический очерк. 1. Состав, пространство, береговая линия. 2. Орография. 3. Гидрография. 4. Климат. 5. Растительность. 6. Фауна. II. Население. 1. Статистика. 2. Антропология. III. Экономический очерк. 1 …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • СПОНДИЛИТ — СПОНДИЛИТ, spondylitis (от греч. spondy los позвонок), буквально воспаление позвоночника. Фактически же под С. обозначаются самые различные заболевания воспалительного и невоспалительного характера. Заболевания межпозвоночных суставов выделяются… …   Большая медицинская энциклопедия

  • Состав — 7. Состав и свойства золы и шлака ТЭС / Справочное пособие. Л.: Энергоатомиздат. 1985. Источник: П 78 2000: Рекомендации по контролю за состоянием грунтовых вод в районе размещения золоотвалов ТЭС 1. Состав и свойства золы и шл …   Словарь-справочник терминов нормативно-технической документации

  • Атмосфера кабины —         космического корабля, искусственная газовая среда в замкнутом объёме герметической кабины космического летательного аппарата. Для человека оптимальна А. к., полностью соответствующая по физическим свойствам и химическому составу земной… …   Большая советская энциклопедия

  • Япония* — Содержание: I. Физический очерк. 1. Состав, пространство, береговая линия. 2. Орография. 3. Гидрография. 4. Климат. 5. Растительность. 6. Фауна. II. Население. 1. Статистика. 2. Антропология. III. Экономический очерк. 1. Земледелие. 2.… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»