Перевод: со всех языков на английский

с английского на все языки

thomas+john

  • 1 John Scopes

    m.
    John Scopes, John Thomas Scopes.

    Spanish-English dictionary > John Scopes

  • 2 Lombe, John

    SUBJECT AREA: Textiles
    [br]
    b. c. 1693 probably Norwich, England
    d. 20 November 1722 Derby, England
    [br]
    English creator of the first successful powered textile mill in Britain.
    [br]
    John Lombe's father, Henry Lombe, was a worsted weaver who married twice. John was the second son of the second marriage and was still a baby when his father died in 1695. John, a native of the Eastern Counties, was apprenticed to a trade and employed by Thomas Cotchett in the erection of Cotchett's silk mill at Derby, which soon failed however. Lombe went to Italy, or was sent there by his elder half-brother, Thomas, to discover the secrets of their throwing machinery while employed in a silk mill in Piedmont. He returned to England in 1716 or 1717, bringing with him two expert Italian workmen.
    Thomas Lombe was a prosperous London merchant who financed the construction of a new water-powered silk mill at Derby which is said to have cost over £30,000. John arranged with the town Corporation for the lease of the island in the River Derwent, where Cotchett had erected his mill. During the four years of its construction, John first set up the throwing machines in other parts of the town. The machines were driven manually there, and their product helped to defray the costs of the mill. The silk-throwing machine was very complex. The water wheel powered a horizontal shaft that was under the floor and on which were placed gearwheels to drive vertical shafts upwards through the different floors. The throwing machines were circular, with the vertical shafts running through the middle. The doubled silk threads had previously been wound on bobbins which were placed on spindles with wire flyers at intervals around the outer circumference of the machine. The bobbins were free to rotate on the spindles while the spindles and flyers were driven by the periphery of a horizontal wheel fixed to the vertical shaft. Another horizontal wheel set a little above the first turned the starwheels, to which were attached reels for winding the silk off the bobbins below. Three or four sets of these spindles and reels were placed above each other on the same driving shaft. The machine was very complicated for the time and must have been expensive to build and maintain.
    John lived just long enough to see the mill in operation, for he died in 1722 after a painful illness said to have been the result of poison administered by an Italian woman in revenge for his having stolen the invention and for the injury he was causing the Italian trade. The funeral was said to have been the most superb ever known in Derby.
    [br]
    Further Reading
    Samuel Smiles, 1890, Men of Invention and Industry, London (probably the only biography of John Lombe).
    Rhys Jenkins, 1933–4, "Historical notes on some Derbyshire industries", Transactions of the Newcomen Society 14 (provides an acount of John Lombe and his part in the enterprise at Derby).
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (briefly covers the development of early silk-throwing mills).
    W.English, 1969, The Textile Industry, London (includes a chapter on "Lombe's Silk Machine").
    P.Barlow, 1836, Treatise of Manufactures and Machinery of Great Britain, London (describes Lombe's mill and machinery, but it is not known how accurate the account may be).
    RLH

    Biographical history of technology > Lombe, John

  • 3 Coster, John

    [br]
    b. c. 1647 Gloucestershire, England
    d. 13 October 1718 Bristol, England
    [br]
    English innovator in the mining, smelting and working of copper.
    [br]
    John Coster, son of an iron-forge manager in the Forest of Dean, by the age of 38 was at Bristol, where he was "chief agent and sharer therein" in the new lead-smelting methods using coal fuel. In 1685 the work, under Sir Clement Clerke, was abandoned because of patent rights claimed by Lord Grandison, who financed of earlier attempts. Clerke's business turned to the coal-fired smelting of copper under Coster, later acknowledged as responsible for the subsequent success through using an improved reverberatory furnace which separated coal fume from the ores being smelted. The new technique, applicable also to lead and tin smelting, revitalized copper production and provided a basis for new British industry in both copper and brass manufacture during the following century. Coster went on to manage a copper-smelting works, and by the 1690s was supplying Esher copper-and brass-works in Surrey from his Redbrook, Gloucestershire, works on the River Wye. In the next decade he extended his activities to Cornish copper mining, buying ore and organizing ore sales, and supplying the four major copper and brass companies which by then had become established. He also made copper goods in additional water-powered rolling and hammer mills acquired in the Bristol area. Coster was ably assisted by three sons; of these, John and Robert were mainly active in Cornwall. In 1714 the younger John, with his father, patented an "engine for drawing water out of deep mines". The eldest son, Thomas, was more involved at Redbrook, in South Wales and the Bristol area. A few years after the death of his father, Thomas became partner in the brass company of Bristol and sold them the Redbrook site. He became Member of Parliament for Bristol and, by then the only surviving son, planned a large new smelting works at White Rock, Swansea, South Wales, before his death in 1734. Partners outside the family continued the business under a new name.
    [br]
    Bibliography
    1714, British patent 397, with John Coster Jr.
    Further Reading
    Rhys Jenkins, 1942, "Copper works at Redbrook and Bristol", Transactions of the Bristol and Gloucestershire Archaeological Society 63.
    Joan Day, 1974–6, "The Costers: copper smelters and manufacturers", Transactions of the Newcomen Society 47:47–58.
    JD

    Biographical history of technology > Coster, John

  • 4 Gilbert, John

    [br]
    b. 1724 Cotton Hall, Cotton, Staffordshire, England
    d. 3 August 1795 Worsley, Lancashire, England
    [br]
    English land agent, mining engineer and canal entrepreneur.
    [br]
    Younger son of a gentleman farmer, Gilbert was apprenticed to Matthew Boulton, a buckle maker of Birmingham and father of the Matthew Boulton who was associated with James Watt. He also gained mining experience. Through the influence of his older brother, Thomas Gilbert, he became Land Agent to the Duke of Bridgewater (Francis Egerton) for the Worsley estate. He proposed extensions to the underground waterway system and also made a preliminary survey for a canal from Worsley to Salford, a project which Brindley joined as Assistant Engineer. Gilbert was therefore the prime mover in the construction of the Bridgewater Canal, which received its Act in 1759. He then collected evidence for the second Act to permit construction of the aqueduct across the Irwell at Barton. He was involved in a consortium with his brother Thomas and Earl Gower to develop the Earl's East Shropshire mines and to build the Shrewsbury and the Shropshire Coal Canals. He also excavated the Speedwell Mine at Castleton in Derbyshire between 1774 and 1781 and constructed the underground canal to serve the workings. With his brother, he was involved in the promotion of the Trent \& Mersey Canal and was a shareholder in the undertaking. Among his other entrepreneurial activities, he entered the canal-carrying business. His last work was beginning the underground inclined planes at Worsley, but these were not completed until after his death. His important place in the historical development of the inland navigational system in England has been very much overlooked.
    [br]
    Further Reading
    P.Lead, 1990, Agents of Revolution: John and Thomas Gilbert-Entrepreneurs, Keele University Centre for Local History.
    JHB

    Biographical history of technology > Gilbert, John

  • 5 Williams, Thomas

    [br]
    b. 13 May 1737 Cefn Coch, Anglesey, Wales
    d. 29 November 1802 Bath, England
    [br]
    Welsh lawyer, mine-owner and industrialist.
    [br]
    Williams was articled by his father, Owen Williams of Treffos in Anglesey, to the prominent Flintshire lawyer John Lloyd, whose daughter Catherine he is believed to have married. By 1769 Williams, lessee of the mansion and estate of Llanidan, was an able lawyer with excellent connections in Anglesey. His life changed dramatically when he agreed to act on behalf of the Lewis and Hughes families of Llysdulas, who had begun a lawsuit against Sir Nicholas Bayly of Plas Newydd concerning the ownership and mineral rights of copper mines on the western side of Parys mountain. During a prolonged period of litigation, Williams managed these mines for Margaret Lewis on behalf of Edward Hughes, who was established after a judgement in Chancery in 1776 as one of two legal proprietors, the other being Nicholas Bayly. The latter then decided to lease his portion to the London banker John Dawes, who in 1778 joined Hughes and Thomas Williams when they founded the Parys Mine Company.
    As the active partner in this enterprise, Williams began to establish his own smelting and fabricating works in South Wales, Lancashire and Flintshire, where coal was cheap. He soon broke the power of Associated Smelters, a combine holding the Anglesey mine owners to ransom. The low production cost of Anglesey ore gave him a great advantage over the Cornish mines and he secured very profitable contracts for the copper sheathing of naval and other vessels. After several British and French copper-bottomed ships were lost because of corrosion failure of the iron nails and bolts used to secure the sheathing, Williams introduced a process for manufacturing heavily work-hardened copper bolts and spikes which could be substituted directly for iron fixings, avoiding the corrosion difficulty. His new product was adopted by the Admiralty in 1784 and was soon used extensively in British and European dockyards.
    In 1785 Williams entered into partnership with Lord Uxbridge, son and heir of Nicholas Bayly, to run the Mona Mine Company at the Eastern end of Parys Mountain. This move ended much enmity and litigation and put Williams in effective control of all Anglesey copper. In the same year, Williams, with Matthew Boulton and John Wilkinson, persuaded the Cornish miners to establish a trade cooperative, the Cornish Metal Company, to market their ores. When this began to fall in 1787, Williams took over its administration, assets and stocks and until 1792 controlled the output and sale of all British copper. He became known as the "Copper King" and the output of his many producers was sold by the Copper Offices he established in London, Liverpool and Birmingham. In 1790 he became Member of Parliament for the borough of Great Marlow, and in 1792 he and Edward Hughes established the Chester and North Wales Bank, which in 1900 was absorbed by the Lloyds group.
    After 1792 the output of the Anglesey mines started to decline and Williams began to buy copper from all available sources. The price of copper rose and he was accused of abusing his monopoly. By this time, however, his health had begun to deteriorate and he retreated to Bath.
    [br]
    Further Reading
    J.R.Harris, 1964, The "Copper King", Liverpool University Press.
    ASD

    Biographical history of technology > Williams, Thomas

  • 6 Wilson, Thomas

    SUBJECT AREA: Canals, Ports and shipping
    [br]
    b. 1781 Dunbar, Scotland
    d. 1 December 1873 Grangemouth, Scotland
    [br]
    Scottish shipwright and canal engineer, builder of the barge Vulcan, the world's first properly constructed iron ship.
    [br]
    Wilson, the son of a sailor, spent his early years on the Forth. Later his father moved home to the west and Wilson served his apprenticeship as a shipwright on the Clyde at the small shipyards of Bowling, fifteen miles (24 km) west of Glasgow and on the river's north bank. In his late thirties Wilson was to take the leading role in what is arguably the most important development in Scotland's distinguished shipbuilding history: the building of the world's first properly constructed iron ship. This ship, the Vulcan, was the culmination of several years' effort by a group of people well connected within the academic establishment of Scotland. The Forth and Clyde Canal Company had passed instructions for investigations to be made into reducing running expenses and a distinguished committee looked into this matter. They included John Robison (Secretary of the Royal Society of Edinburgh), Professor Joseph Black of Glasgow University, James Watt and John Schanck. After a period of consideration it was decided to build a new, fastpassage barge of iron, and tenders were invited from several appropriate contractors. Wilson, with the assistance of two blacksmiths, John and Thomas Smellie, was awarded the work, and the Vulcan was constructed and ultimately launched at Faskine near Glasgow in 1819. The work involved was far beyond the comprehension of engineers of the twentieth century, as Wilson had to arrange puddled-iron plates for the shell and hand-crafted angle irons for the frames. His genius is now apparent as every steel ship worldwide uses a form of construction literally "hammered out on the anvil" between 1818 and 1819. The Vulcan was almost 64 ft (19.5 m) in length and 11 ft (3.4 m) broad. In 1822 Wilson was appointed an inspector of works for the Canal Company, and ultimately he superintended the building of the docks at Grangemouth, where he died in 1873, the same year that the Vulcan was broken up.
    [br]
    Further Reading
    R.Harvey, 1919, Early Days of Engineering in Glasgow, Glasgow: Aird and Coghill. F.M.Walker, 1989–90, "Early iron shipbuilding. A reappraisal of the Vulcan and other pioneer vessels", Transactions of the Institution of Engineers and Shipbuilders in
    Scotland 133:21–34.
    FMW

    Biographical history of technology > Wilson, Thomas

  • 7 Cotchett, Thomas

    SUBJECT AREA: Textiles
    [br]
    fl. 1700s
    [br]
    English engineer who set up the first water-powered textile mill in Britain at Derby.
    [br]
    At the beginning of the eighteenth century, silk weaving was one of the most prosperous trades in Britain, but it depended upon raw silk worked up on hand twisting or throwing machines. In 1702 Thomas Cotchett set up a mill for twisting silk by water-power at the northern end of an island in the river Derwent at Derby; this would probably have been to produce organzine, the hard twisted thread used for the warp when weaving silk fabrics. Such mills had been established in Italy beginning with the earliest in Bologna in 1272, but it would appear that Cotchett used Dutch silk-throwing machinery that was driven by a water wheel that was 13½ ft (4.1 m) in diameter and built by the local engineer, George Sorocold. The enterprise soon failed, but it was quickly revived and extended by Thomas and John Lombe with machinery based on that being used successfully in Italy.
    [br]
    Further Reading
    D.M.Smith, 1965, Industrial Archaeology of the East Midlands, Newton Abbot (provides an account of Cotchett's mill).
    W.H.Chaloner, 1963, "Sir Thomas Lombe (1685–1739) and the British silk industry", History Today (Nov.).
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (a brief coverage of the development of early silk throwing mills).
    Technology, Part 9, Textile Technology: spinning and reeling, Cambridge (covers the diffusion of the techniques of the mechanization of the silk-throwing industry from China to the West).
    RLH

    Biographical history of technology > Cotchett, Thomas

  • 8 Gilbert, Thomas

    [br]
    b. 1720 Cotton Hall, Cotton, Staffordshire, England
    d. 18 December 1798
    [br]
    English politician, mine and canal entrepreneur.
    [br]
    He was the older brother of John Gilbert and, trained as a lawyer, he became Land Agent to Earl Gower and Legal Adviser to the Duke of Bridgewater (Francis Egerton). Brindley had carried out work for Gilbert on the Gower estates and the standard of work impressed him. In 1759 he recommended Brindley to his brother at Worsley as a competent engineer who would be valuable in the construction of the new canal. Gilbert became Member of Parliament for Newcastle under Lyme in 1763 and was thus able to sponsor the Trent and Mersey Bill when it came before Parliament. He joined the committee of the Trent and Mersey, representing the interests of both Earl Gower and himself. He was also involved with the East Shropshire mines and canals with his brother. He continued as a Member of Parliament (until 1768 for Newcastle and afterwards for Lichfield) until December 1794.
    [br]
    Further Reading
    P.Lead, 1990, Agents of Revolution: John and Thomas Gilbert—Entrepreneurs, Keele University Centre for Local History.
    JHB

    Biographical history of technology > Gilbert, Thomas

  • 9 Highs, Thomas

    SUBJECT AREA: Textiles
    [br]
    fl. 1760s England
    [br]
    English reedmaker who claimed to have invented both the spinning jenny and the waterframe.
    [br]
    The claims of Highs to have invented both the spinning jenny and the waterframe have been dismissed by most historians. Thomas Highs was a reedmaker of Leigh, Lancashire. In about 1763 he had as a neighbour John Kay, the clockmaker from Warrington, whom he employed to help him construct his machines. During this period they were engaged in making a spinning jenny, but after several months of toil, in a fit of despondency, they threw the machine through the attic window. Highs persevered, however, and made a jenny that could spin six threads. The comparatively sophisticated arrangements for drawing and twisting at the same time, as depicted by Guest (1823), suggest that this machine came after the one invented by James Hargreaves. Guest claims that Highs made this machine between 1764 and 1766 and in the following two years constructed another, in which the spindles were placed in a circle. In 1771 Highs moved to Manchester, where he constructed a double jenny that was displayed at the Manchester Exchange, and received a subscription of £200 from the cotton manufacturers. However, all this occurred after Hargreaves had constructed his jenny. In the trial of Arkwright's patent during 1781, Highs gave evidence. He was recalled from Ireland, where he had been superintending the building of cotton-spinning machinery for Baron Hamilton's newly erected mill at Balbriggan, north of Dublin. Then in 1785, during the next trial of Arkwright's patent, Highs claimed that in 1767 he had made rollers for drawing out the cotton before spinning. This would have been for a different type of spinning machine, similar to the one later constructed by Arkwright. Highs was helped by John Kay and it was these rollers that Kay subsequently built for Arkwright. If the drawing shown by Guest is correct, then Highs was working on the wrong principles because his rollers were spaced too far apart and were not held together by weights, with the result that the twist would have passed into the drafting zone, producing uneven drawing.
    [br]
    Further Reading
    R.Guest, 1823, A Compendious History of the Cotton-Manufacture: With a Disproval of the Claim of Sir Richard Arkwright to the Invention of its Ingenious Machinery, Manchester (Highs's claim for the invention of his spinning machines).
    R.S.Fitton, 1989, The Arkwrights, Spinners of Fortune, Manchester (an examination of Highs's claims).
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (discusses the technical problems of the invention).
    RLH

    Biographical history of technology > Highs, Thomas

  • 10 Laird, John

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1805 (?) Greenock, Scotland
    d. 26 October 1874 Birkenhead, England
    [br]
    Scottish pioneer of large-scale iron shipbuilding.
    [br]
    When only 5 years old, Laird travelled with his family to Merseyside, where his father William Laird was setting up a ship-repair yard. Fourteen years later his father established the Birkenhead Ironworks for ship and engine repairs, which in later years was to achieve great things with John Laird at the helm. John Laird trained as a solicitor, but instead of going into practice he joined the family business. Between 1829 and 1832 they built three iron barges for inland use in Ireland; this form of construction had become less of a novelty and followed the example set by Thomas Wilson in 1819, but Laird was fired with enthusiasm for this mode of construction. New iron ships followed in rapid succession, with two of especial note: the paddle steamer Lady Lansdown of 1833, which was dismantled and later re-erected on the river Shannon, becoming one of Britain's first "knock-down" contracts; and the early steamer Robert F.Stockton, which had a double Ericsson screw propeller and the first iron transverse watertight bulkheads. With the good name of the shipyard secure, they received orders from MacGregor Laird (John Laird's younger brother) for iron ships for the West African trade. This African connection was to grow and the yard's products were to include the Ma Roberts for Dr David Livingstone. Being of steel and with constant groundings on African rivers, this craft only lasted 18 months in steady operation. In 1858 a new yard dedicated to iron construction was opened at Monk's Ferry. In 1861 John Laird was returned as the first Member of Parliament for Birkenhead and his sons took over the day-to-day affairs of the business. Laird was to suffer acute embarrassment by questions at Westminster over the building in the Birkenhead Works of the United States Confederate raider Alabama in 1862. In 1874 he suffered serious injuries in a riding accident; his health declined and he died later that year.
    [br]
    Bibliography
    1858, with Fairbairn, Forrester, Lang and Sea-ward, Steam Navigation, Vessels of Iron and Wood, the Steam Engine, etc. 2 vols, London: Weale.
    FMW

    Biographical history of technology > Laird, John

  • 11 Newcomen, Thomas

    [br]
    b. January or February 1663 Dartmouth, Devon, England
    d. 5 August 1729 London, England
    [br]
    English inventor and builder of the world's first successful stationary steam-engine.
    [br]
    Newcomen was probably born at a house on the quay at Dartmouth, Devon, England, the son of Elias Newcomen and Sarah Trenhale. Nothing is known of his education, and there is only dubious evidence of his apprenticeship to an ironmonger in Exeter. He returned to Dartmouth and established himself there as an "ironmonger". The term "ironmonger" at that time meant more than a dealer in ironmongery: a skilled craftsman working in iron, nearer to today's "blacksmith". In this venture he had a partner, John Calley or Caley, who was a plumber and glazier. Besides running his business in Dartmouth, it is evident that Newcomen spent a good deal of time travelling round the mines of Devon and Cornwall in search of business.
    Eighteenth-century writers and others found it impossible to believe that a provincial ironmonger could have invented the steam-engine, the concept of which had occupied the best scientific brains in Europe, and postulated a connection between Newcomen and Savery or Papin, but scholars in recent years have failed to find any evidence of this. Certainly Savery was in Dartmouth at the same time as Newcomen but there is nothing to indicate that they met, although it is possible. The most recent biographer of Thomas Newcomen is of the opinion that he was aware of Savery and his work, that the two men had met by 1705 and that, although Newcomen could have taken out his own patent, he could not have operated his own engines without infringing Savery's patent. In the event, they came to an agreement by which Newcomen was enabled to sell his engines under Savery's patent.
    The first recorded Newcomen engine is dated 1712, although this may have been preceded by a good number of test engines built at Dartmouth, possibly following a number of models. Over one hundred engines were built to Newcomen's design during his lifetime, with the first engine being installed at the Griff Colliery near Dudley Castle in Staffordshire.
    On the death of Thomas Savery, on 15 May 1715, a new company, the Proprietors of the Engine Patent, was formed to carry on the business. The Company was represented by Edward Elliot, "who attended the Sword Blade Coffee House in Birchin Lane, London, between 3 and 5 o'clock to receive enquiries and to act as a contact for the committee". Newcomen was, of course, a member of the Proprietors.
    A staunch Baptist, Newcomen married Hannah Waymouth, who bore him two sons and a daughter. He died, it is said of a fever, in London on 5 August 1729 and was buried at Bunhill Fields.
    [br]
    Further Reading
    L.T.C.Rolt and J.S.Allen, 1977, The Steam Engine of Thomas Newcomen, Hartington: Moorland Publishing Company (the definitive account of his life and work).
    IMcN

    Biographical history of technology > Newcomen, Thomas

  • 12 Smalley, John

    SUBJECT AREA: Textiles
    [br]
    b. c. 1729 England
    d. 28 January 1782 Holywell, Wales.
    [br]
    English helped Arkwright to build and finance the waterframe.
    [br]
    John Smalley of Preston was the second son of John, a chapman of Blackburn. He was a distant relative of Richard Arkwright through marrying, in 1751, Elizabeth Baxter, whose mother Ellen was the widow of Arkwright's uncle, Richard. In the Preston Guild Rolls of 1762 he was described as a grocer and painter, and he was also Landlord of the Bull Inn. The following year he became a bailiff of Preston and in 1765 he became a Corporation steward. On 14 May 1768 Arkwright, Smalley and David Thornley became partners in a cotton-spinning venture in Nottingham. They agreed to apply for a patent for Arkwright's invention of spinning by rollers, and Smalley signed as a witness. It is said that Smalley provided much of the capital for this new venture as he sold his business at Preston for about £1,600, but this was soon found to be insufficient and the partnership had to be enlarged to include Samuel Need and Jedediah Strutt.
    Smalley may have helped to establish the spinning mill at Nottingham, but by 28 February 1771 he was back in Preston, for on that day he was chosen a "Councilman in the room of Mr. Thomas Jackson deceased" (Fitton 1989:38). He attended meetings for over a year, but either in 1772 or the following year he sold the Bull Inn, and certainly by August 1774 the Smalleys were living in Cromford, where he became Manager of the mill. He soon found himself at logger-heads with Arkwright; however, Strutt was able to smooth the dispute over for a while. Things came to a head in January 1777 when Arkwright was determined to get rid of Smalley, and the three remaining partners agreed to buy out Smalley's share for the sum of £10,751.
    Although he had agreed not to set up any textile machinery, Smalley moved to Holywell in North Wales, where in the spring of 1777 he built a cotton-spinning mill in the Greenfield valley. He prospered there and his son was later to build two more mills in the same valley. Smalley used to go to Wrexham to sell his yarn, and there met John Peers, a leather merchant, who was able to provide a better quality leather for covering the drawing rollers which came to be used in Lancashire. Smalley died in 1782, shortly before Arkwright could sue him for infringement of his patents.
    [br]
    Further Reading
    R.S.Fitton, 1989, The Arkwrights, Spinners of Fortune, Manchester (draws together the fullest details of John Smalley).
    R.L.Hills, 1969, Power in the Industrial Revolution, Manchester (includes details of the agreement with Arkwright).
    A.H.Dodd, 1971, The Industrial Revolution in North Wales, Cardiff; E.J.Foulkes, 1964, "The cotton spinning factories of Flintshire, 1777–1866", Flintshire Historical Society
    Journal 21 (provide more information about his cotton mill at Holywell).
    RLH

    Biographical history of technology > Smalley, John

  • 13 Smeaton, John

    [br]
    b. 8 June 1724 Austhorpe, near Leeds, Yorkshire, England
    d. 28 October 1792 Austhorpe, near Leeds, Yorkshire, England
    [br]
    English mechanical and civil engineer.
    [br]
    As a boy, Smeaton showed mechanical ability, making for himself a number of tools and models. This practical skill was backed by a sound education, probably at Leeds Grammar School. At the age of 16 he entered his father's office; he seemed set to follow his father's profession in the law. In 1742 he went to London to continue his legal studies, but he preferred instead, with his father's reluctant permission, to set up as a scientific instrument maker and dealer and opened a shop of his own in 1748. About this time he began attending meetings of the Royal Society and presented several papers on instruments and mechanical subjects, being elected a Fellow in 1753. His interests were turning towards engineering but were informed by scientific principles grounded in careful and accurate observation.
    In 1755 the second Eddystone lighthouse, on a reef some 14 miles (23 km) off the English coast at Plymouth, was destroyed by fire. The President of the Royal Society was consulted as to a suitable engineer to undertake the task of constructing a new one, and he unhesitatingly suggested Smeaton. Work began in 1756 and was completed in three years to produce the first great wave-swept stone lighthouse. It was constructed of Portland stone blocks, shaped and pegged both together and to the base rock, and bonded by hydraulic cement, scientifically developed by Smeaton. It withstood the storms of the English Channel for over a century, but by 1876 erosion of the rock had weakened the structure and a replacement had to be built. The upper portion of Smeaton's lighthouse was re-erected on a suitable base on Plymouth Hoe, leaving the original base portion on the reef as a memorial to the engineer.
    The Eddystone lighthouse made Smeaton's reputation and from then on he was constantly in demand as a consultant in all kinds of engineering projects. He carried out a number himself, notably the 38 mile (61 km) long Forth and Clyde canal with thirty-nine locks, begun in 1768 but for financial reasons not completed until 1790. In 1774 he took charge of the Ramsgate Harbour works.
    On the mechanical side, Smeaton undertook a systematic study of water-and windmills, to determine the design and construction to achieve the greatest power output. This work issued forth as the paper "An experimental enquiry concerning the natural powers of water and wind to turn mills" and exerted a considerable influence on mill design during the early part of the Industrial Revolution. Between 1753 and 1790 Smeaton constructed no fewer than forty-four mills.
    Meanwhile, in 1756 he had returned to Austhorpe, which continued to be his home base for the rest of his life. In 1767, as a result of the disappointing performance of an engine he had been involved with at New River Head, Islington, London, Smeaton began his important study of the steam-engine. Smeaton was the first to apply scientific principles to the steam-engine and achieved the most notable improvements in its efficiency since its invention by Newcomen, until its radical overhaul by James Watt. To compare the performance of engines quantitatively, he introduced the concept of "duty", i.e. the weight of water that could be raised 1 ft (30 cm) while burning one bushel (84 lb or 38 kg) of coal. The first engine to embody his improvements was erected at Long Benton colliery in Northumberland in 1772, with a duty of 9.45 million pounds, compared to the best figure obtained previously of 7.44 million pounds. One source of heat loss he attributed to inaccurate boring of the cylinder, which he was able to improve through his close association with Carron Ironworks near Falkirk, Scotland.
    [br]
    Principal Honours and Distinctions
    FRS 1753.
    Bibliography
    1759, "An experimental enquiry concerning the natural powers of water and wind to turn mills", Philosophical Transactions of the Royal Society.
    Towards the end of his life, Smeaton intended to write accounts of his many works but only completed A Narrative of the Eddystone Lighthouse, 1791, London.
    Further Reading
    S.Smiles, 1874, Lives of the Engineers: Smeaton and Rennie, London. A.W.Skempton, (ed.), 1981, John Smeaton FRS, London: Thomas Telford. L.T.C.Rolt and J.S.Allen, 1977, The Steam Engine of Thomas Newcomen, 2nd edn, Hartington: Moorland Publishing, esp. pp. 108–18 (gives a good description of his work on the steam-engine).
    LRD

    Biographical history of technology > Smeaton, John

  • 14 Randall, Sir John Turton

    SUBJECT AREA: Medical technology
    [br]
    b. 23 March 1905 Newton-le-Willows, Lancashire, England
    d. 16 June 1984 Edinburgh, Scotland
    [br]
    English physicist and biophysicist, primarily known for the development, with Boot of the cavity magnetron.
    [br]
    Following secondary education at Ashton-inMakerfield Grammar School, Randall entered Manchester University to read physics, gaining a first class BSc in 1925 and his MSc in 1926. From 1926 to 1937 he was a research physicist at the General Electric Company (GEC) laboratories, where he worked on luminescent powders, following which he became Warren Research Fellow of the Royal Society at Birmingham University, studying electronic processes in luminescent solids. With the outbreak of the Second World War he became an honorary member of the university staff and transferred to a group working on the development of centrimetric radar. With Boot he was responsible for the development of the cavity magnetron, which had a major impact on the development of radar.
    When Birmingham resumed its atomic research programme in 1943, Randall became a temporary lecturer at the Cavendish Laboratory in Cambridge. The following year he was appointed Professor of Natural Philosophy at the University of St Andrews, but in 1946 he moved again to the Wheatstone Chair of Physics at King's College, London. There his developing interest in biophysical research led to the setting up of a multi-disciplinary group in 1951 to study connective tissues and other biological components, and in 1950– 5 he was joint Editor of Progress in Biophysics. From 1961 until his retirement in 1970 he was Professor of Biophysics at King's College and for most of that time he was also Chairman of the School of Biological Sciences. In addition, for many years he was honorary Director of the Medical Research Council Biophysics Research Unit.
    After he retired he returned to Edinburgh and continued to study biological problems in the university zoology laboratory.
    [br]
    Principal Honours and Distinctions
    Knighted 1962. FRS 1946. FRS Edinburgh 1972. DSc Manchester 1938. Royal Society of Arts Thomas Gray Memorial Prize 1943. Royal Society Hughes Medal 1946. Franklin Institute John Price Wetherill Medal 1958. City of Pennsylvania John Scott Award 1959. (All jointly with Boot for the cavity magnetron.)
    Bibliography
    1934, Diffraction of X-Rays by Amorphous Solids, Liquids \& Gases (describes his early work).
    1953, editor, Nature \& Structure of Collagen.
    1976, with H.Boot, "Historical notes on the cavity magnetron", Transactions of the Institute of Electrical and Electronics Engineers ED-23: 724 (gives an account of the cavity-magnetron development at Birmingham).
    Further Reading
    M.H.F.Wilkins, "John Turton Randall"—Bio-graphical Memoirs of Fellows of the Royal Society, London: Royal Society.
    KF

    Biographical history of technology > Randall, Sir John Turton

  • 15 Mudge, Thomas

    SUBJECT AREA: Horology
    [br]
    b. 1715 Exeter, England
    d. 14 November 1794 Walworth, England
    [br]
    English clock-and watchmaker who invented the lever escapement that was ultimately used in all mechanical watches.
    [br]
    Thomas Mudge was the son of a clergyman and schoolmaster who, recognizing his son's mechanical aptitude, apprenticed him to the eminent London clock-and watchmaker George Graham. Mudge became free of the Clockmakers' Company in 1738 and set up on his own account after Graham's death in 1751. Around 1755 he formed a partnership with William Dutton, another apprentice of Graham. The firm produced conventional clocks and watches of excellent quality, but Mudge had also established a reputation for making highly innovative individual pieces. The most significant of these was the watch with a detached-lever escapement that he completed in 1770, although the idea had occurred to him as early as 1754. This watch was purchased by George III for Queen Charlotte and is still in the Royal Collection. Shortly afterwards Mudge moved to Plymouth, to devote his time to the perfection of the marine chronometer, leaving the London business in the hands of Dutton. The chronometers he produced were comparable in performance to those of John Harrison, but like them they were too complicated and expensive to be produced in quantity.
    Mudge's patron, Count Bruhl, recognized the potential of the detached-lever escapement, but Mudge was too involved with his marine chronometers to make a watch for him. He did, however, provide Bruhl with a large-scale model of his escapement, from which the Swiss expatriate Josiah Emery was able to make a watch in 1782. Over the next decade Emery made a limited number of similar watches for wealthy clients, and it was the performance of these watches that demonstrated the worth of the escapement. The detached-lever escapement took some time to be adopted universally, but this was facilitated in the nineteenth century by the development of a cheaper form, the pin lever.
    By the end of the century the detached-lever escapement was used in one form or another in practically all mechanical watches and portable clocks. If a watch is to be a good timekeeper the balance must be free to swing with as little interference as possible from the escapement. In this respect the cylinder escapement is an improvement on the verge, although it still exerts a frictional force on the balance. The lever escapement is a further improvement because it detaches itself from the balance after delivering the impulse which keeps it oscillating.
    [br]
    Principal Honours and Distinctions
    Clockmaker to George III 1776.
    Further Reading
    T.Mudge, Jr, 1799, A Description with Plates of the Time-Keeper Invented by the Late Mr. Thomas Mudge, London (contains a tract written by his father and the text of his letters to Count Bruhl).
    C.Clutton and G.Daniels, 1986, Watches, 4th edn, London (provides further biographical information and a good account of the history of the lever watch).
    R.Good, 1978, Britten's Watch \& Clock Maker's Handbook Dictionary and Guide, 16th edn, London, pp. 190–200 (provides a good technical description of Mudge's lever escapement and its later development).
    DV

    Biographical history of technology > Mudge, Thomas

  • 16 Percy, John

    SUBJECT AREA: Metallurgy
    [br]
    b. 23 March 1817 Nottingham, England
    d. 19 June 1889 London, England
    [br]
    English metallurgist, first Professor of Metallurgy at the School of Mines, London.
    [br]
    After a private education, Percy went to Paris in 1834 to study medicine and to attend lectures on chemistry by Gay-Lussac and Thenard. After 1838 he studied medicine at Edinburgh, obtaining his MD in 1839. In that year he was appointed Professor of Chemistry at Queen's College, Birmingham, moving to Queen's Hospital at Birmingham in 1843. During his time at Birmingham, Percy became well known for his analysis of blast furnace slags, and was involved in the manufacture of optical glass. On 7 June 1851 Percy was appointed Metallurgical Professor and Teacher at the Museum of Practical Geology established in Jermyn Street, London, and opened in May 1851. In November of 1851, when the Museum became the Government (later Royal) School of Mines, Percy was appointed Lecturer in Metallurgy. In addition to his work at Jermyn Street, Percy lectured on metallurgy to the Advanced Class of Artillery at Woolwich from 1864 until his death, and from 1866 he was Superintendent of Ventilation at the Houses of Parliament. He served from 1861 to 1864 on the Special Committee on Iron set up to examine the performance of armour-plate in relation to its purity, composition and structure.
    Percy is best known for his metallurgical text books, published by John Murray. Volume I of Metallurgy, published in 1861, dealt with fuels, fireclays, copper, zinc and brass; Volume II, in 1864, dealt with iron and steel; a volume on lead appeared in 1870, followed by one on fuels and refractories in 1875, and the first volume on gold and silver in 1880. Further projected volumes on iron and steel, noble metals, and on copper, did not materialize. In 1879 Percy resigned from his School of Mines appointment in protest at the proposed move from Jermyn Street to South Kensington. The rapid growth of Percy's metallurgical collection, started in 1839, eventually forced him to move to a larger house. After his death, the collection was bought by the South Kensington (later Science) Museum. Now comprising 3,709 items, it provides a comprehensive if unselective record of nineteenth-century metallurgy, the most interesting specimens being those of the first sodium-reduced aluminium made in Britain and some of the first steel produced by Bessemer in Baxter House. Metallurgy for Percy was a technique of chemical extraction, and he has been criticized for basing his system of metallurgical instruction on this assumption. He stood strangely aloof from new processes of steel making such as that of Gilchrist and Thomas, and tended to neglect early developments in physical metallurgy, but he was the first in Britain to teach metallurgy as a discipline in its own right.
    [br]
    Principal Honours and Distinctions
    FRS 1847. President, Iron and Steel Institute 1885, 1886.
    Bibliography
    1861–80, Metallurgy, 5 vols, London: John Murray.
    Further Reading
    S.J.Cackett, 1989, "Dr Percy and his metallurgical collection", Journal of the Hist. Met. Society 23(2):92–8.
    RLH

    Biographical history of technology > Percy, John

  • 17 Bell, Thomas

    SUBJECT AREA: Paper and printing
    [br]
    fl. 1770–1785 Scotland
    [br]
    Scottish inventor of a calico printing machine with the design engraved on rollers.
    [br]
    In November 1770, John Mackenzie, owner of a bleaching mill, took his millwright Thomas Bell to Glasgow to consult with James Watt about problems they were having with the calico printing machine invented by Bell some years previously. Bell rolled sheets of copper one eighth of an inch (3 mm) thick into cyliders, and filled them with cement which was held in place by cast iron ends. After being turned true and polished, the cylinders were engraved; they cost about £10 each. The printing machines were driven by a water-wheel, but Bell and Mackenzie appeared to have had problems with the doctor blades which scraped off excess colour, and this may have been why they visited Watt.
    They had, presumably, solved the technical problems when Bell took out a patent in 1783 which describes him as "the Elder", but there are no further details about the man himself. The machine is described as having six printing rollers arranged around the top of the circumference of a large central bowl. In later machines, the printing rollers were placed all round a smaller cylinder. All of the printing rollers, each printing a different colour, were driven by gearing to keep them in register. The patent includes steel doctor blades which would have scraped excess colour off the printing rollers. Another patent, taken out in 1784, shows a smaller three-colour machine. The printing rollers had an iron core covered with copper, which could be taken off at pleasure so that fresh patterns could be cut as desired. Bell's machine was used at Masney, near Preston, England, by Messrs Livesey, Hargreaves, Hall \& Co in 1786. Although copper cylinders were difficult to make and engrave, and the soldered seams often burst, these machines were able to increase the output of the cheaper types of printed cloth.
    [br]
    Bibliography
    1783, patent no. 1,378 (calico printing machine with engraved copper rollers). 1784, patent no. 1,443 (three-colour calico printing machine).
    Further Reading
    W.E.A.Axon, 1886, Annals of Manchester, Manchester (provides an account of the invention).
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (provides a brief description of the development of calico printing).
    RLH

    Biographical history of technology > Bell, Thomas

  • 18 Crampton, Thomas Russell

    [br]
    b. 6 August 1816 Broadstairs, Kent, England
    d. 19 April 1888 London, England
    [br]
    English engineer, pioneer of submarine electric telegraphy and inventor of the Crampton locomotive.
    [br]
    After private education and an engineering apprenticeship, Crampton worked under Marc Brunel, Daniel Gooch and the Rennie brothers before setting up as a civil engineer in 1848. His developing ideas on locomotive design were expressed through a series of five patents taken out between 1842 and 1849, each making a multiplicity of claims. The most typical feature of the Crampton locomotive, however, was a single pair of driving wheels set to the rear of the firebox. This meant they could be of large diameter, while the centre of gravity of the locomotive remained low, for the boiler barrel, though large, had only small carrying-wheels beneath it. The cylinders were approximately midway along the boiler and were outside the frames, as was the valve gear. The result was a steady-riding locomotive which neither pitched about a central driving axle nor hunted from side to side, as did other contemporary locomotives, and its working parts were unusually accessible for maintenance. However, adhesive weight was limited and the long wheelbase tended to damage track. Locomotives of this type were soon superseded on British railways, although they lasted much longer in Germany and France. Locomotives built to the later patents incorporated a long, coupled wheelbase with drive through an intermediate crankshaft, but they mostly had only short lives. In 1851 Crampton, with associates, laid the first successful submarine electric telegraph cable. The previous year the brothers Jacob and John Brett had laid a cable, comprising a copper wire insulated with gutta-percha, beneath the English Channel from Dover to Cap Gris Nez: signals were passed but within a few hours the cable failed. Crampton joined the Bretts' company, put up half the capital needed for another attempt, and designed a much stronger cable. Four gutta-percha-insulated copper wires were twisted together, surrounded by tarred hemp and armoured by galvanized iron wires; this cable was successful.
    Crampton was also active in railway civil engineering and in water and gas engineering, and c. 1882 he invented a hydraulic tunnel-boring machine intended for a Channel tunnel.
    [br]
    Principal Honours and Distinctions
    Vice-President, Institution of Mechanical Engineers. Officier de la Légion d'Honneur (France).
    Bibliography
    1842, British patent no. 9,261.
    1845. British patent no. 10,854.
    1846. British patent no. 11,349.
    1847. British patent no. 11,760.
    1849, British patent no. 12,627.
    1885, British patent no. 14,021.
    Further Reading
    M.Sharman, 1933, The Crampton Locomotive, Swindon: M.Sharman; P.C.Dewhurst, 1956–7, "The Crampton locomotive", Parts I and II, Transactions of the Newcomen Society 30:99 (the most important recent publications on Crampton's locomotives).
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Shepperton: Ian Allen. J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles, 102–4.
    R.B.Matkin, 1979, "Thomas Crampton: Man of Kent", Industrial Past 6 (2).
    PJGR

    Biographical history of technology > Crampton, Thomas Russell

  • 19 Kemeny, John G.

    [br]
    b. before 1939
    [br]
    American mathematician and systems programmer, jointly responsible with Thomas Kurtz for the development of the high-level computer language BASIC.
    [br]
    Kemeny entered the USA as an immigrant in 1939. He subsequently became a mathematics lecturer at Dartmouth College, Hanover, New Hampshire, and later became a professor and then Chairman of the Mathematics Department; finally, in 1971, he became President of the College. In 1964, with Thomas Kurtz, he developed the high-level computer language known as BASIC (Beginners All-purpose Symbolic Instruction Code). It was initially designed for use by students with a time-sharing minicomputer, but it soon became the standard language for microcomputers, frequently being embedded in the computer as "firmware" loaded into a read-only-memory (ROM) integrated circuit.
    [br]
    Bibliography
    1963. Programming for a Digital Computer.
    1964. with T.E.Kurtz, BASIC Instruction Manual.
    1968, with T.E.Kurtz, "Dartmouth time-sharing", Science 223.
    Further Reading
    R.L.Wexelblat (ed.), 1981, History of Programming Languages, New York: Academic Press.
    KF

    Biographical history of technology > Kemeny, John G.

  • 20 Rickman, Thomas

    [br]
    b. 8 June 1776 Maidenhead, England
    d. 4 January 1841 Birmingham, England
    [br]
    English architect who published the first serious study of the development of the styles of medieval architecture.
    [br]
    Thomas Rickman trained first in medicine and then, after practising for a short while, became an insurance clerk. During his thirties, having taught himself draughtsmanship, he travelled the country drawing, and recording some 3,000 medieval churches. He became deeply interested in and knowledgeable about ecclesiastical medieval architecture and in 1817 he began architectural practice. Rickman was responsible for a great deal of collegiate and ecclesiastical building. His understanding of true medieval materials and construction was much greater than that of his contemporaries, but like them he saw nothing incongruous about using modern materials such as plaster and cast iron for vault supports and tracery, so changing the structural proportions from medieval precepts. Characteristic of his work was St George Edgbaston (1819–22; demolished 1960) and Hartlebury Church (1836–7). Rickman is known primarily for his book An Attempt to Discriminate the Styles of English Architecture from the Conquest to the Reformation, in which he suggested classifying periods of architecture as Norman, Early English, Decorated and Perpendicular. These terms are still largely accepted even today.
    [br]
    Further Reading
    H.Colvin, 1978, A Biographical Dictionary of English Architects 1600–1840, John Murray.
    DY

    Biographical history of technology > Rickman, Thomas

См. также в других словарях:

  • Thomas John Barnardo — Thomas John Barnardo, circa 1868 Born 4 July 1845(1845 07 04) Dublin, Ireland Died 19 September 1905 …   Wikipedia

  • Thomas John Capel — Thomas Capel Religion Roman Catholic Personal Nationality British Citizen Born O …   Wikipedia

  • Thomas John Watson — Nombre Thomas John Wa …   Wikipedia Español

  • Thomas John l'Anson Bromwich — (* 8. Februar 1875 in Wolverhampton; † 26. August 1929 in Northampton) war ein englischer Mathematiker und Physiker. Leben Sein Vater war der Tuchhändler John l Anson Bromwich. In seiner Jugend zog die Familie nach Natal in Südafrika, von 1888… …   Deutsch Wikipedia

  • Thomas John Ashton, 3rd Baron Ashton of Hyde — JP (19 November 1926 ndash; 2 August 2008) was the eldest son of Thomas Ashton, 2nd Baron Ashton of Hyde and Marjorie Nell Brookes. He succeeded his father as Baron Ashton of Hyde on the latter s death on 21 March 1983.He attended Eton College,… …   Wikipedia

  • Thomas John Ashton, 3. Baron Ashton of Hyde — (* 19. November 1926; † 2. August 2008) war ein britischer Bankier und Peer. Leben und Karriere Ashton war der älteste Sohn von Thomas Ashton, 2. Baron Ashton of Hyde, und Marjorie Nell Brookes. Er folgte seinem Vater als Baron Ashton of Hyde… …   Deutsch Wikipedia

  • Thomas John Hennen — Thomas Hennen Land (Organisation): USA (NASA) Datum der Auswahl: September 1988 (Terra Scout US Army) Anzahl der Raumflüge: 1 Star …   Deutsch Wikipedia

  • Thomas John Ley — (* 28. Oktober 1880 in Bath; † 29. Juli 1947) war ein australischer Rechtsanwalt, Politiker und Geschäftsmann. Ley war Abgeordneter im Unterhaus des Staates Neusüdwales, Justizminister von Neusüdwales und Abgeordneter im Australischen… …   Deutsch Wikipedia

  • Thomas John Patrick Welling — Thomas John Patrick Welling, (* 26. April 1977 in Putnam Valley, New York) ist ein US amerikanischer Schauspieler. Inhaltsverzeichnis 1 Leben 2 Filmographie 2.1 Gastauftritte 3 Weblinks …   Deutsch Wikipedia

  • Thomas John Watson — could be:*Thomas J. Watson founder of International Business Machines (IBM). *Thomas J. Watson, Jr. son of former …   Wikipedia

  • Thomas John I’Anson Bromwich — (* 8. Februar 1875 in Wolverhampton; † 26. August 1929 in Northampton) war ein englischer Mathematiker und Physiker. Sein dritter Name schreibt sich I’Anson mit großem i, nicht l’Anson mit kleinem L.[1] Leben Sein Vater war der Tuchhändler John… …   Deutsch Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»