Перевод: со всех языков на все языки

со всех языков на все языки

stephenson's

  • 21 George Stephenson

    s.
    Jorge Stephenson, Stephenson, George Stephenson.

    Nuevo Diccionario Inglés-Español > George Stephenson

  • 22 Jorge Stephenson

    m.
    George Stephenson.

    Spanish-English dictionary > Jorge Stephenson

  • 23 Locke, Joseph

    [br]
    b. 9 August 1805 Attercliffe, Yorkshire, England
    d. 18 September 1860 Moffat, Scotland
    [br]
    English civil engineer who built many important early main-line railways.
    [br]
    Joseph Locke was the son of a colliery viewer who had known George Stephenson in Northumberland before moving to Yorkshire: Locke himself became a pupil of Stephenson in 1823. He worked with Robert Stephenson at Robert Stephenson \& Co.'s locomotive works and surveyed railways, including the Leeds \& Selby and the Canterbury \& Whitstable, for George Stephenson.
    When George Stephenson was appointed Chief Engineer for construction of the Liverpool \& Manchester Railway in 1826, the first resident engineer whom he appointed to work under him was Locke, who took a prominent part in promoting traction by locomotives rather than by fixed engines with cable haulage. The pupil eventually excelled the master and in 1835 Locke was appointed in place of Stephenson as Chief Engineer for construction of the Grand Junction Railway. He introduced double-headed rails carried in chairs on wooden sleepers, the prototype of the bullhead track that became standard on British railways for more than a century. By preparing the most detailed specifications, Locke was able to estimate the cost of the railway much more accurately than was usual at that time, and it was built at a cost close to the estimate; this made his name. He became Engineer to the London \& Southampton Railway and completed the Sheffield, Ashton-under-Lyme \& Manchester Railway, including the 3-mile (3.8 km) Woodhead Tunnel, which had been started by Charles Vignoles. He was subsequently responsible for many British main lines, including those of the companies that extended the West Coast Route northwards from Preston to Scotland. He was also Engineer to important early main lines in France, notably that from Paris to Rouen and its extension to Le Havre, and in Spain and Holland. In 1847 Locke was elected MP for Honiton.
    Locke appreciated early in his career that steam locomotives able to operate over gradients steeper than at first thought practicable would be developed. Overall his monument is not great individual works of engineering, such as the famous bridges of his close contemporaries Robert Stephenson and I.K. Brunel, but a series of lines built economically but soundly through rugged country without such works; for example, the line over Shap, Cumbria.
    [br]
    Principal Honours and Distinctions
    Officier de la Légion d'honneur, France. FRS. President, Institution of Civil Engineers 1858–9.
    Further Reading
    Obituary, 1861, Minutes of Proceedings of the Institution of Civil Engineers 20. L.T.C.Rolt, 1962, Great Engineers, London: G. Bell \& Sons, ch. 6.
    Industrial Heritage, 1991, Vol. 9(2):9.
    See also: Brassey, Thomas
    PJGR

    Biographical history of technology > Locke, Joseph

  • 24 Hackworth, Timothy

    [br]
    b. 22 December 1786 Wylam, Northumberland, England
    d. 7 July 1850 Shildon, Co. Durham, England
    [br]
    English engineer, pioneer in construction and operation of steam locomotives.
    [br]
    Hackworth trained under his father, who was Foreman Blacksmith at Wylam colliery, and succeeded him upon his death in 1807. Between 1812 and 1816 he helped to build and maintain the Wylam locomotives under William Hedley. He then moved to Walbottle colliery, but during 1824 he took temporary charge of Robert Stephenson \& Co.'s works while George Stephenson was surveying the Liverpool \& Manchester Railway and Robert Stephenson was away in South America. In May 1825 Hackworth was appointed to the Stockton \& Darlington Railway (S \& DR) "to have superintendence of the permanent (i.e. stationary) and locomotive engines". He established the workshops at Shildon, and when the railway opened in September he became in effect the first locomotive superintendent of a railway company. From experience of operating Robert Stephenson \& Co.'s locomotives he was able to make many detail improvements, notably spring safety valves. In 1827 he designed and built the locomotive Royal George, with six wheels coupled and inverted vertical cylinders driving the rear pair. From the pistons, drive was direct by way of piston rods and connecting rods to crankpins on the wheels, the first instance of the use of this layout on a locomotive. Royal George was the most powerful and satisfactory locomotive on the S \& DR to date and was the forerunner of Hackworth's type of heavy-goods locomotive, which was built until the mid-1840s.
    For the Rainhill Trials in 1829 Hackworth built and entered the locomotive Sans Pareil, which was subsequently used on the Bol ton \& Leigh Railway and is now in the Science Museum, London. A working replica was built for the 150th anniversary of the Liverpool \& Manchester Railway in 1980. In 1833 a further agreement with the S \& DR enabled Hackworth, while remaining in charge of their locomotives, to set up a locomotive and engineering works on his own account. Its products eventually included locomotives for the London, Brighton \& South Coast and York, Newcastle \& Berwick Railways, as well as some of the earliest locomotives exported to Russia and Canada. Hackworth's son, John Wesley Hackworth, was also an engineer and invented the radial valve gear for steam engines that bears his name.
    [br]
    Further Reading
    R.Young, 1975, Timothy Hackworth and the Locomotive, Shildon: Shildon "Stockton \& Darlington Railway" Silver Jubilee Committee; orig. pub. 1923, London (tends to emphasize Hackworth's achievements at the expense of other contemporary engineers).
    L.T.C.Rolt, 1960, George and Robert Stephenson, London: Longmans (describes much of Hackworth's work and is more objective).
    E.L.Ahrons, 1927, The British Steam Railway Locomotive 1825–1925, London: The Locomotive Publishing Co.
    PJGR

    Biographical history of technology > Hackworth, Timothy

  • 25 Seguin, Marc

    [br]
    b. 20 April 1786 Annonay, Ardèche, France
    d. 24 February 1875 Annonay, Ardèche, France
    [br]
    French engineer, inventor of multi-tubular firetube boiler.
    [br]
    Seguin trained under Joseph Montgolfier, one of the inventors of the hot-air balloon, and became a pioneer of suspension bridges. In 1825 he was involved in an attempt to introduce steam navigation to the River Rhône using a tug fitted with a winding drum to wind itself upstream along a cable attached to a point on the bank, with a separate boat to transfer the cable from point to point. The attempt proved unsuccessful and was short-lived, but in 1825 Seguin had decided also to seek a government concession for a railway from Saint-Etienne to Lyons as a feeder of traffic to the river. He inspected the Stockton \& Darlington Railway and met George Stephenson; the concession was granted in 1826 to Seguin Frères \& Ed. Biot and two steam locomotives were built to their order by Robert Stephenson \& Co. The locomotives were shipped to France in the spring of 1828 for evaluation prior to construction of others there; each had two vertical cylinders, one each side between front and rear wheels, and a boiler with a single large-diameter furnace tube, with a watertube grate. Meanwhile, in 1827 Seguin, who was still attempting to produce a steamboat powerful enough to navigate the fast-flowing Rhône, had conceived the idea of increasing the heating surface of a boiler by causing the hot gases from combustion to pass through a series of tubes immersed in the water. He was soon considering application of this type of boiler to a locomotive. He applied for a patent for a multi-tubular boiler on 12 December 1827 and carried out numerous experiments with various means of producing a forced draught to overcome the perceived obstruction caused by the small tubes. By May 1829 the steam-navigation venture had collapsed, but Seguin had a locomotive under construction in the workshops of the Lyons-Sain t- Etienne Railway: he retained the cylinder layout of its Stephenson locomotives, but incorporated a boiler of his own design. The fire was beneath the barrel, surrounded by a water-jacket: a single large flue ran towards the front of the boiler, whence hot gases returned via many small tubes through the boiler barrel to a chimney above the firedoor. Draught was provided by axle-driven fans on the tender.
    Seguin was not aware of the contemporary construction of Rocket, with a multi-tubular boiler, by Robert Stephenson; Rocket had its first trial run on 5 September 1829, but the precise date on which Seguin's locomotive first ran appears to be unknown, although by 20 October many experiments had been carried out upon it. Seguin's concept of a multi-tubular locomotive boiler therefore considerably antedated that of Henry Booth, and his first locomotive was completed about the same date as Rocket. It was from Rocket's boiler, however, rather than from that of Seguin's locomotive, that the conventional locomotive boiler was descended.
    [br]
    Bibliography
    February 1828, French patent no. 3,744 (multi-tubular boiler).
    1839, De l'Influence des chemins de fer et de l'art de les tracer et de les construire, Paris.
    Further Reading
    F.Achard and L.Seguin, 1928, "Marc Seguin and the invention of the tubular boiler", Transactions of the Newcomen Society 7 (traces the chronology of Seguin's boilers).
    ——1928, "British railways of 1825 as seen by Marc Seguin", Transactions of the Newcomen Society 7.
    J.B.Snell, 1964, Early Railways, London: Weidenfeld \& Nicolson.
    J.-M.Combe and B.Escudié, 1991, Vapeurs sur le Rhône, Lyons: Presses Universitaires de Lyon.
    PJGR

    Biographical history of technology > Seguin, Marc

  • 26 Clark, Edwin

    SUBJECT AREA: Civil engineering
    [br]
    b. 7 January 1814 Marlow, Buckinghamshire, England
    d. 22 October 1894 Marlow, Buckinghamshire, England
    [br]
    English civil engineer.
    [br]
    After a basic education in mathematics, latin, French and geometry, Clark was articled to a solicitor, but he left after two years because he did not like the work. He had no permanent training otherwise, and for four years he led an idle life, becoming self-taught in the subjects that interested him. He eventually became a teacher at his old school before entering Cambridge, although he returned home after two years without taking a degree. He then toured the European continent extensively, supporting himself as best he could. He returned to England in 1839 and obtained further teaching posts. With the railway boom in progress he decided to become a surveyor and did some work on a proposed line between Oxford and Brighton.
    After being promised an interview with Robert Stephenson, he managed to see him in March 1846. Stephenson took a liking to Clark and asked him to investigate the strains on the Britannia Bridge tubes under various given conditions. This work so gained Stephenson's full approval that, after being entrusted with experiments and designs, Clark was appointed Resident Engineer for the Britannia Bridge across the Menai Straits. He not only completed the bridge, which was opened on 19 October 1850, but also wrote the history of its construction. After the completion of the bridge—and again without any professional experience—he was appointed Engineer-in-Chief to the Electric and International Telegraph Company. He was consulted by Captain Mark Huish of the London \& North Western Railway on a telegraphic system for the railway, and in 1853 he introduced the Block Telegraph System.
    Clark was engaged on the Crystal Palace and was responsible for many railway bridges in Britain and abroad. He was Engineer and part constructor of the harbour at Callao, Peru, and also of harbour works at Colón, Panama. On canal works he was contractor for the marine canal, the Morskoy Canal, in 1875 between Kronstadt and St Petersburg. His great work on canals, however, was the concept with Edward Leader Williams of the hydraulically operated barge lift at Anderton, Cheshire, linking the Weaver Navigation to the Trent \& Mersey Canal, whose water levels have a vertical separation of 50 ft (15 m). This was opened on 26 July 1875. The structure so impressed the French engineers who were faced with a bottleneck of five locks on the Neuffossée Canal south of Saint-Omer that they commissioned Clark to design a lift there. This was completed in 1878 and survives as a historic monument. The design was also adopted for four lifts on the Canal du Centre at La Louvière in Belgium, but these were not completed until after Clark's death.
    JHB

    Biographical history of technology > Clark, Edwin

  • 27 Land transport

    [br]
    Austin, Herbert
    Hamilton, Harold Lee
    Issigonis, Sir Alexander Arnold Constantine
    Ma Jun
    Morris, William Richard
    Sauerbrun, Charles de

    Biographical history of technology > Land transport

  • 28 Railways and locomotives

    [br]
    Hamilton, Harold Lee

    Biographical history of technology > Railways and locomotives

  • 29 нивелирная рейка Стивенсон

    Cartography: Stephenson levelling rod (с делениями до 1/100 фута), Stephenson rod (с делениями до 1/100 фута)

    Универсальный русско-английский словарь > нивелирная рейка Стивенсон

  • 30 Booth, Henry

    [br]
    b. 4 April 1789 Liverpool, England
    d. 28 March 1869 Liverpool, England
    [br]
    English railway administrator and inventor.
    [br]
    Booth followed his father as a Liverpool corn merchant but had great mechanical aptitude. In 1824 he joined the committee for the proposed Liverpool \& Manchester Railway (L \& MR) and after the company obtained its Act of Parliament in 1826 he was appointed Treasurer.
    In 1829 the L \& MR announced a prize competition, the Rainhill Trials, for an improved steam locomotive: Booth, realizing that the power of a locomotive depended largely upon its capacity to raise steam, had the idea that this could be maximized by passing burning gases from the fire through the boiler in many small tubes to increase the heating surface, rather than in one large one, as was then the practice. He was apparently unaware of work on this type of boiler even then being done by Marc Seguin, and the 1791 American patent by John Stevens. Booth discussed his idea with George Stephenson, and a boiler of this type was incorporated into the locomotive Rocket, which was built by Robert Stephenson and entered in the Trials by Booth and the two Stephensons in partnership. The boiler enabled Rocket to do all that was required in the trials, and far more: it became the prototype for all subsequent conventional locomotive boilers.
    After the L \& MR opened in 1830, Booth as Treasurer became in effect the general superintendent and was later General Manager. He invented screw couplings for use with sprung buffers. When the L \& MR was absorbed by the Grand Junction Railway in 1845 he became Secretary of the latter, and when, later the same year, that in turn amalgamated with the London \& Birmingham Railway (L \& BR) to form the London \& North Western Railway (L \& NWR), he became joint Secretary with Richard Creed from the L \& BR.
    Earlier, completion in 1838 of the railway from London to Liverpool had brought problems with regard to local times. Towns then kept their own time according to their longitude: Birmingham time, for instance, was 7¼ minutes later than London time. This caused difficulties in railway operation, so Booth prepared a petition to Parliament on behalf of the L \& MR that London time should be used throughout the country, and in 1847 the L \& NWR, with other principal railways and the Post Office, adopted Greenwich time. It was only in 1880, however, that the arrangement was made law by Act of Parliament.
    [br]
    Bibliography
    1835. British patent no. 6,814 (grease lubricants for axleboxes). 1836. British patent no. 6,989 (screw couplings).
    Booth also wrote several pamphlets on railways, uniformity of time, and political matters.
    Further Reading
    H.Booth, 1980, Henry Booth, Ilfracombe: Arthur H.Stockwell (a good full-length biography, the author being the great-great-nephew of his subject; with bibliography).
    R.E.Carlson, 1969, The Liverpool \& Manchester Railway Project 1821–1831, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Booth, Henry

  • 31 Bury, Edward

    [br]
    b. 22 October 1794 Salford, Lancashire, England
    d. 25 November 1858 Scarborough, Yorkshire, England
    [br]
    English steam locomotive designer and builder.
    [br]
    Bury was the earliest engineer to build locomotives distinctively different from those developed by Robert Stephenson yet successful in mainline passenger service. A Liverpool sawmill owner, he set up as a locomotive manufacturer while the Liverpool \& Manchester Railway was under construction and, after experiments, completed the four-wheeled locomotive Liverpool in 1831. It included features that were to be typical of his designs: a firebox in the form of a vertical cylinder with a dome-shaped top and the front flattened to receive the tubes, and inside frames built up from wrought-iron bars. In 1838 Bury was appointed to supply and maintain the locomotives for the London \& Birmingham Railway (L \& BR), then under construction by Robert Stephenson, on the grounds that the latter should not also provide its locomotives. For several years the L \& BR used Bury locomotives exclusively, and they were also used on several other early main lines. Following export to the USA, their bar frames became an enduring feature of locomotive design in that country. Bury claimed, with justification, that his locomotives were economical in maintenance and fuel: the shape of the firebox promoted rapid circulation of water. His locomotives were well built, but some of their features precluded enlargement of the design to produce more powerful locomotives and within a few years they were outclassed.
    [br]
    Principal Honours and Distinctions
    FRS 1844.
    Bibliography
    1840, "On the locomotive engines of the London and Birmingham Railway", Transactions of the Institution of Civil Engineers 3 (4) (provides details of his locomotives and the thinking behind them).
    Further Reading
    C.F.Dendy Marshall, 1953, A History of'Railway Locomotives Down to the End of the Year 1831, London: The Locomotive Publishing Co. (describes Bury's early work).
    P.J.G.Ransom, 1990, The Victorian Railway and How It Evolved, London: Heinemann, pp. 167–8 and 174–6.
    PJGR

    Biographical history of technology > Bury, Edward

  • 32 Fox, Sir Charles

    [br]
    b. 11 March 1810 Derby, England
    d. 14 June 1874 Blackheath, London, England
    [br]
    English railway engineer, builder of Crystal Palace, London.
    [br]
    Fox was a pupil of John Ericsson, helped to build the locomotive Novelty, and drove it at the Rainhill Trials in 1829. He became a driver on the Liverpool \& Manchester Railway and then a pupil of Robert Stephenson, who appointed him an assistant engineer for construction of the southern part of the London \& Birmingham Railway, opened in 1837. He was probably responsible for the design of the early bow-string girder bridge which carried the railway over the Regent's Canal. He also invented turnouts with switch blades, i.e. "points". With Robert Stephenson he designed the light iron train sheds at Euston Station, a type of roof that was subsequently much used elsewhere. He then became a partner in Fox, Henderson \& Co., railway contractors and manufacturers of railway equipment and bridges. The firm built the Crystal Palace in London for the Great Exhibition of 1851: Fox did much of the detail design work personally and was subsequently knighted. It also built many station roofs, including that at Paddington. From 1857 Fox was in practice in London as a consulting engineer in partnership with his sons, Charles Douglas Fox and Francis Fox. Sir Charles Fox became an advocate of light and narrow-gauge railways, although he was opposed to break-of-gauge unless it was unavoidable. He was joint Engineer for the Indian Tramway Company, building the first narrow-gauge (3 ft 6 in. or 107 cm) railway in India, opened in 1865, and his firm was Consulting Engineer for the first railways in Queensland, Australia, built to the same gauge at the same period on recommendation of Government Engineer A.C.Fitzgibbon.
    [br]
    Principal Honours and Distinctions
    Knighted 1851.
    Further Reading
    F.Fox, 1904, River, Road, and Rail, John Murray, Ch. 1 (personal reminiscences by his son).
    L.T.C.Rolt, 1970, Victorian Engineering, London: Allen Lane.
    PJGR

    Biographical history of technology > Fox, Sir Charles

  • 33 Gooch, Sir Daniel

    [br]
    b. 24 August 1816 Bedlington, Northumberland, England
    d. 15 October 1889 Clewer Park, Berkshire, England
    [br]
    English engineer, first locomotive superintendent of the Great Western Railway and pioneer of transatlantic electric telegraphy.
    [br]
    Gooch gained experience as a pupil with several successive engineering firms, including Vulcan Foundry and Robert Stephenson \& Co. In 1837 he was engaged by I.K. Brunel, who was then building the Great Western Railway (GWR) to the broad gauge of 7 ft 1/4 in. (2.14 m), to take charge of the railway's locomotive department. He was just 21 years old. The initial locomotive stock comprised several locomotives built to such extreme specifications laid down by Brunel that they were virtually unworkable, and two 2–2–2 locomotives, North Star and Morning Star, which had been built by Robert Stephenson \& Co. but left on the builder's hands. These latter were reliable and were perpetuated. An enlarged version, the "Fire Fly" class, was designed by Gooch and built in quantity: Gooch was an early proponent of standardization. His highly successful 4–2–2 Iron Duke of 1847 became the prototype of GWR express locomotives for the next forty-five years, until the railway's last broad-gauge sections were narrowed. Meanwhile Gooch had been largely responsible for establishing Swindon Works, opened in 1843. In 1862 he designed 2–4–0 condensing tank locomotives to work the first urban underground railway, the Metropolitan Railway in London. Gooch retired in 1864 but was then instrumental in arranging for Brunel's immense steamship Great Eastern to be used to lay the first transatlantic electric telegraph cable: he was on board when the cable was successfully laid in 1866. He had been elected Member of Parliament for Cricklade (which constituency included Swindon) in 1865, and the same year he had accepted an invitation to become Chairman of the Great Western Railway Company, which was in financial difficulties; he rescued it from near bankruptcy and remained Chairman until shortly before his death. The greatest engineering work undertaken during his chairmanship was the boring of the Severn Tunnel.
    [br]
    Principal Honours and Distinctions
    Knighted 1866 (on completion of transatlantic telegraph).
    Bibliography
    1972, Sir Daniel Gooch, Memoirs and Diary, ed. R.B.Wilson, with introd. and notes, Newton Abbot: David \& Charles.
    Further Reading
    A.Platt, 1987, The Life and Times of Daniel Gooch, Gloucester: Alan Sutton (puts Gooch's career into context).
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Ian Allan (contains a good short biography).
    J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles, pp. 112–5.
    PJGR

    Biographical history of technology > Gooch, Sir Daniel

  • 34 Pole, William

    SUBJECT AREA: Civil engineering
    [br]
    b. 22 April 1814 Birmingham, England
    d. 1900
    [br]
    English engineer and educator.
    [br]
    Although primarily an engineer, William Pole was a man of many and varied talents, being amongst other things an accomplished musician (his doctorate was in music) and an authority on whist. He served an apprenticeship at the Horsley Company in Birmingham, and moved to London in 1836, when he was employed first as Manager to a gasworks. In 1844 he published a study of the Cornish pumping engine, and he also accepted an appointment as the first Professor of Engineering in the Elphinstone College at Bombay. He spent three pioneering years in this post, and undertook the survey work for the Great Indian Peninsular Railway. Before returning to London in 1848 he married Matilda Gauntlett, the daughter of a clergyman.
    Back in Britain, Pole was employed by James Simpson, J.M.Rendel and Robert Stephenson, the latter engaging him to assist with calculations on the Britannia Bridge. In 1858 he set up his own practice. He kept a very small office, choosing not to delegate work to subordinates but taking on a bewildering variety of commissions for government and private companies. In the first category, he made calculations for government officials of the main drainage of the metropolis and for its water supply. He lectured on engineering to the Royal Engineers' institution at Chatham, and served on a Select Committee to enquire into the armour of warships and fortifications. He became a member of the Royal Commission on the Railways of Great Britain and Ireland (the Devonshire Commission, 1867) and reported to the War Office on the MartiniHenry rifle. He also advised the India Office about examinations for engineering students. The drafting and writing up of reports was frequently left to Pole, who also made distinguished contributions to the official Lives of Robert Stephenson (1864), I.K. Brunel (1870) and William Fairbairn (1877). For other bodies, he acted as Consulting Engineer in England to the Japanese government, and he assisted W.H.Barlow in calculations for a bridge at Queensferry on the Firth of Forth (1873). He was consulted about many urban water supplies.
    Pole joined the Institution of Civil Engineers as an Associate in 1840 and became a Member in 1856. He became a Member of Council, Honorary Secretary (succeeding Manby in 1885–96) and Honorary Member of the Institution. He was interested in astronomy and photography, he was fluent in several languages, was an expert on music, and became the world authority on whist. In 1859 he was appointed Professor of Civil Engineering at University College London, serving in this office until 1867. Pole, whose dates coincided closely with those of Queen Victoria, was one of the great Victorian engineers: he was a polymath, able to apply his great abilities to an amazing range of different tasks. In engineering history, he deserves to be remembered as an outstanding communicator and popularizer.
    [br]
    Bibliography
    1843, "Comparative loss by friction in beam and direct-action engines", Proceedings of the Institution of Civil Engineers 2:69.
    Further Reading
    Dictionary of National Biography, London.
    Proceedings of the Institution of Civil Engineers 143:301–9.
    AB

    Biographical history of technology > Pole, William

  • 35 Rastrick, John Urpeth

    [br]
    b. 26 January 1780 Morpeth, England
    d. 1 November 1856 Chertsey, England
    [br]
    English engineer whose career spanned the formative years of steam railways, from constructing some of the earliest locomotives to building great trunk lines.
    [br]
    John Urpeth Rastrick, son of an engineer, was initially articled to his father and then moved to Ketley Ironworks, Shropshire, c. 1801. In 1808 he entered into a partnership with John Hazledine at Bridgnorth, Shropshire: Hazledine and Rastrick built many steam engines to the designs of Richard Trevithick, including the demonstration locomotive Catch-Me-Who-Can. The firm also built iron bridges, notably the bridge over the River Wye at Chepstow in 1815–16.
    Between 1822 and 1826 the Stratford \& Moreton Railway was built under Rastrick's direction. Malleable iron rails were laid, in one of the first instances of their use. They were supplied by James Foster of Stourbridge, with whom Rastrick went into partnership after the death of Hazledine. In 1825 Rastrick was one of a team of engineers sent by the committee of the proposed Liverpool \& Manchester Railway (L \& MR) to carry out trials of locomotives built by George Stephenson on the Killingworth Waggonway. Early in 1829 the directors of the L \& MR, which was by then under construction, sent Rastrick and James Walker to inspect railways in North East England and report on the relative merits of steam locomotives and fixed engines with cable haulage. They reported, rather hesitantly, in favour of the latter, particularly the reciprocal system of Benjamin Thompson. In consequence the Rainhill Trials, at which Rastrick was one of the judges, were held that October. In 1829 Rastrick constructed the Shutt End colliery railway in Worcestershire, for which Foster and Rastrick built the locomotive Agenoria; this survives in the National Railway Museum. Three similar locomotives were built to the order of Horatio Allen for export to the USA.
    From then until he retired in 1847 Rastrick found ample employment surveying railways, appearing as a witness before Parliamentary committees, and supervising construction. Principally, he surveyed the southern part of the Grand Junction Railway, which was built for the most part by Joseph Locke, and the line from Manchester to Crewe which was eventually built as the Manchester \& Birmingham Railway. The London \& Brighton Railway (Croydon to Brighton) was his great achievement: built under Rastrick's supervision between 1836 and 1840, it included three long tunnels and the magnificent Ouse Viaduct. In 1845 he was Engineer to the Gravesend \& Rochester Railway, the track of which was laid through the Thames \& Medway Canal's Strood Tunnel, partly on the towpath and partly on a continuous staging over the water.
    [br]
    Principal Honours and Distinctions
    FRS 1837.
    Bibliography
    1829, with Walker, Report…on the Comparative Merits of Locomotive and Fixed Engines, Liverpool.
    Further Reading
    C.F.Dendy Marshall, 1953, A History of Railway Locomotives Down to the End of the Year 1831, The Locomotive Publishing Co.
    R.E.Carlson, 1969, The Liverpool \& Manchester Railway Project 1821–1831, Newton Abbot: David \& Charles.
    C.Hadfield and J.Norris, 1962, Waterways to Stratford, Newton Abbot: David \& Charles (covers Stratford and Moreton Railway).
    PJGR

    Biographical history of technology > Rastrick, John Urpeth

  • 36 Stevens, Robert Livingston

    SUBJECT AREA: Ports and shipping
    [br]
    b. 18 October 1787 Hoboken, New Jersey, USA
    d. 20 April 1856 Hoboken, New Jersey, USA
    [br]
    American engineer, pioneer of steamboats and railways.
    [br]
    R.L.Stevens was the son of John Stevens and was given the technical education his father lacked. He assisted his father with the Little Juliana and the Phoenix, managed the commercial operation of the Phoenix on the Delaware River, and subsequently built many other steamboats.
    In 1830 he and his brother Edwin A.Stevens obtained a charter from the New Jersey Legislature for the Camden \& Amboy Railroad \& Transportation Company, and he visited Britain to obtain rails and a locomotive. Railway track in the USA then normally comprised longitudinal timber rails with running surfaces of iron straps, but Stevens designed rails of flat-bottom section, which were to become standard, and had the first batch rolled in Wales. He also designed hookheaded spikes for them, and "iron tongues", which became fishplates. From Robert Stephenson \& Co. (see Robert Stephenson) he obtained the locomotive John Bull, which was similar to the Liverpool \& Manchester Railway's Samson. The Camden \& Amboy Railroad was opened in 1831, but John Bull, a 0–4–0, proved over sensitive to imperfections in the track; Stevens and his mechanic, Isaac Dripps, added a two-wheeled non-swivelling "pilot" at the front to guide it round curves. The locomotive survives at the Smithsonian Institution, Washington, DC.
    [br]
    Further Reading
    H.P.Spratt, 1958, The Birth of the Steamboat, Charles Griffin.
    J.H.White Jr, 1979, A History of the American Locomotive—Its Development: 1830– 1880, New York: Dover Publications Inc.
    J.F.Stover, 1961, American Railroads, Chicago: University of Chicago Press.
    PJGR

    Biographical history of technology > Stevens, Robert Livingston

  • 37 Vignoles, Charles Blacker

    [br]
    b. 31 May 1793 Woodbrook, Co. Wexford, Ireland
    d. 17 November 1875 Hythe, Hampshire, England
    [br]
    English surveyor and civil engineer, pioneer of railways.
    [br]
    Vignoles, who was of Huguenot descent, was orphaned in infancy and brought up in the family of his grandfather, Dr Charles Hutton FRS, Professor of Mathematics at the Royal Military Academy, Woolwich. After service in the Army he travelled to America, arriving in South Carolina in 1817. He was appointed Assistant to the state's Civil Engineer and surveyed much of South Carolina and subsequently Florida. After his return to England in 1823 he established himself as a civil engineer in London, and obtained work from the brothers George and John Rennie.
    In 1825 the promoters of the Liverpool \& Manchester Railway (L \& MR) lost their application for an Act of Parliament, discharged their engineer George Stephenson and appointed the Rennie brothers in his place. They in turn employed Vignoles to resurvey the railway, taking a route that would minimize objections. With Vignoles's route, the company obtained its Act in 1826 and appointed Vignoles to supervise the start of construction. After Stephenson was reappointed Chief Engineer, however, he and Vignoles proved incompatible, with the result that Vignoles left the L \& MR early in 1827.
    Nevertheless, Vignoles did not sever all connection with the L \& MR. He supported John Braithwaite and John Ericsson in the construction of the locomotive Novelty and was present when it competed in the Rainhill Trials in 1829. He attended the opening of the L \& MR in 1830 and was appointed Engineer to two railways which connected with it, the St Helens \& Runcorn Gap and the Wigan Branch (later extended to Preston as the North Union); he supervised the construction of these.
    After the death of the Engineer to the Dublin \& Kingstown Railway, Vignoles supervised construction: the railway, the first in Ireland, was opened in 1834. He was subsequently employed in surveying and constructing many railways in the British Isles and on the European continent; these included the Eastern Counties, the Midland Counties, the Sheffield, Ashton-under-Lyme \& Manchester (which proved for him a financial disaster from which he took many years to recover), and the Waterford \& Limerick. He probably discussed rail of flat-bottom section with R.L. Stevens during the winter of 1830–1 and brought it into use in the UK for the first time in 1836 on the London \& Croydon Railway: subsequently rail of this section became known as "Vignoles rail". He considered that a broader gauge than 4 ft 8½ in. (1.44 m) was desirable for railways, although most of those he built were to this gauge so that they might connect with others. He supported the atmospheric system of propulsion during the 1840s and was instrumental in its early installation on the Dublin \& Kingstown Railway's Dalkey extension. Between 1847 and 1853 he designed and built the noted multi-span suspension bridge at Kiev, Russia, over the River Dnieper, which is more than half a mile (800 m) wide at that point.
    Between 1857 and 1863 he surveyed and then supervised the construction of the 155- mile (250 km) Tudela \& Bilbao Railway, which crosses the Cantabrian Pyrenees at an altitude of 2,163 ft (659 m) above sea level. Vignoles outlived his most famous contemporaries to become the grand old man of his profession.
    [br]
    Principal Honours and Distinctions
    Fellow of the Royal Astronomical Society 1829. FRS 1855. President, Institution of Civil Engineers 1869–70.
    Bibliography
    1830, jointly with John Ericsson, British patent no. 5,995 (a device to increase the capability of steam locomotives on grades, in which rollers gripped a third rail).
    1823, Observations upon the Floridas, New York: Bliss \& White.
    1870, Address on His Election as President of the Institution of Civil Engineers.
    Further Reading
    K.H.Vignoles, 1982, Charles Blacker Vignoles: Romantic Engineer, Cambridge: Cambridge University Press (good modern biography by his great-grandson).
    PJGR

    Biographical history of technology > Vignoles, Charles Blacker

  • 38 Стефенсон

    Aviation medicine: Stephenson

    Универсальный русско-английский словарь > Стефенсон

  • 39 Стефенсон, Джордж

    George Stephenson

    Русско-словенский словарь > Стефенсон, Джордж

  • 40 образец

    Образец - sample (материала; проба); specimen, coupon (для испытаний); model (для подражания); standard (уровень конструкции и изготовления); exemplar (как пример)
     Measurements were also made to determine the temperature distribution in the elastomer samples during the tests.
     The specimens tested were two cylindrical compression specimens and a shear specimen.
     These readings were taken at eight points about the circumference of each coupon.
     A good example is Stephenson's piston, shown in Fig., for it was used as a model for all the designs which were to follow.
     Welding equipment was seen to be of a good standard but in need of overhaul.
     The latest Mazda 323 is an exemplar of solid execution. (... образец солидного исполнения.)

    Русско-английский научно-технический словарь переводчика > образец

См. также в других словарях:

  • Stephenson — ist der Familienname folgender Personen: Annabelle Stephenson (* 1988), britische Schauspielerin Sir Arthur George Stephenson (1890–1967), australischer Architekt Benjamin Stephenson († 1822), US amerikanischer Politiker Bob Stephenson (* 1967),… …   Deutsch Wikipedia

  • Stephenson 1 — es un cúmulo abierto de la constelación de Lyra situado inmediatamente al lado de la estrella variable rojiza Delta2 Lyrae; su posición es: Ascensión Recta 18h 53m 30s y Declinación +36º 55’ 00” (equinoccio 2000). Fue descubierto en 1959 por el… …   Wikipedia Español

  • Stephenson — hace referencia a: Stephenson Prieto, lider y fundador del Colectivo TeleTriunfador. George Stephenson, inventor británico de la locomotora. Neal Stephenson, escritor de ciencia ficción estadounidense. Esta página de desambiguación cataloga… …   Wikipedia Español

  • Stephenson — Stephenson, George * * * (as used in expressions) Baden Powell (de Gilwell), Robert Stephenson Smyth, 1 barón Stephenson, George Stephenson, Robert …   Enciclopedia Universal

  • Stephenson — Stephenson, MI U.S. city in Michigan Population (2000): 875 Housing Units (2000): 421 Land area (2000): 1.093570 sq. miles (2.832333 sq. km) Water area (2000): 0.000000 sq. miles (0.000000 sq. km) Total area (2000): 1.093570 sq. miles (2.832333… …   StarDict's U.S. Gazetteer Places

  • Stephenson, MI — U.S. city in Michigan Population (2000): 875 Housing Units (2000): 421 Land area (2000): 1.093570 sq. miles (2.832333 sq. km) Water area (2000): 0.000000 sq. miles (0.000000 sq. km) Total area (2000): 1.093570 sq. miles (2.832333 sq. km) FIPS… …   StarDict's U.S. Gazetteer Places

  • Stephenson [2] — Stephenson, Grafschaft im Staate Illinois (Nordamerika), an den Staat Wisconsin grenzend,[778] 25 QM.; von dem Pekatonika River, den Yellow u. Richland Creeks durchflossen; höchst fruchtbar; Producte: Mais, Hafer, Rindvieh, Schweine, Blei; die… …   Pierer's Universal-Lexikon

  • Stephenson [1] — Stephenson (spr. Stihf ns n), 1) George, einer der Hauptbegründer des jetzigen Eisenbahnsystems, geb. 9. Juni 1781 in dem Kohlenweiler Wylam bei Newcastle in der Grafschaft Northumberland, der Sohn eines Dampfmaschinenheizers. Er arbeitete… …   Pierer's Universal-Lexikon

  • Stephenson — (spr. ßtīw nßön), 1) George, der Hauptbegründer des Eisenbahnwesens, geb. 8. Juni 1781 in Wylam bei Newcastle als Sohn eines Kohlenarbeiters, gest. 12. Aug. 1848 in Tapton House bei Chesterfield, arbeitete sich von einem gewöhnlichen Maschinisten …   Meyers Großes Konversations-Lexikon

  • Stephenson — (spr. stihwĕns n) George, Hauptbegründer des Eisenbahnwesens, geb. 8. Juni 1781 zu Wylam (Northumberland), baute 1814 als Direktor der Ravensworthschen Kohlenwerke bei Darlington für diese seine erste Lokomotive, dann, seit 1824 Inhaber einer… …   Kleines Konversations-Lexikon

  • Stephenson — (Stihfus n), George, geb. 1781 bei Newcastle, Sohn armer Eltern, arbeitete sich vom gewöhnlichen Maschinisten zum Director der großen Kohlenwerke des Lord Ravensworth empor, baute 1812 auf der dortigen zum Kohlentransport bestimmten Schienenbahn… …   Herders Conversations-Lexikon

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»