-
81 page
1. n страница2. n эпизод3. n полигр. полосаpage display screen — экран дисплея, отображающий полосу
4. n элк. физический блок памяти ЭВМ, соответствующий странице5. v нумеровать страницыbroadside page — страница, ширина которой превышает длину
6. n паж7. n мальчик-слуга8. n мелкий служащий9. n амер. служитель в законодательном собрании10. n мальчик, несущий шлейф невесты11. n тех. рельсовый путь для откатки кирпичей в сушилку12. v прислуживать13. v сопровождать в качестве пажа14. v амер. посылать мальчика-слугу за постояльцем, гостем15. v амер. вызывать, громко выкрикивая или объявляя фамилию -
82 flight
1. полет; рейс/ летный; полетный; рейсовый2. отряд; звено <ЛА>см. тж. flightflights per month1-g flight4-D flightaccelerated flightacceptance flightaccident flightaccumulated flightsaerobatic flightafterburning flightagile flightair taxi flightair-breathing flightair-refueled flightairplane-mode flightall-attitude flightall-inertial flightaltimeter flightaltimeter-controlled flightanimal flightarea familiarization flightautomatic flightavionics evaluation flightaxial flightbalanced flightbest-range flightboomless flightbuffet flightcertificate of airworthiness flightcheck flightclimbing flightcombat flightconnecting flightconstant airspeed-constant lift coefficient flightconstant altitude-constant airspeed flightconstant altitude-constant lift coefficient flightconstant altitude flightcontrollable flightcontrolled flight into terraincoordinated flightcross-controlled flightcruise-climb flightcurvilinear flightdata-recording flightdelivery flightdeparted flightdeparture-resistant flightdescending flightdisturbed flightdomestic flighteast-west flightedgewise flightenvelope clearance flightenvelope expansion flightequilibrium flightevaluation flightexercise flightexperimental flightferry flightfixed-rotor flightfixed-wing flightflawless flightforward flightfree flightfree-hovering flightfull-wingborne flightfull-scale flightfull-throttle flightfunctional flightgliding flightground-air-ground flighthard altitude-hard airspeed flighthigh-angle flighthigh-angle-of-attack flighthigh-AOA flighthigh-g flighthigh-low-high flighthigh-speed flighthigh-subsonic flighthomeward flighthorizontal flighthovering flighthub flightHUD flighthuman-powered flightIFR flightinertial flightinertially guided flightinstrument flight rules flightinverted flightjet-borne flightlarge-angle maneuvering flightlevel flightlong-endurance flightlong-haul flightlong-range flightlow-level flightmaiden flightmaneuvering flightmanned flightmanual flightmanually controlled flightmaximum continuous flightmaximum turning rate flightmaximum endurance flightmean flights between maintenance actionsmicroburst wind-shear sampling flightmidcourse flightminimum time flightminimum turning radius flightmishap flightmoderate supersonic flightmost-economical flightnap-of-the-earth flightnearly-horizontal flightno-radar flightnonlevel flightnonmaneuver flightnonmaneuvering flightnonscheduled flightnonturning flighton-line flightone-g flightone-stop flightOOC flightopen-loop flightoperational flightorientation flightout-of-control flightoutward flightover-ocean flightparabolic flightpost-maintenance check flightpost-stall flightpower-off flightpre-delivery flightquasi-steady-state flightradar flightrearward flightrectilinear flightrevenue flightrocket-borne flightrotary-wing flightrotational flightroute-proving flightsemiballistic flightshakedown flightshort-range flightshuttle flightsideways flightsightseeing flightsimulated terrain following flightslow flightsmooth flightspin flightspinning flightstable flightstall flightstalled flightsteady flightsteady-state flightstepped-altitude flightstopped rotor flightstore certification flightstraight flightstraight-line flightsuper-stalled flightsupernormal flightsupersonic flightsustained flightsymmetric flighttail-rotorless flightterminal maneuvering area flightterrain flightterrain-avoidance flightterrain-following flighttethered flightTF/TA flightto depart from controlled flighttraining flighttransition flighttrimmed flightturning flighttwo-dimensional flightultrahigh-altitude flightup-and-away flightunaccelerated flightuncoordinated flightunpowered flightunyawed flightvertebrate flightvertical flightvertical-plane flightVFR flightVIP flightvisual flightvisual flight rules flightvoiсe-controlled flightVSTOL flightwater-bombing flightwest bound flightwingborne flightwings-level flightworld-wide flightyawed flight -
83 guidance
1. наведение; управление2. система наведения; система управления3. навигация4-D guidanceacceleration guidancearrival guidanceazimuth guidanceBVR guidancecenterline guidancedeparture guidancedescent guidancefeedback guidanceflight director guidancefour-dimensional guidancefuel conservative guidanceglideslope guidanceground-reference guidanceinertial guidancelanding guidancelateral guidancemidcourse guidancemissed-approach guidancenavigational guidancenose-mounted guidancePFD guidancepilot guidancepitch guidancepitch attitude guidancepronav guidanceproportional navigation guidancerecovery guidancesingular perturbation guidanceterminal guidanceterminal area guidancetime-controlled descent guidancetrajectory guidancevisual guidancewind shear escape guidancewindshear guidance -
84 control
управление; регулирование; контроль; орган [рычаг] управления; руль; pl. система управления или регулирования; управлять; регулироватьback seat flight control — управление ЛА из задней кабины [с места заднего лётчика]; pl. дублирующие органы управления в задней кабине
be out of control — терять управление [управляемость]; выходить из-под управления [контроля]
continuously variable thrust control — плавное [бесступенчатое] регулирование тяги
control c.g. control — регулирование центровки (ЛА)
control of missile attitude — стабилизация ракеты; управление пространственным положением ракеты
control of the air — превосходство или господство в воздухе; превосходство в области авиации [в авиационной технике]; контроль воздушного пространства
control of the yoke — разг. управление штурвалом
control of thrust orientation — управление ориентированием [направлением вектора] тяги
flight deck lighting controls — органы управления [ручки регулировки] освещением кабины экипажа
fling the controls over — перебрасывать органы управления (в противоположную сторону),
flow control with altitude compensation — регулятор расхода [подачи] с высотным корректором
fuel dump valve control — кран [рычаг крана] аварийного слива топлива
gas jet attitude control — управление пространственным положением с помощью системы газоструйных рулей
go out of control — терять управление, выходить из-под управления [контроля]
ground rollout rudder steering control — управление пробегом [на пробеге] с помощью руля направления
interconnected fuel and propeller controls — объединённая система регулирования подачи топлива и шага винта
jet tab thrust vector control — управление вектором тяги с помощью газовых рулей; дефлекторное управление вектором тяги
jet(-deflection, -direction) control — реактивное [струйное] управление; управление изменением направления тяги; струйный руль
manual mixture shut-off control — рычаг отсечки подачи горючей смеси, рычаг останова [выключения] двигателя
maximum boundary layer control — управление пограничным слоем при наибольшей эффективности [производительности, интенсивности работы] системы
recover the control — восстанавливать управление [управляемость]
respond to the controls — реагировать [отвечать] на отклонение рулей [органов управления]
space shuttle orbiter control — управление орбитальной ступенью челночного воздушно-космического аппарата
throttle and collective pitch control — верт. рычаг «шаг — газ»
-
85 navigation
навигация, самолётовождение; ркт. наведениеvertical (plane, profile) navigation — навигация в вертикальной плоскости (с учётом изменения высоты полёта)
-
86 ATIS
- свидетельство
- альянс по решениям в отрасли электросвязи
- Альянс для решения технических проблем в области связи
- альянс для принятия решений в области электросвязи
Альянс для решения технических проблем в области связи
Cм. www.atis.org.
[Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]Тематики
- электросвязь, основные понятия
EN
альянс для принятия решений в области электросвязи
(МСЭ-Т M.3100)
[ http://www.iks-media.ru/glossary/index.html?glossid=2400324]Тематики
- электросвязь, основные понятия
EN
альянс по решениям в отрасли электросвязи
(Отчет Всемирной Ассамблеи по стандартизации электросвязи 2008 г. (ВАСЭ-08))
[ http://www.iks-media.ru/glossary/index.html?glossid=2400324]Тематики
- электросвязь, основные понятия
EN
2.1.35 свидетельство: Документ, официально подтверждающий какой-либо факт, имеющий юридическое значение, либо право лица (об окончании учебного заведения).
2.2. В настоящем руководстве применены следующие сокращения на русском языке:
АМИС
Автоматическая метеорологическая измерительная система
АМРК
Автоматизированный метеорологический радиолокационный комплекс
АМСГ
Авиационная метеорологическая станция (гражданская)
АМЦ
Авиационный метеорологический центр
БАМД
Банк авиационных метеорологических данных
ВМО
Всемирная метеорологическая организация
ВНГО
Высота нижней границы облаков
ВПП
Взлетно-посадочная полоса
ВС
Воздушное судно
ВСЗП
Всемирная система зональных прогнозов
ВЦЗП
Всемирный центр зональных прогнозов
ГАМЦ
Главный авиационный метеорологический центр
ГИС
Географическая информационная система
ГОУ ИПК
Государственное образовательное учреждение «Институт повышения квалификации»
ГСТ
Глобальная система телесвязи
ГУ ГРМЦ
Государственное учреждение «Главный радиометеорологический центр»
ДОТ
Дистанционные образовательные технологии
ИТ
Информационные технологии
КПК
Курсы повышения квалификации
КРАМС
Комплексная радиотехническая аэродромная метеорологическая станция
МРЛ
Метеорологический радиолокатор
НГЭА
Нормы годности к эксплуатации гражданских аэродромов
НОО
Непрерывное образование и обучение
НПР
Непрерывное профессиональное развитие
ОВД
Обслуживание воздушного движения
ОГ
Оперативная группа
ОМС
Орган метеорологического слежения
УВД
Управление воздушным движением
2.3. В настоящем руководстве применены следующие сокращения на английском языке:
AFTN
Aeronautical Fixed Telecommunication Network
Авиационная фиксированная сеть электросвязи
AIRMET
AIRman's METeorological information
Выпускаемая органом метеорологического слежения информация о фактическом или ожидаемом возникновении определенных явлений погоды по маршруту полета, которые могут повлиять на безопасность полетов воздушных судов на малых высотах
ATIS
Automatic Terminal Information Service
Автоматическая аэродромная служба информации
BUFR
Binary Universal Form for the Representation of meteorological date
Двоичная универсальная форма для представления метеорологических данных
GIS
Geographic Information Systems
Географическая информационная система
GAMET
General Aviation METeorological forecast
Зональный прогноз, составляемый открытым текстом с сокращениями для полетов на малых высотах применительно к району полетной информации или его субрайону (подрайону) метеорологическим органом и передаваемый метеорологическим органам соседних районов полетной информации
GRIB
GRIdded Binary
Бинарный код (прогностические данные метеорологических элементов в узлах регулярной сетки)
GTS
Global Telecommunication System
Глобальная система телесвязи (в рамках ВМО)
IAVW
International Airways Volcano Watch
Служба слежения за вулканической деятельностью на международных авиатрассах
ICAO
International Civil Aviation Organization
Международная организация гражданской авиации
ISCS
International Satellite Communications System
Международная спутниковая система телесвязи (обеспечивается США)
METAR
METeorological Aerodrome Report
Метеорологическая сводка по аэродрому (код METAR)
MOR
Meteorological Optical Range
Метеорологическая оптическая дальность
OPMET
Operational METeorological information
Оперативная метеорологическая информация (данные)
QFE
Atmospheric pressure at the runway threshold (or at the aerodrome elevation)
Атмосферное давление на уровне порога ВПП (или аэродрома)
QNH
Atmospheric pressure at the aerodrome elevation corrected to the mean sea level according to standard atmosphere
Атмосферное давление на уровне аэродрома, приведенное к среднему уровню моря по стандартной атмосфере
RVR
Runway Visual Range
Дальность видимости на ВПП
SADIS
SAtellite Distribution System
Спутниковая система рассылки метеорологических данных (обеспечивается Великобританией)
SIGMET
SIGnificant METeorological information
Выпускаемая органом метеорологического слежения информация о фактическом или ожидаемом возникновении определенных явлений погоды по маршруту полета, которые могут повлиять на безопасность полетов воздушных судов
SIGWX
SIGnificant Weather
Особые явления погоды
SPECI
SPECIal report
Специальная метеорологическая сводка (по аэродрому)
TAF
Terminal Aerodrome Forecast
Прогноз по аэродрому
TCAC
Tropical Cyclone Aadvisory Center
Консультативный центр по тропическим циклонам
TREND
TREND
Прогноз для посадки
VAAC
Volcanic Ash Advisory Center
Консультативный центр по вулканическому пеплу
VOLMET
Volume of meteorological information for aircraft in flight
Объем метеорологической информации для воздушных судов, находящихся в полете
Англо-русский словарь нормативно-технической терминологии > ATIS
-
87 plc
- связь по ЛЭП
- программируемый логический контроллер
- несущая в канале ВЧ-связи по ЛЭП
- маскирование потери пакета
- контроллер с программируемой логикой
- акционерная компания с ограниченной ответственностью
акционерная компания с ограниченной ответственностью
AG - аббревиатура для обозначения AKTIENGESELLSCHAFT (акционерное общество). Оно пишется после названия немецких, австрийских или швейцарских компаний и является эквивалентом английской аббревиатуры plc (public limited company-акционерная компания с ограниченной ответственностью). Сравни: GmbH.
[ http://www.vocable.ru/dictionary/533/symbol/97]Тематики
EN
DE
- AG
контроллер с программируемой логикой
—
[А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]Тематики
EN
маскирование потери пакета
Метод сокрытия факта потери медиапакетов путем генерирования синтезируемых пакетов (МСЭ-T G.1050).
[ http://www.iks-media.ru/glossary/index.html?glossid=2400324]Тематики
- электросвязь, основные понятия
EN
несущая в канале ВЧ-связи по ЛЭП
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999]Тематики
- электротехника, основные понятия
EN
программируемый логический контроллер
ПЛК
-
[Интент]
контроллер
Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
[Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]EN
storage-programmable logic controller
computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
[IEV ref 351-32-34]FR
automate programmable à mémoire
См. также:
équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
[IEV ref 351-32-34]
- архитектура контроллера;
- производительность контроллера;
- время реакции контроллера;
КЛАССИФИКАЦИЯ
Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы:- нано- ПЛК (менее 16 каналов);
- микро-ПЛК (более 16, до 100 каналов);
- средние (более 100, до 500 каналов);
- большие (более 500 каналов).
- моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
- модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
- распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.
По конструктивному исполнению и способу крепления контроллеры делятся на:- панельные (для монтажа на панель или дверцу шкафа);
- для монтажа на DIN-рейку внутри шкафа;
- для крепления на стене;
- стоечные - для монтажа в стойке;
- бескорпусные (обычно одноплатные) для применения в специализированных конструктивах производителей оборудования (OEM - "Original Equipment Manufact urer").
По области применения контроллеры делятся на следующие типы:- универсальные общепромышленные;
- для управления роботами;
- для управления позиционированием и перемещением;
- коммуникационные;
- ПИД-контроллеры;
- специализированные.
По способу программирования контроллеры бывают:- программируемые с лицевой панели контроллера;
- программируемые переносным программатором;
- программируемые с помощью дисплея, мыши и клавиатуры;
- программируемые с помощью персонального компьютера.
Контроллеры могут программироваться на следующих языках:- на классических алгоритмических языках (C, С#, Visual Basic);
- на языках МЭК 61131-3.
Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП. Контроллеры для систем автоматизации
Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.
Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.
Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.
В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования. Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.
Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).
Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:- уменьшение габаритов;
- расширение функциональных возможностей;
- увеличение количества поддерживаемых интерфейсов и сетей;
- использование идеологии "открытых систем";
- использование языков программирования стандарта МЭК 61131-3;
- снижение цены.
[ http://bookasutp.ru/Chapter6_1.aspx]
Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
Принцип работы контроллера состоит в выполнение следующего цикла операций:
1. Сбор сигналов с датчиков;
2. Обработка сигналов согласно прикладному алгоритму управления;
3. Выдача управляющих воздействий на исполнительные устройства.
В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.
Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:
1. Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.
2. Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.
3. Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.
4. Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.
Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.
Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).
Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).
Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.
На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.
Рис. 4. Резервированный контроллер FCP270.
На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).
На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).
Рис. 5. Контроллер AC800M.
Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.
При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:
1. Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.
2. Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.
3. Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)
4. Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.
5. Надежность. Наработка на отказ до 10-12 лет.
6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).
7. Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.
8. Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.
9. Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.
10. Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.
[ http://kazanets.narod.ru/PLC_PART1.htm]Тематики
Синонимы
EN
DE
- speicherprogrammierbare Steuerung, f
FR
связь по ЛЭП
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]Тематики
- электротехника, основные понятия
EN
Англо-русский словарь нормативно-технической терминологии > plc
88 GIS
- свидетельство
- КРУ с газовой изоляцией
- комплектное распределительное устройство элегазовое
- комплектное распределительное устройство с элегазовой изоляцией
- глобальное информационное общество
- ГИС
- географическая информационная система (ГИС)
- географическая информационная система
- газоизолированная подстанция
- выключатель элегазовый
- выключатель с газовой изоляцией
выключатель с газовой изоляцией
—
[А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]Тематики
EN
выключатель элегазовый
Выключатель газовый, контакты которого размыкаются и замыкаются в элегазе (шестифтористой сере).
[ ГОСТ Р 52565-2006]EN
sulphur hexafluoride circuit-breaker
SF6 circuit-breaker
a circuit-breaker in which the contacts open and close in sulphur hexafluoride
[IEV number 441-14-31]FR
disjoncteur à hexafluorure de soufre
disjoncteur à SF6
disjoncteur dont les contacts s'ouvrent et se ferment dans l'hexafluorure de soufre
[IEV number 441-14-31]Для РУ напряжением 110 кВ и выше (вплоть до 1150 кВ) наиболее широко используются воздушные выключатели, где гашение дуги осуществляется потоком сжатого воздуха. Однако в последнее время они вытесняются элегазовыми выключателями, в которых в качестве дугогасящей среды используется электроотрицательный газ — шестифтористая сера (элегаз). Такие выключатели создаются для герметичных распределительных устройств (ГРУ), а также для наружной установки. Использование элегаза в качестве дугогасящей среды обусловлено его высокими изоляционными и дугогасящими свойствами. Это позволяет создать более совершенные выключатели с меньшим числом дугогасительных разрывов, с меньшими габаритами и более надежные в эксплуатации.
[А. И. Афанасьев и др. Электрические аппараты высокого напряжения. - 2-е изд., доп. СПбГТУ, 2000, 503 с.]Тематики
- выключатель, переключатель
- высоковольтный аппарат, оборудование...
EN
DE
FR
ГИС
Географическая информационная система
геоинформационная система
Информационная система, обеспечивающая сбор, хранение, обработку, доступ, отображение и распространение пространственно-координированных данных (пространственных данных). ГИС содержит данные о пространственных обьектах в форме их цифровых представлений (векторных, растровых, квадротомических и иных), включает соответствующий задачам набор функциональных возможностей ГИС, в которых реализуются операции геоинформационных технологий, или ГИС-технологий (GIS tehnology), поддерживается программным, аппаратным, информационным, нормативно-правовым, кадровым и организационным обеспечением. По территориапьному охвату различают глобальные, или планетарные ГИС (global GIS), субконтинентальные ГИС, национальные ГИС, зачастую имеющие статус государственных, региональные ГИС (regional GIS), субрегиональные ГИС и локальные, или местные ГИС (lokal GIS). ГИС различаются предметной областью информационного моделирования, к примеру, городские ГИС, или муниципальные ГИС, МГИС (urban GIS), природоохранные ГИС (environmental GIS) и т.п.; среди них особое наименование, как особо широко распространенные, получили земельные информационные системы. Проблемная ориентация ГИС определяется решаемыми в ней задачами (научными и прикладными), среди них инвентаризация ресурсов (в том числе кадастр), анализ, оценка, мониторинг, управление и ппантрование, поддержка принятия решений. Интегрированные ГИС, ИГИС (integrated GIS, IGIS) совмещают функциональные возможности ГИС и систем цифровой обработки изображений (материалов дистанционного зондирования) в единой интегрированной среде. Полимасштабные, или масштабно-независимые ГИС (multiscale GIS) основаны на множественных, или полимасштабных представпениях пространственных объектов (multiple representation, multiscale representation), обеспечивая графическое или картографическое вопроизведение данных на любом из избранных уровней масштабного ряда на основе единственного набора данных с наибольшим пространственным разрешением. Пространственно-временные ГИС (spatio-temporal GIS) оперируют пространственно-временными данными. Реализация геоинформационных проектов (GIS project), создание ГИС в широком смысле слова, включает этапы предпроектных исследований (feasibility stady), в том числе изучение требований пользователя (user requirements) и функциональных возможностей используемых программных средств ГИС, технико-экономическое обоснование, оценку соотношения "затраты/прибыль" (costs/benefits); системное проектирование ГИС (GIS designing), включая стадию пилот-проекта (pilot-project), разработку ГИС (GIS development); ее тестирование на небольшом территориальном фрагменте, или тестовом участке (test area), прототипирование, или создание опытного образца, прототипа (prototype); внедрение ГИС (GIS implementation), эксплуатацию и использование. Научные, технические, технологические и прикладные аспекты проектирования, создания и использования ГИС изучаются геоинформатикой.
[ http://www.morepc.ru/dict/]Тематики
Синонимы
EN
газоизолированная подстанция
Электрическая подстанция, оборудование которой заключено в металлический кожух, заполненный изолирующим газом.
[ ГОСТ 24291-90]EN
gas insulated metal-enclosed substation
a substation which is made up with only gas insulated metal enclosed switchgear
[IEV number 605-02-14 ]FR
poste sous enveloppe métallique à isolation gazeuse
poste ne comportant que de l'appareillage sous enveloppe métallique à isolation gazeuse
[IEV number 605-02-14 ]Тематики
EN
DE
- Gasoisolirte metaligekapselte Station
- Station, gasisolierte metallgekapselte
FR
географическая информационная система
—
[ http://www.iks-media.ru/glossary/index.html?glossid=2400324]Тематики
- электросвязь, основные понятия
EN
географическая информационная система
ГИС
—
[Упрощение процедур торговли: англо-русский глоссарий терминов (пересмотренное второе издание) НЬЮ-ЙОРК, ЖЕНЕВА, МОСКВА 2011 год]EN
geographic information system
GIS
[Trade Facilitation Terms: An English - Russian Glossary (revised second edition) NEW YORK, GENEVA, MOSCOW 2456]Тематики
Синонимы
EN
глобальное информационное общество
—
[Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]Тематики
EN
КРУ с газовой изоляцией
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]Тематики
- электротехника, основные понятия
EN
комплектное распределительное устройство с элегазовой изоляцией
КРУЭ
-Параллельные тексты EN-RU
The circuit breaker forms the central element of the gas insulated switchgear.
[Siemens]Силовой выключатель является основным элементом КРУЭ.
[Перевод Интент]Switchgears of type 8DQ1 are metal-enclosed, gas-insulated switchgears for operating voltages up to 345 / 420 kV. They consist of individual switchgear bays.
[Siemens]КРУЭ 8DQ1 представляет собой комплектное распределительное устройство в металлической оболочке с элегазовой изоляцией на напряжение до 345/420 кВ. КРУЭ состоит из отдельных ячеек.
[Перевод Интент]These operating instructions are valid for the type and version of the metal-enclosed gas-insulated switchgear specified on the title page.
[Siemens]Данный документ представляет собой Руководство по эксплуатации комплектного распределительного устройства в металлической оболочке с элегазовой изоляцией (КРУЭ) тип и исполнение которого указаны на обложке.
[Перевод Интент]Тематики
- комплектное распред. устройство (КРУ)
Синонимы
EN
комплектное распределительное устройство элегазовое
РУ, в котором основное оборудование заключено в оболочки, заполненные элегазом (SF6), служащим изолирующей и/или дугогасящей средой.
[ПУЭ]EN
gas-insulated metal-enclosed switchgear
metal-enclosed switchgear in which the insulation is obtained, at least partly, by an insulating gas other than air at atmospheric pressure
NOTE – This term generally applies to high-voltage switchgear and controlgear
[IEV number 441-12-05]FR
appareillage sous enveloppe métallique à isolation gazeuse
appareillage de connexion sous enveloppe métallique dans laquelle l'isolation est obtenue, au moins partiellement, par un gaz isolant autre que l'air à pression atmosphérique
NOTE – Ce terme s'applique généralement à l'appareillage à haute tension.
[IEV number 441-12-05]
Рис. SiemensКРУЭ 8DN8
Тематики
- комплектное распред. устройство (КРУ)
Синонимы
Сопутствующие термины
EN
- gas-insulated metal-enclosed switchgear
- gas-insulated switchgear
- GIS
- SF6 gas-insulated metal-enclosed switchgear
DE
- gasisolierte, metallgekapselte Schaltanlagen
FR
2.1.35 свидетельство: Документ, официально подтверждающий какой-либо факт, имеющий юридическое значение, либо право лица (об окончании учебного заведения).
2.2. В настоящем руководстве применены следующие сокращения на русском языке:
АМИС
Автоматическая метеорологическая измерительная система
АМРК
Автоматизированный метеорологический радиолокационный комплекс
АМСГ
Авиационная метеорологическая станция (гражданская)
АМЦ
Авиационный метеорологический центр
БАМД
Банк авиационных метеорологических данных
ВМО
Всемирная метеорологическая организация
ВНГО
Высота нижней границы облаков
ВПП
Взлетно-посадочная полоса
ВС
Воздушное судно
ВСЗП
Всемирная система зональных прогнозов
ВЦЗП
Всемирный центр зональных прогнозов
ГАМЦ
Главный авиационный метеорологический центр
ГИС
Географическая информационная система
ГОУ ИПК
Государственное образовательное учреждение «Институт повышения квалификации»
ГСТ
Глобальная система телесвязи
ГУ ГРМЦ
Государственное учреждение «Главный радиометеорологический центр»
ДОТ
Дистанционные образовательные технологии
ИТ
Информационные технологии
КПК
Курсы повышения квалификации
КРАМС
Комплексная радиотехническая аэродромная метеорологическая станция
МРЛ
Метеорологический радиолокатор
НГЭА
Нормы годности к эксплуатации гражданских аэродромов
НОО
Непрерывное образование и обучение
НПР
Непрерывное профессиональное развитие
ОВД
Обслуживание воздушного движения
ОГ
Оперативная группа
ОМС
Орган метеорологического слежения
УВД
Управление воздушным движением
2.3. В настоящем руководстве применены следующие сокращения на английском языке:
AFTN
Aeronautical Fixed Telecommunication Network
Авиационная фиксированная сеть электросвязи
AIRMET
AIRman's METeorological information
Выпускаемая органом метеорологического слежения информация о фактическом или ожидаемом возникновении определенных явлений погоды по маршруту полета, которые могут повлиять на безопасность полетов воздушных судов на малых высотах
ATIS
Automatic Terminal Information Service
Автоматическая аэродромная служба информации
BUFR
Binary Universal Form for the Representation of meteorological date
Двоичная универсальная форма для представления метеорологических данных
GIS
Geographic Information Systems
Географическая информационная система
GAMET
General Aviation METeorological forecast
Зональный прогноз, составляемый открытым текстом с сокращениями для полетов на малых высотах применительно к району полетной информации или его субрайону (подрайону) метеорологическим органом и передаваемый метеорологическим органам соседних районов полетной информации
GRIB
GRIdded Binary
Бинарный код (прогностические данные метеорологических элементов в узлах регулярной сетки)
GTS
Global Telecommunication System
Глобальная система телесвязи (в рамках ВМО)
IAVW
International Airways Volcano Watch
Служба слежения за вулканической деятельностью на международных авиатрассах
ICAO
International Civil Aviation Organization
Международная организация гражданской авиации
ISCS
International Satellite Communications System
Международная спутниковая система телесвязи (обеспечивается США)
METAR
METeorological Aerodrome Report
Метеорологическая сводка по аэродрому (код METAR)
MOR
Meteorological Optical Range
Метеорологическая оптическая дальность
OPMET
Operational METeorological information
Оперативная метеорологическая информация (данные)
QFE
Atmospheric pressure at the runway threshold (or at the aerodrome elevation)
Атмосферное давление на уровне порога ВПП (или аэродрома)
QNH
Atmospheric pressure at the aerodrome elevation corrected to the mean sea level according to standard atmosphere
Атмосферное давление на уровне аэродрома, приведенное к среднему уровню моря по стандартной атмосфере
RVR
Runway Visual Range
Дальность видимости на ВПП
SADIS
SAtellite Distribution System
Спутниковая система рассылки метеорологических данных (обеспечивается Великобританией)
SIGMET
SIGnificant METeorological information
Выпускаемая органом метеорологического слежения информация о фактическом или ожидаемом возникновении определенных явлений погоды по маршруту полета, которые могут повлиять на безопасность полетов воздушных судов
SIGWX
SIGnificant Weather
Особые явления погоды
SPECI
SPECIal report
Специальная метеорологическая сводка (по аэродрому)
TAF
Terminal Aerodrome Forecast
Прогноз по аэродрому
TCAC
Tropical Cyclone Aadvisory Center
Консультативный центр по тропическим циклонам
TREND
TREND
Прогноз для посадки
VAAC
Volcanic Ash Advisory Center
Консультативный центр по вулканическому пеплу
VOLMET
Volume of meteorological information for aircraft in flight
Объем метеорологической информации для воздушных судов, находящихся в полете
Англо-русский словарь нормативно-технической терминологии > GIS
89 GTS
газотурбинная система
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]Тематики
- электротехника, основные понятия
EN
2.1.35 свидетельство: Документ, официально подтверждающий какой-либо факт, имеющий юридическое значение, либо право лица (об окончании учебного заведения).
2.2. В настоящем руководстве применены следующие сокращения на русском языке:
АМИС
Автоматическая метеорологическая измерительная система
АМРК
Автоматизированный метеорологический радиолокационный комплекс
АМСГ
Авиационная метеорологическая станция (гражданская)
АМЦ
Авиационный метеорологический центр
БАМД
Банк авиационных метеорологических данных
ВМО
Всемирная метеорологическая организация
ВНГО
Высота нижней границы облаков
ВПП
Взлетно-посадочная полоса
ВС
Воздушное судно
ВСЗП
Всемирная система зональных прогнозов
ВЦЗП
Всемирный центр зональных прогнозов
ГАМЦ
Главный авиационный метеорологический центр
ГИС
Географическая информационная система
ГОУ ИПК
Государственное образовательное учреждение «Институт повышения квалификации»
ГСТ
Глобальная система телесвязи
ГУ ГРМЦ
Государственное учреждение «Главный радиометеорологический центр»
ДОТ
Дистанционные образовательные технологии
ИТ
Информационные технологии
КПК
Курсы повышения квалификации
КРАМС
Комплексная радиотехническая аэродромная метеорологическая станция
МРЛ
Метеорологический радиолокатор
НГЭА
Нормы годности к эксплуатации гражданских аэродромов
НОО
Непрерывное образование и обучение
НПР
Непрерывное профессиональное развитие
ОВД
Обслуживание воздушного движения
ОГ
Оперативная группа
ОМС
Орган метеорологического слежения
УВД
Управление воздушным движением
2.3. В настоящем руководстве применены следующие сокращения на английском языке:
AFTN
Aeronautical Fixed Telecommunication Network
Авиационная фиксированная сеть электросвязи
AIRMET
AIRman's METeorological information
Выпускаемая органом метеорологического слежения информация о фактическом или ожидаемом возникновении определенных явлений погоды по маршруту полета, которые могут повлиять на безопасность полетов воздушных судов на малых высотах
ATIS
Automatic Terminal Information Service
Автоматическая аэродромная служба информации
BUFR
Binary Universal Form for the Representation of meteorological date
Двоичная универсальная форма для представления метеорологических данных
GIS
Geographic Information Systems
Географическая информационная система
GAMET
General Aviation METeorological forecast
Зональный прогноз, составляемый открытым текстом с сокращениями для полетов на малых высотах применительно к району полетной информации или его субрайону (подрайону) метеорологическим органом и передаваемый метеорологическим органам соседних районов полетной информации
GRIB
GRIdded Binary
Бинарный код (прогностические данные метеорологических элементов в узлах регулярной сетки)
GTS
Global Telecommunication System
Глобальная система телесвязи (в рамках ВМО)
IAVW
International Airways Volcano Watch
Служба слежения за вулканической деятельностью на международных авиатрассах
ICAO
International Civil Aviation Organization
Международная организация гражданской авиации
ISCS
International Satellite Communications System
Международная спутниковая система телесвязи (обеспечивается США)
METAR
METeorological Aerodrome Report
Метеорологическая сводка по аэродрому (код METAR)
MOR
Meteorological Optical Range
Метеорологическая оптическая дальность
OPMET
Operational METeorological information
Оперативная метеорологическая информация (данные)
QFE
Atmospheric pressure at the runway threshold (or at the aerodrome elevation)
Атмосферное давление на уровне порога ВПП (или аэродрома)
QNH
Atmospheric pressure at the aerodrome elevation corrected to the mean sea level according to standard atmosphere
Атмосферное давление на уровне аэродрома, приведенное к среднему уровню моря по стандартной атмосфере
RVR
Runway Visual Range
Дальность видимости на ВПП
SADIS
SAtellite Distribution System
Спутниковая система рассылки метеорологических данных (обеспечивается Великобританией)
SIGMET
SIGnificant METeorological information
Выпускаемая органом метеорологического слежения информация о фактическом или ожидаемом возникновении определенных явлений погоды по маршруту полета, которые могут повлиять на безопасность полетов воздушных судов
SIGWX
SIGnificant Weather
Особые явления погоды
SPECI
SPECIal report
Специальная метеорологическая сводка (по аэродрому)
TAF
Terminal Aerodrome Forecast
Прогноз по аэродрому
TCAC
Tropical Cyclone Aadvisory Center
Консультативный центр по тропическим циклонам
TREND
TREND
Прогноз для посадки
VAAC
Volcanic Ash Advisory Center
Консультативный центр по вулканическому пеплу
VOLMET
Volume of meteorological information for aircraft in flight
Объем метеорологической информации для воздушных судов, находящихся в полете
Англо-русский словарь нормативно-технической терминологии > GTS
90 trend
- ход (кривой)
- тренд (в гироскопии)
- тренд (в автоматизированных системах)
- тренд
- тектоническая линия
- свидетельство
- направление развития
- направление (пласта)
- изменяться по направлению
изменяться по направлению
—
[А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]Тематики
EN
направление (пласта)
простирание
уклон
направляться
простираться
(геол.)
[ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]Тематики
Синонимы
EN
направление развития
тенденция
—
[ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]Тематики
Синонимы
EN
тектоническая линия
—
[ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]Тематики
EN
тренд
—
[А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]
тренд
Длительная («вековая») тенденция изменения экономических показателей. Когда строятся экономико-математические модели прогноза, Т. оказывается первой, основной составляющей прогнозируемого временного ряда, на которую уже накладываются другие составляющие, например, сезонные колебания. Тренд выявляется с помощью различных приемов статистической обработки временных рядов, позволяющих отделить кратковременные (сезонные, случайные и т.п.) изменения и колебания показателей от общего направления процесса, характеризуемого этими показателями. Среди способов выявления Т. наибольшее распространение имеют метод наименьших квадратов и разные способы выравнивания временных рядов (по средней, скользящей средней и т.д.). Линейный тренд имеет вид yt = a + bt, где t — время, a и b — параметры, которые можно выявить методом наименьших квадратов. График такой функции — прямая. Степенной тренд может иметь вид yt = Atb, где параметры A и b находятся из линейной регрессии после логарифмирования: lnyt = ln A + b ln t. При b > 1 степень роста показателя выше, чем у линейного тренда, при b < 1 — ниже, чем у линейного. При подборе кривых, отражающих Т. временного ряда, применяются также многочлены разных степеней, экспоненты. См. Выравнивание временных рядов, Фильтр.
[ http://slovar-lopatnikov.ru/]Тематики
EN
тренд
График изменения параметра (параметров) технологического процесса.
Различают тренд реального времени и исторический тренд.
[ http://kazanets.narod.ru/PLC_PART1.htm]Тематики
EN
тренд
Составляющая погрешности, медленно меняющаяся на интервалах времени, соизмеримых с характерным временем работы гироскопического устройства.
[Сборник рекомендуемых терминов. Выпуск 118. Г ироскопия. Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]Тематики
Обобщающие термины
EN
2.1.35 свидетельство: Документ, официально подтверждающий какой-либо факт, имеющий юридическое значение, либо право лица (об окончании учебного заведения).
2.2. В настоящем руководстве применены следующие сокращения на русском языке:
АМИС
Автоматическая метеорологическая измерительная система
АМРК
Автоматизированный метеорологический радиолокационный комплекс
АМСГ
Авиационная метеорологическая станция (гражданская)
АМЦ
Авиационный метеорологический центр
БАМД
Банк авиационных метеорологических данных
ВМО
Всемирная метеорологическая организация
ВНГО
Высота нижней границы облаков
ВПП
Взлетно-посадочная полоса
ВС
Воздушное судно
ВСЗП
Всемирная система зональных прогнозов
ВЦЗП
Всемирный центр зональных прогнозов
ГАМЦ
Главный авиационный метеорологический центр
ГИС
Географическая информационная система
ГОУ ИПК
Государственное образовательное учреждение «Институт повышения квалификации»
ГСТ
Глобальная система телесвязи
ГУ ГРМЦ
Государственное учреждение «Главный радиометеорологический центр»
ДОТ
Дистанционные образовательные технологии
ИТ
Информационные технологии
КПК
Курсы повышения квалификации
КРАМС
Комплексная радиотехническая аэродромная метеорологическая станция
МРЛ
Метеорологический радиолокатор
НГЭА
Нормы годности к эксплуатации гражданских аэродромов
НОО
Непрерывное образование и обучение
НПР
Непрерывное профессиональное развитие
ОВД
Обслуживание воздушного движения
ОГ
Оперативная группа
ОМС
Орган метеорологического слежения
УВД
Управление воздушным движением
2.3. В настоящем руководстве применены следующие сокращения на английском языке:
AFTN
Aeronautical Fixed Telecommunication Network
Авиационная фиксированная сеть электросвязи
AIRMET
AIRman's METeorological information
Выпускаемая органом метеорологического слежения информация о фактическом или ожидаемом возникновении определенных явлений погоды по маршруту полета, которые могут повлиять на безопасность полетов воздушных судов на малых высотах
ATIS
Automatic Terminal Information Service
Автоматическая аэродромная служба информации
BUFR
Binary Universal Form for the Representation of meteorological date
Двоичная универсальная форма для представления метеорологических данных
GIS
Geographic Information Systems
Географическая информационная система
GAMET
General Aviation METeorological forecast
Зональный прогноз, составляемый открытым текстом с сокращениями для полетов на малых высотах применительно к району полетной информации или его субрайону (подрайону) метеорологическим органом и передаваемый метеорологическим органам соседних районов полетной информации
GRIB
GRIdded Binary
Бинарный код (прогностические данные метеорологических элементов в узлах регулярной сетки)
GTS
Global Telecommunication System
Глобальная система телесвязи (в рамках ВМО)
IAVW
International Airways Volcano Watch
Служба слежения за вулканической деятельностью на международных авиатрассах
ICAO
International Civil Aviation Organization
Международная организация гражданской авиации
ISCS
International Satellite Communications System
Международная спутниковая система телесвязи (обеспечивается США)
METAR
METeorological Aerodrome Report
Метеорологическая сводка по аэродрому (код METAR)
MOR
Meteorological Optical Range
Метеорологическая оптическая дальность
OPMET
Operational METeorological information
Оперативная метеорологическая информация (данные)
QFE
Atmospheric pressure at the runway threshold (or at the aerodrome elevation)
Атмосферное давление на уровне порога ВПП (или аэродрома)
QNH
Atmospheric pressure at the aerodrome elevation corrected to the mean sea level according to standard atmosphere
Атмосферное давление на уровне аэродрома, приведенное к среднему уровню моря по стандартной атмосфере
RVR
Runway Visual Range
Дальность видимости на ВПП
SADIS
SAtellite Distribution System
Спутниковая система рассылки метеорологических данных (обеспечивается Великобританией)
SIGMET
SIGnificant METeorological information
Выпускаемая органом метеорологического слежения информация о фактическом или ожидаемом возникновении определенных явлений погоды по маршруту полета, которые могут повлиять на безопасность полетов воздушных судов
SIGWX
SIGnificant Weather
Особые явления погоды
SPECI
SPECIal report
Специальная метеорологическая сводка (по аэродрому)
TAF
Terminal Aerodrome Forecast
Прогноз по аэродрому
TCAC
Tropical Cyclone Aadvisory Center
Консультативный центр по тропическим циклонам
TREND
TREND
Прогноз для посадки
VAAC
Volcanic Ash Advisory Center
Консультативный центр по вулканическому пеплу
VOLMET
Volume of meteorological information for aircraft in flight
Объем метеорологической информации для воздушных судов, находящихся в полете
Англо-русский словарь нормативно-технической терминологии > trend
91 programmable logic controller
контроллер с программируемой логикой
—
[А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]Тематики
EN
программируемый логический контроллер
ПЛК
-
[Интент]
контроллер
Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
[Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]EN
storage-programmable logic controller
computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
[IEV ref 351-32-34]FR
automate programmable à mémoire
См. также:
équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
[IEV ref 351-32-34]
- архитектура контроллера;
- производительность контроллера;
- время реакции контроллера;
КЛАССИФИКАЦИЯ
Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы:- нано- ПЛК (менее 16 каналов);
- микро-ПЛК (более 16, до 100 каналов);
- средние (более 100, до 500 каналов);
- большие (более 500 каналов).
- моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
- модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
- распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.
По конструктивному исполнению и способу крепления контроллеры делятся на:- панельные (для монтажа на панель или дверцу шкафа);
- для монтажа на DIN-рейку внутри шкафа;
- для крепления на стене;
- стоечные - для монтажа в стойке;
- бескорпусные (обычно одноплатные) для применения в специализированных конструктивах производителей оборудования (OEM - "Original Equipment Manufact urer").
По области применения контроллеры делятся на следующие типы:- универсальные общепромышленные;
- для управления роботами;
- для управления позиционированием и перемещением;
- коммуникационные;
- ПИД-контроллеры;
- специализированные.
По способу программирования контроллеры бывают:- программируемые с лицевой панели контроллера;
- программируемые переносным программатором;
- программируемые с помощью дисплея, мыши и клавиатуры;
- программируемые с помощью персонального компьютера.
Контроллеры могут программироваться на следующих языках:- на классических алгоритмических языках (C, С#, Visual Basic);
- на языках МЭК 61131-3.
Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП. Контроллеры для систем автоматизации
Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.
Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.
Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.
В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования. Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.
Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).
Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:- уменьшение габаритов;
- расширение функциональных возможностей;
- увеличение количества поддерживаемых интерфейсов и сетей;
- использование идеологии "открытых систем";
- использование языков программирования стандарта МЭК 61131-3;
- снижение цены.
[ http://bookasutp.ru/Chapter6_1.aspx]
Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
Принцип работы контроллера состоит в выполнение следующего цикла операций:
1. Сбор сигналов с датчиков;
2. Обработка сигналов согласно прикладному алгоритму управления;
3. Выдача управляющих воздействий на исполнительные устройства.
В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.
Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:
1. Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.
2. Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.
3. Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.
4. Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.
Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.
Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).
Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).
Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.
На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.
Рис. 4. Резервированный контроллер FCP270.
На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).
На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).
Рис. 5. Контроллер AC800M.
Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.
При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:
1. Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.
2. Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.
3. Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)
4. Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.
5. Надежность. Наработка на отказ до 10-12 лет.
6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).
7. Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.
8. Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.
9. Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.
10. Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.
[ http://kazanets.narod.ru/PLC_PART1.htm]Тематики
Синонимы
EN
DE
- speicherprogrammierbare Steuerung, f
FR
Англо-русский словарь нормативно-технической терминологии > programmable logic controller
92 international civil aviation organization
международная организация гражданской авиации
Международная организация гражданской авиации, являющаяся одним из специализированных учреждений ООН, представляет собой глобальный форум для гражданской авиации. ИКАО стремится реализовать свое концептуальное видение безопасного и устойчивого развития гражданской авиации, опираясь на сотрудничество между своими государствами-членами.
[ http://www.iks-media.ru/glossary/index.html?glossid=2400324]Тематики
- электросвязь, основные понятия
EN
2.1.35 свидетельство: Документ, официально подтверждающий какой-либо факт, имеющий юридическое значение, либо право лица (об окончании учебного заведения).
2.2. В настоящем руководстве применены следующие сокращения на русском языке:
АМИС
Автоматическая метеорологическая измерительная система
АМРК
Автоматизированный метеорологический радиолокационный комплекс
АМСГ
Авиационная метеорологическая станция (гражданская)
АМЦ
Авиационный метеорологический центр
БАМД
Банк авиационных метеорологических данных
ВМО
Всемирная метеорологическая организация
ВНГО
Высота нижней границы облаков
ВПП
Взлетно-посадочная полоса
ВС
Воздушное судно
ВСЗП
Всемирная система зональных прогнозов
ВЦЗП
Всемирный центр зональных прогнозов
ГАМЦ
Главный авиационный метеорологический центр
ГИС
Географическая информационная система
ГОУ ИПК
Государственное образовательное учреждение «Институт повышения квалификации»
ГСТ
Глобальная система телесвязи
ГУ ГРМЦ
Государственное учреждение «Главный радиометеорологический центр»
ДОТ
Дистанционные образовательные технологии
ИТ
Информационные технологии
КПК
Курсы повышения квалификации
КРАМС
Комплексная радиотехническая аэродромная метеорологическая станция
МРЛ
Метеорологический радиолокатор
НГЭА
Нормы годности к эксплуатации гражданских аэродромов
НОО
Непрерывное образование и обучение
НПР
Непрерывное профессиональное развитие
ОВД
Обслуживание воздушного движения
ОГ
Оперативная группа
ОМС
Орган метеорологического слежения
УВД
Управление воздушным движением
2.3. В настоящем руководстве применены следующие сокращения на английском языке:
AFTN
Aeronautical Fixed Telecommunication Network
Авиационная фиксированная сеть электросвязи
AIRMET
AIRman's METeorological information
Выпускаемая органом метеорологического слежения информация о фактическом или ожидаемом возникновении определенных явлений погоды по маршруту полета, которые могут повлиять на безопасность полетов воздушных судов на малых высотах
ATIS
Automatic Terminal Information Service
Автоматическая аэродромная служба информации
BUFR
Binary Universal Form for the Representation of meteorological date
Двоичная универсальная форма для представления метеорологических данных
GIS
Geographic Information Systems
Географическая информационная система
GAMET
General Aviation METeorological forecast
Зональный прогноз, составляемый открытым текстом с сокращениями для полетов на малых высотах применительно к району полетной информации или его субрайону (подрайону) метеорологическим органом и передаваемый метеорологическим органам соседних районов полетной информации
GRIB
GRIdded Binary
Бинарный код (прогностические данные метеорологических элементов в узлах регулярной сетки)
GTS
Global Telecommunication System
Глобальная система телесвязи (в рамках ВМО)
IAVW
International Airways Volcano Watch
Служба слежения за вулканической деятельностью на международных авиатрассах
ICAO
International Civil Aviation Organization
Международная организация гражданской авиации
ISCS
International Satellite Communications System
Международная спутниковая система телесвязи (обеспечивается США)
METAR
METeorological Aerodrome Report
Метеорологическая сводка по аэродрому (код METAR)
MOR
Meteorological Optical Range
Метеорологическая оптическая дальность
OPMET
Operational METeorological information
Оперативная метеорологическая информация (данные)
QFE
Atmospheric pressure at the runway threshold (or at the aerodrome elevation)
Атмосферное давление на уровне порога ВПП (или аэродрома)
QNH
Atmospheric pressure at the aerodrome elevation corrected to the mean sea level according to standard atmosphere
Атмосферное давление на уровне аэродрома, приведенное к среднему уровню моря по стандартной атмосфере
RVR
Runway Visual Range
Дальность видимости на ВПП
SADIS
SAtellite Distribution System
Спутниковая система рассылки метеорологических данных (обеспечивается Великобританией)
SIGMET
SIGnificant METeorological information
Выпускаемая органом метеорологического слежения информация о фактическом или ожидаемом возникновении определенных явлений погоды по маршруту полета, которые могут повлиять на безопасность полетов воздушных судов
SIGWX
SIGnificant Weather
Особые явления погоды
SPECI
SPECIal report
Специальная метеорологическая сводка (по аэродрому)
TAF
Terminal Aerodrome Forecast
Прогноз по аэродрому
TCAC
Tropical Cyclone Aadvisory Center
Консультативный центр по тропическим циклонам
TREND
TREND
Прогноз для посадки
VAAC
Volcanic Ash Advisory Center
Консультативный центр по вулканическому пеплу
VOLMET
Volume of meteorological information for aircraft in flight
Объем метеорологической информации для воздушных судов, находящихся в полете
Англо-русский словарь нормативно-технической терминологии > international civil aviation organization
93 ICAO
международная организация гражданской авиации
Международная организация гражданской авиации, являющаяся одним из специализированных учреждений ООН, представляет собой глобальный форум для гражданской авиации. ИКАО стремится реализовать свое концептуальное видение безопасного и устойчивого развития гражданской авиации, опираясь на сотрудничество между своими государствами-членами.
[ http://www.iks-media.ru/glossary/index.html?glossid=2400324]Тематики
- электросвязь, основные понятия
EN
2.1.35 свидетельство: Документ, официально подтверждающий какой-либо факт, имеющий юридическое значение, либо право лица (об окончании учебного заведения).
2.2. В настоящем руководстве применены следующие сокращения на русском языке:
АМИС
Автоматическая метеорологическая измерительная система
АМРК
Автоматизированный метеорологический радиолокационный комплекс
АМСГ
Авиационная метеорологическая станция (гражданская)
АМЦ
Авиационный метеорологический центр
БАМД
Банк авиационных метеорологических данных
ВМО
Всемирная метеорологическая организация
ВНГО
Высота нижней границы облаков
ВПП
Взлетно-посадочная полоса
ВС
Воздушное судно
ВСЗП
Всемирная система зональных прогнозов
ВЦЗП
Всемирный центр зональных прогнозов
ГАМЦ
Главный авиационный метеорологический центр
ГИС
Географическая информационная система
ГОУ ИПК
Государственное образовательное учреждение «Институт повышения квалификации»
ГСТ
Глобальная система телесвязи
ГУ ГРМЦ
Государственное учреждение «Главный радиометеорологический центр»
ДОТ
Дистанционные образовательные технологии
ИТ
Информационные технологии
КПК
Курсы повышения квалификации
КРАМС
Комплексная радиотехническая аэродромная метеорологическая станция
МРЛ
Метеорологический радиолокатор
НГЭА
Нормы годности к эксплуатации гражданских аэродромов
НОО
Непрерывное образование и обучение
НПР
Непрерывное профессиональное развитие
ОВД
Обслуживание воздушного движения
ОГ
Оперативная группа
ОМС
Орган метеорологического слежения
УВД
Управление воздушным движением
2.3. В настоящем руководстве применены следующие сокращения на английском языке:
AFTN
Aeronautical Fixed Telecommunication Network
Авиационная фиксированная сеть электросвязи
AIRMET
AIRman's METeorological information
Выпускаемая органом метеорологического слежения информация о фактическом или ожидаемом возникновении определенных явлений погоды по маршруту полета, которые могут повлиять на безопасность полетов воздушных судов на малых высотах
ATIS
Automatic Terminal Information Service
Автоматическая аэродромная служба информации
BUFR
Binary Universal Form for the Representation of meteorological date
Двоичная универсальная форма для представления метеорологических данных
GIS
Geographic Information Systems
Географическая информационная система
GAMET
General Aviation METeorological forecast
Зональный прогноз, составляемый открытым текстом с сокращениями для полетов на малых высотах применительно к району полетной информации или его субрайону (подрайону) метеорологическим органом и передаваемый метеорологическим органам соседних районов полетной информации
GRIB
GRIdded Binary
Бинарный код (прогностические данные метеорологических элементов в узлах регулярной сетки)
GTS
Global Telecommunication System
Глобальная система телесвязи (в рамках ВМО)
IAVW
International Airways Volcano Watch
Служба слежения за вулканической деятельностью на международных авиатрассах
ICAO
International Civil Aviation Organization
Международная организация гражданской авиации
ISCS
International Satellite Communications System
Международная спутниковая система телесвязи (обеспечивается США)
METAR
METeorological Aerodrome Report
Метеорологическая сводка по аэродрому (код METAR)
MOR
Meteorological Optical Range
Метеорологическая оптическая дальность
OPMET
Operational METeorological information
Оперативная метеорологическая информация (данные)
QFE
Atmospheric pressure at the runway threshold (or at the aerodrome elevation)
Атмосферное давление на уровне порога ВПП (или аэродрома)
QNH
Atmospheric pressure at the aerodrome elevation corrected to the mean sea level according to standard atmosphere
Атмосферное давление на уровне аэродрома, приведенное к среднему уровню моря по стандартной атмосфере
RVR
Runway Visual Range
Дальность видимости на ВПП
SADIS
SAtellite Distribution System
Спутниковая система рассылки метеорологических данных (обеспечивается Великобританией)
SIGMET
SIGnificant METeorological information
Выпускаемая органом метеорологического слежения информация о фактическом или ожидаемом возникновении определенных явлений погоды по маршруту полета, которые могут повлиять на безопасность полетов воздушных судов
SIGWX
SIGnificant Weather
Особые явления погоды
SPECI
SPECIal report
Специальная метеорологическая сводка (по аэродрому)
TAF
Terminal Aerodrome Forecast
Прогноз по аэродрому
TCAC
Tropical Cyclone Aadvisory Center
Консультативный центр по тропическим циклонам
TREND
TREND
Прогноз для посадки
VAAC
Volcanic Ash Advisory Center
Консультативный центр по вулканическому пеплу
VOLMET
Volume of meteorological information for aircraft in flight
Объем метеорологической информации для воздушных судов, находящихся в полете
Англо-русский словарь нормативно-технической терминологии > ICAO
94 ISCS
- свидетельство
- международная услуга "с разделением оплаты"
международная услуга "с разделением оплаты"
—
[Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]Тематики
EN
2.1.35 свидетельство: Документ, официально подтверждающий какой-либо факт, имеющий юридическое значение, либо право лица (об окончании учебного заведения).
2.2. В настоящем руководстве применены следующие сокращения на русском языке:
АМИС
Автоматическая метеорологическая измерительная система
АМРК
Автоматизированный метеорологический радиолокационный комплекс
АМСГ
Авиационная метеорологическая станция (гражданская)
АМЦ
Авиационный метеорологический центр
БАМД
Банк авиационных метеорологических данных
ВМО
Всемирная метеорологическая организация
ВНГО
Высота нижней границы облаков
ВПП
Взлетно-посадочная полоса
ВС
Воздушное судно
ВСЗП
Всемирная система зональных прогнозов
ВЦЗП
Всемирный центр зональных прогнозов
ГАМЦ
Главный авиационный метеорологический центр
ГИС
Географическая информационная система
ГОУ ИПК
Государственное образовательное учреждение «Институт повышения квалификации»
ГСТ
Глобальная система телесвязи
ГУ ГРМЦ
Государственное учреждение «Главный радиометеорологический центр»
ДОТ
Дистанционные образовательные технологии
ИТ
Информационные технологии
КПК
Курсы повышения квалификации
КРАМС
Комплексная радиотехническая аэродромная метеорологическая станция
МРЛ
Метеорологический радиолокатор
НГЭА
Нормы годности к эксплуатации гражданских аэродромов
НОО
Непрерывное образование и обучение
НПР
Непрерывное профессиональное развитие
ОВД
Обслуживание воздушного движения
ОГ
Оперативная группа
ОМС
Орган метеорологического слежения
УВД
Управление воздушным движением
2.3. В настоящем руководстве применены следующие сокращения на английском языке:
AFTN
Aeronautical Fixed Telecommunication Network
Авиационная фиксированная сеть электросвязи
AIRMET
AIRman's METeorological information
Выпускаемая органом метеорологического слежения информация о фактическом или ожидаемом возникновении определенных явлений погоды по маршруту полета, которые могут повлиять на безопасность полетов воздушных судов на малых высотах
ATIS
Automatic Terminal Information Service
Автоматическая аэродромная служба информации
BUFR
Binary Universal Form for the Representation of meteorological date
Двоичная универсальная форма для представления метеорологических данных
GIS
Geographic Information Systems
Географическая информационная система
GAMET
General Aviation METeorological forecast
Зональный прогноз, составляемый открытым текстом с сокращениями для полетов на малых высотах применительно к району полетной информации или его субрайону (подрайону) метеорологическим органом и передаваемый метеорологическим органам соседних районов полетной информации
GRIB
GRIdded Binary
Бинарный код (прогностические данные метеорологических элементов в узлах регулярной сетки)
GTS
Global Telecommunication System
Глобальная система телесвязи (в рамках ВМО)
IAVW
International Airways Volcano Watch
Служба слежения за вулканической деятельностью на международных авиатрассах
ICAO
International Civil Aviation Organization
Международная организация гражданской авиации
ISCS
International Satellite Communications System
Международная спутниковая система телесвязи (обеспечивается США)
METAR
METeorological Aerodrome Report
Метеорологическая сводка по аэродрому (код METAR)
MOR
Meteorological Optical Range
Метеорологическая оптическая дальность
OPMET
Operational METeorological information
Оперативная метеорологическая информация (данные)
QFE
Atmospheric pressure at the runway threshold (or at the aerodrome elevation)
Атмосферное давление на уровне порога ВПП (или аэродрома)
QNH
Atmospheric pressure at the aerodrome elevation corrected to the mean sea level according to standard atmosphere
Атмосферное давление на уровне аэродрома, приведенное к среднему уровню моря по стандартной атмосфере
RVR
Runway Visual Range
Дальность видимости на ВПП
SADIS
SAtellite Distribution System
Спутниковая система рассылки метеорологических данных (обеспечивается Великобританией)
SIGMET
SIGnificant METeorological information
Выпускаемая органом метеорологического слежения информация о фактическом или ожидаемом возникновении определенных явлений погоды по маршруту полета, которые могут повлиять на безопасность полетов воздушных судов
SIGWX
SIGnificant Weather
Особые явления погоды
SPECI
SPECIal report
Специальная метеорологическая сводка (по аэродрому)
TAF
Terminal Aerodrome Forecast
Прогноз по аэродрому
TCAC
Tropical Cyclone Aadvisory Center
Консультативный центр по тропическим циклонам
TREND
TREND
Прогноз для посадки
VAAC
Volcanic Ash Advisory Center
Консультативный центр по вулканическому пеплу
VOLMET
Volume of meteorological information for aircraft in flight
Объем метеорологической информации для воздушных судов, находящихся в полете
Англо-русский словарь нормативно-технической терминологии > ISCS
95 MOR
- свидетельство
- реостат с приводом от электродвигателя
- отчёт о проведении технического обслуживания и ремонта
отчёт о проведении технического обслуживания и ремонта
—
[А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]Тематики
EN
реостат с приводом от электродвигателя
реостат с приводом от двигателя
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]Тематики
- электротехника, основные понятия
Синонимы
EN
2.1.35 свидетельство: Документ, официально подтверждающий какой-либо факт, имеющий юридическое значение, либо право лица (об окончании учебного заведения).
2.2. В настоящем руководстве применены следующие сокращения на русском языке:
АМИС
Автоматическая метеорологическая измерительная система
АМРК
Автоматизированный метеорологический радиолокационный комплекс
АМСГ
Авиационная метеорологическая станция (гражданская)
АМЦ
Авиационный метеорологический центр
БАМД
Банк авиационных метеорологических данных
ВМО
Всемирная метеорологическая организация
ВНГО
Высота нижней границы облаков
ВПП
Взлетно-посадочная полоса
ВС
Воздушное судно
ВСЗП
Всемирная система зональных прогнозов
ВЦЗП
Всемирный центр зональных прогнозов
ГАМЦ
Главный авиационный метеорологический центр
ГИС
Географическая информационная система
ГОУ ИПК
Государственное образовательное учреждение «Институт повышения квалификации»
ГСТ
Глобальная система телесвязи
ГУ ГРМЦ
Государственное учреждение «Главный радиометеорологический центр»
ДОТ
Дистанционные образовательные технологии
ИТ
Информационные технологии
КПК
Курсы повышения квалификации
КРАМС
Комплексная радиотехническая аэродромная метеорологическая станция
МРЛ
Метеорологический радиолокатор
НГЭА
Нормы годности к эксплуатации гражданских аэродромов
НОО
Непрерывное образование и обучение
НПР
Непрерывное профессиональное развитие
ОВД
Обслуживание воздушного движения
ОГ
Оперативная группа
ОМС
Орган метеорологического слежения
УВД
Управление воздушным движением
2.3. В настоящем руководстве применены следующие сокращения на английском языке:
AFTN
Aeronautical Fixed Telecommunication Network
Авиационная фиксированная сеть электросвязи
AIRMET
AIRman's METeorological information
Выпускаемая органом метеорологического слежения информация о фактическом или ожидаемом возникновении определенных явлений погоды по маршруту полета, которые могут повлиять на безопасность полетов воздушных судов на малых высотах
ATIS
Automatic Terminal Information Service
Автоматическая аэродромная служба информации
BUFR
Binary Universal Form for the Representation of meteorological date
Двоичная универсальная форма для представления метеорологических данных
GIS
Geographic Information Systems
Географическая информационная система
GAMET
General Aviation METeorological forecast
Зональный прогноз, составляемый открытым текстом с сокращениями для полетов на малых высотах применительно к району полетной информации или его субрайону (подрайону) метеорологическим органом и передаваемый метеорологическим органам соседних районов полетной информации
GRIB
GRIdded Binary
Бинарный код (прогностические данные метеорологических элементов в узлах регулярной сетки)
GTS
Global Telecommunication System
Глобальная система телесвязи (в рамках ВМО)
IAVW
International Airways Volcano Watch
Служба слежения за вулканической деятельностью на международных авиатрассах
ICAO
International Civil Aviation Organization
Международная организация гражданской авиации
ISCS
International Satellite Communications System
Международная спутниковая система телесвязи (обеспечивается США)
METAR
METeorological Aerodrome Report
Метеорологическая сводка по аэродрому (код METAR)
MOR
Meteorological Optical Range
Метеорологическая оптическая дальность
OPMET
Operational METeorological information
Оперативная метеорологическая информация (данные)
QFE
Atmospheric pressure at the runway threshold (or at the aerodrome elevation)
Атмосферное давление на уровне порога ВПП (или аэродрома)
QNH
Atmospheric pressure at the aerodrome elevation corrected to the mean sea level according to standard atmosphere
Атмосферное давление на уровне аэродрома, приведенное к среднему уровню моря по стандартной атмосфере
RVR
Runway Visual Range
Дальность видимости на ВПП
SADIS
SAtellite Distribution System
Спутниковая система рассылки метеорологических данных (обеспечивается Великобританией)
SIGMET
SIGnificant METeorological information
Выпускаемая органом метеорологического слежения информация о фактическом или ожидаемом возникновении определенных явлений погоды по маршруту полета, которые могут повлиять на безопасность полетов воздушных судов
SIGWX
SIGnificant Weather
Особые явления погоды
SPECI
SPECIal report
Специальная метеорологическая сводка (по аэродрому)
TAF
Terminal Aerodrome Forecast
Прогноз по аэродрому
TCAC
Tropical Cyclone Aadvisory Center
Консультативный центр по тропическим циклонам
TREND
TREND
Прогноз для посадки
VAAC
Volcanic Ash Advisory Center
Консультативный центр по вулканическому пеплу
VOLMET
Volume of meteorological information for aircraft in flight
Объем метеорологической информации для воздушных судов, находящихся в полете
Англо-русский словарь нормативно-технической терминологии > MOR
96 QFE
поиск совершенства (при разработке конструкции)
—
[А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]Тематики
EN
2.1.35 свидетельство: Документ, официально подтверждающий какой-либо факт, имеющий юридическое значение, либо право лица (об окончании учебного заведения).
2.2. В настоящем руководстве применены следующие сокращения на русском языке:
АМИС
Автоматическая метеорологическая измерительная система
АМРК
Автоматизированный метеорологический радиолокационный комплекс
АМСГ
Авиационная метеорологическая станция (гражданская)
АМЦ
Авиационный метеорологический центр
БАМД
Банк авиационных метеорологических данных
ВМО
Всемирная метеорологическая организация
ВНГО
Высота нижней границы облаков
ВПП
Взлетно-посадочная полоса
ВС
Воздушное судно
ВСЗП
Всемирная система зональных прогнозов
ВЦЗП
Всемирный центр зональных прогнозов
ГАМЦ
Главный авиационный метеорологический центр
ГИС
Географическая информационная система
ГОУ ИПК
Государственное образовательное учреждение «Институт повышения квалификации»
ГСТ
Глобальная система телесвязи
ГУ ГРМЦ
Государственное учреждение «Главный радиометеорологический центр»
ДОТ
Дистанционные образовательные технологии
ИТ
Информационные технологии
КПК
Курсы повышения квалификации
КРАМС
Комплексная радиотехническая аэродромная метеорологическая станция
МРЛ
Метеорологический радиолокатор
НГЭА
Нормы годности к эксплуатации гражданских аэродромов
НОО
Непрерывное образование и обучение
НПР
Непрерывное профессиональное развитие
ОВД
Обслуживание воздушного движения
ОГ
Оперативная группа
ОМС
Орган метеорологического слежения
УВД
Управление воздушным движением
2.3. В настоящем руководстве применены следующие сокращения на английском языке:
AFTN
Aeronautical Fixed Telecommunication Network
Авиационная фиксированная сеть электросвязи
AIRMET
AIRman's METeorological information
Выпускаемая органом метеорологического слежения информация о фактическом или ожидаемом возникновении определенных явлений погоды по маршруту полета, которые могут повлиять на безопасность полетов воздушных судов на малых высотах
ATIS
Automatic Terminal Information Service
Автоматическая аэродромная служба информации
BUFR
Binary Universal Form for the Representation of meteorological date
Двоичная универсальная форма для представления метеорологических данных
GIS
Geographic Information Systems
Географическая информационная система
GAMET
General Aviation METeorological forecast
Зональный прогноз, составляемый открытым текстом с сокращениями для полетов на малых высотах применительно к району полетной информации или его субрайону (подрайону) метеорологическим органом и передаваемый метеорологическим органам соседних районов полетной информации
GRIB
GRIdded Binary
Бинарный код (прогностические данные метеорологических элементов в узлах регулярной сетки)
GTS
Global Telecommunication System
Глобальная система телесвязи (в рамках ВМО)
IAVW
International Airways Volcano Watch
Служба слежения за вулканической деятельностью на международных авиатрассах
ICAO
International Civil Aviation Organization
Международная организация гражданской авиации
ISCS
International Satellite Communications System
Международная спутниковая система телесвязи (обеспечивается США)
METAR
METeorological Aerodrome Report
Метеорологическая сводка по аэродрому (код METAR)
MOR
Meteorological Optical Range
Метеорологическая оптическая дальность
OPMET
Operational METeorological information
Оперативная метеорологическая информация (данные)
QFE
Atmospheric pressure at the runway threshold (or at the aerodrome elevation)
Атмосферное давление на уровне порога ВПП (или аэродрома)
QNH
Atmospheric pressure at the aerodrome elevation corrected to the mean sea level according to standard atmosphere
Атмосферное давление на уровне аэродрома, приведенное к среднему уровню моря по стандартной атмосфере
RVR
Runway Visual Range
Дальность видимости на ВПП
SADIS
SAtellite Distribution System
Спутниковая система рассылки метеорологических данных (обеспечивается Великобританией)
SIGMET
SIGnificant METeorological information
Выпускаемая органом метеорологического слежения информация о фактическом или ожидаемом возникновении определенных явлений погоды по маршруту полета, которые могут повлиять на безопасность полетов воздушных судов
SIGWX
SIGnificant Weather
Особые явления погоды
SPECI
SPECIal report
Специальная метеорологическая сводка (по аэродрому)
TAF
Terminal Aerodrome Forecast
Прогноз по аэродрому
TCAC
Tropical Cyclone Aadvisory Center
Консультативный центр по тропическим циклонам
TREND
TREND
Прогноз для посадки
VAAC
Volcanic Ash Advisory Center
Консультативный центр по вулканическому пеплу
VOLMET
Volume of meteorological information for aircraft in flight
Объем метеорологической информации для воздушных судов, находящихся в полете
Англо-русский словарь нормативно-технической терминологии > QFE
97 programmable controller
программируемый контроллер
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]Тематики
- электротехника, основные понятия
EN
программируемый логический контроллер
ПЛК
-
[Интент]
контроллер
Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
[Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]EN
storage-programmable logic controller
computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
[IEV ref 351-32-34]FR
automate programmable à mémoire
См. также:
équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
[IEV ref 351-32-34]
- архитектура контроллера;
- производительность контроллера;
- время реакции контроллера;
КЛАССИФИКАЦИЯ
Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы:- нано- ПЛК (менее 16 каналов);
- микро-ПЛК (более 16, до 100 каналов);
- средние (более 100, до 500 каналов);
- большие (более 500 каналов).
- моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
- модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
- распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.
По конструктивному исполнению и способу крепления контроллеры делятся на:- панельные (для монтажа на панель или дверцу шкафа);
- для монтажа на DIN-рейку внутри шкафа;
- для крепления на стене;
- стоечные - для монтажа в стойке;
- бескорпусные (обычно одноплатные) для применения в специализированных конструктивах производителей оборудования (OEM - "Original Equipment Manufact urer").
По области применения контроллеры делятся на следующие типы:- универсальные общепромышленные;
- для управления роботами;
- для управления позиционированием и перемещением;
- коммуникационные;
- ПИД-контроллеры;
- специализированные.
По способу программирования контроллеры бывают:- программируемые с лицевой панели контроллера;
- программируемые переносным программатором;
- программируемые с помощью дисплея, мыши и клавиатуры;
- программируемые с помощью персонального компьютера.
Контроллеры могут программироваться на следующих языках:- на классических алгоритмических языках (C, С#, Visual Basic);
- на языках МЭК 61131-3.
Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП. Контроллеры для систем автоматизации
Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.
Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.
Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.
В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования. Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.
Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).
Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:- уменьшение габаритов;
- расширение функциональных возможностей;
- увеличение количества поддерживаемых интерфейсов и сетей;
- использование идеологии "открытых систем";
- использование языков программирования стандарта МЭК 61131-3;
- снижение цены.
[ http://bookasutp.ru/Chapter6_1.aspx]
Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
Принцип работы контроллера состоит в выполнение следующего цикла операций:
1. Сбор сигналов с датчиков;
2. Обработка сигналов согласно прикладному алгоритму управления;
3. Выдача управляющих воздействий на исполнительные устройства.
В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.
Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:
1. Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.
2. Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.
3. Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.
4. Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.
Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.
Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).
Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).
Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.
На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.
Рис. 4. Резервированный контроллер FCP270.
На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).
На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).
Рис. 5. Контроллер AC800M.
Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.
При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:
1. Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.
2. Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.
3. Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)
4. Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.
5. Надежность. Наработка на отказ до 10-12 лет.
6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).
7. Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.
8. Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.
9. Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.
10. Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.
[ http://kazanets.narod.ru/PLC_PART1.htm]Тематики
Синонимы
EN
DE
- speicherprogrammierbare Steuerung, f
FR
Англо-русский словарь нормативно-технической терминологии > programmable controller
98 storage-programmable logic controller
программируемый логический контроллер
ПЛК
-
[Интент]
контроллер
Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
[Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]EN
storage-programmable logic controller
computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
[IEV ref 351-32-34]FR
automate programmable à mémoire
См. также:
équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
[IEV ref 351-32-34]
- архитектура контроллера;
- производительность контроллера;
- время реакции контроллера;
КЛАССИФИКАЦИЯ
Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы:- нано- ПЛК (менее 16 каналов);
- микро-ПЛК (более 16, до 100 каналов);
- средние (более 100, до 500 каналов);
- большие (более 500 каналов).
- моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
- модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
- распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.
По конструктивному исполнению и способу крепления контроллеры делятся на:- панельные (для монтажа на панель или дверцу шкафа);
- для монтажа на DIN-рейку внутри шкафа;
- для крепления на стене;
- стоечные - для монтажа в стойке;
- бескорпусные (обычно одноплатные) для применения в специализированных конструктивах производителей оборудования (OEM - "Original Equipment Manufact urer").
По области применения контроллеры делятся на следующие типы:- универсальные общепромышленные;
- для управления роботами;
- для управления позиционированием и перемещением;
- коммуникационные;
- ПИД-контроллеры;
- специализированные.
По способу программирования контроллеры бывают:- программируемые с лицевой панели контроллера;
- программируемые переносным программатором;
- программируемые с помощью дисплея, мыши и клавиатуры;
- программируемые с помощью персонального компьютера.
Контроллеры могут программироваться на следующих языках:- на классических алгоритмических языках (C, С#, Visual Basic);
- на языках МЭК 61131-3.
Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП. Контроллеры для систем автоматизации
Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.
Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.
Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.
В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования. Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.
Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).
Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:- уменьшение габаритов;
- расширение функциональных возможностей;
- увеличение количества поддерживаемых интерфейсов и сетей;
- использование идеологии "открытых систем";
- использование языков программирования стандарта МЭК 61131-3;
- снижение цены.
[ http://bookasutp.ru/Chapter6_1.aspx]
Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
Принцип работы контроллера состоит в выполнение следующего цикла операций:
1. Сбор сигналов с датчиков;
2. Обработка сигналов согласно прикладному алгоритму управления;
3. Выдача управляющих воздействий на исполнительные устройства.
В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.
Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:
1. Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.
2. Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.
3. Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.
4. Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.
Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.
Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).
Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).
Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.
На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.
Рис. 4. Резервированный контроллер FCP270.
На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).
На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).
Рис. 5. Контроллер AC800M.
Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.
При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:
1. Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.
2. Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.
3. Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)
4. Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.
5. Надежность. Наработка на отказ до 10-12 лет.
6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).
7. Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.
8. Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.
9. Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.
10. Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.
[ http://kazanets.narod.ru/PLC_PART1.htm]Тематики
Синонимы
EN
DE
- speicherprogrammierbare Steuerung, f
FR
Англо-русский словарь нормативно-технической терминологии > storage-programmable logic controller
99 Special Report
Специальный отчёт по конкретному виду деятельности
(напр. заявление государства в адрес МАГАТЭ об утрате ядерных материалов)
[А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]Тематики
EN
2.1.35 свидетельство: Документ, официально подтверждающий какой-либо факт, имеющий юридическое значение, либо право лица (об окончании учебного заведения).
2.2. В настоящем руководстве применены следующие сокращения на русском языке:
АМИС
Автоматическая метеорологическая измерительная система
АМРК
Автоматизированный метеорологический радиолокационный комплекс
АМСГ
Авиационная метеорологическая станция (гражданская)
АМЦ
Авиационный метеорологический центр
БАМД
Банк авиационных метеорологических данных
ВМО
Всемирная метеорологическая организация
ВНГО
Высота нижней границы облаков
ВПП
Взлетно-посадочная полоса
ВС
Воздушное судно
ВСЗП
Всемирная система зональных прогнозов
ВЦЗП
Всемирный центр зональных прогнозов
ГАМЦ
Главный авиационный метеорологический центр
ГИС
Географическая информационная система
ГОУ ИПК
Государственное образовательное учреждение «Институт повышения квалификации»
ГСТ
Глобальная система телесвязи
ГУ ГРМЦ
Государственное учреждение «Главный радиометеорологический центр»
ДОТ
Дистанционные образовательные технологии
ИТ
Информационные технологии
КПК
Курсы повышения квалификации
КРАМС
Комплексная радиотехническая аэродромная метеорологическая станция
МРЛ
Метеорологический радиолокатор
НГЭА
Нормы годности к эксплуатации гражданских аэродромов
НОО
Непрерывное образование и обучение
НПР
Непрерывное профессиональное развитие
ОВД
Обслуживание воздушного движения
ОГ
Оперативная группа
ОМС
Орган метеорологического слежения
УВД
Управление воздушным движением
2.3. В настоящем руководстве применены следующие сокращения на английском языке:
AFTN
Aeronautical Fixed Telecommunication Network
Авиационная фиксированная сеть электросвязи
AIRMET
AIRman's METeorological information
Выпускаемая органом метеорологического слежения информация о фактическом или ожидаемом возникновении определенных явлений погоды по маршруту полета, которые могут повлиять на безопасность полетов воздушных судов на малых высотах
ATIS
Automatic Terminal Information Service
Автоматическая аэродромная служба информации
BUFR
Binary Universal Form for the Representation of meteorological date
Двоичная универсальная форма для представления метеорологических данных
GIS
Geographic Information Systems
Географическая информационная система
GAMET
General Aviation METeorological forecast
Зональный прогноз, составляемый открытым текстом с сокращениями для полетов на малых высотах применительно к району полетной информации или его субрайону (подрайону) метеорологическим органом и передаваемый метеорологическим органам соседних районов полетной информации
GRIB
GRIdded Binary
Бинарный код (прогностические данные метеорологических элементов в узлах регулярной сетки)
GTS
Global Telecommunication System
Глобальная система телесвязи (в рамках ВМО)
IAVW
International Airways Volcano Watch
Служба слежения за вулканической деятельностью на международных авиатрассах
ICAO
International Civil Aviation Organization
Международная организация гражданской авиации
ISCS
International Satellite Communications System
Международная спутниковая система телесвязи (обеспечивается США)
METAR
METeorological Aerodrome Report
Метеорологическая сводка по аэродрому (код METAR)
MOR
Meteorological Optical Range
Метеорологическая оптическая дальность
OPMET
Operational METeorological information
Оперативная метеорологическая информация (данные)
QFE
Atmospheric pressure at the runway threshold (or at the aerodrome elevation)
Атмосферное давление на уровне порога ВПП (или аэродрома)
QNH
Atmospheric pressure at the aerodrome elevation corrected to the mean sea level according to standard atmosphere
Атмосферное давление на уровне аэродрома, приведенное к среднему уровню моря по стандартной атмосфере
RVR
Runway Visual Range
Дальность видимости на ВПП
SADIS
SAtellite Distribution System
Спутниковая система рассылки метеорологических данных (обеспечивается Великобританией)
SIGMET
SIGnificant METeorological information
Выпускаемая органом метеорологического слежения информация о фактическом или ожидаемом возникновении определенных явлений погоды по маршруту полета, которые могут повлиять на безопасность полетов воздушных судов
SIGWX
SIGnificant Weather
Особые явления погоды
SPECI
SPECIal report
Специальная метеорологическая сводка (по аэродрому)
TAF
Terminal Aerodrome Forecast
Прогноз по аэродрому
TCAC
Tropical Cyclone Aadvisory Center
Консультативный центр по тропическим циклонам
TREND
TREND
Прогноз для посадки
VAAC
Volcanic Ash Advisory Center
Консультативный центр по вулканическому пеплу
VOLMET
Volume of meteorological information for aircraft in flight
Объем метеорологической информации для воздушных судов, находящихся в полете
Англо-русский словарь нормативно-технической терминологии > Special Report
100 AFTN
2.1.35 свидетельство: Документ, официально подтверждающий какой-либо факт, имеющий юридическое значение, либо право лица (об окончании учебного заведения).
2.2. В настоящем руководстве применены следующие сокращения на русском языке:
АМИС
Автоматическая метеорологическая измерительная система
АМРК
Автоматизированный метеорологический радиолокационный комплекс
АМСГ
Авиационная метеорологическая станция (гражданская)
АМЦ
Авиационный метеорологический центр
БАМД
Банк авиационных метеорологических данных
ВМО
Всемирная метеорологическая организация
ВНГО
Высота нижней границы облаков
ВПП
Взлетно-посадочная полоса
ВС
Воздушное судно
ВСЗП
Всемирная система зональных прогнозов
ВЦЗП
Всемирный центр зональных прогнозов
ГАМЦ
Главный авиационный метеорологический центр
ГИС
Географическая информационная система
ГОУ ИПК
Государственное образовательное учреждение «Институт повышения квалификации»
ГСТ
Глобальная система телесвязи
ГУ ГРМЦ
Государственное учреждение «Главный радиометеорологический центр»
ДОТ
Дистанционные образовательные технологии
ИТ
Информационные технологии
КПК
Курсы повышения квалификации
КРАМС
Комплексная радиотехническая аэродромная метеорологическая станция
МРЛ
Метеорологический радиолокатор
НГЭА
Нормы годности к эксплуатации гражданских аэродромов
НОО
Непрерывное образование и обучение
НПР
Непрерывное профессиональное развитие
ОВД
Обслуживание воздушного движения
ОГ
Оперативная группа
ОМС
Орган метеорологического слежения
УВД
Управление воздушным движением
2.3. В настоящем руководстве применены следующие сокращения на английском языке:
AFTN
Aeronautical Fixed Telecommunication Network
Авиационная фиксированная сеть электросвязи
AIRMET
AIRman's METeorological information
Выпускаемая органом метеорологического слежения информация о фактическом или ожидаемом возникновении определенных явлений погоды по маршруту полета, которые могут повлиять на безопасность полетов воздушных судов на малых высотах
ATIS
Automatic Terminal Information Service
Автоматическая аэродромная служба информации
BUFR
Binary Universal Form for the Representation of meteorological date
Двоичная универсальная форма для представления метеорологических данных
GIS
Geographic Information Systems
Географическая информационная система
GAMET
General Aviation METeorological forecast
Зональный прогноз, составляемый открытым текстом с сокращениями для полетов на малых высотах применительно к району полетной информации или его субрайону (подрайону) метеорологическим органом и передаваемый метеорологическим органам соседних районов полетной информации
GRIB
GRIdded Binary
Бинарный код (прогностические данные метеорологических элементов в узлах регулярной сетки)
GTS
Global Telecommunication System
Глобальная система телесвязи (в рамках ВМО)
IAVW
International Airways Volcano Watch
Служба слежения за вулканической деятельностью на международных авиатрассах
ICAO
International Civil Aviation Organization
Международная организация гражданской авиации
ISCS
International Satellite Communications System
Международная спутниковая система телесвязи (обеспечивается США)
METAR
METeorological Aerodrome Report
Метеорологическая сводка по аэродрому (код METAR)
MOR
Meteorological Optical Range
Метеорологическая оптическая дальность
OPMET
Operational METeorological information
Оперативная метеорологическая информация (данные)
QFE
Atmospheric pressure at the runway threshold (or at the aerodrome elevation)
Атмосферное давление на уровне порога ВПП (или аэродрома)
QNH
Atmospheric pressure at the aerodrome elevation corrected to the mean sea level according to standard atmosphere
Атмосферное давление на уровне аэродрома, приведенное к среднему уровню моря по стандартной атмосфере
RVR
Runway Visual Range
Дальность видимости на ВПП
SADIS
SAtellite Distribution System
Спутниковая система рассылки метеорологических данных (обеспечивается Великобританией)
SIGMET
SIGnificant METeorological information
Выпускаемая органом метеорологического слежения информация о фактическом или ожидаемом возникновении определенных явлений погоды по маршруту полета, которые могут повлиять на безопасность полетов воздушных судов
SIGWX
SIGnificant Weather
Особые явления погоды
SPECI
SPECIal report
Специальная метеорологическая сводка (по аэродрому)
TAF
Terminal Aerodrome Forecast
Прогноз по аэродрому
TCAC
Tropical Cyclone Aadvisory Center
Консультативный центр по тропическим циклонам
TREND
TREND
Прогноз для посадки
VAAC
Volcanic Ash Advisory Center
Консультативный центр по вулканическому пеплу
VOLMET
Volume of meteorological information for aircraft in flight
Объем метеорологической информации для воздушных судов, находящихся в полете
Англо-русский словарь нормативно-технической терминологии > AFTN
СтраницыСм. также в других словарях:
visual display terminal — ➔ VDT * * * visual display terminal UK US noun [C] IT ► VDT(Cf. ↑VDT) … Financial and business terms
Terminal (typeface) — Terminal is a family of monospace raster typefaces. It is relatively small compared to Courier. It uses crossed zeros, and is designed to approximate the font normally used in MS DOS or other text based consoles such as on Linux. In Microsoft… … Wikipedia
terminal — n. point on an electric circuit 1) a negative; positive terminal device by which information enters or leaves a computer 2) a computer terminal; a Visual Display Terminal = VDT (AE; BE has Visual Display Unit = VDU) passenger, freight station 3)… … Combinatory dictionary
Terminal (informática) — Este artículo trata sobre dispositivos. Para otros usos de este término, véase emulador de terminal. Teletipo: se tecleaba la orden en el teclado y se imprimía la respuesta en papel (derecha: lector; izquierda: perforador de cinta) … Wikipedia Español
terminal guidance — 1. The guidance applied to a guided missile between midcourse guidance and arrival in the vicinity of the target. 2. Electronic, mechanical, visual, or other assistance given an aircraft pilot to facilitate arrival at, operation within or over,… … Military dictionary
Terminal area chart — In United States and Canadian aviation, Terminal area charts are aeronautical charts intended for navigation under Visual Flight Rules that depict areas surrounding major airports (primarily those with Class B airspace.OverviewLike the VFR… … Wikipedia
Visual WebGui — Infobox Software name = Visual WebGui latest release version = 6.1.1b latest release date = July 15, 2008 genre = Web RAD framework license = GPL / LGPL website = [http://www.visualwebgui.com] | Visual WebGui (VWG) is an open source rapid… … Wikipedia
visual display unit — noun (British) British term for video display • Syn: ↑VDU • Topics: ↑computer, ↑computing machine, ↑computing device, ↑data processor, ↑electronic computer, ↑ … Useful english dictionary
Visual 50 — The Visual 50 is a computer created by Visual Technology, Inc., which was located in Tewksbury, Massachusetts. Visual s slogan was See for yourself . It merged with White Pine Software in 1993, which became CU SeeMe Networks, in turn absorbed… … Wikipedia
Terminal Power Company — Infobox musical artist 2 Name = Terminal Power Company Img capt = Terminal Power Company : circa 1993 Background = group or band Origin = UK Genre = Cyberpunk Alternative rock Industrial music Alternative Years active = 1989 ndash;1995 Label =… … Wikipedia
terminal — 1. adjective 1) a terminal illness Syn: incurable, untreatable, inoperable; fatal, mortal, deadly; Medicine immedicable 2) terminal patients Syn: incurable, dying; near death, on one s deathbed, on one … Thesaurus of popular words
Перевод: с английского на русский
с русского на английский- С русского на:
- Английский
- С английского на:
- Все языки
- Испанский
- Итальянский
- Казахский
- Македонский
- Немецкий
- Нидерландский
- Норвежский
- Русский
- Украинский
- Французский