Перевод: со всех языков на все языки

со всех языков на все языки

smelting+practice

  • 21 технология плавки

    melting practice, smelting practice, melting process

    Русско-английский политехнический словарь > технология плавки

  • 22 доменный процесс

    Универсальный русско-английский словарь > доменный процесс

  • 23 ISP

    Imperial Smelting furnaceпечь фирмы «Империал смелтинг корпорейшн»
    Intermediate slop practiceкислородно-конвертерный процесс производства стали с обычным промежуточным взятием пробы стали и измерением температуры плавки

    Англо-русский словарь промышленной и научной лексики > ISP

  • 24 Champion, Nehemiah

    SUBJECT AREA: Metallurgy
    [br]
    b. 1678 probably Bristol, England
    d. 9 September 1747 probably Bristol, England
    [br]
    English merchant and brass manufacturer of Bristol.
    [br]
    Several members of Champion's Quaker family were actively engaged as merchants in Bristol during the late seventeenth and the eighteenth centuries. Port records show Nehemiah in receipt of Cornish copper ore at Bristol's Crews Hole smelting works by 1706, in association with the newly formed brassworks of the city. He later became a leading partner, managing the company some time after Abraham Darby left the Bristol works to pursue his interest at Coalbrookdale. Champion, probably in company with his father, became the largest customer for Darby's Coalbrookdale products and also acted as Agent, at least briefly, for Thomas Newcomen.
    A patent in 1723 related to two separate innovations introduced by the brass company.
    The first improved the output of brass by granulating the copper constituent and increasing its surface area. A greater proportion of zinc vapour could permeate the granules compared with the previous practice, resulting in the technique being adopted generally in the cementation process used at the time. The latter part of the same patent introduced a new type of coal-fired furnace which facilitated annealing in bulk so replacing the individual processing of pieces. The principle of batch annealing was generally adopted, although the type of furnace was later improved. A further patent, in 1739, in the name of Nehemiah, concerned overshot water-wheels possibly intended for use in conjunction with the Newcomen atmospheric pumping engine employed for recycling water by his son William.
    Champion's two sons, John and William, and their two sons, both named John, were all concerned with production of non-ferrous metals and responsible for patented innovations. Nehemiah, shortly before his death, is believed to have partnered William at the Warmley works to exploit his son's new patent for producing metallic zinc.
    [br]
    Bibliography
    1723, British patent no. 454 (granulated copper technique and coal-fired furnace). 1739, British patent no. 567 (overshot water-wheels).
    Further Reading
    A.Raistrick, 1950, Quakers in Science and Industry, London: Bannisdale Press (for the Champion family generally).
    J.Day, 1973, Bristol Brass, a History of the Industry, Newton Abbot: David \& Charles (for the industrial activities of Nehemiah).
    JD

    Biographical history of technology > Champion, Nehemiah

  • 25 Roebuck, John

    SUBJECT AREA: Chemical technology
    [br]
    b. 1718 Sheffield, England
    d. 17 July 1794
    [br]
    English chemist and manufacturer, inventor of the lead-chamber process for sulphuric acid.
    [br]
    The son of a prosperous Sheffield manufacturer, Roebuck forsook the family business to pursue studies in medicine at Edinburgh University. There he met Dr Joseph Black (1727–99), celebrated Professor of Chemistry, who aroused in Roebuck a lasting interest in chemistry. Roebuck continued his studies at Leyden, where he took his medical degree in 1742. He set up in practice in Birmingham, but in his spare time he continued chemical experiments that might help local industries.
    Among his early achievements was his new method of refining gold and silver. Success led to the setting up of a large laboratory and a reputation as a chemical consultant. It was at this time that Roebuck devised an improved way of making sulphuric acid. This vital substance was then made by burning sulphur and nitre (potassium nitrate) over water in a glass globe. The scale of the process was limited by the fragility of the glass. Roebuck substituted "lead chambers", or vessels consisting of sheets of lead, a metal both cheap and resistant to acids, set in wooden frames. After the first plant was set up in 1746, productivity rose and the price of sulphuric acid fell sharply. Success encouraged Roebuck to establish a second, larger plant at Prestonpans, near Edinburgh. He preferred to rely on secrecy rather than patents to preserve his monopoly, but a departing employee took the secret with him and the process spread rapidly in England and on the European continent. It remained the standard process until it was superseded by the contact process towards the end of the nineteenth century. Roebuck next turned his attention to ironmaking and finally selected a site on the Carron river, near Falkirk in Scotland, where the raw materials and water power and transport lay close at hand. The Carron ironworks began producing iron in 1760 and became one of the great names in the history of ironmaking. Roebuck was an early proponent of the smelting of iron with coke, pioneered by Abraham Darby at Coalbrookdale. To supply the stronger blast required, Roebuck consulted John Smeaton, who c. 1760 installed the first blowing cylinders of any size.
    All had so far gone well for Roebuck, but he now leased coal-mines and salt-works from the Duke of Hamilton's lands at Borrowstonness in Linlithgow. The coal workings were plagued with flooding which the existing Newcomen engines were unable to overcome. Through his friendship with Joseph Black, patron of James Watt, Roebuck persuaded Watt to join him to apply his improved steam-engine to the flooded mine. He took over Black's loan to Watt of £1,200, helped him to obtain the first steam-engine patent of 1769 and took a two-thirds interest in the project. However, the new engine was not yet equal to the task and the debts mounted. To satisfy his creditors, Roebuck had to dispose of his capital in his various ventures. One creditor was Matthew Boulton, who accepted Roebuck's two-thirds share in Watt's steam-engine, rather than claim payment from his depleted estate, thus initiating a famous partnership. Roebuck was retained to manage Borrowstonness and allowed an annuity for his continued support until his death in 1794.
    [br]
    Further Reading
    Memoir of John Roebuck in J.Roy. Soc. Edin., vol. 4 (1798), pp. 65–87.
    S.Gregory, 1987, "John Roebuck, 18th century entrepreneur", Chem. Engr. 443:28–31.
    LRD

    Biographical history of technology > Roebuck, John

См. также в других словарях:

  • Zinc smelting — is the process of converting zinc concentrates (ores that contain zinc) into pure zinc. The most common zinc concentrate processed is zinc sulfide,Citation | title = Compilation of Air Pollutant Emission Factors | publisher = U.S. Environmental… …   Wikipedia

  • metallurgy — metallurgic, metallurgical, adj. metallurgically, adv. metallurgist /met l err jist/ or, esp. Brit., /meuh tal euhr jist/, n. /met l err jee/ or, esp. Brit., /meuh tal euhr jee/, n. 1. the technique or science of working or heating metals so as… …   Universalium

  • Europe, history of — Introduction       history of European peoples and cultures from prehistoric times to the present. Europe is a more ambiguous term than most geographic expressions. Its etymology is doubtful, as is the physical extent of the area it designates.… …   Universalium

  • hand tool — any tool or implement designed for manual operation. * * * Introduction  any of the implements used by craftsmen in manual operations, such as chopping, chiseling, sawing, filing, or forging. Complementary tools, often needed as auxiliaries to… …   Universalium

  • History of ferrous metallurgy — Iron (material) redirects here. For the chemical element Fe, see Iron. Bloomery smelting during the Middle Ages. The history of ferrous metallurgy began far back in prehistory. The earliest surviving iron artifacts, from the 5th millennium BC in… …   Wikipedia

  • India — /in dee euh/, n. 1. Hindi, Bharat. a republic in S Asia: a union comprising 25 states and 7 union territories; formerly a British colony; gained independence Aug. 15, 1947; became a republic within the Commonwealth of Nations Jan. 26, 1950.… …   Universalium

  • chromium processing — Introduction       preparation of the ore for use in various products.       Chromium (Cr) is a brilliant, hard, refractory metal that melts at 1,857° C (3,375° F) and boils at 2,672° C (4,842° F). In the pure state, it is resistant to ordinary… …   Universalium

  • tin processing — Introduction       preparation of the ore for use in various products.       Tin (Sn) is a relatively soft and ductile metal with a silvery white colour. It has a density of 7.29 grams per cubic centimetre, a low melting point of 231.88° C… …   Universalium

  • mining — /muy ning/, n. 1. the act, process, or industry of extracting ores, coal, etc., from mines. 2. the laying of explosive mines. [1250 1300; ME: undermining (walls in an attack); see MINE2, ING1] * * * I Excavation of materials from the Earth s… …   Universalium

  • iron processing — Introduction       use of a smelting process to turn the ore into a form from which products can be fashioned. Included in this article also is a discussion of the mining of iron and of its preparation for smelting.       Iron (Fe) is a… …   Universalium

  • Butte, Montana — Infobox Settlement official name = Butte, Montana nickname = Richest Hill on Earth map caption = Location of Butte in Montana subdivision type = County subdivision name = Silver Bow area footnotes = area magnitude = 1 E9 area total km2 = 1856.5… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»