Перевод: с английского на все языки

со всех языков на английский

to+the+end+or+june

  • 61 Bacon, Francis Thomas

    SUBJECT AREA: Aerospace
    [br]
    b. 21 December 1904 Billericay, England
    d. 24 May 1992 Little Shelford, Cambridge, England
    [br]
    English mechanical engineer, a pioneer in the modern phase of fuel-cell development.
    [br]
    After receiving his education at Eton and Trinity College, Cambridge, Bacon served with C.A. Parsons at Newcastle upon Tyne from 1925 to 1940. From 1946 to 1956 he carried out research on Hydrox fuel cells at Cambridge University and was a consultant on fuel-cell design to a number of organizations throughout the rest of his life.
    Sir William Grove was the first to observe that when oxygen and hydrogen were supplied to platinum electrodes immersed in sulphuric acid a current was produced in an external circuit, but he did not envisage this as a practical source of electrical energy. In the 1930s Bacon started work to develop a hydrogen-oxygen fuel cell that operated at moderate temperatures and pressures using an alkaline electrolyte. In 1940 he was appointed to a post at King's College, London, and there, with the support of the Admiralty, he started full-time experimental work on fuel cells. His brief was to produce a power source for the propulsion of submarines. The following year he was posted as a temporary experimental officer to the Anti-Submarine Experimental Establishment at Fairlie, Ayrshire, and he remained there until the end of the Second World War.
    In 1946 he joined the Department of Chemical Engineering at Cambridge, receiving a small amount of money from the Electrical Research Association. Backing came six years later from the National Research and Development Corporation (NRDC), the development of the fuel cell being transferred to Marshalls of Cambridge, where Bacon was appointed Consultant.
    By 1959, after almost twenty years of individual effort, he was able to demonstrate a 6 kW (8 hp) power unit capable of driving a small truck. Bacon appreciated that when substantial power was required over long periods the hydrogen-oxygen fuel cell associated with high-pressure gas storage would be more compact than conventional secondary batteries.
    The development of the fuel-cell system pioneered by Bacon was stimulated by a particular need for a compact, lightweight source of power in the United States space programme. Electro-chemical generators using hydrogen-oxygen cells were chosen to provide the main supplies on the Apollo spacecraft for landing on the surface of the moon in 1969. An added advantage of the cells was that they simultaneously provided water. NRDC was largely responsible for the forma-tion of Energy Conversion Ltd, a company that was set up to exploit Bacon's patents and to manufacture fuel cells, and which was supported by British Ropes Ltd, British Petroleum and Guest, Keen \& Nettlefold Ltd at Basingstoke. Bacon was their full-time consultant. In 1971 Energy Conversion's operation was moved to the UK Atomic Energy Research Establishment at Harwell, as Fuel Cells Ltd. Bacon remained with them until he retired in 1973.
    [br]
    Principal Honours and Distinctions
    OBE 1967. FRS 1972. Royal Society S.G. Brown Medal 1965. Royal Aeronautical Society British Silver Medal 1969.
    Bibliography
    27 February 1952, British patent no. 667,298 (hydrogen-oxygen fuel cell). 1963, contribution in W.Mitchell (ed.), Fuel Cells, New York, pp. 130–92.
    1965, contribution in B.S.Baker (ed.), Hydrocarbon Fuel Cell Technology, New York, pp. 1–7.
    Further Reading
    Obituary, 1992, Daily Telegraph (8 June).
    A.McDougal, 1976, Fuel Cells, London (makes an acknowledgement of Bacon's contribution to the design and application of fuel cells).
    D.P.Gregory, 1972, Fuel Cells, London (a concise introduction to fuel-cell technology).
    GW

    Biographical history of technology > Bacon, Francis Thomas

  • 62 Boeing, William Edward

    SUBJECT AREA: Aerospace
    [br]
    b. 1 October 1881 Detroit, Michigan, USA
    d. 28 September 1956 USA
    [br]
    American aircraft designer, creator of one of the most successful aircraft manufacturing companies in the world.
    [br]
    In 1915 William E.Boeing and his friend Commander Conrad Westervelt decided that they could improve on the aeroplanes then being produced in the United States. Boeing was a prominent Seattle businessman with interests in land and timber, while Westervelt was an officer in the US Navy. They bought a Martin Model T float-plane in order to gain some experience and then produced their own design, the B \& W, which first flew in June 1916. Westervelt was transferred to the East, leaving Boeing to continue the production of the B \& W floatplanes, for which purpose he set up the Pacific Aero Products Company. On 26 April 1917 this became the Boeing Airplane Company, which prospered following the US involvement in the First World War.
    In March 1919 Boeing and Edward Hubbard inaugurated the world's first international airmail service between Seattle and Vancouver, British Columbia, Canada. The Boeing Company then had to face the slump in aircraft manufacturing after the war: they survived, and by 1922 they had started producing a successful series of fighters while continuing to develop their flying-boat and floatplane designs. Boeing set up the Boeing Air Transport Corporation to tender for lucrative airmail contracts and then produced aircraft which could out-perform those of his rivals. The company went from strength to strength and by the end of the 1920s a huge conglomerate had been built up: the United Aircraft and Transport Corporation. They produced an advanced high-speed monoplane mailplane, the model 200 Monomail in 1930, which saw the birth of a new era of Boeing designs.
    The Wall Street crash of 1929 and legislation in 1934, which banned any company from both building aeroplanes and running an airline, were setbacks which the Boeing Airplane Company overcame, moving ahead to become world leaders. William E.Boeing decided that it was time he retired, but he returned to work during the Second World War.
    [br]
    Principal Honours and Distinctions
    Guggenheim Medal 1934.
    Further Reading
    C.Chant, 1982, Boeing: The World's Greatest Planemakers, Hadley Wood, England (describes William E.Boeing's part in the founding and building up of the Boeing Company).
    P.M.Bowers, 1990, Boeing Aircraft since 1916, 3rd edn, London (covers Boeing's aircraft).
    Boeing Company, 1977, Pedigree of Champions: Boeing since 1916, Seattle.
    JDS

    Biographical history of technology > Boeing, William Edward

  • 63 Braun, Wernher Manfred von

    [br]
    b. 23 March 1912 Wirsitz, Germany
    d. 16 June 1977 Alexandria, Virginia, USA
    [br]
    German pioneer in rocket development.
    [br]
    Von Braun's mother was an amateur astronomer who introduced him to the futuristic books of Jules Verne and H.G.Wells and gave him an astronomical telescope. He was a rather slack and undisciplined schoolboy until he came across Herman Oberth's book By Rocket to Interplanetary Space. He discovered that he required a good deal of mathematics to follow this exhilarating subject and immediately became an enthusiastic student.
    The Head of the Ballistics and Armaments branch of the German Army, Professor Karl Becker, had asked the engineer Walter Dornberger to develop a solid-fuel rocket system for short-range attack, and one using liquid-fuel rockets to carry bigger loads of explosives beyond the range of any known gun. Von Braun joined the Verein für Raumschiffsfahrt (the German Space Society) as a young man and soon became a leading member. He was asked by Rudolf Nebel, VfR's chief, to persuade the army of the value of rockets as weapons. Von Braun wisely avoided all mention of the possibility of space flight and some financial backing was assured. Dornberger in 1932 built a small test stand for liquid-fuel rockets and von Braun built a small rocket to test it; the success of this trial won over Dornberger to space rocketry.
    Initially research was carried out at Kummersdorf, a suburb of Berlin, but it was decided that this was not a suitable site. Von Braun recalled holidays as a boy at a resort on the Baltic, Peenemünde, which was ideally suited to rocket testing. Work started there but was not completed until August 1939, when the group of eighty engineers and scientists moved in. A great fillip to rocket research was received when Hitler was shown a film and was persuaded of the efficacy of rockets as weapons of war. A factory was set up in excavated tunnels at Mittelwerk in the Harz mountains. Around 6,000 "vengeance" weapons were built, some 3,000 of which were fired on targets in Britain and 2,000 of which were still in storage at the end of the Second World War.
    Peenemünde was taken by the Russians on 5 May 1945, but by then von Braun was lodging with many of his colleagues at an inn, Haus Ingeburg, near Oberjoch. They gave themselves up to the Americans, and von Braun presented a "prospectus" to the Americans, pointing out how useful the German rocket team could be. In "Operation Paperclip" some 100 of the team were moved to the United States, together with tons of drawings and a number of rocket missiles. Von Braun worked from 1946 at the White Sands Proving Ground, New Mexico, and in 1950 moved to Redstone Arsenal, Huntsville, Alabama. In 1953 he produced the Redstone missile, in effect a V2 adapted to carry a nuclear warhead a distance of 320 km (199 miles). The National Aeronautics and Space Administration (NASA) was formed in 1958 and recruited von Braun and his team. He was responsible for the design of the Redstone launch vehicles which launched the first US satellite, Explorer 1, in 1958, and the Mercury capsules of the US manned spaceflight programme which carried Alan Shepard briefly into space in 1961 and John Glenn into earth orbit in 1962. He was also responsible for the Saturn series of large, staged launch vehicles, which culminated in the Saturn V rocket which launched the Apollo missions taking US astronauts for the first human landing on the moon in 1969. Von Braun announced his resignation from NASA in 1972 and died five years later.
    [br]
    Bibliography
    Further Reading
    P.Marsh, 1985, The Space Business, Penguin. J.Trux, 1985, The Space Race, New English Library. T.Osman, 1983, Space History, Michael Joseph.
    IMcN

    Biographical history of technology > Braun, Wernher Manfred von

  • 64 Crompton, Samuel

    SUBJECT AREA: Textiles
    [br]
    b. 3 December 1753 Firwood, near Bolton, Lancashire, England
    d. 26 June 1827 Bolton, Lancashire, England
    [br]
    English inventor of the spinning mule.
    [br]
    Samuel Crompton was the son of a tenant farmer, George, who became the caretaker of the old house Hall-i-th-Wood, near Bolton, where he died in 1759. As a boy, Samuel helped his widowed mother in various tasks at home, including weaving. He liked music and made his own violin, with which he later was to earn some money to pay for tools for building his spinning mule. He was set to work at spinning and so in 1769 became familiar with the spinning jenny designed by James Hargreaves; he soon noticed the poor quality of the yarn produced and its tendency to break. Crompton became so exasperated with the jenny that in 1772 he decided to improve it. After seven years' work, in 1779 he produced his famous spinning "mule". He built the first one entirely by himself, principally from wood. He adapted rollers similar to those already patented by Arkwright for drawing out the cotton rovings, but it seems that he did not know of Arkwright's invention. The rollers were placed at the back of the mule and paid out the fibres to the spindles, which were mounted on a moving carriage that was drawn away from the rollers as the yarn was paid out. The spindles were rotated to put in twist. At the end of the draw, or shortly before, the rollers were stopped but the spindles continued to rotate. This not only twisted the yarn further, but slightly stretched it and so helped to even out any irregularities; it was this feature that gave the mule yarn extra quality. Then, after the spindles had been turned backwards to unwind the yarn from their tips, they were rotated in the spinning direction again and the yarn was wound on as the carriage was pushed up to the rollers.
    The mule was a very versatile machine, making it possible to spin almost every type of yarn. In fact, Samuel Crompton was soon producing yarn of a much finer quality than had ever been spun in Bolton, and people attempted to break into Hall-i-th-Wood to see how he produced it. Crompton did not patent his invention, perhaps because it consisted basically of the essential features of the earlier machines of Hargreaves and Arkwright, or perhaps through lack of funds. Under promise of a generous subscription, he disclosed his invention to the spinning industry, but was shabbily treated because most of the promised money was never paid. Crompton's first mule had forty-eight spindles, but it did not long remain in its original form for many people started to make improvements to it. The mule soon became more popular than Arkwright's waterframe because it could spin such fine yarn, which enabled weavers to produce the best muslin cloth, rivalling that woven in India and leading to an enormous expansion in the British cotton-textile industry. Crompton eventually saved enough capital to set up as a manufacturer himself and around 1784 he experimented with an improved carding engine, although he was not successful. In 1800, local manufacturers raised a sum of £500 for him, and eventually in 1812 he received a government grant of £5,000, but this was trifling in relation to the immense financial benefits his invention had conferred on the industry, to say nothing of his expenses. When Crompton was seeking evidence in 1811 to support his claim for financial assistance, he found that there were 4,209,570 mule spindles compared with 155,880 jenny and 310,516 waterframe spindles. He later set up as a bleacher and again as a cotton manufacturer, but only the gift of a small annuity by his friends saved him from dying in total poverty.
    [br]
    Further Reading
    H.C.Cameron, 1951, Samuel Crompton, Inventor of the Spinning Mule, London (a rather discursive biography).
    Dobson \& Barlow Ltd, 1927, Samuel Crompton, the Inventor of the Spinning Mule, Bolton.
    G.J.French, 1859, The Life and Times of Samuel Crompton, Inventor of the Spinning Machine Called the Mule, London.
    The invention of the mule is fully described in H. Gatling, 1970, The Spinning Mule, Newton Abbot; W.English, 1969, The Textile Industry, London; R.L.Hills, 1970, Power in the Industrial Revolution, Manchester.
    C.Singer (ed.), 1958, A History of Technology, Vol. IV, Oxford: Clarendon Press (provides a brief account).
    RLH

    Biographical history of technology > Crompton, Samuel

  • 65 Fife, William

    SUBJECT AREA: Ports and shipping
    [br]
    b. 15 June 1857 Fairlie, Scotland
    d. 11 August 1944 Fairlie, Scotland
    [br]
    Scottish naval architect and designer of sailing yachts of legendary beauty and performance.
    [br]
    Following his education at Brisbane Academy in Largs, William Fife (the third generation of the name) became apprenticed at the age of 14 to the already famous yacht-building yard owned by his family at Fairlie in Ayrshire. On completion of his apprenticeship, he joined the Paisley shipbuilders John Fullerton \& Co. to gain experience in iron shipbuilding before going on as Manager to the Marquis of Ailsa's Culzean Steam Launch and Yacht Works. Initially the works was sited below the famous castle at Culzean, but some years later it moved a few miles along the Ayrshire Coast to Maidens. The Culzean Company was wound up in 1887 and Fife then returned to the family yard, where he remained for the rest of his working life. Many outstanding yachts were the product of his hours on the drawing board, including auxiliary sailing cruisers, motor yachts and well-known racing craft. The most outstanding designs were for two of Sir Thomas Lipton's challengers for the America's Cup: Shamrock I and Shamrock III. The latter yacht was tested at the Ship Model Experiment Tank owned by Denny of Dumbarton before being built at their Leven Shipyard in 1903. Shamrock III may have been one of the earliest America's Cup yachts to have been designed with a high level of scientific input. The hull construction was unusual for the early years of the twentieth century, being of alloy steel with decks of aluminium.
    William Fife was decorated for his service to shipbuilding during the First World War. With the onset of the Great Depression the shipyard's output slowed, and in the 1930s it was sold to other interests; this was the end of the 120-year Fife dynasty.
    [br]
    Principal Honours and Distinctions
    OBE c.1919.
    FMW

    Biographical history of technology > Fife, William

  • 66 Henry, James J.

    SUBJECT AREA: Ports and shipping
    [br]
    b. 22 June 1913 Ancon, Panama Canal Zone
    d. 1986 USA
    [br]
    American naval architect, innovator in specialist cargo-ship design.
    [br]
    After graduating in 1935 from the Webb Institute of Naval Architecture, New York, Henry served in different government agencies until 1938 when he joined the fast expanding US Maritime Commission. He assisted in the design and construction of troop-carrying vessels, Cl cargo ships, and he supervised the construction of two wartime attack transports. At the end of hostilities, he set up as a consultant naval architect and by 1951 had incorporated the business as J.J.Henry \& Company Inc. The opportunities that consultancy gave him were grasped eagerly; he became involved in the conversion of war-built tonnage to peaceful purposes (such as T2 tankers to ore carriers), the development of the new technologies of the carriage of liquefied gases at cryogenic temperatures and low pressures and, possibly the greatest step forward of all, the development of containerization. Containerization and the closely related field of barge transportation were to provide considerable business during the 1960s and the 1970s. The company designed the wonderful 33-knot container ships for Sea-Land and the auspicious Sea-bee barge carriers for the Lykes Brothers of New Orleans. James Henry's professional achievements were recognized internationally when he was elected President of the (United States) Society of Naval Architects and Marine Engineers in 1969. By then he had served on many boards and committees and was especially honoured to be Chairman of the Board of Trustees of his graduating college, the Webb Institute of Naval Architecture of New York.
    FMW

    Biographical history of technology > Henry, James J.

  • 67 Huygens, Christiaan

    SUBJECT AREA: Horology
    [br]
    b. 14 April 1629 The Hague, the Netherlands
    d. 8 June 1695 The Hague, the Netherlands
    [br]
    Dutch scientist who was responsible for two of the greatest advances in horology: the successful application of both the pendulum to the clock and the balance spring to the watch.
    [br]
    Huygens was born into a cultured and privileged class. His father, Constantijn, was a poet and statesman who had wide interests. Constantijn exerted a strong influence on his son, who was educated at home until he reached the age of 16. Christiaan studied law and mathematics at Ley den University from 1645 to 1647, and continued his studies at the Collegium Arausiacum in Breda until 1649. He then lived at The Hague, where he had the means to devote his time entirely to study. In 1666 he became a Member of the Académie des Sciences in Paris and settled there until his return to The Hague in 1681. He also had a close relationship with the Royal Society and visited London on three occasions, meeting Newton on his last visit in 1689. Huygens had a wide range of interests and made significant contributions in mathematics, astronomy, optics and mechanics. He also made technical advances in optical instruments and horology.
    Despite the efforts of Burgi there had been no significant improvement in the performance of ordinary clocks and watches from their inception to Huygens's time, as they were controlled by foliots or balances which had no natural period of oscillation. The pendulum appeared to offer a means of improvement as it had a natural period of oscillation that was almost independent of amplitude. Galileo Galilei had already pioneered the use of a freely suspended pendulum for timing events, but it was by no means obvious how it could be kept swinging and used to control a clock. Towards the end of his life Galileo described such a. mechanism to his son Vincenzio, who constructed a model after his father's death, although it was not completed when he himself died in 1642. This model appears to have been copied in Italy, but it had little influence on horology, partly because of the circumstances in which it was produced and possibly also because it differed radically from clocks of that period. The crucial event occurred on Christmas Day 1656 when Huygens, quite independently, succeeded in adapting an existing spring-driven table clock so that it was not only controlled by a pendulum but also kept it swinging. In the following year he was granted a privilege or patent for this clock, and several were made by the clockmaker Salomon Coster of The Hague. The use of the pendulum produced a dramatic improvement in timekeeping, reducing the daily error from minutes to seconds, but Huygens was aware that the pendulum was not truly isochronous. This error was magnified by the use of the existing verge escapement, which made the pendulum swing through a large arc. He overcame this defect very elegantly by fitting cheeks at the pendulum suspension point, progressively reducing the effective length of the pendulum as the amplitude increased. Initially the cheeks were shaped empirically, but he was later able to show that they should have a cycloidal shape. The cheeks were not adopted universally because they introduced other defects, and the problem was eventually solved more prosaically by way of new escapements which reduced the swing of the pendulum. Huygens's clocks had another innovatory feature: maintaining power, which kept the clock going while it was being wound.
    Pendulums could not be used for portable timepieces, which continued to use balances despite their deficiencies. Robert Hooke was probably the first to apply a spring to the balance, but his efforts were not successful. From his work on the pendulum Huygens was well aware of the conditions necessary for isochronism in a vibrating system, and in January 1675, with a flash of inspiration, he realized that this could be achieved by controlling the oscillations of the balance with a spiral spring, an arrangement that is still used in mechanical watches. The first model was made for Huygens in Paris by the clockmaker Isaac Thuret, who attempted to appropriate the invention and patent it himself. Huygens had for many years been trying unsuccessfully to adapt the pendulum clock for use at sea (in order to determine longitude), and he hoped that a balance-spring timekeeper might be better suited for this purpose. However, he was disillusioned as its timekeeping proved to be much more susceptible to changes in temperature than that of the pendulum clock.
    [br]
    Principal Honours and Distinctions
    FRS 1663. Member of the Académie Royale des Sciences 1666.
    Bibliography
    For his complete works, see Oeuvres complètes de Christian Huygens, 1888–1950, 22 vols, The Hague.
    1658, Horologium, The Hague; repub., 1970, trans. E.L.Edwardes, Antiquarian
    Horology 7:35–55 (describes the pendulum clock).
    1673, Horologium Oscillatorium, Paris; repub., 1986, The Pendulum Clock or Demonstrations Concerning the Motion ofPendula as Applied to Clocks, trans.
    R.J.Blackwell, Ames.
    Further Reading
    H.J.M.Bos, 1972, Dictionary of Scientific Biography, ed. C.C.Gillispie, Vol. 6, New York, pp. 597–613 (for a fuller account of his life and scientific work, but note the incorrect date of his death).
    R.Plomp, 1979, Spring-Driven Dutch Pendulum Clocks, 1657–1710, Schiedam (describes Huygens's application of the pendulum to the clock).
    S.A.Bedini, 1991, The Pulse of Time, Florence (describes Galileo's contribution of the pendulum to the clock).
    J.H.Leopold, 1982, "L"Invention par Christiaan Huygens du ressort spiral réglant pour les montres', Huygens et la France, Paris, pp. 154–7 (describes the application of the balance spring to the watch).
    A.R.Hall, 1978, "Horology and criticism", Studia Copernica 16:261–81 (discusses Hooke's contribution).
    DV

    Biographical history of technology > Huygens, Christiaan

  • 68 Riquet, Pierre Paul

    SUBJECT AREA: Canals, Civil engineering
    [br]
    b. 29 June 1604 Béziers, Hérault, France
    d. 1 October 1680 buried at Toulouse, France
    [br]
    French canal engineer and constructor of the Canal du Midi.
    [br]
    Pierre Paul Riquet was the son of a wealthy lawyer whose ancestors came from Italy. In his education at the Jesuit College in Béziers he showed obvious natural ability in science and mathematics, but he received no formal engineering training. With his own and his wife's fortunes he was able to purchase a château at Verfeil, near Toulouse. In 1630 he was appointed a collector of the salt tax in Languedoc and in a short time became Lessee General (Fermier Général) of this tax for the whole province. This entailed constant travel through the district, with the result that he became very familiar with this part of the country. He also became involved in military contracting. He acquired a vast fortune out of both activities. At this time he pondered the possibility of building a canal from Toulouse to the Mediterranean beyond Béziers and, after further investigation as to possible water supplies, he wrote to Colbert in Paris on 16 November 1662 advocating the construction of the canal. Although the idea proved acceptable it was not until 27 May 1665 that Riquet was authorized to direct operations, and on 14 October 1666 he was given authority to construct the first part of the canal, from Toulouse to Trebes. Work started on 1 January 1667. By 1669 he had between 7,000 and 8,000 men employed on the work. Unhappily, Riquet died just over six months before the canal was completed, the official opening beingon 15 May 1681.
    Although Riquet's fame rightly rests on the Canal du Midi, probably the greatest work of its time in Europe, he was also consulted about and was responsible for other projects. He built an aqueduct on more than 100 arches to lead water into the grounds of the château of his friend the marquis de Castres. The plans for this work, which involved considerable practical difficulties, were finalized in 1670, and water flowed into the château grounds in 1676. Also in 1676, Riquet was commissioned to lead the waters of the river Ourcq into Paris; he drew up plans, but he was too busy to undertake the construction and on his death the work was shelved until Napoleon's time. He was responsible for the creation of the port of Sète on the Mediterranean at the end of the Canal du Midi. He was also consulted on the supply of water to the Palace of Versailles and on a proposed route which later became the Canal de Bourgogne. Riquet was a very remarkable man: when he started the construction of the canal he was well over 60 years old, an age at which most people are retiring, and lived almost to its completion.
    [br]
    Further Reading
    L.T.C.Rolt, 1973, From Sea to Sea, London: Allen Lane; rev. ed. 1994, Bridgwater: Internet Ltd.
    Jean-Denis Bergasse, 1982–7, Le Canal de Midi, 4 vols, Hérault:—Vol. I: Pierre Paul Riquet et le Canal du Midi dans les arts et la littérature; Vol II: Trois Siècles de
    batellerie et de voyage; Vol. III: Des Siècles d'aventures humaine; Vol. IV: Grands Moments et grands sites.
    JHB

    Biographical history of technology > Riquet, Pierre Paul

  • 69 Smeaton, John

    [br]
    b. 8 June 1724 Austhorpe, near Leeds, Yorkshire, England
    d. 28 October 1792 Austhorpe, near Leeds, Yorkshire, England
    [br]
    English mechanical and civil engineer.
    [br]
    As a boy, Smeaton showed mechanical ability, making for himself a number of tools and models. This practical skill was backed by a sound education, probably at Leeds Grammar School. At the age of 16 he entered his father's office; he seemed set to follow his father's profession in the law. In 1742 he went to London to continue his legal studies, but he preferred instead, with his father's reluctant permission, to set up as a scientific instrument maker and dealer and opened a shop of his own in 1748. About this time he began attending meetings of the Royal Society and presented several papers on instruments and mechanical subjects, being elected a Fellow in 1753. His interests were turning towards engineering but were informed by scientific principles grounded in careful and accurate observation.
    In 1755 the second Eddystone lighthouse, on a reef some 14 miles (23 km) off the English coast at Plymouth, was destroyed by fire. The President of the Royal Society was consulted as to a suitable engineer to undertake the task of constructing a new one, and he unhesitatingly suggested Smeaton. Work began in 1756 and was completed in three years to produce the first great wave-swept stone lighthouse. It was constructed of Portland stone blocks, shaped and pegged both together and to the base rock, and bonded by hydraulic cement, scientifically developed by Smeaton. It withstood the storms of the English Channel for over a century, but by 1876 erosion of the rock had weakened the structure and a replacement had to be built. The upper portion of Smeaton's lighthouse was re-erected on a suitable base on Plymouth Hoe, leaving the original base portion on the reef as a memorial to the engineer.
    The Eddystone lighthouse made Smeaton's reputation and from then on he was constantly in demand as a consultant in all kinds of engineering projects. He carried out a number himself, notably the 38 mile (61 km) long Forth and Clyde canal with thirty-nine locks, begun in 1768 but for financial reasons not completed until 1790. In 1774 he took charge of the Ramsgate Harbour works.
    On the mechanical side, Smeaton undertook a systematic study of water-and windmills, to determine the design and construction to achieve the greatest power output. This work issued forth as the paper "An experimental enquiry concerning the natural powers of water and wind to turn mills" and exerted a considerable influence on mill design during the early part of the Industrial Revolution. Between 1753 and 1790 Smeaton constructed no fewer than forty-four mills.
    Meanwhile, in 1756 he had returned to Austhorpe, which continued to be his home base for the rest of his life. In 1767, as a result of the disappointing performance of an engine he had been involved with at New River Head, Islington, London, Smeaton began his important study of the steam-engine. Smeaton was the first to apply scientific principles to the steam-engine and achieved the most notable improvements in its efficiency since its invention by Newcomen, until its radical overhaul by James Watt. To compare the performance of engines quantitatively, he introduced the concept of "duty", i.e. the weight of water that could be raised 1 ft (30 cm) while burning one bushel (84 lb or 38 kg) of coal. The first engine to embody his improvements was erected at Long Benton colliery in Northumberland in 1772, with a duty of 9.45 million pounds, compared to the best figure obtained previously of 7.44 million pounds. One source of heat loss he attributed to inaccurate boring of the cylinder, which he was able to improve through his close association with Carron Ironworks near Falkirk, Scotland.
    [br]
    Principal Honours and Distinctions
    FRS 1753.
    Bibliography
    1759, "An experimental enquiry concerning the natural powers of water and wind to turn mills", Philosophical Transactions of the Royal Society.
    Towards the end of his life, Smeaton intended to write accounts of his many works but only completed A Narrative of the Eddystone Lighthouse, 1791, London.
    Further Reading
    S.Smiles, 1874, Lives of the Engineers: Smeaton and Rennie, London. A.W.Skempton, (ed.), 1981, John Smeaton FRS, London: Thomas Telford. L.T.C.Rolt and J.S.Allen, 1977, The Steam Engine of Thomas Newcomen, 2nd edn, Hartington: Moorland Publishing, esp. pp. 108–18 (gives a good description of his work on the steam-engine).
    LRD

    Biographical history of technology > Smeaton, John

  • 70 Spencer, Christopher Miner

    [br]
    b. 10 June 1833 Manchester, Connecticut, USA
    d. 14 January 1922 Hartford, Connecticut, USA
    [br]
    American mechanical engineer and inventor.
    [br]
    Christopher M.Spencer served an apprenticeship from 1847 to 1849 in the machine shop at the silk mills of Cheney Brothers in his native town and remained there for a few years as a journeyman machinist. In 1853 he went to Rochester, New York, to obtain experience with machinery other than that used in the textile industry. He then spent some years with the Colt Armory at Hartford, Connecticut, before returning to Cheney Brothers, where he obtained his first patent, which was for a silk-winding machine.
    Spencer had long been interested in firearms and in 1860 he obtained a patent for a repeating rifle. The Spencer Repeating Rifle Company was organized for its manufacture, and before the end of the American Civil War about 200,000 rifles had been produced. He patented a number of other improvements in firearms and in 1868 was associated with Charles E.Billings (1835–1920) in the Roper Arms Company, set up at Amherst, Massachusetts, to manufacture Spencer's magazine gun. This was not a success, however, and in 1869 they moved to Hartford, Connecticut, and formed the Billings \& Spencer Company. There they developed the technology of the drop hammer and Spencer continued his inventive work, which included an automatic turret lathe for producing metal screws. The patent that he obtained for this in 1873 inexplicably failed to protect the essential feature of the machine which provided the automatic action, with the result that Spencer received no patent right on the most valuable feature of the machine.
    In 1874 Spencer withdrew from active connection with Billings \& Spencer, although he remained a director, and in 1876 he formed with others the Hartford Machine Screw Company. However, he withdrew in 1882 to form the Spencer Arms Company at Windsor, Connecticut, for the manufacture of another of his inventions, a repeating shotgun. But this company failed and Spencer returned to the field of automatic lathes, and in 1893 he organized the Spencer Automatic Machine Screw Company at Windsor, where he remained until his retirement.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; reprinted 1926, New York, and 1987, Bradley, Ill. (briefly describes his career and his automatic lathes).
    L.T.C.Rolt, 1965, Tools for the Job, London; repub. 1986 (gives a brief description of Spencer's automatic lathes).
    RTS

    Biographical history of technology > Spencer, Christopher Miner

  • 71 Whatman, James

    SUBJECT AREA: Paper and printing
    [br]
    baptized 4 October 1702 Loose, near Maidstone, Kent, England
    d. 29 June 1759 Loose, near Maidstone, Kent, England
    [br]
    English papermaker, inventor of wove paper.
    [br]
    The Whatman family had been established in Kent in the fifteenth century. At the time of his marriage in 1740, Whatman was described as a tanner. His wife was the widow of Richard Harris, papermaker, and, by the marriage settlement, he with his wife became joint tenants of Turkey Mill, near Maidstone. The mill had been used for fulling since the Middle Ages, but towards the end of the seventeenth century it had been converted to papermaking. Remarkably quickly, Whatman became one of the leading papermakers in England, doubtless helped by the shortage of imported paper that resulted from the Spanish Succession War of the 1740s. By the time of his death, his mill had the largest output in England, with a reputation for good-quality writing paper.
    According to his son's account much later, Whatman introduced wove paper, made in a wove wire gauze mould, in 1756. It gave a smoother paper with a more even surface, and was probably made at the suggestion of the celebrated printer and type founder John Baskerville. Whatman printed a book in 1757 on paper with an even texture but with laid lines still discernible, indicating that at first the wire gauze was placed in a conventional wire mould. In a book printed by Baskerville two years later, these lines are no longer visible, so a wire gauze mould was in use by then.
    After Whatman's death, Turkey Mill was managed by his widow for three years, until his son James (1741–98) was old enough to take charge. Under the management of the son, the mill maintained the scale and quality of its output, and in 1769 it was described as the largest paper mill in England where the best writing paper was made.
    [br]
    Further Reading
    T.Balston, 1957, James Whatman, Father and Son, London: Methuen.
    LRD

    Biographical history of technology > Whatman, James

  • 72 remote maintenance

    1. дистанционное техническое обслуживание

     

    дистанционное техническое обслуживание
    Техническое обслуживание объекта, проводимое под управлением персонала без его непосредственного присутствия.
    [ОСТ 45.152-99 ]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    Service from afar

    Дистанционный сервис

    ABB’s Remote Service concept is revolutionizing the robotics industry

    Разработанная АББ концепция дистанционного обслуживания Remote Service революционизирует робототехнику

    ABB robots are found in industrial applications everywhere – lifting, packing, grinding and welding, to name a few. Robust and tireless, they work around the clock and are critical to a company’s productivity. Thus, keeping these robots in top shape is essential – any failure can lead to serious output consequences. But what happens when a robot malfunctions?

    Роботы АББ используются во всех отраслях промышленности для перемещения грузов, упаковки, шлифовки, сварки – всего и не перечислить. Надежные и неутомимые работники, способные трудиться день и ночь, они представляют большую ценность для владельца. Поэтому очень важно поддерживать их в надлежащей состоянии, ведь любой отказ может иметь серьезные последствия. Но что делать, если робот все-таки сломался?

    ABB’s new Remote Service concept holds the answer: This approach enables a malfunctioning robot to alarm for help itself. An ABB service engineer then receives whole diagnostic information via wireless technology, analyzes the data on a Web site and responds with support in just minutes. This unique service is paying off for customers and ABB alike, and in the process is revolutionizing service thinking.

    Ответом на этот вопрос стала новая концепция Remote Service от АББ, согласно которой неисправный робот сам просит о помощи. C помощью беспроводной технологии специалист сервисной службы АББ получает всю необходимую диагностическую информацию, анализирует данные на web-сайте и через считанные минуты выдает рекомендации по устранению отказа. Эта уникальная возможность одинаково ценна как для заказчиков, так и для самой компании АББ. В перспективе она способна в корне изменить весь подход к организации технического обслуживания.

    Every minute of production downtime can have financially disastrous consequences for a company. Traditional reactive service is no longer sufficient since on-site service engineer visits also demand great amounts of time and money. Thus, companies not only require faster help from the service organization when needed but they also want to avoid disturbances in production.

    Каждая минута простоя производства может привести к губительным финансовым последствиям. Традиционная организация сервиса, предусматривающая ликвидацию возникающих неисправностей, становится все менее эффективной, поскольку вызов сервисного инженера на место эксплуатации робота сопряжен с большими затратами времени и денег. Предприятия требуют от сервисной организации не только более быстрого оказания помощи, но и предотвращения возможных сбоев производства.

    In 2006, ABB developed a new approach to better meet customer’s expectations: Using the latest technologies to reach the robots at customer sites around the world, ABB could support them remotely in just minutes, thereby reducing the need for site visits. Thus the new Remote Service concept was quickly brought to fruition and was launched in mid-2007. Statistics show that by using the system the majority of production stoppages can be avoided.

    В 2006 г. компания АББ разработала новый подход к удовлетворению ожиданий своих заказчиков. Использование современных технологий позволяет специалистам АББ получать информацию от роботов из любой точки мира и в считанные минуты оказывать помощь дистанционно, в результате чего сокращается количество выездов на место установки. Запущенная в середине 2007 г. концепция Remote Service быстро себя оправдала. Статистика показывает, что её применение позволило предотвратить большое число остановок производства.

    Reactive maintenance The hardware that makes ABB Remote Service possible consists of a communication unit, which has a function similar to that of an airplane’s so-called black box 1. This “service box” is connected to the robot’s control system and can read and transmit diagnostic information. The unit not only reads critical diagnostic information that enables immediate support in the event of a failure, but also makes it possible to monitor and analyze the robot’s condition, thereby proactively detecting the need for maintenance.

    Устранение возникающих неисправностей Аппаратное устройство, с помощью которого реализуется концепция Remote Service, представляет собой коммуникационный блок, работающий аналогично черному ящику самолета (рис. 1). Этот блок считывает диагностические данные из контроллера робота и передает их по каналу GSM. Считывается не только информация, необходимая для оказания немедленной помощи в случае отказа, но и сведения, позволяющие контролировать и анализировать состояние робота для прогнозирования неисправностей и планирования технического обслуживания.

    If the robot breaks down, the service box immediately stores the status of the robot, its historical data (as log files), and diagnostic parameters such as temperature and power supply. Equipped with a built-in modem and using the GSM network, the box transmits the data to a central server for analysis and presentation on a dedicated Web site. Alerts are automatically sent to the nearest of ABB’s 1,200 robot service engineers who then accesses the detailed data and error log to analyze the problem.

    При поломке робота сервисный блок немедленно сохраняет данные о его состоянии, сведения из рабочего журнала, а также значения диагностических параметров (температура и характеристики питания). Эти данные передаются встроенным GSM-модемом на центральный сервер для анализа и представления на соответствующем web-сайте. Аварийные сообщения автоматически пересылаются ближайшему к месту аварии одному из 1200 сервисных инженеров-робототехников АББ, который получает доступ к детальной информации и журналу аварий для анализа возникшей проблемы.

    A remotely based ABB engineer can then quickly identify the exact fault, offering rapid customer support. For problems that cannot be solved remotely, the service engineer can arrange for quick delivery of spare parts and visit the site to repair the robot. Even if the engineer must make a site visit, service is faster, more efficient and performed to a higher standard than otherwise possible.

    Специалист АББ может дистанционно идентифицировать отказ и оказать быструю помощь заказчику. Если неисправность не может быть устранена дистанционно, сервисный инженер организовывает доставку запасных частей и выезд ремонтной бригады. Даже если необходимо разрешение проблемы на месте, предшествующая дистанционная диагностика позволяет минимизировать объем работ и сократить время простоя.

    Remote Service enables engineers to “talk” to robots remotely and to utilize tools that enable smart, fast and automatic analysis. The system is based on a machine-to-machine (M2M) concept, which works automatically, requiring human input only for analysis and personalized customer recommendations. ABB was recognized for this innovative solution at the M2M United Conference in Chicago in 2008 Factbox.

    Remote Service позволяет инженерам «разговаривать» с роботами на расстоянии и предоставляет в их распоряжение интеллектуальные средства быстрого автоматизированного анализа. Система основана на основе технологии автоматической связи машины с машиной (M2M), где участие человека сводится к анализу данных и выдаче рекомендаций клиенту. В 2008 г. это инновационное решение от АББ получило приз на конференции M2M United Conference в Чикаго (см. вставку).

    Proactive maintenance 
    Remote Service also allows ABB engineers to monitor and detect potential problems in the robot system and opens up new possibilities for proactive maintenance.

    Прогнозирование неисправностей
    Remote Service позволяет инженерам АББ дистанционно контролировать состояние роботов и прогнозировать возможные неисправности, что открывает новые возможности по организации профилактического обслуживания.

    The service box regularly takes condition measurements. By monitoring key parameters over time, Remote Service can identify potential failures and when necessary notify both the end customer and the appropriate ABB engineer. The management and storage of full system backups is a very powerful service to help recover from critical situations caused, for example, by operator errors.

    Сервисный блок регулярно выполняет диагностические измерения. Непрерывно контролируя ключевые параметры, Remote Service может распознать потенциальные опасности и, при необходимости, оповещать владельца оборудования и соответствующего специалиста АББ. Резервирование данных для возможного отката является мощным средством, обеспечивающим восстановление системы в критических ситуациях, например, после ошибки оператора.

    The first Remote Service installation took place in the automotive industry in the United States and quickly proved its value. The motherboard in a robot cabinet overheated and the rise in temperature triggered an alarm via Remote Service. Because of the alarm, engineers were able to replace a faulty fan, preventing a costly production shutdown.

    Первая система Remote Service была установлена на автозаводе в США и очень скоро была оценена по достоинству. Она обнаружила перегрев материнской платы в шкафу управления роботом и передала сигнал о превышении допустимой температуры, благодаря чему инженеры смогли заменить неисправный вентилятор и предотвратить дорогостоящую остановку производства.

    MyRobot: 24-hour remote access

    Having regular access to a robot’s condition data is also essential to achieving lean production. At any time, from any location, customers can verify their robots’ status and access maintenance information and performance reports simply by logging in to ABB’s MyRobot Web site. The service enables customers to easily compare performances, identify bottlenecks or developing issues, and initiate the most

    Сайт MyRobot: круглосуточный дистанционный доступ
    Для того чтобы обеспечить бесперебойное производство, необходимо иметь регулярный доступ к информации о состоянии робота. Зайдя на соответствующую страницу сайта MyRobot компании АББ, заказчики получат все необходимые данные, включая сведения о техническом обслуживании и отчеты о производительности своего робота. Эта услуга позволяет легко сравнивать данные о производительности, обнаруживать возможные проблемы, а также оптимизировать планирование технического обслуживания и модернизации. С помощью MyRobot можно значительно увеличить выпуск продукции и уменьшить количество выбросов.

    Award-winning solution
    In June 2008, the innovative Remote Service solution won the Gold Value Chain award at the M2M United Conference in Chicago. The value chain award honors successful corporate adopters of M2M (machine–to-machine) technology and highlights the process of combining multiple technologies to deliver high-quality services to customers. ABB won in the categoryof Smart Services.

    Приз за удачное решение
    В июне 2008 г. инновационное решение Remote Service получило награду Gold Value Chain (Золотая цепь) на конференции M2M United Conference в Чикаго. «Золотая цепь» присуждается за успешное масштабное внедрение технологии M2M (машина – машина), а также за достижения в объединении различных технологий для предоставления высококачественных услуг заказчикам. АББ одержала победу в номинации «Интеллектуальный сервис».

    Case study: Tetley Tetley GB Ltd is the world’s second-largest manufacturer and distributor of tea. The company’s manufacturing and distribution business is spread across 40 countries and sells over 60 branded tea bags. Tetley’s UK tea production facility in Eaglescliffe, County Durham is the sole producer of Tetley tea bags 2.

    Пример применения: Tetley Компания TetleyGB Ltd является вторым по величине мировым производителем и поставщиком чая. Производственные и торговые филиалы компании имеются в 40 странах, а продукция распространяется под 60 торговыми марками. Чаеразвесочная фабрика в Иглсклифф, графство Дарем, Великобритания – единственный производитель чая Tetley в пакетиках (рис. 2).

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which can help extend the mean time between failures, shorten the time to repair and lower the cost of automated production.

    Предлагаемые АББ контракты на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и общую стоимость автоматизированного производства.

    Robots in the plant’s production line were tripping alarms and delaying the whole production cycle. The spurious alarms resulted in much unnecessary downtime that was spent resetting the robots in the hope that another breakdown could be avoided. Each time an alarm was tripped, several hours of production time was lost. “It was for this reason that we were keen to try out ABB’s Remote Service agreement,” said Colin Trevor, plant maintenance manager.

    Установленные в технологической линии роботы выдавали аварийные сигналы, задерживающие выполнение производственного цикла. Ложные срабатывания вынуждали перезапускать роботов в надежде предотвратить возможные отказы, в результате чего после каждого аварийного сигнала производство останавливалось на несколько часов. «Именно поэтому мы решили попробовать заключить с АББ контракт на дистанционное техническое обслуживание», – сказал Колин Тревор, начальник технической службы фабрики.

    To prevent future disruptions caused by unplanned downtime, Tetley signed an ABB Response Package service agreement, which included installing a service box and system infrastructure into the robot control systems. Using the Remote Service solution, ABB remotely monitors and collects data on the “wear and tear” and productivity of the robotic cells; this data is then shared with the customer and contributes to smooth-running production cycles.

    Для предотвращения ущерба в результате незапланированных простоев Tetley заключила с АББ контракт на комплексное обслуживание Response Package, согласно которому системы управления роботами были дооборудованы сервисными блоками с необходимой инфраструктурой. С помощью Remote Service компания АББ дистанционно собирает данные о наработке, износе и производительности роботизированных модулей. Эти данные предоставляются заказчику для оптимизации загрузки производственного оборудования.

    Higher production uptime
    Since the implementation of Remote Service, Tetley has enjoyed greatly reduced robot downtime, with no further disruptions caused by unforeseen problems. “The Remote Service package has dramatically changed the plant,” said Trevor. “We no longer have breakdown issues throughout the shift, helping us to achieve much longer periods of robot uptime. As we have learned, world-class manufacturing facilities need world-class support packages. Remote monitoring of our robots helps us to maintain machine uptime, prevent costly downtime and ensures my employees can be put to more valuable use.”

    Увеличение полезного времени
    С момента внедрения Remote Service компания Tetley была приятно удивлена резким сокращением простоя роботов и отсутствием незапланированных остановок производства. «Пакет Remote Service резко изменил ситуацию на предприятии», – сказал Тревор. «Мы избавились от простоев роботов и смогли резко увеличить их эксплуатационную готовность. Мы поняли, что для производственного оборудования мирового класса необходим сервисный пакет мирового класса. Дистанционный контроль роботов помогает нам поддерживать их в рабочем состоянии, предотвращать дорогостоящие простои и задействовать наш персонал для выполнения более важных задач».

    Service access
    Remote Service is available worldwide, connecting more than 500 robots. Companies that have up to 30 robots are often good candidates for the Remote Service offering, as they usually have neither the engineers nor the requisite skills to deal with robotics faults themselves. Larger companies are also enthusiastic about Remote Service, as the proactive services will improve the lifetime of their equipment and increase overall production uptime.

    Доступность сервиса
    Сеть Remote Service охватывает более 700 роботов по всему миру. Потенциальными заказчиками Remote Service являются компании, имеющие до 30 роботов, но не имеющие инженеров и техников, способных самостоятельно устранять их неисправности. Интерес к Remote Service проявляют и более крупные компании, поскольку они заинтересованы в увеличении срока службы и эксплуатационной готовности производственного оборудования.

    In today’s competitive environment, business profitability often relies on demanding production schedules that do not always leave time for exhaustive or repeated equipment health checks. ABB’s Remote Service agreements are designed to monitor its customers’ robots to identify when problems are likely to occur and ensure that help is dispatched before the problem can escalate. In over 60 percent of ABB’s service calls, its robots can be brought back online remotely, without further intervention.

    В условиях современной конкуренции окупаемость бизнеса часто зависит от соблюдения жестких графиков производства, не оставляющих времени для полномасштабных или периодических проверок исправности оборудования. Контракт Remote Service предусматривает мониторинг состояния роботов заказчика для прогнозирования возможных неисправностей и принятие мер по их предотвращению. В более чем 60 % случаев для устранения неисправности достаточно дистанционной консультации в сервисной службе АББ, дальнейшего вмешательства не требуется.

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which helps extend the mean time between failures, shorten the time to repair and lower the total cost of ownership. With four new packages available – Support, Response, Maintenance and Warranty, each backed up by ABB’s Remote Service technology – businesses can minimize the impact of unplanned downtime and achieve improved production-line efficiency.

    Компания АББ предлагает гибкий выбор контрактов на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, которые позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и эксплуатационные расходы. Четыре новых пакета на основе технологии Remote Service Support, Response, Maintenance и Warranty – позволяют минимизировать внеплановые простои и значительно повысить эффективность производства.

    The benefits of Remote Sevice are clear: improved availability, fewer service visits, lower maintenance costs and maximized total cost of ownership. This unique service sets ABB apart from its competitors and is the beginning of a revolution in service thinking. It provides ABB with a great opportunity to improve customer access to its expertise and develop more advanced services worldwide.

    Преимущества дистанционного технического обслуживания очевидны: повышенная надежность, уменьшение выездов ремонтных бригад, уменьшение затрат на обслуживание и общих эксплуатационных расходов. Эта уникальная услуга дает компании АББ преимущества над конкурентами и демонстрирует революционный подход к организации сервиса. Благодаря ей компания АББ расширяет доступ заказчиков к опыту своих специалистов и получает возможность более эффективного оказания технической помощи по всему миру.

    Тематики

    • тех. обсл. и ремонт средств электросвязи

    Обобщающие термины

    EN

    Англо-русский словарь нормативно-технической терминологии > remote maintenance

  • 73 remote sevice

    1. дистанционное техническое обслуживание

     

    дистанционное техническое обслуживание
    Техническое обслуживание объекта, проводимое под управлением персонала без его непосредственного присутствия.
    [ОСТ 45.152-99 ]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    Service from afar

    Дистанционный сервис

    ABB’s Remote Service concept is revolutionizing the robotics industry

    Разработанная АББ концепция дистанционного обслуживания Remote Service революционизирует робототехнику

    ABB robots are found in industrial applications everywhere – lifting, packing, grinding and welding, to name a few. Robust and tireless, they work around the clock and are critical to a company’s productivity. Thus, keeping these robots in top shape is essential – any failure can lead to serious output consequences. But what happens when a robot malfunctions?

    Роботы АББ используются во всех отраслях промышленности для перемещения грузов, упаковки, шлифовки, сварки – всего и не перечислить. Надежные и неутомимые работники, способные трудиться день и ночь, они представляют большую ценность для владельца. Поэтому очень важно поддерживать их в надлежащей состоянии, ведь любой отказ может иметь серьезные последствия. Но что делать, если робот все-таки сломался?

    ABB’s new Remote Service concept holds the answer: This approach enables a malfunctioning robot to alarm for help itself. An ABB service engineer then receives whole diagnostic information via wireless technology, analyzes the data on a Web site and responds with support in just minutes. This unique service is paying off for customers and ABB alike, and in the process is revolutionizing service thinking.

    Ответом на этот вопрос стала новая концепция Remote Service от АББ, согласно которой неисправный робот сам просит о помощи. C помощью беспроводной технологии специалист сервисной службы АББ получает всю необходимую диагностическую информацию, анализирует данные на web-сайте и через считанные минуты выдает рекомендации по устранению отказа. Эта уникальная возможность одинаково ценна как для заказчиков, так и для самой компании АББ. В перспективе она способна в корне изменить весь подход к организации технического обслуживания.

    Every minute of production downtime can have financially disastrous consequences for a company. Traditional reactive service is no longer sufficient since on-site service engineer visits also demand great amounts of time and money. Thus, companies not only require faster help from the service organization when needed but they also want to avoid disturbances in production.

    Каждая минута простоя производства может привести к губительным финансовым последствиям. Традиционная организация сервиса, предусматривающая ликвидацию возникающих неисправностей, становится все менее эффективной, поскольку вызов сервисного инженера на место эксплуатации робота сопряжен с большими затратами времени и денег. Предприятия требуют от сервисной организации не только более быстрого оказания помощи, но и предотвращения возможных сбоев производства.

    In 2006, ABB developed a new approach to better meet customer’s expectations: Using the latest technologies to reach the robots at customer sites around the world, ABB could support them remotely in just minutes, thereby reducing the need for site visits. Thus the new Remote Service concept was quickly brought to fruition and was launched in mid-2007. Statistics show that by using the system the majority of production stoppages can be avoided.

    В 2006 г. компания АББ разработала новый подход к удовлетворению ожиданий своих заказчиков. Использование современных технологий позволяет специалистам АББ получать информацию от роботов из любой точки мира и в считанные минуты оказывать помощь дистанционно, в результате чего сокращается количество выездов на место установки. Запущенная в середине 2007 г. концепция Remote Service быстро себя оправдала. Статистика показывает, что её применение позволило предотвратить большое число остановок производства.

    Reactive maintenance The hardware that makes ABB Remote Service possible consists of a communication unit, which has a function similar to that of an airplane’s so-called black box 1. This “service box” is connected to the robot’s control system and can read and transmit diagnostic information. The unit not only reads critical diagnostic information that enables immediate support in the event of a failure, but also makes it possible to monitor and analyze the robot’s condition, thereby proactively detecting the need for maintenance.

    Устранение возникающих неисправностей Аппаратное устройство, с помощью которого реализуется концепция Remote Service, представляет собой коммуникационный блок, работающий аналогично черному ящику самолета (рис. 1). Этот блок считывает диагностические данные из контроллера робота и передает их по каналу GSM. Считывается не только информация, необходимая для оказания немедленной помощи в случае отказа, но и сведения, позволяющие контролировать и анализировать состояние робота для прогнозирования неисправностей и планирования технического обслуживания.

    If the robot breaks down, the service box immediately stores the status of the robot, its historical data (as log files), and diagnostic parameters such as temperature and power supply. Equipped with a built-in modem and using the GSM network, the box transmits the data to a central server for analysis and presentation on a dedicated Web site. Alerts are automatically sent to the nearest of ABB’s 1,200 robot service engineers who then accesses the detailed data and error log to analyze the problem.

    При поломке робота сервисный блок немедленно сохраняет данные о его состоянии, сведения из рабочего журнала, а также значения диагностических параметров (температура и характеристики питания). Эти данные передаются встроенным GSM-модемом на центральный сервер для анализа и представления на соответствующем web-сайте. Аварийные сообщения автоматически пересылаются ближайшему к месту аварии одному из 1200 сервисных инженеров-робототехников АББ, который получает доступ к детальной информации и журналу аварий для анализа возникшей проблемы.

    A remotely based ABB engineer can then quickly identify the exact fault, offering rapid customer support. For problems that cannot be solved remotely, the service engineer can arrange for quick delivery of spare parts and visit the site to repair the robot. Even if the engineer must make a site visit, service is faster, more efficient and performed to a higher standard than otherwise possible.

    Специалист АББ может дистанционно идентифицировать отказ и оказать быструю помощь заказчику. Если неисправность не может быть устранена дистанционно, сервисный инженер организовывает доставку запасных частей и выезд ремонтной бригады. Даже если необходимо разрешение проблемы на месте, предшествующая дистанционная диагностика позволяет минимизировать объем работ и сократить время простоя.

    Remote Service enables engineers to “talk” to robots remotely and to utilize tools that enable smart, fast and automatic analysis. The system is based on a machine-to-machine (M2M) concept, which works automatically, requiring human input only for analysis and personalized customer recommendations. ABB was recognized for this innovative solution at the M2M United Conference in Chicago in 2008 Factbox.

    Remote Service позволяет инженерам «разговаривать» с роботами на расстоянии и предоставляет в их распоряжение интеллектуальные средства быстрого автоматизированного анализа. Система основана на основе технологии автоматической связи машины с машиной (M2M), где участие человека сводится к анализу данных и выдаче рекомендаций клиенту. В 2008 г. это инновационное решение от АББ получило приз на конференции M2M United Conference в Чикаго (см. вставку).

    Proactive maintenance 
    Remote Service also allows ABB engineers to monitor and detect potential problems in the robot system and opens up new possibilities for proactive maintenance.

    Прогнозирование неисправностей
    Remote Service позволяет инженерам АББ дистанционно контролировать состояние роботов и прогнозировать возможные неисправности, что открывает новые возможности по организации профилактического обслуживания.

    The service box regularly takes condition measurements. By monitoring key parameters over time, Remote Service can identify potential failures and when necessary notify both the end customer and the appropriate ABB engineer. The management and storage of full system backups is a very powerful service to help recover from critical situations caused, for example, by operator errors.

    Сервисный блок регулярно выполняет диагностические измерения. Непрерывно контролируя ключевые параметры, Remote Service может распознать потенциальные опасности и, при необходимости, оповещать владельца оборудования и соответствующего специалиста АББ. Резервирование данных для возможного отката является мощным средством, обеспечивающим восстановление системы в критических ситуациях, например, после ошибки оператора.

    The first Remote Service installation took place in the automotive industry in the United States and quickly proved its value. The motherboard in a robot cabinet overheated and the rise in temperature triggered an alarm via Remote Service. Because of the alarm, engineers were able to replace a faulty fan, preventing a costly production shutdown.

    Первая система Remote Service была установлена на автозаводе в США и очень скоро была оценена по достоинству. Она обнаружила перегрев материнской платы в шкафу управления роботом и передала сигнал о превышении допустимой температуры, благодаря чему инженеры смогли заменить неисправный вентилятор и предотвратить дорогостоящую остановку производства.

    MyRobot: 24-hour remote access

    Having regular access to a robot’s condition data is also essential to achieving lean production. At any time, from any location, customers can verify their robots’ status and access maintenance information and performance reports simply by logging in to ABB’s MyRobot Web site. The service enables customers to easily compare performances, identify bottlenecks or developing issues, and initiate the most

    Сайт MyRobot: круглосуточный дистанционный доступ
    Для того чтобы обеспечить бесперебойное производство, необходимо иметь регулярный доступ к информации о состоянии робота. Зайдя на соответствующую страницу сайта MyRobot компании АББ, заказчики получат все необходимые данные, включая сведения о техническом обслуживании и отчеты о производительности своего робота. Эта услуга позволяет легко сравнивать данные о производительности, обнаруживать возможные проблемы, а также оптимизировать планирование технического обслуживания и модернизации. С помощью MyRobot можно значительно увеличить выпуск продукции и уменьшить количество выбросов.

    Award-winning solution
    In June 2008, the innovative Remote Service solution won the Gold Value Chain award at the M2M United Conference in Chicago. The value chain award honors successful corporate adopters of M2M (machine–to-machine) technology and highlights the process of combining multiple technologies to deliver high-quality services to customers. ABB won in the categoryof Smart Services.

    Приз за удачное решение
    В июне 2008 г. инновационное решение Remote Service получило награду Gold Value Chain (Золотая цепь) на конференции M2M United Conference в Чикаго. «Золотая цепь» присуждается за успешное масштабное внедрение технологии M2M (машина – машина), а также за достижения в объединении различных технологий для предоставления высококачественных услуг заказчикам. АББ одержала победу в номинации «Интеллектуальный сервис».

    Case study: Tetley Tetley GB Ltd is the world’s second-largest manufacturer and distributor of tea. The company’s manufacturing and distribution business is spread across 40 countries and sells over 60 branded tea bags. Tetley’s UK tea production facility in Eaglescliffe, County Durham is the sole producer of Tetley tea bags 2.

    Пример применения: Tetley Компания TetleyGB Ltd является вторым по величине мировым производителем и поставщиком чая. Производственные и торговые филиалы компании имеются в 40 странах, а продукция распространяется под 60 торговыми марками. Чаеразвесочная фабрика в Иглсклифф, графство Дарем, Великобритания – единственный производитель чая Tetley в пакетиках (рис. 2).

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which can help extend the mean time between failures, shorten the time to repair and lower the cost of automated production.

    Предлагаемые АББ контракты на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и общую стоимость автоматизированного производства.

    Robots in the plant’s production line were tripping alarms and delaying the whole production cycle. The spurious alarms resulted in much unnecessary downtime that was spent resetting the robots in the hope that another breakdown could be avoided. Each time an alarm was tripped, several hours of production time was lost. “It was for this reason that we were keen to try out ABB’s Remote Service agreement,” said Colin Trevor, plant maintenance manager.

    Установленные в технологической линии роботы выдавали аварийные сигналы, задерживающие выполнение производственного цикла. Ложные срабатывания вынуждали перезапускать роботов в надежде предотвратить возможные отказы, в результате чего после каждого аварийного сигнала производство останавливалось на несколько часов. «Именно поэтому мы решили попробовать заключить с АББ контракт на дистанционное техническое обслуживание», – сказал Колин Тревор, начальник технической службы фабрики.

    To prevent future disruptions caused by unplanned downtime, Tetley signed an ABB Response Package service agreement, which included installing a service box and system infrastructure into the robot control systems. Using the Remote Service solution, ABB remotely monitors and collects data on the “wear and tear” and productivity of the robotic cells; this data is then shared with the customer and contributes to smooth-running production cycles.

    Для предотвращения ущерба в результате незапланированных простоев Tetley заключила с АББ контракт на комплексное обслуживание Response Package, согласно которому системы управления роботами были дооборудованы сервисными блоками с необходимой инфраструктурой. С помощью Remote Service компания АББ дистанционно собирает данные о наработке, износе и производительности роботизированных модулей. Эти данные предоставляются заказчику для оптимизации загрузки производственного оборудования.

    Higher production uptime
    Since the implementation of Remote Service, Tetley has enjoyed greatly reduced robot downtime, with no further disruptions caused by unforeseen problems. “The Remote Service package has dramatically changed the plant,” said Trevor. “We no longer have breakdown issues throughout the shift, helping us to achieve much longer periods of robot uptime. As we have learned, world-class manufacturing facilities need world-class support packages. Remote monitoring of our robots helps us to maintain machine uptime, prevent costly downtime and ensures my employees can be put to more valuable use.”

    Увеличение полезного времени
    С момента внедрения Remote Service компания Tetley была приятно удивлена резким сокращением простоя роботов и отсутствием незапланированных остановок производства. «Пакет Remote Service резко изменил ситуацию на предприятии», – сказал Тревор. «Мы избавились от простоев роботов и смогли резко увеличить их эксплуатационную готовность. Мы поняли, что для производственного оборудования мирового класса необходим сервисный пакет мирового класса. Дистанционный контроль роботов помогает нам поддерживать их в рабочем состоянии, предотвращать дорогостоящие простои и задействовать наш персонал для выполнения более важных задач».

    Service access
    Remote Service is available worldwide, connecting more than 500 robots. Companies that have up to 30 robots are often good candidates for the Remote Service offering, as they usually have neither the engineers nor the requisite skills to deal with robotics faults themselves. Larger companies are also enthusiastic about Remote Service, as the proactive services will improve the lifetime of their equipment and increase overall production uptime.

    Доступность сервиса
    Сеть Remote Service охватывает более 700 роботов по всему миру. Потенциальными заказчиками Remote Service являются компании, имеющие до 30 роботов, но не имеющие инженеров и техников, способных самостоятельно устранять их неисправности. Интерес к Remote Service проявляют и более крупные компании, поскольку они заинтересованы в увеличении срока службы и эксплуатационной готовности производственного оборудования.

    In today’s competitive environment, business profitability often relies on demanding production schedules that do not always leave time for exhaustive or repeated equipment health checks. ABB’s Remote Service agreements are designed to monitor its customers’ robots to identify when problems are likely to occur and ensure that help is dispatched before the problem can escalate. In over 60 percent of ABB’s service calls, its robots can be brought back online remotely, without further intervention.

    В условиях современной конкуренции окупаемость бизнеса часто зависит от соблюдения жестких графиков производства, не оставляющих времени для полномасштабных или периодических проверок исправности оборудования. Контракт Remote Service предусматривает мониторинг состояния роботов заказчика для прогнозирования возможных неисправностей и принятие мер по их предотвращению. В более чем 60 % случаев для устранения неисправности достаточно дистанционной консультации в сервисной службе АББ, дальнейшего вмешательства не требуется.

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which helps extend the mean time between failures, shorten the time to repair and lower the total cost of ownership. With four new packages available – Support, Response, Maintenance and Warranty, each backed up by ABB’s Remote Service technology – businesses can minimize the impact of unplanned downtime and achieve improved production-line efficiency.

    Компания АББ предлагает гибкий выбор контрактов на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, которые позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и эксплуатационные расходы. Четыре новых пакета на основе технологии Remote Service Support, Response, Maintenance и Warranty – позволяют минимизировать внеплановые простои и значительно повысить эффективность производства.

    The benefits of Remote Sevice are clear: improved availability, fewer service visits, lower maintenance costs and maximized total cost of ownership. This unique service sets ABB apart from its competitors and is the beginning of a revolution in service thinking. It provides ABB with a great opportunity to improve customer access to its expertise and develop more advanced services worldwide.

    Преимущества дистанционного технического обслуживания очевидны: повышенная надежность, уменьшение выездов ремонтных бригад, уменьшение затрат на обслуживание и общих эксплуатационных расходов. Эта уникальная услуга дает компании АББ преимущества над конкурентами и демонстрирует революционный подход к организации сервиса. Благодаря ей компания АББ расширяет доступ заказчиков к опыту своих специалистов и получает возможность более эффективного оказания технической помощи по всему миру.

    Тематики

    • тех. обсл. и ремонт средств электросвязи

    Обобщающие термины

    EN

    Англо-русский словарь нормативно-технической терминологии > remote sevice

  • 74 Clement (Clemmet), Joseph

    [br]
    bapt. 13 June 1779 Great Asby, Westmoreland, England
    d. 28 February 1844 London, England
    [br]
    English machine tool builder and inventor.
    [br]
    Although known as Clement in his professional life, his baptism at Asby and his death were registered under the name of Joseph Clemmet. He worked as a slater until the age of 23, but his interest in mechanics led him to spend much of his spare time in the local blacksmith's shop. By studying books on mechanics borrowed from his cousin, a watchmaker, he taught himself and with the aid of the village blacksmith made his own lathe. By 1805 he was able to give up the slating trade and find employment as a mechanic in a small factory at Kirkby Stephen. From there he moved to Carlisle for two years, and then to Glasgow where, while working as a turner, he took lessons in drawing; he had a natural talent and soon became an expert draughtsman. From about 1809 he was employed by Leys, Mason \& Co. of Aberdeen designing and making power looms. For this work he built a screw-cutting lathe and continued his self-education. At the end of 1813, having saved about £100, he made his way to London, where he soon found employment as a mechanic and draughtsman. Within a few months he was engaged by Joseph Bramah, and after a trial period a formal agreement dated 1 April 1814 was made by which Clement was to be Chief Draughtsman and Superintendent of Bramah's Pimlico works for five years. However, Bramah died in December 1814 and after his sons took over the business it was agreed that Clement should leave before the expiry of the five-year period. He soon found employment as Chief Draughtsman with Henry Maudslay \& Co. By 1817 Clement had saved about £500, which enabled him to establish his own business at Prospect Place, Newington Butts, as a mechanical draughtsman and manufacturer of high-class machinery. For this purpose he built lathes for his own use and invented various improvements in their detailed design. In 1827 he designed and built a facing lathe which incorporated an ingenious system of infinitely variable belt gearing. He had also built his own planing machine by 1820 and another, much larger one in 1825. In 1828 Clement began making fluted taps and dies and standardized the screw threads, thus anticipating on a small scale the national standards later established by Sir Joseph Whitworth. Because of his reputation for first-class workmanship, Clement was in the 1820s engaged by Charles Babbage to carry out the construction of his first Difference Engine.
    [br]
    Principal Honours and Distinctions
    Society of Arts Gold Medal 1818 (for straightline mechanism), 1827 (for facing lathe); Silver Medal 1828 (for lathe-driving device).
    Bibliography
    Further Reading
    S.Smiles, 1863, Industrial Biography, London, reprinted 1967, Newton Abbot (virtually the only source of biographical information on Clement).
    L.T.C.Rolt, 1965, Tools for the Job, London (repub. 1986); W.Steeds, 1969, A History of Machine Tools 1700–1910, Oxford (both contain descriptions of his machine tools).
    RTS

    Biographical history of technology > Clement (Clemmet), Joseph

  • 75 Hunt, Walter

    SUBJECT AREA: Weapons and armour
    [br]
    b. 29 July 1796 Martinsburg, New York, USA
    d. 8 June 1859 New York, USA
    [br]
    American inventor and developer of the first repeating rifle.
    [br]
    Hunt displayed talent as an inventor at an early age. While in his late teens he designed a machine for spinning flax, and after taking out a patent on it in 1826 he went to New York in order to set up a company to manufacture it. The company failed, however, and he was forced to go into business as an estate agent in order to make a living. Nevertheless, he remained undeterred and continued to invent a wide range of objects, including an iron fire alarm for fire stations and engines (1827) and the safety pin (1849). However, either many of his ideas were before their time or he failed to market them properly: for example, in 1834 he invented a sewing machine with lockstitch, but failed to patent it and it was left to others, such as Merritt Singer, to reap the rewards. He also conceived the name "fountain pen", but again more commercially minded people, Swan, Parker and Waterman, enjoyed the benefits. His paper collar, invented in 1854, only became popular after his death. Hunt is probably best remembered in the field of firearms. In 1849 he produced the first repeating rifle, which had a tubular magazine fixed under the barrel and fired special self-propelled or "rocket" balls, for which Hunt had taken out a patent the previous year. Although this weapon never entered general manufacture, the design principles incorporated in it were later reflected in the Springfield, Winchester, Henry and Volcanic rifles, which began to appear towards the end of the following decade.
    [br]
    Further Reading
    1974, Webster's American Biographies (a useful summary of Hunt's life and work).
    CM

    Biographical history of technology > Hunt, Walter

  • 76 July

    (the seventh month of the year, the month following June.) julio
    July n julio
    tr[ʤʊː'laɪ]
    1 julio Table 1SMALLNOTA/SMALL For examples of use, see May/Table 1
    July [ʤʊ'laɪ] n
    : julio m
    n.
    julio s.m.
    dʒʊ'laɪ
    [dʒuː'laɪ]
    1.
    N julio m

    at the beginning of July — a principios de julio

    during (the month of) July — durante el mes de julio

    each July — cada mes de julio, todos los meses de julio

    at the end of July — a finales de julio

    every July — todos los meses de julio

    in (the month of) July — en (el mes de) julio

    in the middle of July — a mediados de julio

    on the first/eleventh of July — el primero/once de julio

    2.
    CPD

    July sales NPL

    * * *
    [dʒʊ'laɪ]

    English-spanish dictionary > July

  • 77 locate

    transitive verb
    1) (position) platzieren

    be located — liegen; gelegen sein

    2) (determine position of) ausfindig machen; lokalisieren (fachspr.); orten (Flugw., Seew.)
    * * *
    [lə'keit, ]( American[) 'loukeit]
    1) (to set in a particular place or position: The kitchen is located in the basement.) unterbringen
    2) (to find the place or position of: He located the street he was looking for on the map.) ausfindig machen
    * * *
    lo·cate
    [lə(ʊ)ˈkeɪt, AM ˈloʊ-]
    I. vt
    to \locate sth etw ausfindig machen, geh lokalisieren; plane, sunken ship etw orten
    2. (situate)
    to \locate sth etw bauen [o errichten]
    our office is \located at the end of the road unser Büro befindet sich am Ende der Straße
    many power stations are \located on coastal land viele Kraftwerke liegen in Küstengebieten
    to be centrally \located zentral liegen [o gelegen sein
    II. vi AM sich akk niederlassen
    the company hopes to \locate in its new offices by June die Firma hofft, ihre neuen Büroräume bis spätestens Juni beziehen zu können
    * * *
    [ləU'keIt]
    vt
    1) (= position) legen; headquarters einrichten; (including act of building) bauen, errichten; sportsground, playground anlegen; road bauen, anlegen

    the hotel is centrally located —

    2) (= find) ausfindig machen; submarine, plane orten
    * * *
    locate [ləʊˈkeıt; US besonders ˈləʊˌkeıt]
    A v/t
    1. ausfindig machen, aufspüren, den Aufenthaltsort ermitteln von (oder gen)
    2. a) SCHIFF etc orten
    b) MIL ein Ziel etc ausmachen
    3. lokalisieren, örtlich bestimmen oder festlegen
    4. ein Büro etc errichten
    5. US
    a) den Ort oder die Grenzen festsetzen für
    b) Land etc abstecken, abgrenzen
    6. einen bestimmten Platz zuweisen (dat), (auch gedanklich) einordnen
    7. a) (an einem bestimmten Ort) an- oder unterbringen
    b) (an einen Ort) verlegen:
    be located gelegen sein, liegen, sich befinden
    8. US bewegliche Sachen vermieten
    B v/i US sich niederlassen
    * * *
    transitive verb
    1) (position) platzieren

    be located — liegen; gelegen sein

    2) (determine position of) ausfindig machen; lokalisieren (fachspr.); orten (Flugw., Seew.)
    * * *
    v.
    anpeilen v.
    auffinden v.
    fixieren v.
    lokalisieren v.
    orten v.

    English-german dictionary > locate

  • 78 toward(s)

    to·ward(s)
    [təˈwɔ:d(z), AM tɔ:rd(z), təˈwɔ:rd(z)]
    1. (in direction of) in Richtung
    she kept glancing \toward(s) the telephone sie sah immerzu in Richtung Telefon
    she walked \toward(s) him sie ging auf ihn zu
    he leaned \toward(s) her er lehnte sich zu ihr hinüber
    2. (near) nahe + dat
    our seats were \toward(s) the back unsere Plätze waren recht weit hinten
    we're well \toward(s) the front of the queue wir sind ziemlich weit vorne in der Schlange
    3. (just before) gegen + akk
    \toward(s) midnight/the end of the year gegen Mitternacht/Ende des Jahres
    \toward(s) Easter/the first of June um Ostern/den ersten Juni herum
    4. (to goal of)
    they are working \toward(s) a degree sie arbeiten auf einen Abschluss hin
    there has been little progress \toward(s) finding a solution es gab wenig Fortschritt in Richtung einer Lösung
    the work that students do during the term counts \toward(s) their final grade die Arbeit, die die Studenten während des Semesters schreiben, wird auf ihre Endnote angerechnet
    to work \toward(s) a solution auf eine Lösung hinarbeiten
    5. (to trend of) zu + dat
    a trend \toward(s) healthier eating ein Trend [hin] zu gesünderer Ernährung
    6. (in relation to) gegenüber + dat
    they've always been friendly \toward(s) me mir gegenüber waren sie immer freundlich
    that's part of her attitude \toward(s) life das ist Teil ihrer Lebenseinstellung
    to feel sth \toward(s) sb jdm gegenüber etw empfinden [o fühlen
    7. (to be used for) für + akk
    he has given me some money \toward(s) it er hat mir etwas Geld dazugegeben
    would you like to make a contribution \toward(s) a present for Linda? möchtest du etwas zu einem Geschenk für Linda beisteuern?

    English-german dictionary > toward(s)

  • 79 July

    [dʒuː'laɪ]
    n

    at the beginning/end of July — na początku/pod koniec lipca

    during July — w lipcu, przez lipiec

    each/every July — co roku w lipcu

    * * *
    (the seventh month of the year, the month following June.) lipiec

    English-Polish dictionary > July

  • 80 month

    monthTime units n mois m ; in two months, in two months' time dans deux mois ; every month chaque mois or tous les mois ; for months pendant des mois ; month by month mois après mois ; next/last month le mois prochain/dernier ; the month before last pas le mois dernier, celui d'avant ; the month after next pas le mois prochain, celui d'après ; months later des mois plus tard ; once a month une fois par mois ; every other month tous les deux mois ; month in month out pendant des mois et des mois ; in the month of June au mois de juin ; at the end of the month en fin de mois ; Admin, Comm fin courant ; what day of the month is today? nous sommes le combien aujourd'hui? ; six months' pay six mois de salaire ; a month's rent un mois de loyer ; a seven-month-old baby un bébé de sept mois ; month after month he forgets to pay ( regular payment) tous les mois il oublie de payer ; ( single payment) ça fait des mois qu'il oublie de payer ; your salary for the month beginning May 15 votre salaire du 15 mai au 15 juin.
    it's her time of the month euph elle est indisposée.

    Big English-French dictionary > month

См. также в других словарях:

  • The End of Evangelion — Theatrical release poster Directed by Episode 25 : Kazuya Tsurumaki Episode 26 : Hideaki Anno …   Wikipedia

  • The End of All Things to Come — Studio album by Mudvayne Released November 19, 2002 …   Wikipedia

  • The End of the Game — is also the final trilogy in the True Game series of novels by Sheri S. Tepper. Infobox Album | Name = The End of the Game Type = Album Artist = Peter Green Released = 1970 Recorded = May ndash;June 1970 Genre = Rock Length = 33:17 Label =… …   Wikipedia

  • The End Records discography — This is an overview of the discography of The End Records and affiliated labels. The End Records Discography Albums * Vale Mental Home (January, 1998) TE001 * ...Until the End of Time V/A (February, 1998) TE002 * Goat Horns Nokturnal Mortum… …   Wikipedia

  • The End Is Near — Infobox Album | Name = The End Is Near Type = Album Artist = Five Iron Frenzy Released = June 18, 2003 Recorded = Genre = Third wave ska, hard rock Length = 56:31 Label = Five Minute Walk Producer = Frank Tate Reviews = * Jesus Freak Hideout… …   Wikipedia

  • The End (Nico album) — Infobox Album | Name = The End Type = Album Artist = Nico Released = 1974 Recorded = 1973 Sound Techniques Ltd., London Genre = Proto neofolk Length = 42:02 Producer = John Cale Label = Island Records Reviews = *Allmusic Rating|4.5|5… …   Wikipedia

  • The End Is the Beginning Is the End — Infobox Single Name = The End Is the Beginning Is the End Artist = The Smashing Pumpkins from Album = Music from and Inspired by the Batman Robin Motion Picture Released = June 2, 1997 Format = Cassette tape and CD Recorded = 1997 Genre =… …   Wikipedia

  • The Light at the End of the World — Infobox Album | Name = The Light at the End of the World Type = studio Artist = My Dying Bride Released = October 12 1999 Recorded = Academy Studios, June 7 August 4 1999 Genre = Doom metal Length = 71:11 Label = Peaceville Records Producer =… …   Wikipedia

  • The End of the Innocence — Infobox Album | Name = The End of the Innocence Type = Album Artist = Don Henley Released = June 27, 1989 Recorded = ??? Genre = Rock Length = 53:11 Label = Geffen 24217 2 Producer = Don Henley, Mike Campbell, John Corey, Bruce Hornsby, Danny… …   Wikipedia

  • The Bold and the Beautiful — Genre Soap opera Created by William J. Bell Lee Philip Bell …   Wikipedia

  • June — is the sixth month of the year in the Gregorian calendar, with a length of 30 days. The month is named after the Roman goddess Juno, wife of Jupiter and equivalent to the Greek goddess Hera. See: Months in various calendarsAt the start of June,… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»