Перевод: с английского на все языки

со всех языков на английский

to+manufacture+an+invention

  • 21 Highs, Thomas

    SUBJECT AREA: Textiles
    [br]
    fl. 1760s England
    [br]
    English reedmaker who claimed to have invented both the spinning jenny and the waterframe.
    [br]
    The claims of Highs to have invented both the spinning jenny and the waterframe have been dismissed by most historians. Thomas Highs was a reedmaker of Leigh, Lancashire. In about 1763 he had as a neighbour John Kay, the clockmaker from Warrington, whom he employed to help him construct his machines. During this period they were engaged in making a spinning jenny, but after several months of toil, in a fit of despondency, they threw the machine through the attic window. Highs persevered, however, and made a jenny that could spin six threads. The comparatively sophisticated arrangements for drawing and twisting at the same time, as depicted by Guest (1823), suggest that this machine came after the one invented by James Hargreaves. Guest claims that Highs made this machine between 1764 and 1766 and in the following two years constructed another, in which the spindles were placed in a circle. In 1771 Highs moved to Manchester, where he constructed a double jenny that was displayed at the Manchester Exchange, and received a subscription of £200 from the cotton manufacturers. However, all this occurred after Hargreaves had constructed his jenny. In the trial of Arkwright's patent during 1781, Highs gave evidence. He was recalled from Ireland, where he had been superintending the building of cotton-spinning machinery for Baron Hamilton's newly erected mill at Balbriggan, north of Dublin. Then in 1785, during the next trial of Arkwright's patent, Highs claimed that in 1767 he had made rollers for drawing out the cotton before spinning. This would have been for a different type of spinning machine, similar to the one later constructed by Arkwright. Highs was helped by John Kay and it was these rollers that Kay subsequently built for Arkwright. If the drawing shown by Guest is correct, then Highs was working on the wrong principles because his rollers were spaced too far apart and were not held together by weights, with the result that the twist would have passed into the drafting zone, producing uneven drawing.
    [br]
    Further Reading
    R.Guest, 1823, A Compendious History of the Cotton-Manufacture: With a Disproval of the Claim of Sir Richard Arkwright to the Invention of its Ingenious Machinery, Manchester (Highs's claim for the invention of his spinning machines).
    R.S.Fitton, 1989, The Arkwrights, Spinners of Fortune, Manchester (an examination of Highs's claims).
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (discusses the technical problems of the invention).
    RLH

    Biographical history of technology > Highs, Thomas

  • 22 Judson, Whitcomb L.

    SUBJECT AREA: Textiles
    [br]
    fl. 1891–1905 USA
    [br]
    American inventor of the zip fastener.
    [br]
    Whitcomb Judson was a mechanical engineer by profession. He filed his first patent application for a zip fastener in 1891 and took out a fifth in 1905. His invention was originally designed for shoes and consisted of separate fasteners with two interlocking parts which could be fastened either by hand or by a movable guide. In his last patent, he clamped the fastening elements to the edge of a fabric tape and patented a machine for manufacturing this. Through an earlier exploit, the Judson Pneumatic Street Railway Company, Judson knew Colonel Lewis Walker, who helped him to organize the Universal Fastener Company of Chicago to manufacture these fasteners, which at first were made by hand. One machine invented by Judson proved to be too complicated, but Judson's later fasteners were easier to adapt to machine production. The original company was reorganized as the Automatic Hook and Eye Company of Hoboken, New Jersey, and the new fasteners were sold under the name "C-curity". However, the garment manufacturers would not use them at first because the fasteners had defects, such as springing open at unexpected moments. The Automatic Hook and Eye Company brought in Gideon Sundback, who improved Judson's work and made the zip fastener successful.
    [br]
    Further Reading
    J.Jewkes, D.Sawyers and R.Stillerman, 1969, The Sources of Invention, 2nd edn, London (for an account of the invention).
    I.McNeil (ed.), 1990, An Encyclopaedia of the History of Technology, London: Routledge, pp. 852–3 (provides a brief account of fastenings).
    RLH

    Biographical history of technology > Judson, Whitcomb L.

  • 23 Smith, Oberlin

    [br]
    b. 22 March 1840 Cincinnati, Ohio, USA
    d. 18 July 1926
    [br]
    American mechanical engineer, pioneer in experiments with magnetic recording.
    [br]
    Of English descent, Smith embarked on an education in mechanical engineering, graduating from West Jersey Academy, Bridgeton, New Jersey, in 1859. In 1863 he established a machine shop in Bridgeton, New Jersey, that became the Ferracute Machine Company in 1877, eventually specializing in the manufacture of presses for metalworking. He seems to have subscribed to design principles considered modern even in the 1990s, "always giving attention to the development of artistic form in combination with simplicity, and with massive strength where required" (bibliographic reference below). He was successful in his business, and developed and patented a large number of mechanical constructions.
    Inspired by the advent of the phonograph of Edison, in 1878 Smith obtained the tin-foil mechanical phonograph, analysed its shortcomings and performed some experiments in magnetic recording. He filed a caveat in the US Patent Office in order to be protected while he "reduced the invention to practice". However, he did not follow this trail. When there was renewed interest in practical sound recording and reproduction in 1888 (the constructions of Berliner and Bell \& Tainter), Smith published an account of his experiments in the journal Electrical World. In a corrective letter three weeks later it is clear that he was aware of the physical requirements for the interaction between magnetic coil and magnetic medium, but his publications also indicate that he did not as such obtain reproduction of recorded sound.
    Smith did not try to develop magnetic recording, but he felt it imperative that he be given credit for conceiving the idea of it. When accounts of Valdemar Poulsen's work were published in 1900, Smith attempted to prove some rights in the invention in the US Patent Office, but to no avail.
    He was a highly respected member of both his community and engineering societies, and in later life became interested in the anti-slavery cause that had also been close to the heart of his parents, as well as in the YMCA movement and in women's suffrage.
    [br]
    Bibliography
    Apart from numerous technical papers, he wrote the book Press Working of Metals, 1896. His accounts on the magnetic recording experiments were "Some possible forms of phonograph", Electrical World (8 September 1888): 161 ff, and "Letter to the Editor", Electrical World (29 September 1888): 179.
    Further Reading
    F.K.Engel, 1990, Documents on the Invention of Magnetic Recording in 1878, New York: Audio Engineering Society, Reprint no. 2,914 (G2) (a good overview of the material collected by the Oberlin Smith Society, Bridgeton, New Jersey, in particular as regards the recording experiments; it is here that it is doubted that Valdemar Poulsen developed his ideas independently).
    GB-N

    Biographical history of technology > Smith, Oberlin

  • 24 licence

    n

    - active licence
    - assignable licence
    - banking licence
    - blanket licence
    - bloc licence
    - building licence
    - compulsory licence
    - contractual licence
    - credit licence
    - cross licence
    - currency licence
    - customs licence
    - driver's licence
    - exclusive licence
    - export licence
    - feedback licence
    - field-of-use licence
    - flat licence
    - free licence
    - full licence
    - general licence
    - general import licence
    - global licence
    - import licence
    - individual licence
    - indivisible licence
    - intermediate advance licence
    - know-how licence
    - lighterage licence
    - limited licence
    - liquor licence
    - manufacturing licence
    - nonassignable licence
    - nonexclusive licence
    - nonpatent licence
    - nontransferable licence
    - open licence
    - open general licence
    - operating licence
    - ordinary licence
    - package licence
    - passive licence
    - patent licence
    - per unit licence
    - price fixing licence
    - process licence
    - quantity-based advance licence
    - reciprocal licence
    - reimport licence
    - restrictive licence
    - retroactive licence
    - royalty-bearing licence
    - royalty-free licence
    - selling licence
    - simple licence
    - single licence
    - sole licence
    - special licence
    - special imprest licence
    - specific import licence
    - territorial limited licence
    - trademark licence
    - trading licence
    - transferable licence
    - transhipment licence
    - valid licence
    - validated licence
    - value-based advance licence
    - voluntary licence
    - licence for design
    - licence for equipment
    - licence for industrial technology
    - licence for an invention
    - licence for a patent
    - licence on a process
    - licence to manufacture
    - licence to operate
    - licence to use
    - licence under a patent
    - under a licence
    - acquire a licence
    - apply for a licence
    - award a licence
    - buy a licence
    - cancel a licence
    - extend a licence
    - forfeit a licence
    - freeze a licence
    - give a licence
    - grant a licence
    - have a licence
    - hold a licence
    - import under a licence
    - issue a licence
    - issue an operating licence
    - make under a licence
    - manufacture under a licence
    - market a licence
    - obtain a licence
    - possess a licence
    - produce under a licence
    - purchase a licence
    - refuse a licence
    - renew a licence
    - renounce a licence
    - revalidate a licence
    - revoke a licence
    - secure a licence
    - sell a licence
    - suspend a licence
    - take out a licence
    - take up a licence
    - withdraw a licence

    English-russian dctionary of contemporary Economics > licence

  • 25 Eastman, George

    [br]
    b. 12 July 1854 Waterville, New York, USA
    d. 14 March 1932 Rochester, New York, USA
    [br]
    American industrialist and pioneer of popular photography.
    [br]
    The young Eastman was a clerk-bookkeeper in the Rochester Savings Bank when in 1877 he took up photography. Taking lessons in the wet-plate process, he became an enthusiastic amateur photographer. However, the cumbersome equipment and noxious chemicals used in the process proved an obstacle, as he said, "It seemed to be that one ought to be able to carry less than a pack-horse load." Then he came across an account of the new gelatine dry-plate process in the British Journal of Photography of March 1878. He experimented in coating glass plates with the new emulsions, and was soon so successful that he decided to go into commercial manufacture. He devised a machine to simplify the coating of the plates, and travelled to England in July 1879 to patent it. In April 1880 he prepared to begin manufacture in a rented building in Rochester, and contacted the leading American photographic supply house, E. \& H.T.Anthony, offering them an option as agents. A local whip manufacturer, Henry A.Strong, invested $1,000 in the enterprise and the Eastman Dry Plate Company was formed on 1 January 1881. Still working at the Savings Bank, he ran the business in his spare time, and demand grew for the quality product he was producing. The fledgling company survived a near disaster in 1882 when the quality of the emulsions dropped alarmingly. Eastman later discovered this was due to impurities in the gelatine used, and this led him to test all raw materials rigorously for quality. In 1884 the company became a corporation, the Eastman Dry Plate \& Film Company, and a new product was announced. Mindful of his desire to simplify photography, Eastman, with a camera maker, William H.Walker, designed a roll-holder in which the heavy glass plates were replaced by a roll of emulsion-coated paper. The holders were made in sizes suitable for most plate cameras. Eastman designed and patented a coating machine for the large-scale production of the paper film, bringing costs down dramatically, the roll-holders were acclaimed by photographers worldwide, and prizes and medals were awarded, but Eastman was still not satisfied. The next step was to incorporate the roll-holder in a smaller, hand-held camera. His first successful design was launched in June 1888: the Kodak camera. A small box camera, it held enough paper film for 100 circular exposures, and was bought ready-loaded. After the film had been exposed, the camera was returned to Eastman's factory, where the film was removed, processed and printed, and the camera reloaded. This developing and printing service was the most revolutionary part of his invention, since at that time photographers were expected to process their own photographs, which required access to a darkroom and appropriate chemicals. The Kodak camera put photography into the hands of the countless thousands who wanted photographs without complications. Eastman's marketing slogan neatly summed up the advantage: "You Press the Button, We Do the Rest." The Kodak camera was the last product in the design of which Eastman was personally involved. His company was growing rapidly, and he recruited the most talented scientists and technicians available. New products emerged regularly—notably the first commercially produced celluloid roll film for the Kodak cameras in July 1889; this material made possible the introduction of cinematography a few years later. Eastman's philosophy of simplifying photography and reducing its costs continued to influence products: for example, the introduction of the one dollar, or five shilling, Brownie camera in 1900, which put photography in the hands of almost everyone. Over the years the Eastman Kodak Company, as it now was, grew into a giant multinational corporation with manufacturing and marketing organizations throughout the world. Eastman continued to guide the company; he pursued an enlightened policy of employee welfare and profit sharing decades before this was common in industry. He made massive donations to many concerns, notably the Massachusetts Institute of Technology, and supported schemes for the education of black people, dental welfare, calendar reform, music and many other causes, he withdrew from the day-to-day control of the company in 1925, and at last had time for recreation. On 14 March 1932, suffering from a painful terminal cancer and after tidying up his affairs, he shot himself through the heart, leaving a note: "To my friends: My work is done. Why wait?" Although Eastman's technical innovations were made mostly at the beginning of his career, the organization which he founded and guided in its formative years was responsible for many of the major advances in photography over the years.
    [br]
    Further Reading
    C.Ackerman, 1929, George Eastman, Cambridge, Mass.
    BC

    Biographical history of technology > Eastman, George

  • 26 Faure, Camille Alphonse

    SUBJECT AREA: Electricity
    [br]
    b. 21 May 1840 Vizille, France
    d. September 1898
    [br]
    French chemist, inventor of an improved method of preparing the plates for Planté lead-acid secondary cells.
    [br]
    After technical training at the Ecole des Arts et Métiers at Aix, Faure was employed superintending the erection of factories in France and England. These included the Cotton Powder Company plant in Faversham for the manufacture of the explosive Tonite invented by Faure. He also invented distress signals used by the merchant navy. It was between 1878 and 1880 that he performed his most important work, the improvement of the Planté cell. Faure's invention of coating the lead plates with a paste of lead oxide substantially reduced the time taken to form the plates. Their construction was subsequently further improved by Swan and others. These developments appeared at a particularly opportune time because lead-acid secondary cells found immediate application in telegraphy and later in electric lighting and traction systems, where their use resulted in reduced costs of providing supplies during peak-load periods. In his later years Faure's attention was directed to other electrochemical problems, including the manufacture of aluminium.
    [br]
    Bibliography
    1881, "Sur la pile secondaire de M C.Faure", Comptes rendus 92:951–3 (announcing his cell).
    11 January 1881, British patent no. 129 (Faure's improvement of the Planté cell).
    Further Reading
    Electrician (1882) 7:122–3 (describes the Faure cell).
    G.Wood Vinal, 1955, Storage Batteries, 4th edn, London (describes later developments).
    GW

    Biographical history of technology > Faure, Camille Alphonse

  • 27 Maudslay, Henry

    [br]
    b. 22 August 1771 Woolwich, Kent, England
    d. 15 February 1831 Lambeth, London, England
    [br]
    English precision toolmaker and engineer.
    [br]
    Henry Maudslay was the third son of an ex-soldier and storekeeper at Woolwich Arsenal. At the age of 12 he was employed at the Arsenal filling cartridges; two years later he was transferred to the woodworking department, adjacent to the smithy, to which he moved when 15 years old. He was a rapid learner, and three years later Joseph Bramah took him on for the construction of special tools required for the mass-production of his locks. Maudslay was thus employed for the next eight years. He became Bramah's foreman, married his housekeeper, Sarah Tindale, and, unable to better himself, decided to leave and set up on his own. He soon outgrew his first premises in Wells Street and moved to Margaret Street, off Oxford Street, where some examples of his workmanship were displayed in the window. These caught the attention of a visiting Frenchman, de Bacquancourt; he was a friend of Marc Isambard Brunel, who was then in the early stages of designing the block-making machinery later installed at Portsmouth dockyard.
    Brunel wanted first a set of working models, as he did not think that the Lords of the Admiralty would be capable of understanding engineering drawings; Maudslay made these for him within the next two years. Sir Samuel Bentham, Inspector-General of Naval Works, agreed that Brunel's system was superior to the one that he had gone some way in developing; the Admiralty approved, and an order was placed for the complete plant. The manufacture of the machinery occupied Maudslay for the next six years; he was assisted by a draughtsman whom he took on from Portsmouth dockyard, Joshua Field (1786–1863), who became his partner in Maudslay, Son and Field. There were as many as eighty employees at Margaret Street until, in 1810, larger premises became necessary and a new works was built at Lambeth Marsh where, eventually, there were up to two hundred workers. The new factory was flanked by two houses, one of which was occupied by Maudslay, the other by Field. The firm became noted for its production of marine steam-engines, notably Maudslay's table engine which was first introduced in 1807.
    Maudslay was a consummate craftsman who was never happier than when working at his bench or at a machine tool; he was also one of the first engineers to appreciate the virtues of standardization. Evidence of this appreciation is to be found in his work in the development of the Bramah lock and then on the machine tools for the manufacture of ship's blocks to Marc Brunel's designs; possibly his most important contribution was the invention in 1797 of the metal lathe. He made a number of surface plates of the finest quality. The most celebrated of his numerous measuring devices was a micrometer-based machine which he termed his "Lord Chancellor" because, in the machine shop, it represented the "final court of appeal", measuring to one-thousandth of an inch.
    [br]
    Further Reading
    1934–5, "Maudslay, Sons \& Field as general engineers", Transactions of the Newcomen Society 15, London.
    1963, Engineering Heritage, Vol. 1, London: Institution of Mechanical Engineers. L.T.C.Rolt, 1965, Tools for the Job, London: Batsford.
    W.Steeds, 1969, A History of Machine Tools 1700–1910, Oxford: Oxford University Press.
    IMcN

    Biographical history of technology > Maudslay, Henry

  • 28 Messel, Rudolf

    SUBJECT AREA: Chemical technology
    [br]
    b. 14 January 1848 Darmstadt, Germany
    d. 18 April 1920 London, England
    [br]
    German industrial chemist.
    [br]
    Messel served three years as an apprentice to the chemical manufacturers E.Lucius of Frankfurt before studying chemistry at Zürich, Heidelberg and Tübingen. In 1870 he travelled to England to assist the distinguished chemist Sir Henry Roscoe, but was soon recalled to Germany on the outbreak of the Franco-Prussian War. After hostilities ceased, Messel returned to London to join the firm of manufacturers of sulphuric acid Dunn, Squire \& Company of Stratford, London. The firm amalgamated with Spencer Chapman, and after Messel became its Managing Director in 1878 it was known as Spencer, Chapman \& Messel Ltd.
    Messel's principal contribution to chemical technology was the invention of the contact process for the manufacture of sulphuric acid. Earlier processes for making this essential product, now needed in ever-increasing quantities by the new processes for making dyestuffs, fertilizers and explosives, were based on the oxidation of sulphur dioxide by oxides of nitrogen, developed by Joshua Ward and John Roebuck. Attempts to oxidize the dioxide to the trioxide with the oxygen in the air in the presence of a suitable catalyst had so far failed because the catalyst had become "poisoned" and ineffective; Messel avoided this by using highly purified gases. The contact process produced a concentrated form of sulphuric acid called oleum. Until the outbreak of the First World War, Messel's firm was the principal manufacturer, but then the demand rose sharply, so that other firms had to engage in its manufacture. Production thereby increased from 20,000 to 450,000 tons per year.
    [br]
    Principal Honours and Distinctions
    FRS 1912. President, Society of Chemical Industry 1911–12, 1914.
    Further Reading
    1931, Special jubilee issue, Journal of the Society of the Chemical Industry (July). G.T.Morgan and D.D.Pratt, 1938, The British Chemical Industry, London.
    LRD

    Biographical history of technology > Messel, Rudolf

  • 29 Nobel, Alfred Bernhard

    [br]
    b. 21 October 1833 Stockholm, Sweden
    d. 10 December 1896 San Remo, Italy
    [br]
    Swedish industrialist, inventor of dynamite, founder of the Nobel Prizes.
    [br]
    Alfred's father, Immanuel Nobel, builder, industrialist and inventor, encouraged his sons to follow his example of inventiveness. Alfred's education was interrupted when the family moved to St Petersburg, but was continued privately and was followed by a period of travel. He thus acquired a good knowledge of chemistry and became an excellent linguist.
    During the Crimean War, Nobel worked for his father's firm in supplying war materials. The cancellation of agreements with the Russian Government at the end of the war bankrupted the firm, but Alfred and his brother Immanuel continued their interest in explosives, working on improved methods of making nitroglycerine. In 1863 Nobel patented his first major invention, a detonator that introduced the principle of detonation by shock, by using a small charge of nitroglycerine in a metal cap with detonating or fulminating mercury. Two years later Nobel set up the world's first nitroglycerine factory in an isolated area outside Stockholm. This led to several other plants and improved methods for making and handling the explosive. Yet Nobel remained aware of the dangers of liquid nitroglycerine, and after many experiments he was able in 1867 to take out a patent for dynamite, a safe, solid and pliable form of nitroglycerine, mixed with kieselguhr. At last, nitroglycerine, discovered by Sobrero in 1847, had been transformed into a useful explosive; Nobel began to promote a worldwide industry for its manufacture. Dynamite still had disadvantages, and Nobel continued his researches until, in 1875, he achieved blasting gelatin, a colloidal solution of nitrocellulose (gun cotton) in nitroglycerine. In many ways it proved to be the ideal explosive, more powerful than nitroglycerine alone, less sensitive to shock and resistant to moisture. It was variously called Nobel's Extra Dynamite, blasting gelatin and gelignite. It immediately went into production.
    Next, Nobel sought a smokeless powder for military purposes, and in 1887 he obtained a nearly smokeless blasting powder using nitroglycerine and nitrocellulose with 10 per cent camphor. Finally, a progressive, smokeless blasting powder was developed in 1896 at his San Remo laboratory.
    Nobel's interests went beyond explosives into other areas, such as electrochemistry, optics and biology; his patents amounted to 355 in various countries. However, it was the manufacture of explosives that made him a multimillionaire. At his death he left over £2 million, which he willed to funding awards "to those who during the preceding year, shall have conferred the greatest benefit on mankind".
    [br]
    Bibliography
    1875, On Modern Blasting Agents, Glasgow (his only book).
    Further Reading
    H.Schuck et al., 1962, Nobel, the Man and His Prizes, Amsterdam.
    E.Bergengren, 1962, Alfred Nobel, the Man and His Work, London and New York (includes a supplement on the prizes and the Nobel institution).
    LRD

    Biographical history of technology > Nobel, Alfred Bernhard

  • 30 Singer, Isaac Merritt

    [br]
    b. 27 October 1811 Pittstown, New York, USA
    d. 23 July 1875 Torquay, Devonshire, England
    [br]
    American inventor of a sewing machine, and pioneer of mass production.
    [br]
    The son of a millwright, Singer was employed as an unskilled labourer at the age of 12, but later gained wide experience as a travelling machinist. He also found employment as an actor. On 16 May 1839, while living at Lockport, Illinois, he obtained his first patent for a rock-drilling machine, but he soon squandered the money he made. Then in 1849, while at Pittsburgh, he secured a patent for a wood-and metal-carving machine that he had begun five years previously; however, a boiler explosion in the factory destroyed his machine and left him penniless.
    Near the end of 1850 Singer was engaged to redesign the Lerow \& Blodgett sewing machine at the Boston shop of Orson C.Phelps, where the machine was being repaired. He built an improved version in eleven days that was sufficiently different for him to patent on 12 August 1851. He formed a partnership with Phelps and G.B. Zieber and they began to market the invention. Singer soon purchased Phelps's interest, although Phelps continued to manufacture the machines. Then Edward Clark acquired a one-third interest and with Singer bought out Zieber. These two, with dark's flair for promotion and marketing, began to create a company which eventually would become the largest manufacturer of sewing machines exported worldwide, with subsidiary factories in England.
    However, first Singer had to defend his patent, which was challenged by an earlier Boston inventor, Elias Howe. Although after a long lawsuit Singer had to pay royalties, it was the Singer machine which eventually captured the market because it could do continuous stitching. In 1856 the Great Sewing Machine Combination, the first important pooling arrangement in American history, was formed to share the various patents so that machines could be built without infringements and manufacture could be expanded without fear of litigation. Singer contributed his monopoly on the needle-bar cam with his 1851 patent. He secured twenty additional patents, so that his original straight-needle vertical design for lock-stitching eventually included such refinements as a continuous wheel-feed, yielding presser-foot, and improved cam for moving the needle-bar. A new model, introduced in 1856, was the first to be intended solely for use in the home.
    Initially Phelps made all the machines for Singer. Then a works was established in New York where the parts were assembled by skilled workers through filing and fitting. Each machine was therefore a "one-off" but Singer machines were always advertised as the best on the market and sold at correspondingly high prices. Gradually, more specialized machine tools were acquired, but it was not until long after Singer had retired to Europe in 1863 that Clark made the change to mass production. Sales of machines numbered 810 in 1853 and 21,000 ten years later.
    [br]
    Bibliography
    12 August 1851, US patent no. 8,294 (sewing machine)
    Further Reading
    Biographies and obituaries have appeared in Appleton's Cyclopedia of America, Vol. V; Dictionary of American Biography, Vol XVII; New York Times 25 July 1875; Scientific American (1875) 33; and National Cyclopaedia of American Biography.
    D.A.Hounshell, 1984, From the American System to Mass Production 1800–1932. The
    Development of Manufacturing Technology in the United States, Baltimore (provides a thorough account of the development of the Singer sewing machine, the competition it faced from other manufacturers and production methods).
    RLH

    Biographical history of technology > Singer, Isaac Merritt

  • 31 Walton, Frederick

    [br]
    fl. 1860s Chiswick, Middlesex, England
    [br]
    English inventor and early manufacturer of linoleum.
    [br]
    Walton's linoleum consisted of a burlap base coated with a cement made from linseed oil, gum, resin and colour pigments. The linseed oil was oxidized in order to produce a rubbery consistency, and this was achieved either by adding the oil to the burlap in a series of coats, allowing each coat to dry in a heated room and so absorb the oxygen from the atmosphere, or by inserting the product into a steam-heated container, thereby hastening the process. The coated fabric was then calendered so that the heat and pressure of the rollers would soften the coating mixture, making it adhere firmly to the fabric backing. On 19 December 1863 Walton applied for a patent for the manufacture of his invention at British Grove Works in Chiswick, Middlesex. The patent was granted on 31 May 1864 for "Improvements in the Manufacture of Floor Cloths and Coverings and Similar Fabrics and in Pavements". Later in 1864 Walton set up a factory in Staines.
    The term linoleum derives from the Latin words linum, meaning linen thread, and oleum, meaning oil. Linoleum was made in rolls in everincreasing quantity until about 1950, by which time it was being replaced by synthetic vinyl-type coverings.
    [br]
    Further Reading
    See "Linoleum" in Children's Britannica, Chicago, Ill.: Encyclopaedia Britannica, and in Encyclopaedia Americana, Danbury, Conn.: Americana.
    DY

    Biographical history of technology > Walton, Frederick

  • 32 Whinfield, John Rex

    [br]
    b. 16 February 1901 Sutton, Surrey, England
    d. 6 July 1955 Dorking, Surrey, England
    [br]
    English inventor ofTerylene.
    [br]
    Whinfield was educated at Merchant Taylors' School and Caius College, Cambridge, where he studied chemistry. Before embarking on his career as a research chemist, he worked as an un-paid assistant to the chemist C.F. Cross, who had taken part in the discovery of rayon. Whinfield then joined the Calico Printers' Association. There his interest was aroused by the discovery of nylon by W.H. Carothers to seek other polymers which could be produced in fibre form, usable by the textile industries. With his colleague J.T. Dickson, he discovered in 1941 that a polymerized condensate of terephthalic acid and ethylene glycol, polyethylene terephthgal-late, could be drawn into strong fibres. Whinfield and Dickson filed a patent application in the same year, but due to war conditions it was not published until 1946. The Ministry of Supply considered that the new material might have military applications and undertook further research and development. Its industrial and textile possibilities were evaluated by Imperial Chemical Industries (ICI) in 1943 and "Terylene", as it came to be called, was soon recognized as being as important as nylon.
    In 1946, Dupont acquired rights to work the Calico Printers' Association patent in the USA and began large-scale manufacture in 1954, marketing the product under the name "Dacron". Meanwhile ICI purchased world rights except for the USA and reached the large-scale manufacture stage in 1955. A new branch of the textile industry has grown up from Whinfield's discovery: he lived to see most people in the western world wearing something made of Terylene. It was one of the major inventions of the twentieth century, yet Whinfield, perhaps because he published little, received scant recognition, apart from the CBE in 1954.
    [br]
    Principal Honours and Distinctions
    CBE 1954.
    Further Reading
    Obituary, 1966, The Times (7 July).
    Obituary, 1967, Chemistry in Britain 3:26.
    J.Jewkes, D.Sawers and R.Stillerman, 1969, The Sources of Invention, 2nd edn, London: Macmillan.
    LRD

    Biographical history of technology > Whinfield, John Rex

  • 33 Arnold, Aza

    SUBJECT AREA: Textiles
    [br]
    b. 4 October 1788 Smithfield, Pawtucket, Rhode Island, USA
    d. 1865 Washington, DC, USA
    [br]
    American textile machinist who applied the differential motion to roving frames, solving the problem of winding on the delicate cotton rovings.
    [br]
    He was the son of Benjamin and Isabel Arnold, but his mother died when he was 2 years old and after his father's second marriage he was largely left to look after himself. After attending the village school he learnt the trade of a carpenter, and following this he became a machinist. He entered the employment of Samuel Slater, but left after a few years to engage in the unsuccessful manufacture of woollen blankets. He became involved in an engineering shop, where he devised a machine for taking wool off a carding machine and making it into endless slivers or rovings for spinning. He then became associated with a cotton-spinning mill, which led to his most important invention. The carded cotton sliver had to be reduced in thickness before it could be spun on the final machines such as the mule or the waterframe. The roving, as the mass of cotton fibres was called at this stage, was thin and very delicate because it could not be twisted to give strength, as this would not allow it to be drawn out again during the next stage. In order to wind the roving on to bobbins, the speed of the bobbin had to be just right but the diameter of the bobbin increased as it was filled. Obtaining the correct reduction in speed as the circumference increased was partially solved by the use of double-coned pulleys, but the driving belt was liable to slip owing to the power that had to be transmitted.
    The final solution to the problem came with the introduction of the differential drive with bevel gears or a sun-and-planet motion. Arnold had invented this compound motion in 1818 but did not think of applying it to the roving frame until 1820. It combined the direct-gearing drive from the main shaft of the machine with that from the cone-drum drive so that the latter only provided the difference between flyer and bobbin speeds, which meant that most of the transmission power was taken away from the belt. The patent for this invention was issued to Arnold on 23 January 1823 and was soon copied in Britain by Henry Houldsworth, although J.Green of Mansfield may have originated it independendy in the same year. Arnold's patent was widely infringed in America and he sued the Proprietors of the Locks and Canals, machine makers for the Lowell manufacturers, for $30,000, eventually receiving $3,500 compensation. Arnold had his own machine shop but he gave it up in 1838 and moved the Philadelphia, where he operated the Mulhausen Print Works. Around 1850 he went to Washington, DC, and became a patent attorney, remaining as such until his death. On 24 June 1856 he was granted patent for a self-setting and self-raking saw for sawing machines.
    [br]
    Bibliography
    28 June 1856, US patent no. 15,163 (self-setting and self-raking saw for sawing machines).
    Further Reading
    Dictionary of American Biography, Vol. 1.
    W.English, 1969, The Textile Industry, London (a description of the principles of the differential gear applied to the roving frame).
    D.J.Jeremy, 1981, Transatlantic Industrial Revolution. The Diffusion of Textile Technologies Between Britain and America, 1790–1830, Oxford (a discussion of the introduction and spread of Arnold's gear).
    RLH

    Biographical history of technology > Arnold, Aza

  • 34 Cartwright, Revd Edmund

    [br]
    b. 24 April 1743 Marnham, Nottingham, England
    d. 30 October 1823 Hastings, Sussex, England
    [br]
    English inventor of the power loom, a combing machine and machines for making ropes, bread and bricks as well as agricultural improvements.
    [br]
    Edmund Cartwright, the fourth son of William Cartwright, was educated at Wakefield Grammar School, and went to University College, Oxford, at the age of 14. By special act of convocation in 1764, he was elected Fellow of Magdalen College. He married Alice Whitaker in 1772 and soon after was given the ecclesiastical living of Brampton in Derbyshire. In 1779 he was presented with the living of Goadby, Marwood, Leicestershire, where he wrote poems, reviewed new works, and began agricultural experiments. A visit to Matlock in the summer of 1784 introduced him to the inventions of Richard Arkwright and he asked why weaving could not be mechanized in a similar manner to spinning. This began a remarkable career of inventions.
    Cartwright returned home and built a loom which required two strong men to operate it. This was the first attempt in England to develop a power loom. It had a vertical warp, the reed fell with the weight of at least half a hundredweight and, to quote Gartwright's own words, "the springs which threw the shuttle were strong enough to throw a Congreive [sic] rocket" (Strickland 19.71:8—for background to the "rocket" comparison, see Congreve, Sir William). Nevertheless, it had the same three basics of weaving that still remain today in modern power looms: shedding or dividing the warp; picking or projecting the shuttle with the weft; and beating that pick of weft into place with a reed. This loom he proudly patented in 1785, and then he went to look at hand looms and was surprised to see how simply they operated. Further improvements to his own loom, covered by two more patents in 1786 and 1787, produced a machine with the more conventional horizontal layout that showed promise; however, the Manchester merchants whom he visited were not interested. He patented more improvements in 1788 as a result of the experience gained in 1786 through establishing a factory at Doncaster with power looms worked by a bull that were the ancestors of modern ones. Twenty-four looms driven by steam-power were installed in Manchester in 1791, but the mill was burned down and no one repeated the experiment. The Doncaster mill was sold in 1793, Cartwright having lost £30,000, However, in 1809 Parliament voted him £10,000 because his looms were then coming into general use.
    In 1789 he began working on a wool-combing machine which he patented in 1790, with further improvements in 1792. This seems to have been the earliest instance of mechanized combing. It used a circular revolving comb from which the long fibres or "top" were. carried off into a can, and a smaller cylinder-comb for teasing out short fibres or "noils", which were taken off by hand. Its output equalled that of twenty hand combers, but it was only relatively successful. It was employed in various Leicestershire and Yorkshire mills, but infringements were frequent and costly to resist. The patent was prolonged for fourteen years after 1801, but even then Cartwright did not make any profit. His 1792 patent also included a machine to make ropes with the outstanding and basic invention of the "cordelier" which he communicated to his friends, including Robert Fulton, but again it brought little financial benefit. As a result of these problems and the lack of remuneration for his inventions, Cartwright moved to London in 1796 and for a time lived in a house built with geometrical bricks of his own design.
    Other inventions followed fast, including a tread-wheel for cranes, metallic packing for pistons in steam-engines, and bread-making and brick-making machines, to mention but a few. He had already returned to agricultural improvements and he put forward suggestions in 1793 for a reaping machine. In 1801 he received a prize from the Board of Agriculture for an essay on husbandry, which was followed in 1803 by a silver medal for the invention of a three-furrow plough and in 1805 by a gold medal for his essay on manures. From 1801 to 1807 he ran an experimental farm on the Duke of Bedford's estates at Woburn.
    From 1786 until his death he was a prebendary of Lincoln. In about 1810 he bought a small farm at Hollanden near Sevenoaks, Kent, where he continued his inventions, both agricultural and general. Inventing to the last, he died at Hastings and was buried in Battle church.
    [br]
    Principal Honours and Distinctions
    Board of Agriculture Prize 1801 (for an essay on agriculture). Society of Arts, Silver Medal 1803 (for his three-furrow plough); Gold Medal 1805 (for an essay on agricultural improvements).
    Bibliography
    1785. British patent no. 1,270 (power loom).
    1786. British patent no. 1,565 (improved power loom). 1787. British patent no. 1,616 (improved power loom).
    1788. British patent no. 1,676 (improved power loom). 1790, British patent no. 1,747 (wool-combing machine).
    1790, British patent no. 1,787 (wool-combing machine).
    1792, British patent no. 1,876 (improved wool-combing machine and rope-making machine with cordelier).
    Further Reading
    M.Strickland, 1843, A Memoir of the Life, Writings and Mechanical Inventions of Edmund Cartwright, D.D., F.R.S., London (remains the fullest biography of Cartwright).
    Dictionary of National Biography (a good summary of Cartwright's life). For discussions of Cartwright's weaving inventions, see: A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London; R.L. Hills, 1970, Power in the Industrial Revolution, Manchester. F.Nasmith, 1925–6, "Fathers of machine cotton manufacture", Transactions of the
    Newcomen Society 6.
    H.W.Dickinson, 1942–3, "A condensed history of rope-making", Transactions of the Newcomen Society 23.
    W.English, 1969, The Textile Industry, London (covers both his power loom and his wool -combing machine).
    RLH

    Biographical history of technology > Cartwright, Revd Edmund

  • 35 Dawson, William

    SUBJECT AREA: Textiles
    [br]
    b. mid-eighteenth century
    d. c.1805 London, England
    [br]
    English inventor of the notched wheel for making patterns on early warp knitting machines.
    [br]
    William Dawson, a Leicester framework knitter, made an important addition to William Lee's knitting machine with his invention of the notched wheel in 1791. Lee's machine could make only plain knitting; to be able to knit patterns, there had to be some means of mechanically selecting and operating, independently of all the others, any individual thread, needle, lever or bar at work in the machine. This was partly achieved when Dawson devised a wheel that was irregularly notched on its edge and which, when rotated, pushed sprung bars, which in turn operated on the needles or other parts of the recently invented warp knitting machines. He seems to have first applied the idea for the knitting of military sashes, but then found it could be adapted to plait stay laces with great rapidity. With the financial assistance of two Leicester manufacturers and with his own good mechanical ability, Dawson found a way of cutting his wheels. However, the two financiers withdrew their support because he did not finish the design on time, although he was able to find a friend in a Nottingham architect, Mr Gregory, who helped him to obtain the patent. A number of his machines were set up in Nottingham but, like many other geniuses, he squandered his money away. When the patent expired, he asked Lord Chancellor Eldon to have it renewed: he moved his workshop to London, where Eldon inspected his machine, but the patent was not extended and in consequence Dawson committed suicide.
    [br]
    Bibliography
    1791, British patent no. 1,820 (notched wheel for knitting machine).
    Further Reading
    W.Felkin, 1867, History of Machine-Wrought Hosiery and Lace Manufacture (covers Dawson's invention).
    W.English, 1969, The Textile Industry, London (provides an outline history of the development of knitting machines).
    RLH

    Biographical history of technology > Dawson, William

  • 36 Gurney, Sir Goldsworthy

    [br]
    b. 14 February 1793 Treator, near Padstow, Cornwall, England
    d. 28 February 1875 Reeds, near Bude, Cornwall, England
    [br]
    English pioneer of steam road transport.
    [br]
    Educated at Truro Grammar School, he then studied under Dr Avery at Wadebridge to become a doctor of medicine. He settled as a surgeon in Wadebridge, spending his leisure time in building an organ and in the study of chemistry and mechanical science. He married Elizabeth Symons in 1814, and in 1820 moved with his wife to London. He delivered a course of lectures at the Surrey Institution on the elements of chemical science, attended by, amongst others, the young Michael Faraday. While there, Gurney made his first invention, the oxyhydrogen blowpipe. For this he received the Gold Medal of the Society of Arts. He experimented with lime and magnesia for the production of an illuminant for lighthouses with some success. He invented a musical instrument of glasses played like a piano.
    In 1823 he started experiments related to steam and locomotion which necessitated taking a partner in to his medical practice, from which he resigned shortly after. His objective was to produce a steam-driven vehicle to run on common roads. His invention of the steam-jet of blast greatly improved the performance of the steam engine. In 1827 he took his steam carriage to Cyfarthfa at the request of Mr Crawshaw, and while there applied his steam-jet to the blast furnaces, greatly improving their performance in the manufacture of iron. Much of the success of George Stephenson's steam engine, the Rocket was due to Gurney's steam blast.
    In July 1829 Gurney made a historic trip with his road locomotive. This was from London to Bath and back, which was accomplished at a speed of 18 mph (29 km/h) and was made at the instigation of the Quartermaster-General of the Army. So successful was the carriage that Sir Charles Dance started to run a regular service with it between Gloucester and Cheltenham. This ran for three months without accident, until Parliament introduced prohibitive taxation on all self-propelled vehicles. A House of Commons committee proposed that these should be abolished as inhibiting progress, but this was not done. Sir Goldsworthy petitioned Parliament on the harm being done to him, but nothing was done and the coming of the railways put the matter beyond consideration. He devoted his time to finding other uses for the steam-jet: it was used for extinguishing fires in coal-mines, some of which had been burning for many years; he developed a stove for the production of gas from oil and other fatty substances, intended for lighthouses; he was responsible for the heating and the lighting of both the old and the new Houses of Parliament. His evidence after a colliery explosion resulted in an Act of Parliament requiring all mines to have two shafts. He was knighted in 1863, the same year that he suffered a stroke which incapacitated him. He retired to his house at Reeds, near Bude, where he was looked after by his daughter, Anna.
    [br]
    Principal Honours and Distinctions
    Knighted 1863. Society of Arts Gold Medal.
    IMcN

    Biographical history of technology > Gurney, Sir Goldsworthy

  • 37 Lister, Samuel Cunliffe, 1st Baron Masham

    SUBJECT AREA: Textiles
    [br]
    b. 1 January 1815 Calverly Hall, Bradford, England
    d. 2 February 1906 Swinton Park, near Bradford, England
    [br]
    English inventor of successful wool-combing and waste-silk spinning machines.
    [br]
    Lister was descended from one of the old Yorkshire families, the Cunliffe Listers of Manningham, and was the fourth son of his father Ellis. After attending a school on Clapham Common, Lister would not go to university; his family hoped he would enter the Church, but instead he started work with the Liverpool merchants Sands, Turner \& Co., who frequently sent him to America. In 1837 his father built for him and his brother a worsted mill at Manningham, where Samuel invented a swivel shuttle and a machine for making fringes on shawls. It was here that he first became aware of the unhealthy occupation of combing wool by hand. Four years later, after seeing the machine that G.E. Donisthorpe was trying to work out, he turned his attention to mechanizing wool-combing. Lister took Donisthorpe into partnership after paying him £12,000 for his patent, and developed the Lister-Cartwright "square nip" comber. Until this time, combing machines were little different from Cartwright's original, but Lister was able to improve on this with continuous operation and by 1843 was combing the first fine botany wool that had ever been combed by machinery. In the following year he received an order for fifty machines to comb all qualities of wool. Further combing patents were taken out with Donisthorpe in 1849, 1850, 1851 and 1852, the last two being in Lister's name only. One of the important features of these patents was the provision of a gripping device or "nip" which held the wool fibres at one end while the rest of the tuft was being combed. Lister was soon running nine combing mills. In the 1850s Lister had become involved in disputes with others who held combing patents, such as his associate Isaac Holden and the Frenchman Josué Heilmann. Lister bought up the Heilmann machine patents and afterwards other types until he obtained a complete monopoly of combing machines before the patents expired. His invention stimulated demand for wool by cheapening the product and gave a vital boost to the Australian wool trade. By 1856 he was at the head of a wool-combing business such as had never been seen before, with mills at Manningham, Bradford, Halifax, Keighley and other places in the West Riding, as well as abroad.
    His inventive genius also extended to other fields. In 1848 he patented automatic compressed air brakes for railways, and in 1853 alone he took out twelve patents for various textile machines. He then tried to spin waste silk and made a second commercial career, turning what was called "chassum" and hitherto regarded as refuse into beautiful velvets, silks, plush and other fine materials. Waste silk consisted of cocoon remnants from the reeling process, damaged cocoons and fibres rejected from other processes. There was also wild silk obtained from uncultivated worms. This is what Lister saw in a London warehouse as a mass of knotty, dirty, impure stuff, full of bits of stick and dead mulberry leaves, which he bought for a halfpenny a pound. He spent ten years trying to solve the problems, but after a loss of £250,000 and desertion by his partner his machine caught on in 1865 and brought Lister another fortune. Having failed to comb this waste silk, Lister turned his attention to the idea of "dressing" it and separating the qualities automatically. He patented a machine in 1877 that gave a graduated combing. To weave his new silk, he imported from Spain to Bradford, together with its inventor Jose Reixach, a velvet loom that was still giving trouble. It wove two fabrics face to face, but the problem lay in separating the layers so that the pile remained regular in length. Eventually Lister was inspired by watching a scissors grinder in the street to use small emery wheels to sharpen the cutters that divided the layers of fabric. Lister took out several patents for this loom in his own name in 1868 and 1869, while in 1871 he took out one jointly with Reixach. It is said that he spent £29,000 over an eleven-year period on this loom, but this was more than recouped from the sale of reasonably priced high-quality velvets and plushes once success was achieved. Manningham mills were greatly enlarged to accommodate this new manufacture.
    In later years Lister had an annual profit from his mills of £250,000, much of which was presented to Bradford city in gifts such as Lister Park, the original home of the Listers. He was connected with the Bradford Chamber of Commerce for many years and held the position of President of the Fair Trade League for some time. In 1887 he became High Sheriff of Yorkshire, and in 1891 he was made 1st Baron Masham. He was also Deputy Lieutenant in North and West Riding.
    [br]
    Principal Honours and Distinctions
    Created 1st Baron Masham 1891.
    Bibliography
    1849, with G.E.Donisthorpe, British patent no. 12,712. 1850, with G.E. Donisthorpe, British patent no. 13,009. 1851, British patent no. 13,532.
    1852, British patent no. 14,135.
    1877, British patent no. 3,600 (combing machine). 1868, British patent no. 470.
    1868, British patent no. 2,386.
    1868, British patent no. 2,429.
    1868, British patent no. 3,669.
    1868, British patent no. 1,549.
    1871, with J.Reixach, British patent no. 1,117. 1905, Lord Masham's Inventions (autobiography).
    Further Reading
    J.Hogg (ed.), c. 1888, Fortunes Made in Business, London (biography).
    W.English, 1969, The Textile Industry, London; and C.Singer (ed.), 1958, A History of Technology, Vol. IV, Oxford: Clarendon Press (both cover the technical details of Lister's invention).
    RLH

    Biographical history of technology > Lister, Samuel Cunliffe, 1st Baron Masham

  • 38 Paul, Lewis

    SUBJECT AREA: Textiles
    [br]
    d. April 1759 Brook Green, London, England
    [br]
    English inventor of hand carding machines and partner with Wyatt in early spinning machines.
    [br]
    Lewis Paul, apparently of French Huguenot extraction, was quite young when his father died. His father was Physician to Lord Shaftsbury, who acted as Lewis Paul's guardian. In 1728 Paul made a runaway match with a widow and apparently came into her property when she died a year later. He must have subsequently remarried. In 1732 he invented a pinking machine for making the edges of shrouds out of which he derived some profit.
    Why Paul went to Birmingham is unknown, but he helped finance some of Wyatt's earlier inventions. Judging by the later patents taken out by Paul, it is probable that he was the one interested in spinning, turning to Wyatt for help in the construction of his spinning machine because he had no mechanical skills. The two men may have been involved in this as early as 1733, although it is more likely that they began this work in 1735. Wyatt went to London to construct a model and in 1736 helped to apply for a patent, which was granted in 1738 in the name of Paul. The patent shows that Paul and Wyatt had a number of different ways of spinning in mind, but contains no drawings of the machines. In one part there is a description of sets of rollers to draw the cotton out more finely that could have been similar to those later used by Richard Arkwright. However, it would seem that Paul and Wyatt followed the other main method described, which might be called spindle drafting, where the fibres are drawn out between the nip of a pair of rollers and the tip of the spindle; this method is unsatisfactory for continuous spinning and results in an uneven yarn.
    The spinning venture was supported by Thomas Warren, a well-known Birmingham printer, Edward Cave of Gentleman's Magazine, Dr Robert James of fever-powder celebrity, Mrs Desmoulins, and others. Dr Samuel Johnson also took much interest. In 1741 a mill powered by two asses was equipped at the Upper Priory, Birmingham, with, machinery for spinning cotton being constructed by Wyatt. Licences for using the invention were sold to other people including Edward Cave, who established a mill at Northampton, so the enterprise seemed to have great promise. A spinning machine must be supplied with fibres suitably prepared, so carding machines had to be developed. Work was in hand on one in 1740 and in 1748 Paul took out another patent for two types of carding device, possibly prompted by the patent taken out by Daniel Bourn. Both of Paul's devices were worked by hand and the carded fibres were laid onto a strip of paper. The paper and fibres were then rolled up and placed in the spinning machine. In 1757 John Dyer wrote a poem entitled The Fleece, which describes a circular spinning machine of the type depicted in a patent taken out by Paul in 1758. Drawings in this patent show that this method of spinning was different from Arkwright's. Paul endeavoured to have the machine introduced into the Foundling Hospital, but his death in early 1759 stopped all further development. He was buried at Paddington on 30 April that year.
    [br]
    Bibliography
    1738, British patent no. 562 (spinning machine). 1748, British patent no. 636 (carding machine).
    1758, British patent no. 724 (circular spinning machine).
    Further Reading
    G.J.French, 1859, The Life and Times of Samuel Crompton, London, App. This should be read in conjunction with R.L.Hills, 1970, Power in the Industrial Revolution, Manchester, which shows that the roller drafting system on Paul's later spinning machine worked on the wrong principles.
    A.P.Wadsworth and J.de L.Mann, 1931, The Cotton Trade and Industrial Lancashire, 1600–1780, Manchester (provides good coverage of the partnership of Paul and Wyatt and the early mills).
    E.Baines, 1835, History of the Cotton Manufacture in Great Britain, London (this publication must be mentioned, but is now out of date).
    A.Seymour-Jones, 1921, "The invention of roller drawing in cotton spinning", Transactions of the Newcomen Society 1 (a more modern account).
    RLH

    Biographical history of technology > Paul, Lewis

  • 39 Renold, Hans

    [br]
    b. 31 July 1852 Aarau, Switzerland
    d. 2 May 1943 Grange-over-Sands, Lancashire, England
    [br]
    Swiss (naturalized British 1881) mechanical engineer, inventor and pioneer of the precision chain industry.
    [br]
    Hans Renold was educated at the cantonal school of his native town and at the Polytechnic in Zurich. He worked in two or three small workshops during the polytechnic vacations and served an apprenticeship of eighteen months in an engineering works at Neuchâtel, Switzerland. After a short period of military service he found employment as a draughtsman in an engineering firm at Saint-Denis, near Paris, from 1871 to 1873. In 1873 Renold moved first to London and then to Manchester as a draughtsman and inspector with a firm of machinery exporters. From 1877 to 1879 he was a partner in his own firm of machine exporters. In 1879 he purchased a small firm in Salford making chain for the textile industry. At about this time J.K.Starley introduced the "safety" bicycle, which, however, lacked a satisfactory drive chain. Renold met this need with the invention of the bush roller chain, which he patented in 1880. The new chain formed the basis of the precision chain industry: the business expanded and new premises were acquired in Brook Street, Manchester, in 1881. In the same year Renold became a naturalized British subject.
    Continued expansion of the business necessitated the opening of a new factory in Brook Street in 1889. The factory was extended in 1895, but by 1906 more accommodation was needed and a site of 11 ½ acres was acquired in the Manchester suburb of Burnage: the move to the new building was finally completed in 1914. Over the years, further developments in the techniques of chain manufacture were made, including the invention in 1895 of the inverted tooth or silent chain. Renold made his first visit to America in 1891 to study machine-tool developments and designed for his own works special machine tools, including centreless grinding machines for dealing with wire rods up to 10 ft (3 m) in length.
    The business was established as a private limited company in 1903 and merged with the Coventry Chain Company Ltd in 1930. Good industrial relations were always of concern to Renold and he established a 48-hour week as early as 1896, in which year a works canteen was opened. Joint consultation with shop stewards date2 from 1917. Renold was elected a Member of the Institution of Mechanical Engineers in 1902 and in 1917 he was made a magistrate of the City of Manchester.
    [br]
    Principal Honours and Distinctions
    Honorary DSc University of Manchester 1940.
    Further Reading
    Basil H.Tripp, 1956, Renold Chains: A History of the Company and the Rise of the Precision Chain Industry 1879–1955, London.
    J.J.Guest, 1915, Grinding Machinery, London, pp. 289, 380 (describes grinding machines developed by Renold).
    RTS

    Biographical history of technology > Renold, Hans

  • 40 patent

    1) патент (охранный документ на изобретение, удостоверяющий признание предложения изобретением, его приоритет и исключительное право на него патентообладателя)
    2) патентовать; патентованный; патентный
    - patent applied for
    - patent in force
    - patent being in force
    - patent for a design
    - patent for an invention
    - patent for a plant
    - patent for improvement
    - patent in dispute
    - patent on a design
    - patent pending
    - patent referred to
    - patent abroad
    - patent of addition
    - patent of confirmation
    - patent of importation
    - patent of improvement
    - patent of revalidation
    - abandoned patent
    - additional patent
    - adjudicated patent
    - AEC-owned patent
    - anticipating patent
    - apparatus patent
    - art patent
    - article patent
    - assailable patent
    - assigned patent
    - atomic energy patent
    - attackable patent
    - attacked patent
    - basic patent
    - biological patent
    - blocking patent
    - blocking-off patent
    - borderline patent
    - British Letters patent
    - broad patent
    - business method patent
    - cancelled patent
    - ceased patent
    - chemical patent
    - cited patent
    - collateral patent
    - colonial patent
    - combination patent
    - Commission-owned patent
    - communicated patent
    - competing patent
    - complementary patent
    - composition-of-matter patent
    - confirmation patent
    - conflicting patent
    - contestable patent
    - copending patents
    - corresponding patents
    - deadwood patent
    - dead-wood patent
    - defective patent
    - dependent patent
    - design letters patent
    - device patent
    - disputed patent
    - divisional patent
    - domestic patent
    - dominant patent
    - dormant patent
    - double patent
    - dragnet patent
    - drug patent
    - duplicate patents
    - earlier patent
    - economic patent
    - electrical patent
    - European patent
    - exclusive patent
    - exercisable patent
    - existing patent
    - expired patent
    - exploitable patent
    - extended patent
    - extinct patent
    - fencing-off patent
    - final patent
    - foreign patent
    - forfeited patent
    - fortifying patent
    - freed patent
    - free-lance patent
    - French pharmaceutical patent
    - granted patent
    - home patent
    - importation patent
    - improvement patent
    - incipient patent
    - incontestable patent
    - independent patent
    - indigenous patent
    - industrial patent
    - industrial development patent
    - infringed patent
    - infringing patent
    - infringing patents
    - inoperative patent
    - interdependent patents
    - intervening patent
    - invalid patent
    - issued patent
    - joint patent
    - key patent
    - land patent
    - lapsed patent
    - later patent
    - later-dated patent
    - legally effective patent
    - letters patent
    - licensed patent
    - litigious patent
    - live patent
    - machine patent
    - main patent
    - manufacture patent
    - master patent
    - material patent
    - mechanical patent
    - medical patent
    - metallurgical patent
    - method patent
    - minor patent
    - modification patent
    - more recent patent
    - narrow patent
    - national patent
    - national patent under the PCT
    - native's patent
    - new use patent
    - non-convention patent
    - Nordic patent
    - not infringed patent
    - nuisance patent
    - objected patent
    - obstructive patent
    - old patent
    - operative patent
    - original patent
    - ornamental design patent
    - overlapping patents
    - paper patent
    - parallel patent
    - parent patent
    - pending patent
    - petty patent
    - pharmaceutical patent
    - pioneer patent
    - plant patent
    - pooled patent
    - posthumous patent
    - practicable patent
    - printed patent
    - prior patent
    - process patent
    - product patent
    - provisional European patent
    - questionable patent
    - reference patent
    - regional patent
    - reinstated patent
    - reissue patent
    - reissued patent
    - related patent
    - revoked patent
    - scarecrow patent
    - secret patent
    - senior patent
    - shot gun patent
    - simultaneous patent
    - small patent
    - software patent
    - standard patent
    - strain patent
    - strong patent
    - structure patent
    - subordinate patent
    - subsequent patent
    - subservient patent
    - subsidiary patent
    - sued upon patent
    - suppressed patent
    - transfer of technology patent
    - unenforceable patent
    - unexpired patent
    - universal patent
    - unjustified patent
    - unused patent
    - U. S. patent
    - useful model patent
    - utility patent
    - valid patent
    - valuable patent
    - void patent
    - voidable patent
    - weak patent
    - withheld patent
    - world-wide patent
    - worthless patent
    - X-series patent
    - younger patent
    - youngest patent
    * * *
    патент (охранный документ, представляющий исключительнее право на осуществление, использование и продажу изобретения в течение определенного срока и на определенно» территории)

    Patent terms dictionary > patent

См. также в других словарях:

  • Manufacture du textile en Grande Bretagne — L’un des premiers développements de la Révolution industrielle était les changements dans l’industrie du textile en Grande Bretagne. L’évolution de la Révolution industrielle a commencé par une croissance de la production du textile qui s’est… …   Wikipédia en Français

  • invention — Synonyms and related words: Nachtmusik, absolute music, adaptation, air varie, aleatory, aleatory music, apparition, arrangement, artifact, authorship, beginning, brainchild, breakthrough, bringing to light, bubble, canard, casual discovery,… …   Moby Thesaurus

  • manufacture — Synonyms and related words: anatomy, architectonics, architecture, arrangement, artifact, assemble, assembly, basic training, brainchild, briefing, build, building, cast, casting, child, clearing the decks, coinage, compose, composition, compound …   Moby Thesaurus

  • Histoire du gaz manufacturé — L Histoire du gaz manufacturé se rapporte à la période qui a précédé l avènement de l électricité, où les villes furent éclairées et ensuite chauffées par des gaz manufacturés, c est à dire fabriqués par « distillation » dans des usines …   Wikipédia en Français

  • Textile manufacture during the Industrial Revolution — With the establishment of overseas colonies, the British Empire at the end of the 17th century/beginning of the 18th century had a vast source of raw materials and a vast market for manufactured goods. The manufacture of goods was performed on a… …   Wikipedia

  • Science and invention in Birmingham — Birmingham is the second largest city in the United Kingdom. It is one of the country s principal industrial centres and has an impressive history of industrial and scientific innovation.16th century1547: Although no record is kept to indicate… …   Wikipedia

  • Gaz manufacturé — Article principal : Gaz combustible. Les gaz manufacturés désignent des gaz qui ont été fabriqués à partir de 1785, date de leur invention, dans des usines à gaz. Ils sont utilisés d abord comme gaz d éclairage, par la suite comme… …   Wikipédia en Français

  • SAVONNERIE (MANUFACTURE DE LA) — SAVONNERIE MANUFACTURE DE LA Au début du XVIIe siècle, Pierre Dupont (lequel prétendait avoir inventé la technique des tapis veloutés de haute laine alors qu’elle existait bien avant lui), obtint d’Henri IV le privilège d’établir un atelier de… …   Encyclopédie Universelle

  • National Research Development Corporation v Commissioner of Patents (1959) 102 CLR 252 — The NRDC case has been important in clarifying what is meant by ‘manner of manufacture’ in respects of patent applications. The references to the Patents Act in this case refer to the Australian Patents Act 1952 (Cth) which was later repealed by… …   Wikipedia

  • Baekeland, Leo Hendrik — ▪ American chemist born Nov. 14, 1863, Ghent died Feb. 23, 1944, Beacon, N.Y., U.S.       U.S. industrial chemist who helped found the modern plastics (plastic) industry through his invention of Bakelite, the first thermosetting plastic (a… …   Universalium

  • Shelbyville, Illinois — Geobox|Settlement name = Shelbyville native name = other name = category = City etymology = official name = motto = nickname = image caption = symbol = country = United States state = Illinois region = Shelby region type = County district =… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»