Перевод: с английского на все языки

со всех языков на английский

thus+much

  • 121 price-to-sales ratio

    Fin
    the ratio of the value of all of a company’s stock to its sales for the previous twelve months, a way of measuring the relative value of a share when compared with others.
    EXAMPLE
    The P/S ratio is obtained by dividing the market capitalization by the latest published annual sales figure. So a company with a capitalization of $1 billion and sales of $3 billion would have a P/S ratio of 0.33.
         P/S will vary with the type of industry. You would expect, for example, that many retailers and other large-scale distributors of goods would have very high sales in relation to their market capitalizations—in other words, a very low P/S. Equally, manufacturers of high-value items would generally have much lower sales figures and thus higher P/S ratios.
         A company with a lower P/S is cheaper than one with a higher ratio, particularly if they are in the same sector so that a direct comparison is more appropriate. It means that each share of the lower P/S company is buying more of its sales than those of the higher P/S company.
         It is important to note that a share which is cheaper only on P/S grounds is not necessarily the more attractive share. There will frequently be reasons why it has a lower ratio than another similar company, most commonly because it is less profitable.

    The ultimate business dictionary > price-to-sales ratio

  • 122 Bewick, Thomas

    SUBJECT AREA: Paper and printing
    [br]
    b. August 1753 Cherryburn House, Ovingham, Northumberland, England
    d. 8 November 1828 Gateshead, England
    [br]
    English perfecter of wood-engraving.
    [br]
    The son of a farmer, Bewick was educated locally, but his progress was unremarkable save for demonstrating an intense love of nature and of drawing. In 1767 he was apprenticed to Ralph Beilby, an engraver in Newcastle. Wood-engraving at that time was at a low ebb, restricted largely to crude decorative devices, and Hogarth, commenting on a recent book on the art, doubted whether it would ever recover. Beilby's business was of a miscellaneous character, but Bewick's interest in wood-engraving was noticed and encouraged: Beilby submitted several of his engravings to the Royal Society of Arts, which awarded a premium of £80 for them. His apprenticeship ended in 1774 and he went to London, where he readily found employment with several printers. The call of the north was too strong, however, and two years later he returned to Newcastle, entering into partnership with Beilby. With the publication of Select Fables in 1784, Bewick really showed both his expertise in the art of wood-engraving as a medium for book illustration and his talents as an artist. His engravings for the History of British Birds mark the high point of his achievement. The second volume of this work appeared in 1804, the year in which his partnership with Beilby was dissolved.
    The essential feature of Bewick's wood-engravings involved cutting across the grain of the wood instead of along it, as in the old woodcut technique. The wood surface thus obtained offered a much more sensitive medium for engraving than before. It paved the way for the flowering of engraving on wood, and then on steel, for the production of illustrated material for an ever wider public through the Victorian age.
    [br]
    Bibliography
    1864, Memoir of Thomas Bewick (autobiography, completed by his daughter). 1784, Select Fables.
    Further Reading
    M.Weekley, 1963, Thomas Bewick, Oxford: Oxford University Press.
    LRD

    Biographical history of technology > Bewick, Thomas

  • 123 Boulsover, Thomas

    [br]
    b. 1704
    d. 1788
    [br]
    English cutler, metalworker and inventor of Sheffield plate.
    [br]
    Boulsover, originally a small-scale manufacturer of cutlery, is believed to have specialized in making knife-handle components. About 1742 he found that a thin sheet of silver could be fused to copper sheet by rolling or beating to flatten it. Thus he developed the plating of silver, later called Sheffield plate.
    The method when perfected consisted of copper sheet overlaid by thin sheet silver being annealed by red heat. Protected by iron sheeting, the copper and silver were rolled together, becoming fused to a single plate capable of undergoing further manufacturing processes. Later developments included methods of edging the fused sheets and the placing of silver sheet on both lower and upper surfaces of copper, to produce high-quality silver plate, in much demand by the latter part of the century. Boulsover himself is said to have produced only small articles such as buttons and snuff boxes from this material, which by 1758 was being exploited more commercially by Joseph Hancock in Sheffield making candlesticks, hot-water pots and coffee pots. Matthew Boulton introduced its manufacture in very high-quality products during the 1760s to Birmingham, where the technique was widely adopted later. By the 1770s Boulsover was engaged in rolling his plated copper for industry elsewhere, also trading in iron and purchasing blister steel which he converted by the Huntsman process to crucible steel. Blister steel was converted on his behalf to shear steel by forging. He is thought to have also been responsible for improving this product further, introducing "double-shear steel", by repeating the forging and faggoting of shear steel bars. Thomas Boulsover had become a Sheffield entrepreneur, well known for his numerous skills with metals.
    [br]
    Further Reading
    H.W.Dickinson, 1937, Matthew Boulton, Cambridge: Cambridge University Press (describes Boulsover's innovation and further development of Sheffield plate).
    J.Holland, 1834, Manufactures in Metal III, 354–8.
    For activities in steel see: K.C.Barraclough, 1991, "Steel in the Industrial Revolution", in J.Day and R.F.Tylecote (eds), The Industrial Revolution in Metals, The Institute of Metals.
    JD

    Biographical history of technology > Boulsover, Thomas

  • 124 Coade, Eleanor

    [br]
    b. 24 June 1733 Exeter, Devon, England
    d. 18 November 1821 Camberwell, London, England
    [br]
    English proprietor of the Coade Factory, making artificial stone.
    [br]
    Born Elinor Coade, she never married but adopted, as was customary in business in the eighteenth century, the courtesy title of Mrs. Following the bankruptcy and death of her father, George Coade, in Exeter, Eleanor and her mother (also called Eleanor) moved to London and founded the works at Lambeth, South London, in 1769 that later became famous as the Coade factory. The factory was located at King's Arms Stairs, Narrow Wall. During the eighteenth century, several attempts had been made in other businesses to manufacture a durable, malleable artificial stone that would be acceptable to architects for decorative use. These substances were not very successful, but Coade stone was different. Although stories are legion about the secret formula supposedly used in this artificial stone, modern methods have established the exact formula.
    Coade stone was a stoneware ceramic material fired in a kiln. The body was remarkable in that it shrank only 8 per cent in drying and firing: this was achieved by using a combination of china clay, sand, crushed glass and grog (i.e. crushed and ground, previously fired stoneware). The Coade formula thus included a considerable proportion of material that, having been fired once already, was unshrinkable. Mrs Coade's name for the firm, Coade's Lithodipyra Terra-Cotta or Artificial Stone Manufactory (where "Lithodipyra" is a term derived from three Greek words meaning "stone", "twice" and "fire"), made reference to the custom of including such material (such as in Josiah Wedgwood's basalt and jasper ware). The especially low rate of shrinkage rendered the material ideal for making extra-life-size statuary, and large architectural, decorative features to be incorporated into stone buildings.
    Coade stone was widely used for such purposes by leading architects in Britain and Ireland from the 1770s until the 1830s, including Robert Adam, Sir Charles Barry, Sir William Chambers, Sir John Soane, John Nash and James Wyatt. Some architects introduced the material abroad, as far as, for example, Charles Bulfinch's United States Bank in Boston, Massachusetts, and Charles Cameron's redecoration for the Empress Catherine of the great palace Tsarkoe Selo (now Pushkin), near St Petersburg. The material so resembles stone that it is often mistaken for it, but it is so hard and resistant to weather that it retains sharpness of detail much longer than the natural substance. The many famous British buildings where Coade stone was used include the Royal Hospital, Chelsea, Carlton House and the Sir John Soane Museum (all of which are located in London), St George's Chapel at Windsor, Alnwick Castle in Northumberland, and Culzean Castle in Ayrshire, Scotland.
    Apart from the qualities of the material, the Coade firm established a high reputation for the equally fine quality of its classical statuary. Mrs Coade employed excellent craftsmen such as the sculptor John Bacon (1740–99), whose work was mass-produced by the use of moulds. One famous example which was widely reproduced was the female caryatid from the south porch of the Erechtheion on the acropolis of Athens. A drawing of this had appeared in the second edition of Stuart and Revett's Antiquities of Athens in 1789, and many copies were made from the original Coade model; Soane used them more than once, for example on the Bank of England and his own houses in London.
    Eleanor Coade was a remarkable woman, and was important and influential on the neo-classical scene. She had close and amicable relations with leading architects of the day, notably Robert Adam and James Wyatt. The Coade factory was enlarged and altered over the years, but the site was finally cleared during 1949–50 in preparation for the establishment of the 1951 Festival of Britain.
    [br]
    Further Reading
    A.Kelly, 1990, Mrs Coade's Stone, pub. in conjunction with the Georgian Group (an interesting, carefully written history; includes a detailed appendix on architects who used Coade stone and buildings where surviving work may be seen).
    DY

    Biographical history of technology > Coade, Eleanor

  • 125 Deverill, Hooton

    SUBJECT AREA: Textiles
    [br]
    fl. c.1835 England
    [br]
    English patentee of the first successful adaptation of the Jacquard machine for patterned lacemaking.
    [br]
    After John Levers had brought out his lacemaking machine in 1813, other lacemakers proceeded to elaborate their machinery so as to imitate the more complicated forms of handwork. One of these was Samuel Draper of Nottingham, who took out one patent in 1835 for the use of a Jacquard mechanism on a lace making machine, followed by another in 1837. However, material made on his machine cost more than the handmade article, so the experiment was abandoned after three years. Then, in Nottingham in 1841, Hooton Deverill patented the first truly successful application of the Jacquard to lacemaking. The Jacquard needles caused the warp threads to be pushed sideways to form the holes in the lace while the bobbins were moved around them to bind them together. This made it possible to reproduce most of the traditional patterns of handmade lace in both narrow and wide pieces. Lace made on these machines became cheap enough for most people to be able to hang it in their windows as curtains, or to use it for trimming clothing. However, it raised in a most serious form the problem of patent rights between the two patentees, Deverill and Draper, threatening much litigation. Deverill's patent was bought by Richard Birkin, who with his partner Biddle relinquished the patent rights. The lacemaking trade on these machines was thus thrown open to the public and a new development of the trade took place. Levers lace is still made in the way described here.
    [br]
    Bibliography
    1841, British patent no. 8,955 (adaptation of Jacquard machine for patterned lacemaking).
    Further Reading
    W.Felkin, 1867, History of Machine-Wrought Hosiery and Lace Manufacture (provides an account of Deverill's patent).
    C.Singer (ed.), 1958, A History of'Technology, Vol. V, Oxford: Clarendon Press (a modern account).
    T.K.Derry and T.I.Williams, 1960, A Short History of Technology from the Earliest
    Times to AD 1900, Oxford.
    RLH

    Biographical history of technology > Deverill, Hooton

  • 126 Dickinson, John

    SUBJECT AREA: Paper and printing
    [br]
    b. 29 March 1782
    d. 11 January 1869 London, England
    [br]
    English papermaker and inventor of a papermaking machine.
    [br]
    After education at a private school, Dickinson was apprenticed to a London stationer. In 1806 he started in business as a stationer, in partnership with George Longman; they transferred to 65 Old Bailey, where the firm remained until their premises were destroyed during the Second World War. In order to secure the supply of paper and be less dependent on the papermakers, Dickinson turned to making paper on his own account. In 1809 he acquired Apsley Mill, near Hemel Hempstead on the river Gade in Hertfordshire. There, he produced a new kind of paper for cannon cartridges which, unlike the paper then in use, did not smoulder, thus reducing the risk of undesired explosions. The new paper proved very useful during the Napoleonic War.
    Dickinson developed a continuous papermaking machine about the same time as the Fourdrinier brothers, but his worked on a different principle. Instead of a continuous flat wire screen, Dickinson used a wire-covered cylinder which dipped into the dilute pulp as it revolved. A felt-covered roller removed the layer of wet pulp, which was then subjected to drying, as in the Fourdrinier machine. The latter was first in use at Frogmore, just upstream from Apsley Mill on the river Gade. Dickinson patented his machine in 1809 and claimed that it was superior for some kinds of paper. In feet, both types of machine have survived, in much enlarged and modified form: the Fourdrinier for general papermaking, the Dickinson cylinder for the making of board. In 1810 Dickinson acquired the nearby Nash Mill, and over the years he extended the scope of his papermaking business, introducing many technical improvements. Among his inventions was a machine to paste together continuous webs of paper to form cardboard. Another, patented in 1829, was a process for incorporating threads of cotton, flax or silk into the body of the paper to make forgery more difficult. He became increasingly prosperous, overcoming labour disputes with unemployed hand-papermakers. and lawsuits against a canal company which threatened the water supply to his mills. Dickinson was the first to use percolation gauges to predict river flow, and his work on water supply brought him election to a Fellowship of the Royal Society in 1845.
    [br]
    Principal Honours and Distinctions
    FRS 1845.
    Further Reading
    R.H.Clapperton, 1967, The Paper-making Machine, Oxford: Pergamon Press, pp. 331–5 (provides a biography and full details of Dickinson's inventions).
    LRD

    Biographical history of technology > Dickinson, John

  • 127 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

  • 128 Ewart, Peter

    SUBJECT AREA: Textiles
    [br]
    b. 14 May 1767 Traquair, near Peebles, Scotland
    d. September 1842 London, England
    [br]
    Scottish pioneer in the mechanization of the textile industry.
    [br]
    Peter Ewart, the youngest of six sons, was born at Traquair manse, where his father was a clergyman in the Church of Scotland. He was educated at the Free School, Dumfries, and in 1782 spent a year at Edinburgh University. He followed this with an apprenticeship under John Rennie at Musselburgh before moving south in 1785 to help Rennie erect the Albion corn mill in London. This brought him into contact with Boulton \& Watt, and in 1788 he went to Birmingham to erect a waterwheel and other machinery in the Soho Manufactory. In 1789 he was sent to Manchester to install a steam engine for Peter Drinkwater and thus his long connection with the city began. In 1790 Ewart took up residence in Manchester as Boulton \& Watt's representative. Amongst other engines, he installed one for Samuel Oldknow at Stockport. In 1792 he became a partner with Oldknow in his cotton-spinning business, but because of financial difficulties he moved back to Birmingham in 1795 to help erect the machines in the new Soho Foundry. He was soon back in Manchester in partnership with Samuel Greg at Quarry Bank Mill, Styal, where he was responsible for developing the water power, installing a steam engine, and being concerned with the spinning machinery and, later, gas lighting at Greg's other mills.
    In 1798, Ewart devised an automatic expansion-gear for steam engines, but steam pressures at the time were too low for such a device to be effective. His grasp of the theory of steam power is shown by his paper to the Manchester Literary and Philosophical Society in 1808, On the Measure of Moving Force. In 1813 he patented a power loom to be worked by the pressure of steam or compressed air. In 1824 Charles Babbage consulted him about automatic looms. His interest in textiles continued until at least 1833, when he obtained a patent for a self-acting spinning mule, which was, however, outclassed by the more successful one invented by Richard Roberts. Ewart gave much help and advice to others. The development of the machine tools at Boulton \& Watt's Soho Foundry has been mentioned already. He also helped James Watt with his machine for copying sculptures. While he continued to run his own textile mill, Ewart was also in partnership with Charles Macintosh, the pioneer of rubber-coated cloth. He was involved with William Fairbairn concerning steam engines for the boats that Fairbairn was building in Manchester, and it was through Ewart that Eaton Hodgkinson was introduced to Fairbairn and so made the tests and calculations for the tubes for the Britannia Railway Bridge across the Menai Straits. Ewart was involved with the launching of the Liverpool \& Manchester Railway as he was a director of the Manchester Chamber of Commerce at the time.
    In 1835 he uprooted himself from Manchester and became the first Chief Engineer for the Royal Navy, assuming responsibility for the steamboats, which by 1837 numbered 227 in service. He set up repair facilities and planned workshops for overhauling engines at Woolwich Dockyard, the first establishment of its type. It was here that he was killed in an accident when a chain broke while he was supervising the lifting of a large boiler. Engineering was Ewart's life, and it is possible to give only a brief account of his varied interests and connections here.
    [br]
    Further Reading
    Obituary, 1843, "Institution of Civil Engineers", Annual General Meeting, January. Obituary, 1843, Manchester Literary and Philosophical Society Memoirs (NS) 7. R.L.Hills, 1987–8, "Peter Ewart, 1767–1843", Manchester Literary and Philosophical
    Society Memoirs 127.
    M.B.Rose, 1986, The Gregs of Quarry Bank Mill The Rise and Decline of a Family Firm, 1750–1914, Cambridge (covers E wart's involvement with Samuel Greg).
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester; R.L.Hills, 1989, Power
    from Steam, Cambridge (both look at Ewart's involvement with textiles and steam engines).
    RLH

    Biographical history of technology > Ewart, Peter

См. также в других словарях:

  • thus — adv. formal 1 a in this way. b as indicated. 2 a accordingly. b as a result or inference. 3 to this extent; so (thus far; thus much). Etymology: OE (= OS thus), of unkn. orig …   Useful english dictionary

  • Much Obliged, Jeeves —   1st edition (UK) …   Wikipedia

  • Thus Spoke Zarathustra — Cleanup|date=May 2007Infobox Book name =Thus Spoke Zarathustra title orig = Also sprach Zarathustra translator = image caption =Title page of the first edition. author =Friedrich Nietzsche illustrator = cover artist = country =Germany language… …   Wikipedia

  • How Much Land Does a Man Need? — (Russian: Много ли человеку земли нужно?, Mnogo li cheloveku zemli nuzhno ) is an 1886 short story by Leo Tolstoy about a man who, in his lust for land, forfeits everything, including his own life. Late in life, James Joyce wrote to his daughter… …   Wikipedia

  • The Moon of Much Gladness — Infobox Book | name = The Moon of Much Gladness image caption = Dust jacket from the first edition author = Ernest Bramah cover artist = country = United Kingdom language = English series = Kai Lung genre = Fantasy novel release date = 1932… …   Wikipedia

  • The Girl Who Knew Too Much (1969 film) — Infobox Film name =The Girl Who Knew Too Much caption =Theatrical release poster imdb id =0064370 writer =Charles Wallace starring =Adam West Nancy Kwan Nehemiah Persoff Robert Alda Buddy Greco director =Francis Lyon producer =Earle Lyon… …   Wikipedia

  • Too Much Light Makes the Baby Go Blind — Too Much Light Makes the Baby Go Blind: 30 Plays in 60 Minutes (TMLMTBGB) is the longest running show in Chicago and the only open run Off Off Broadway show in New York. Starting in 1988, the show has run 50 weekends of the year since then. As… …   Wikipedia

  • this much — so, thus, like so, up until this point; this amount, this quantity …   English contemporary dictionary

  • education — /ej oo kay sheuhn/, n. 1. the act or process of imparting or acquiring general knowledge, developing the powers of reasoning and judgment, and generally of preparing oneself or others intellectually for mature life. 2. the act or process of… …   Universalium

  • United States — a republic in the N Western Hemisphere comprising 48 conterminous states, the District of Columbia, and Alaska in North America, and Hawaii in the N Pacific. 267,954,767; conterminous United States, 3,022,387 sq. mi. (7,827,982 sq. km); with… …   Universalium

  • BIBLE — THE CANON, TEXT, AND EDITIONS canon general titles the canon the significance of the canon the process of canonization contents and titles of the books the tripartite canon …   Encyclopedia of Judaism

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»