Перевод: со всех языков на английский

с английского на все языки

university+of+new+jersey+(

  • 1 University of New Jersey

    University: (proposed UNJ

    Универсальный русско-английский словарь > University of New Jersey

  • 2 University of New Jersey (proposed

    University: UNJ

    Универсальный русско-английский словарь > University of New Jersey (proposed

  • 3 FM-88.9, Drew University, Madison, New Jersey

    Radio: WMNJ

    Универсальный русско-английский словарь > FM-88.9, Drew University, Madison, New Jersey

  • 4 FM-89.7, Taylor University, Camden, New Jersey

    Radio: WTUR

    Универсальный русско-английский словарь > FM-89.7, Taylor University, Camden, New Jersey

  • 5 University of Medicine and Dentistry of New Jersey

    University: UMDNJ

    Универсальный русско-английский словарь > University of Medicine and Dentistry of New Jersey

  • 6 Rider University (New Jersey)

    Abbreviation: RU

    Универсальный русско-английский словарь > Rider University (New Jersey)

  • 7 FM-88.7, Rutgers University, New Brunswick, New Jersey

    Radio: WRSU

    Универсальный русско-английский словарь > FM-88.7, Rutgers University, New Brunswick, New Jersey

  • 8 Rider University

    Abbreviation: (New Jersey) RU

    Универсальный русско-английский словарь > Rider University

  • 9 Stevens, Robert Livingston

    SUBJECT AREA: Ports and shipping
    [br]
    b. 18 October 1787 Hoboken, New Jersey, USA
    d. 20 April 1856 Hoboken, New Jersey, USA
    [br]
    American engineer, pioneer of steamboats and railways.
    [br]
    R.L.Stevens was the son of John Stevens and was given the technical education his father lacked. He assisted his father with the Little Juliana and the Phoenix, managed the commercial operation of the Phoenix on the Delaware River, and subsequently built many other steamboats.
    In 1830 he and his brother Edwin A.Stevens obtained a charter from the New Jersey Legislature for the Camden \& Amboy Railroad \& Transportation Company, and he visited Britain to obtain rails and a locomotive. Railway track in the USA then normally comprised longitudinal timber rails with running surfaces of iron straps, but Stevens designed rails of flat-bottom section, which were to become standard, and had the first batch rolled in Wales. He also designed hookheaded spikes for them, and "iron tongues", which became fishplates. From Robert Stephenson \& Co. (see Robert Stephenson) he obtained the locomotive John Bull, which was similar to the Liverpool \& Manchester Railway's Samson. The Camden \& Amboy Railroad was opened in 1831, but John Bull, a 0–4–0, proved over sensitive to imperfections in the track; Stevens and his mechanic, Isaac Dripps, added a two-wheeled non-swivelling "pilot" at the front to guide it round curves. The locomotive survives at the Smithsonian Institution, Washington, DC.
    [br]
    Further Reading
    H.P.Spratt, 1958, The Birth of the Steamboat, Charles Griffin.
    J.H.White Jr, 1979, A History of the American Locomotive—Its Development: 1830– 1880, New York: Dover Publications Inc.
    J.F.Stover, 1961, American Railroads, Chicago: University of Chicago Press.
    PJGR

    Biographical history of technology > Stevens, Robert Livingston

  • 10 Jansky, Karl Guthe

    [br]
    b. 22 October 1905 Norman, Oklahoma, USA
    d. 14 February 1950 Red Bank, New Jersey, USA
    [br]
    American radio engineer who discovered stellar radio emission.
    [br]
    Following graduation from the University of Wisconsin in 1928 and a year of postgraduate study, Jansky joined Bell Telephone Laboratories in New Jersey with the task of establishing the source of interference to telephone communications by radio. To this end he constructed a linear-directional short-wave antenna and eventually, in 1931, he concluded that the interference actually came from the stars, the major source being the constellation Sagittarius in the direction of the centre of the Milky Way. Although he continued to study the propagation of short radio waves and the nature of observed echoes, it was left to others to develop the science of radioastronomy and to use the creation of echoes for radiolocation. Although he received no scientific award for his discovery, Jansky's name is primarily honoured by its use as the unit of stellar radio-emission strength.
    [br]
    Bibliography
    1935, "Directional studies of atmospherics at high frequencies", Proceedings of the Institute of Radio Engineers 23:1,158.
    1935, "A note on the sources of stellar interference", Proceedings of the Institute of Radio
    Engineers.
    1937, "Minimum noise levels obtained on short-wave radio receiving systems", Proceedings of the Institute of Radio Engineers 25:1,517.
    1941, "Measurements of the delay and direction of arrival of echoes from nearby short-wave transmitters", Proceedings of the Institute of Radio Engineers 29:322.
    Further Reading
    P.C.Mahon, 1975, BellLabs, Mission Communication. The Story of the Bell Labs.
    W.I.Sullivan (ed.), 1984, The Early Years of Radio-Astronomy: Reflections 50 Years after Jansky's Discovery, Cambridge: Cambridge University Press.
    KF

    Biographical history of technology > Jansky, Karl Guthe

  • 11 Stevens, John

    [br]
    b. 1749 New York, New York, USA
    d. 6 March 1838 Hoboken, New Jersey, USA
    [br]
    American pioneer of steamboats and railways.
    [br]
    Stevens, a wealthy landowner with an estate at Hoboken on the Hudson River, had his attention drawn to the steamboat of John Fitch in 1786, and thenceforth devoted much of his time and fortune to developing steamboats and mechanical transport. He also had political influence and it was at his instance that Congress in 1790 passed an Act establishing the first patent laws in the USA. The following year Stevens was one of the first recipients of a US patent. This referred to multi-tubular boilers, of both watertube and firetube types, and antedated by many years the work of both Henry Booth and Marc Seguin on the latter.
    A steamboat built in 1798 by John Stevens, Nicholas J.Roosevelt and Stevens's brother-in-law, Robert R.Livingston, in association was unsuccessful, nor was Stevens satisfied with a boat built in 1802 in which a simple rotary steam-en-gine was mounted on the same shaft as a screw propeller. However, although others had experimented earlier with screw propellers, when John Stevens had the Little Juliana built in 1804 he produced the first practical screw steamboat. Steam at 50 psi (3.5 kg/cm2) pressure was supplied by a watertube boiler to a single-cylinder engine which drove two contra-rotating shafts, upon each of which was mounted a screw propeller. This little boat, less than 25 ft (7.6 m) long, was taken backwards and forwards across the Hudson River by two of Stevens's sons, one of whom, R.L. Stevens, was to help his father with many subsequent experiments. The boat, however, was ahead of its time, and steamships were to be driven by paddle wheels until the late 1830s.
    In 1807 John Stevens declined an invitation to join with Robert Fulton and Robert R.Living-ston in their development work, which culminated in successful operation of the PS Clermont that summer; in 1808, however, he launched his own paddle steamer, the Phoenix. But Fulton and Livingston had obtained an effective monopoly of steamer operation on the Hudson and, unable to reach agreement with them, Stevens sent Phoenix to Philadelphia to operate on the Delaware River. The intervening voyage over 150 miles (240 km) of open sea made Phoenix the first ocean-going steamer.
    From about 1810 John Stevens turned his attention to the possibilities of railways. He was at first considered a visionary, but in 1815, at his instance, the New Jersey Assembly created a company to build a railway between the Delaware and Raritan Rivers. It was the first railway charter granted in the USA, although the line it authorized remained unbuilt. To demonstrate the feasibility of the steam locomotive, Stevens built an experimental locomotive in 1825, at the age of 76. With flangeless wheels, guide rollers and rack-and-pinion drive, it ran on a circular track at his Hoboken home; it was the first steam locomotive to be built in America.
    [br]
    Bibliography
    1812, Documents Tending to Prove the Superior Advantages of Rail-ways and Steam-carriages over Canal Navigation.
    He took out patents relating to steam-engines in the USA in 1791, 1803, and 1810, and in England, through his son John Cox Stevens, in 1805.
    Further Reading
    H.P.Spratt, 1958, The Birth of the Steamboat, Charles Griffin (provides technical details of Stevens's boats).
    J.T.Flexner, 1978, Steamboats Come True, Boston: Little, Brown (describes his work in relation to that of other steamboat pioneers).
    J.R.Stover, 1961, American Railroads, Chicago: University of Chicago Press.
    Transactions of the Newcomen Society (1927) 7: 114 (discusses tubular boilers).
    J.R.Day and B.G.Wilson, 1957, Unusual Railways, F.Muller (discusses Stevens's locomotive).
    PJGR

    Biographical history of technology > Stevens, John

  • 12 Vail, Alfred Lewis

    SUBJECT AREA: Telecommunications
    [br]
    b. 25 September 1807 Morristown, New Jersey, USA
    d. 18 January 1859 Morristown, New Jersey, USA
    [br]
    American telegraph pioneer and associate of Samuel Morse; widely credited with the invention of "Morse" code.
    [br]
    After leaving school, Vail was initially employed at his father's ironworks in Morristown, but he then decided to train for the Presbyterian ministry, graduating from New York City University in 1836. Unfortunately, he was then obliged to abandon his chosen career because of ill health. He accidentally met Samuel Morse not long afterwards, and he became interested in the latter's telegraph experiments; in return for a share of the rights, he agreed to construct apparatus and finance the filing of US and foreign patents. Working in Morristown with Morse and Leonard Gale, and with financial backing from his father, Vail constructed around his father's plant a telegraph with 3 miles (4.8 km) of wire. It is also possible that he, rather than Morse, was largely responsible for devising the so-called Morse code, a series of dot and dash codes representing the letters of the alphabet, and in which the simplest codes were chosen for those letters found to be most numerous in a case of printer's type. This system was first demonstrated on 6 January 1838 and there were subsequent public demonstrations in New York and Philadelphia. Eventually Congress authorized an above-ground line between Washington and Baltimore, and on 24 May 1844 the epoch-making message "What hath God wrought?" was transmitted.
    Vail remained with Morse for a further four years, but he gradually lost interest in telegraphy and resigned, receiving no credit for his important contribution.
    [br]
    Bibliography
    The Magnetic Telegraph.
    Further Reading
    J.J.Fahie, 1884, A History of the Electric Telegraph to the Year 1837, London: E\&F Spon.
    KF

    Biographical history of technology > Vail, Alfred Lewis

  • 13 Zworykin, Vladimir Kosma

    [br]
    b. 30 July 1889 Mourum (near Moscow), Russia
    d. 29 July 1982 New York City, New York, USA
    [br]
    Russian (naturalized American 1924) television pioneer who invented the iconoscope and kinescope television camera and display tubes.
    [br]
    Zworykin studied engineering at the Institute of Technology in St Petersburg under Boris Rosing, assisting the latter with his early experiments with television. After graduating in 1912, he spent a time doing X-ray research at the Collège de France in Paris before returning to join the Russian Marconi Company, initially in St Petersburg and then in Moscow. On the outbreak of war in 1917, he joined the Russian Army Signal Corps, but when the war ended in the chaos of the Revolution he set off on his travels, ending up in the USA, where he joined the Westinghouse Corporation. There, in 1923, he filed the first of many patents for a complete system of electronic television, including one for an all-electronic scanning pick-up tube that he called the iconoscope. In 1924 he became a US citizen and invented the kinescope, a hard-vacuum cathode ray tube (CRT) for the display of television pictures, and the following year he patented a camera tube with a mosaic of photoelectric elements and gave a demonstration of still-picture TV. In 1926 he was awarded a PhD by the University of Pittsburgh and in 1928 he was granted a patent for a colour TV system.
    In 1929 he embarked on a tour of Europe to study TV developments; on his return he joined the Radio Corporation of America (RCA) as Director of the Electronics Research Group, first at Camden and then Princeton, New Jersey. Securing a budget to develop an improved CRT picture tube, he soon produced a kinescope with a hard vacuum, an indirectly heated cathode, a signal-modulation grid and electrostatic focusing. In 1933 an improved iconoscope camera tube was produced, and under his direction RCA went on to produce other improved types of camera tube, including the image iconoscope, the orthicon and image orthicon and the vidicon. The secondary-emission effect used in many of these tubes was also used in a scintillation radiation counter. In 1941 he was responsible for the development of the first industrial electron microscope, but for most of the Second World War he directed work concerned with radar, aircraft fire-control and TV-guided missiles.
    After the war he worked for a time on high-speed memories and medical electronics, becoming Vice-President and Technical Consultant in 1947. He "retired" from RCA and was made an honorary vice-president in 1954, but he retained an office and continued to work there almost up until his death; he also served as Director of the Rockefeller Institute for Medical Research from 1954 until 1962.
    [br]
    Principal Honours and Distinctions
    Zworykin received some twenty-seven awards and honours for his contributions to television engineering and medical electronics, including the Institution of Electrical Engineers Faraday Medal 1965; US Medal of Science 1966; and the US National Hall of Fame 1977.
    Bibliography
    29 December 1923, US patent no. 2,141, 059 (the original iconoscope patent; finally granted in December 1938!).
    13 July 1925, US patent no. 1,691, 324 (colour television system).
    1930, with D.E.Wilson, Photocells and Their Applications, New York: Wiley. 1934, "The iconoscope. A modern version of the electric eye". Proceedings of the
    Institute of Radio Engineers 22:16.
    1946, Electron Optics and the Electron Microscope.
    1940, with G.A.Morton, Television; revised 1954.
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: History of the Television Industry 1925– 41: University of Alabama Press.
    KF

    Biographical history of technology > Zworykin, Vladimir Kosma

  • 14 Fessenden, Reginald Aubrey

    [br]
    b. 6 October 1866 East Bolton, Quebec, Canada
    d. 22 July 1932 Bermuda
    [br]
    Canadian radio pioneer who made the first known broadcast of speech and music.
    [br]
    After initial education at Trinity College School, Port Hope, Ontario, Fessenden studied at Bishops University, Lennoxville, Quebec. When he graduated in 1885, he became Principal of the Whitney Institute in Bermuda, but he left the following year to go to New York in pursuit of his scientific interests. There he met Edison and eventually became Chief Chemist at the latter's Laboratory in Orange, New Jersey. In 1890 he moved to the Westinghouse Electric and Manufacturing Company, and two years later he returned to an academic career as Professor of Electrical Engineering, initially at Purdue University, Lafayette, Indiana, and then at the Western University of Pennsylvania, where he worked on wireless communication. From 1900 to 1902 he carried out experiments in wireless telegraphy at the US Weather Bureau, filing several patents relating to wire and liquid thermal detectors, or barretters. Following this he set up the National Electric Signalling Company; under his direction, Alexanderson and other engineers at the General Electric Company developed a high-frequency alternator that enabled him to build the first radiotelephony transmitter at Brant Rock, Massachusetts. This made its initial broadcast of speech and music on 24 December 1906, received by ship's wireless operators several hundred miles away. Soon after this the transmitter was successfully used for two-way wireless telegraphy communication with Scotland. Following this landmark event, Fessenden produced numerous inventions, including a radio compass, an acoustic depth-finder and several submarine signalling devices, a turboelectric drive for battleships and, notably, in 1912 the heterodyne principle used in radio receivers to convert signals to a lower (intermediate) frequency.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Medal of Honour 1921.
    Bibliography
    US patents relating to barretters include nos. 706,740, 706,742 and 706,744 (wire, 1902) and 731,029 (liquid, 1903). His invention of the heterodyne was filed as US patent no. 1,050,441 (1913).
    Further Reading
    Helen M.Fessenden, 1940, Fessenden. Builder of Tomorrow. E.Hawkes, 1927, Pioneers of Wireless, London: Methuen. O.E.Dunlop, 1944, Radio's 100 Men of Science.
    KF

    Biographical history of technology > Fessenden, Reginald Aubrey

  • 15 Pierce, John Robinson

    [br]
    b. 27 March 1910 Des Moines, Iowa, USA
    [br]
    American scientist and communications engineer said to be the "father" of communication satellites.
    [br]
    From his high-school days, Pierce showed an interest in science and in science fiction, writing under the pseudonym of J.J.Coupling. After gaining Bachelor's, Master's and PhD degrees at the California Institute of Technology (CalTech) in Pasadena in 1933, 1934 and 1936, respectively, Pierce joined the Bell Telephone Laboratories in New York City in 1936. There he worked on improvements to the travelling-wave tube, in which the passage of a beam of electrons through a helical transmission line at around 7 per cent of the speed of light was made to provide amplification at 860 MHz. He also devised a new form of electrostatically focused electron-multiplier which formed the basis of a sensitive detector of radiation. However, his main contribution to electronics at this time was the invention of the Pierce electron gun—a method of producing a high-density electron beam. In the Second World War he worked with McNally and Shepherd on the development of a low-voltage reflex klystron oscillator that was applied to military radar equipment.
    In 1952 he became Director of Electronic Research at the Bell Laboratories' establishment, Murray Hill, New Jersey. Within two years he had begun work on the possibility of round-the-world relay of signals by means of communication satellites, an idea anticipated in his early science-fiction writings (and by Arthur C. Clarke in 1945), and in 1955 he published a paper in which he examined various possibilities for communications satellites, including passive and active satellites in synchronous and non-synchronous orbits. In 1960 he used the National Aeronautics and Space Administration 30 m (98 1/2 ft) diameter, aluminium-coated Echo 1 balloon satellite to reflect telephone signals back to earth. The success of this led to the launching in 1962 of the first active relay satellite (Telstar), which weighed 170 lb (77 kg) and contained solar-powered rechargeable batteries, 1,000 transistors and a travelling-wave tube capable of amplifying the signal 10,000 times. With a maximum orbital height of 3,500 miles (5,600 km), this enabled a variety of signals, including full bandwidth television, to be relayed from the USA to large receiving dishes in Europe.
    From 1971 until his "retirement" in 1979, Pierce was Professor of Electrical Engineering at CalTech, after which he became Chief Technologist at the Jet Propulsion Laboratories, also in Pasadena, and Emeritus Professor of Engineering at Stanford University.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Morris N.Liebmann Memorial Award 1947; Edison Medal 1963; Medal of Honour 1975. Franklin Institute Stuart Ballantine Award 1960. National Medal of Science 1963. Danish Academy of Science Valdemar Poulsen Medal 1963. Marconi Award 1974. National Academy of Engineering Founders Award 1977. Japan Prize 1985. Arthur C.Clarke Award 1987. Honorary DEng Newark College of Engineering 1961. Honorary DSc Northwest University 1961, Yale 1963, Brooklyn Polytechnic Institute 1963. Editor, Proceedings of the Institute of Radio Engineers 1954–5.
    Bibliography
    23 October 1956, US patent no. 2,768,328 (his development of the travelling-wave tube, filed on 5 November 1946).
    1947, with L.M.Field, "Travelling wave tubes", Proceedings of the Institute of Radio
    Engineers 35:108 (describes the pioneering improvements to the travelling-wave tube). 1947, "Theory of the beam-type travelling wave tube", Proceedings of the Institution of
    Radio Engineers 35:111. 1950, Travelling Wave Tubes.
    1956, Electronic Waves and Messages. 1962, Symbols, Signals and Noise.
    1981, An Introduction to Information Theory: Symbols, Signals and Noise: Dover Publications.
    1990, with M.A.Knoll, Signals: Revolution in Electronic Communication: W.H.Freeman.
    KF

    Biographical history of technology > Pierce, John Robinson

  • 16 Goldstine, Herman H.

    [br]
    b. 13 September 1913 USA
    [br]
    American mathematician largely responsible for the development of ENIAC, an early electronic computer.
    [br]
    Goldstine studied mathematics at the University of Chicago, Illinois, gaining his PhD in 1936. After teaching mathematics there, he moved to a similar position at the University of Michigan in 1939, becoming an assistant professor. After the USA entered the Second World War, in 1942 he joined the army as a lieutenant in the Ballistic Missile Research Laboratory at the Aberdeen Proving Ground in Maryland. He was then assigned to the Moore School of Engineering at the University of Pennsylvania, where he was involved with Arthur Burks in building the valve-based Electronic Numerical Integrator and Computer (ENIAC) to compute ballistic tables. The machine was completed in 1946, but prior to this Goldstine had met John von Neumann of the Institute for Advanced Studies (IAS) at Princeton, New Jersey, and active collaboration between them had already begun. After the war he joined von Neumann as Assistant Director of the Computer Project at the Institute of Advanced Studies, Princeton, becoming its Director in 1954. There he developed the idea of computer-flow diagrams and, with von Neumann, built the first computer to use a magnetic drum for data storage. In 1958 he joined IBM as Director of the Mathematical Sciences Department, becoming Director of Development at the IBM Data Processing Headquarters in 1965. Two years later he became a Research Consultant, and in 1969 he became an IBM Research Fellow.
    [br]
    Principal Honours and Distinctions
    Goldstine's many awards include three honorary degrees for his contributions to the development of computers.
    Bibliography
    1946, with A.Goldstine, "The Electronic Numerical Integrator and Computer (ENIAC)", Mathematical Tables and Other Aids to Computation 2:97 (describes the work on ENIAC).
    1946, with A.W.Burks and J.von Neumann, "Preliminary discussions of the logical design of an electronic computing instrument", Princeton Institute for Advanced Studies.
    1972, The Computer from Pascal to von Neumann, Princeton University Press.
    1977, "A brief history of the computer", Proceedings of the American Physical Society 121:339.
    Further Reading
    M.Campbell-Kelly \& M.R.Williams (eds), 1985, The Moore School Lectures (1946), Charles Babbage Institute Report Series for the History of Computing, Vol 9. M.R.Williams, 1985, History of Computing Technology, London: Prentice-Hall.
    KF

    Biographical history of technology > Goldstine, Herman H.

  • 17 Monell, Ambrose

    SUBJECT AREA: Metallurgy
    [br]
    b. 1874 New York, USA
    d. 2 May 1921 Beacon, New York, USA
    [br]
    American metallurgist who gave his name to a successful nickel-copper alloy.
    [br]
    After graduating from Columbia University in 1896. Monell became a metallurgical engineer to the Carnegie Steel Company, rising in six years to be Assistant to the President. In 1900, while Manager of the company's open-hearth steelworks at Pittsburg, he patented a procedure for making high-carbon steel in basic conditions on the hearth of a fixed/stationary furnace; the method was intended to refine pig-iron containing substantial proportions of phosphorus and to do so relatively quickly. The process was introduced at the Homestead Works of the Carnegie Steel Company in February 1900, where it continued in use for some years. In April 1902 Monell was among those who launched the International Nickel Company of New Jersey in order to bring together a number of existing nickel interests; he became the new company's President. In 1904–5, members of the company's metallurgical staff produced an alloy of about 70 parts nickel and 30 copper which seemed to show great commercial promise on account of its high resistance to corrosion and its good appearance. Monell agreed to the suggestion that the new alloy should be given his name; for commercial reasons it was marketed as "Monel metal". In 1917, following the entry of the USA into the First World War, Monell was commissioned Colonel in the US Army (Aviation) for overseas service, relinquishing his presidency of the International Nickel Company but remaining as a director. At the time of his death he was also a director in several other companies in the USA.
    [br]
    Bibliography
    1900, British patent no. 5506 (taken out by O. Imray on behalf of Monell).
    Monell insinuated an account of his steel-making procedure at a meeting of the Iron and Steel Institute held in London and reported in The Journal of the Iron and Steel
    Institute (1900) 1:71–80; some of the comments made by other speakers, particularly B.Talbot, were adverse. The following year (1901) Monell produced a general historical review: "A summary of development in open-hearth steel", Iron Trade
    Review 14(14 November):39–47.
    Further Reading
    A.J.Wadhams, 1931, "The story of the nickel industry", Metals and Alloys 2(3):166–75 (mentions Monell among many others, and includes a portrait (p. 170)).
    JKA

    Biographical history of technology > Monell, Ambrose

  • 18 Allen, Horatio

    [br]
    b. 10 May 1802 Schenectady, New York, USA
    d. 1 January 1890 South Orange, New Jersey, USA
    [br]
    American engineer, pioneer of steam locomotives.
    [br]
    Allen was the Resident Engineer for construction of the Delaware \& Hudson Canal and in 1828 was instructed by J.B. Jervis to visit England to purchase locomotives for the canal's rail extension. He drove the locomotive Stourbridge Lion, built by J.U. Rastrick, on its first trial on 9 August 1829, but weak track prevented its regular use.
    Allen was present at the Rainhill Trials on the Liverpool \& Manchester Railway in October 1829. So was E.L.Miller, one of the promoters of the South Carolina Canal \& Rail Road Company, to which Allen was appointed Chief Engineer that autumn. Allen was influential in introducing locomotives to this railway, and the West Point Foundry built a locomotive for it to his design; it was the first locomotive built in the USA for sale. This locomotive, which bore some resemblance to Novelty, built for Rainhill by John Braithwaite and John Ericsson, was named Best Friend of Charleston. On Christmas Day 1830 it hauled the first scheduled steam train to run in America, carrying 141 passengers.
    In 1832 the West Point Foundry built four double-ended, articulated 2–2–0+0–2–2 locomotives to Horatio Allen's design for the South Carolina railroad. From each end of a central firebox extended two boiler barrels side by side with common smokeboxes and chimneys; wheels were mounted on swivelling sub-frames, one at each end, beneath these boilers. Allen's principal object was to produce a powerful locomotive with a light axle loading.
    Allen subsequently became a partner in Stillman, Allen \& Co. of New York, builders of marine engines, and in 1843 was President of the Erie Railroad.
    [br]
    Further Reading
    J.Marshall, 1978, A Biographical Dictionary of Railway Engineers, Newton Abbot: David \& Charles.
    Dictionary of American Biography.
    R.E.Carlson, 1969, The Liverpool \& Manchester Railway Project 1821–1831, Newton Abbot: David \& Charles.
    J.F.Stover, 1961, American Railroads, Chicago: University of Chicago Press.
    J.H.White Jr, 1994, "Old debts and new visions", in Common Roots—Separate Branches, London: Science Museum, 79–82.
    PJGR

    Biographical history of technology > Allen, Horatio

  • 19 Colpitts, Edwin Henry

    [br]
    b. 9 January 1872 Pointe de Bute, Canada
    d. 6 March 1949 Orange, New Jersey, USA
    [br]
    Canadian physicist and electrical engineer responsible for important developments in electronic-circuit technology.
    [br]
    Colpitts obtained Bachelor's degrees at Mount Allison University, Sackville, New Brunswick, and Harvard in 1894 and 1896, respectively, followed by a Master's degree at Harvard in 1897. After two years as assistant to the professor of physics there, he joined the American Bell Telephone Company. When the Bell Company was reorganized in 1907, he moved to the Western Electric branch of the company in New York as Head of the Physical Laboratories. In 1911 he became a director of the Research Laboratories, and in 1917 he became Assistant Chief Engineer of the company. During this time he invented both the push-pull amplifier and the Colpitts oscillator, both major developments in communications. In 1917, during the First World War, he spent some time in France helping to set up the US Signal Corps Research Laboratories. Afterwards he continued to do much, both technically and as a manager, to place telephone communications on a firm scientific basis, retiring as Vice-President of the Bell Telephone Laboratories in 1937. With the outbreak of the Second World War in 1941 he was recalled from retirement and appointed Director of the Engineering Foundation to work on submarine warfare techniques, particularly echo-ranging.
    [br]
    Principal Honours and Distinctions
    Order of the Rising Sun, Japan, 1938. US Medal of Merit 1948.
    Bibliography
    1919, with E.B.Craft, "Radio telephony", Proceedings of the American Institution of Electrical Engineers 38:337.
    1921, with O.B.Blackwell, "Carrier current telephony and telegraphy", American Institute of Electrical Engineers Transactions 40:205.
    11 September 1915, US reissue patent no. 15,538 (control device for radio signalling).
    28 August 1922, US patent no. 1,479,638 (multiple signal reception).
    Further Reading
    M.D.Fagen, 1975, A History of Engineering \& Science in the Bell System, Vol. 1, Bell Laboratories.
    KF

    Biographical history of technology > Colpitts, Edwin Henry

  • 20 Hartley, Ralph V.L.

    [br]
    b. 1889 USA
    d. 1 May 1970 Summit, New Jersey, USA
    [br]
    American engineer who made contributions to radio communications.
    [br]
    Hartley obtained his BA in 1909 from the University of Utah, then gained a Rhodes Scholarship to Oxford University, England. After obtaining a further BA and a BSc in 1912 and 1913, respectively, he returned to the USA and took a job with the Western Electric Laboratories of the Bell Telephone Company, where he was in charge of radio-receiver development. In 1915 he invented the Hartley oscillator, analogous to that invented by Colpitts. Subsequently he worked on carrier telephony at Western Electric and then at Bell Laboratories. There he concen-trated on information theory, building on the pioneering work of Nyquist, in 1926 publishing his law that related information capacity, frequency bandwidth and time. Forced to give up work in 1929 due to ill health, he returned to Bell in 1939 as a consultant on transmission problems. During the Second World War he worked on various projects, including the use of servo-mechanisms for radar and fire control, and finally retired in 1950.
    [br]
    Principal Honours and Distinctions
    Institution of Electrical and Electronics Enginners Medal of Honour 1946.
    Bibliography
    29 May 1918, US patent no. 1,592,934 (plate modulator).
    29 September 1919, US patent no. 1,419,562 (balanced modulator or detector). 1922, with T.C.Fry, "Binaural location of complex sounds", Bell Systems Technical
    Journal (November).
    1923, "Relation of carrier and sidebands in radio transmission", Proceedings of the Institute of Radio Engineers 11:34.
    1924, "The transmission unit", Electrical Communications 3:34.
    1926, "Transmission limits of telephone lines", Bell Laboratories Record 1:225. 1928, "Transmission of information", Bell Systems Technical Journal (July).
    1928, "“TU” becomes Decibel", Bell Laboratories Record 7:137.
    1936, "Oscillations in systems with non-linear reactance", Bell System Technology Journal 15: 424.
    Further Reading
    M.D.Fagen (ed.), 1975, A History of Engineering \& Science in the Bell System, Vol. 1: Bell Laboratories.
    KF

    Biographical history of technology > Hartley, Ralph V.L.

См. также в других словарях:

  • Rutgers, The State University of New Jersey — ▪ university system, New Jersey, United States       coeducational state institution of higher learning in New Jersey, U.S. Rutgers was founded as private Queens College by the Dutch Reformed Church in 1766. The college struggled to survive in… …   Universalium

  • New Brunswick, New Jersey — New Brunswick   City   City of New Brunswick …   Wikipedia

  • New Jersey Institute of Technology — Established 1881 Type Public, research university Endowment $67.5 million …   Wikipedia

  • New Jersey City University — Motto Ineamus Ad Disendum Exeamus Ad Merendum Enter to Learn, Exit to Serve Established 1929 Type Public …   Wikipedia

  • University of Medicine and Dentistry of New Jersey — Established 1970 Type Public Endowment $183 million …   Wikipedia

  • New-Jersey — State of New Jersey …   Wikipédia en Français

  • New jersey — State of New Jersey …   Wikipédia en Français

  • New Jersey — New Jerseyite /jerr zee uyt /, New Jerseyan. a state in the E United States, on the Atlantic coast. 7,364,158; 7836 sq. mi. (20,295 sq. km). Cap.: Trenton. Abbr.: NJ (for use with zip code), N.J. * * * State (pop., 2000: 8,414,350), eastern U.S.… …   Universalium

  • New Jersey Athletic Conference — (NJAC) Established 1985 Association NCAA …   Wikipedia

  • New Jersey Folk Festival — Festival on April 27, 2007 Date(s) Last Saturday in April, rain or shine Begins 10 am Ends 6 pm …   Wikipedia

  • New Providence, New Jersey —   Borough   Map of New Providence in Union County. Inset: Location of Union County in New Jersey …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»