Перевод: со всех языков на все языки

со всех языков на все языки

skills+set

  • 81 robot-d

    Англо-русский словарь по робототехнике > robot-d

  • 82 прививать

    несов. - привива́ть, сов. - приви́ть (дт. вн.)
    1) мед. inoculate (d with); vaccinate (d against)
    2) бот. engraft (d upon); inoculate (d with)
    3) (воспитывать - привычку, свойство) inculcate (d in), impart (d to); cultivate (d in)

    привива́ть практи́ческие на́выки (дт.)impart practical skills (to)

    привива́ть де́тям любо́вь к труду́ — cultivate / implant / foster love for / of work in children

    привива́ть но́вую мо́ду (на вн.) — set a new fashion (for, in)

    Новый большой русско-английский словарь > прививать

  • 83 прикладывать

    несов. - прикла́дывать, сов. - приложи́ть; (вн.)
    1) ( приближать вплотную) put (d), apply (d)

    приложи́ть часы́ к у́ху — put / hold a watch to one's ear

    прикла́дывать ру́ку к козырьку́ — put / hold one's hand to the peak of one's cap, salute

    2) ( присоединять) add (d); (к письму, заявлению) enclose (d), join (d)
    3) ( применять) apply (d); use (d)

    прикла́дывать уси́лие — make / apply an effort

    прикла́дывать зна́ния [на́выки] — use / apply one's knowledge [skills]

    4) разг. ( ударять) smack (d), smite (d), whack (d)
    ••

    прикла́дывать печа́ть (к) — set / affix / attach a seal (to)

    приложи́ть ру́ку (к) — 1) ( подписаться) sign [saɪn] (d), fix one's signature (to) 2) ( принять участие) bear / take a hand (in); put one's hand (to)

    Новый большой русско-английский словарь > прикладывать

  • 84 групповое обсуждение

    В целях оценивания преподаватели часто предпочитают проводить групповые обсуждения, обычно в конце программ обучения. Преимущество таких обсуждений заключается в формировании широкого спектра ответов, отдельная значимость которых с трудом поддаётся оценке. — For evaluation purposes, teachers often prefer to hold group discussions, usually at the end of learning programs. An advantage of these discussions is that they generate a wide set of answers the individual weight of which is difficult to ascertain.

    обсуждение за круглым столом (Метод обучения.) — panel discussion

    Группа специалистов высказывает аудитории своё мнение по какому-либо предмету. Далее обычно проводятся занятия в форме вопросов и ответов. — A group of experts shares their opinion on a subject with the audience. This is usually followed by a question-and-answer session.

    Предназначается для развития умений и навыков слушать и формулировать вопросы. — This is intended for developing listening and questioning skills.

    Russian-English Dictionary "Microeconomics" > групповое обсуждение

  • 85 aptitude test

    HR
    a measure of a person’s natural ability or potential to learn a skill or set of skills. Abilities that are typically measured by aptitude tests include abstract, verbal, and numerical reasoning, because these give a rounded view of a person’s general ability in relation to the workplace. Aptitude tests are a form of psychometric test and are administered by trained users.

    The ultimate business dictionary > aptitude test

  • 86 assembly line

    Ops
    a line of production in which a number of assembly operations are performed in a set sequence. The speed of movement of an assembly line has to be matched with the skills and abilities of the workforce and the complexity of the assembly process to be performed. The assembly line emerged from the ideas of scientific management and was popularized by a number of entrepreneurs, including Henry Ford in the car production industry.

    The ultimate business dictionary > assembly line

  • 87 freelance

    Gen Mgt
    working on the basis of being self-employed, and possibly working for several employers at the same time, perhaps on a temporary basis. Freelance workers have been described by Charles Handy as ideally suited to portfolio working. Freelancers must be good at multitasking; they require the skills of a manager, bookkeeper, and a promoter. People thinking about becoming freelance should conduct plenty of research, not only into the industry in which they will be offering their services, but also into their own motivation for freelancing and their character-suitability. Before leaving their day job, they should put together a business plan plotting the first year’s goals and activity, perhaps considering the possibility of starting their freelance business on a part-time basis, so that they can initially rely on their current income.
         An important part of this first year will be in marketing and promoting the business. Freelancers should develop a target list of companies they wish to work for, learning all they can about each company before approaching them with marketing and proposals. Good customer service could be the thing to make or break their career. Being liked is as valuable as being prompt and doing a professional job, and will encourage future business. It is, though, inevitable that a set of clients will change as time goes by. To protect themselves against this, freelancers should try to plan six months ahead, and create diversity in their client base.

    The ultimate business dictionary > freelance

  • 88 in-box learning

    HR
    a training exercise in which the trainee plays the role of a manager dealing with the contents of an in box within a set period of time. In-box training is a form of simulation used to develop the decision making, prioritizing, and time management skills of managers and supervisors in the context of the normal working day.

    The ultimate business dictionary > in-box learning

  • 89 management

    Gen Mgt, HR
    the use of professional skills for identifying and achieving organizational objectives through the deployment of appropriate resources. Management involves identifying what needs to be done, and organizing and supporting others to perform the necessary tasks. A manager has complex and ever-changing responsibilities, the focus of which shifts to reflect the issues, trends, and preoccupations of the time. At the beginning of the 20th century, the emphasis was both on supporting the organization’s administration and managing productivity through increased efficiency. Organizations following the models of Henri Fayol and Max Weber built the functional divisions of personnel management, production management, marketing management, operations management, and financial management. At the beginning of the 21st century, those original drivers are still much in evidence, although the emphasis has moved to the key areas of competence such as people management. Although management is a profession in its own right, its skill-set often applies to professionals of other disciplines.

    The ultimate business dictionary > management

  • 90 Cousteau, Jacques-Yves

    SUBJECT AREA: Ports and shipping
    [br]
    b. 11 June 1910 Saint-André-de-Cubzac, France
    [br]
    French marine explorer who invented the aqualung.
    [br]
    He was the son of a country lawyer who became legal advisor and travelling companion to certain rich Americans. At an early age Cousteau acquired a love of travel, of the sea and of cinematography: he made his first film at the age of 13. After an interrupted education he nevertheless passed the difficult entrance examination to the Ecole Navale in Brest, but his naval career was cut short in 1936 by injuries received in a serious motor accident. For his long recuperation he was drafted to Toulon. There he met Philippe Tailliez, a fellow naval officer, and Frédéric Dumas, a champion spearfisher, with whom he formed a long association and began to develop his underwater swimming and photography. He apparently took little part in the Second World War, but under cover he applied his photographic skills to espionage, for which he was awarded the Légion d'honneur after the war.
    Cousteau sought greater freedom of movement underwater and, with Emile Gagnan, who worked in the laboratory of Air Liquide, he began experimenting to improve portable underwater breathing apparatus. As a result, in 1943 they invented the aqualung. Its simple design and robust construction provided a reliable and low-cost unit and revolutionized scientific and recreational diving. Gagnan shunned publicity, but Cousteau revelled in the new freedom to explore and photograph underwater and exploited the publicity potential to the full.
    The Undersea Research Group was set up by the French Navy in 1944 and, based in Toulon, it provided Cousteau with the Opportunity to develop underwater exploration and filming techniques and equipment. Its first aims were minesweeping and exploration, but in 1948 Cousteau pioneered an extension to marine archaeology. In 1950 he raised the funds to acquire a surplus US-built minesweeper, which he fitted out to further his quest for exploration and adventure and named Calypso. Cousteau also sought and achieved public acclaim with the publication in 1953 of The Silent World, an account of his submarine observations, illustrated by his own brilliant photography. The book was an immediate success and was translated into twenty-two languages. In 1955 Calypso sailed through the Red Sea and the western Indian Ocean, and the outcome was a film bearing the same title as the book: it won an Oscar and the Palme d'Or at the Cannes film festival. This was his favoured medium for the expression of his ideas and observations, and a stream of films on the same theme kept his name before the public.
    Cousteau's fame earned him appointment by Prince Rainier as Director of the Oceanographie Institute in Monaco in 1957, a post he held until 1988. With its museum and research centre, it offered Cousteau a useful base for his worldwide activities.
    In the 1980s Cousteau turned again to technological development. Like others before him, he was concerned to reduce ships' fuel consumption by harnessing wind power. True to form, he raised grants from various sources to fund research and enlisted technical help, namely Lucien Malavard, Professor of Aerodynamics at the Sorbonne. Malavard designed a 44 ft (13.4 m) high non-rotating cylinder, which was fitted onto a catamaran hull, christened Moulin à vent. It was intended that its maiden Atlantic crossing in 1983 should herald a new age in ship propulsion, with large royalties to Cousteau. Unfortunately the vessel was damaged in a storm and limped to the USA under diesel power. A more robust vessel, the Alcyone, was fitted with two "Turbosails" in 1985 and proved successful, with a 40 per cent reduction in fuel consumption. However, oil prices fell, removing the incentive to fit the new device; the lucrative sales did not materialize and Alcyone remained the only vessel with Turbosails, sharing with Calypso Cousteau's voyages of adventure and exploration. In September 1995, Cousteau was among the critics of the decision by the French President Jacques Chirac to resume testing of nuclear explosive devices under the Mururoa atoll in the South Pacific.
    [br]
    Principal Honours and Distinctions
    Légion d'honneur. Croix de Guerre with Palm. Officier du Mérite Maritime and numerous scientific and artistic awards listed in such directories as Who's Who.
    Bibliography
    Further Reading
    R.Munson, 1991, Cousteau, the Captain and His World, London: Robert Hale (published in the USA 1989).
    LRD

    Biographical history of technology > Cousteau, Jacques-Yves

  • 91 Deere, John

    [br]
    b. 7 February 1804 Rutland, Vermont, USA
    d. 17 May 1886 USA
    [br]
    American inventor and manufacturer of agricultural equipment.
    [br]
    John Deere was the son of a tailor, and first worked as a tanner before becoming apprenticed to a blacksmith. He married Demarius Lamb in 1827, but it appears that competition for blacksmiths was fierce, and the Deere family moved frequently. Two attempts to establish forges ended in fires, and changing partnerships and arguments over debts were to be a feature of Deere's working life. In 1836 John Deere moved west on his own, in an attempt to establish himself. He settled in Grand Detour, Illinois. In this new frontier a blacksmith's skills were sought after, and the blacksmith, with no ready supply of raw materials, had to be able to operate both a furnace for melting metal and a forge for working it. Deere was sufficiently successful for his family to be able to join him. A chance visit to a sawmill and the acquisition of a broken saw blade led to the making of a plough that was to establish John Deere in manufacturing. There were two distinctive features associated with the plough: the soil in the area failed to stick to the steel blade, with obvious benefits to the draught of the implement; and second, the shape of the working mouldboard was square. The reputation that developed with his first three ploughs established that Deere had made the transition from blacksmith to manufacturer.
    Over the next decade he had a number of partnerships and eventually set up a factory in Moline, Illinois, in 1848. The following year he sold 2,136 ploughs, and by early 1850 he was producing 350 ploughs per month. Deere was devastated by the loss of his eldest son in the year that the company moved to Moline. However, his second son, Charles, joined him in 1851 and was to be a major influence on the way in which the company developed over the next half-century. The company branched out into the production of cultivators, harrows, drills and wagons. John Deere himself played an active part in the company, but also played an increasing role in public life, with a particular interest in education. The company was incorporated in 1868.
    [br]
    Further Reading
    The following both provide biographical details of John Deere, but are mainly concerned with the company and the equipment it produced: W.G.Broehl, 1984, John Deere's Company: A History of Deere and Company and its
    Times, American Society of Agricultural Engineers.
    D.Macmillan, 1988, John Deere Tractors and Equipment, American Society of Agricultural Engineers.
    AP

    Biographical history of technology > Deere, John

  • 92 Dickson, William Kennedy Laurie

    [br]
    b. August 1860 Brittany, France
    d. 28 September 1935 Twickenham, England
    [br]
    Scottish inventor and photographer.
    [br]
    Dickson was born in France of English and Scottish parents. As a young man of almost 19 years, he wrote in 1879 to Thomas Edison in America, asking for a job. Edison replied that he was not taking on new staff at that time, but Dickson, with his mother and sisters, decided to emigrate anyway. In 1883 he contacted Edison again, and was given a job at the Goerk Street laboratory of the Edison Electric Works in New York. He soon assumed a position of responsibility as Superintendent, working on the development of electric light and power systems, and also carried out most of the photography Edison required. In 1888 he moved to the Edison West Orange laboratory, becoming Head of the ore-milling department. When Edison, inspired by Muybridge's sequence photographs of humans and animals in motion, decided to develop a motion picture apparatus, he gave the task to Dickson, whose considerable skills in mechanics, photography and electrical work made him the obvious choice. The first experiments, in 1888, were on a cylinder machine like the phonograph, in which the sequence pictures were to be taken in a spiral. This soon proved to be impractical, and work was delayed for a time while Dickson developed a new ore-milling machine. Little progress with the movie project was made until George Eastman's introduction in July 1889 of celluloid roll film, which was thin, tough, transparent and very flexible. Dickson returned to his experiments in the spring of 1891 and soon had working models of a film camera and viewer, the latter being demonstrated at the West Orange laboratory on 20 May 1891. By the early summer of 1892 the project had advanced sufficiently for commercial exploitation to begin. The Kinetograph camera used perforated 35 mm film (essentially the same as that still in use in the late twentieth century), and the kinetoscope, a peep-show viewer, took fifty feet of film running in an endless loop. Full-scale manufacture of the viewers started in 1893, and they were demonstrated on a number of occasions during that year. On 14 April 1894 the first kinetoscope parlour, with ten viewers, was opened to the public in New York. By the end of that year, the kinetoscope was seen by the public all over America and in Europe. Dickson had created the first commercially successful cinematograph system. Dickson left Edison's employment on 2 April 1895, and for a time worked with Woodville Latham on the development of his Panoptikon projector, a projection version of the kinetoscope. In December 1895 he joined with Herman Casier, Henry N.Marvin and Elias Koopman to form the American Mutoscope Company. Casier had designed the Mutoscope, an animated-picture viewer in which the sequences of pictures were printed on cards fixed radially to a drum and were flipped past the eye as the drum rotated. Dickson designed the Biograph wide-film camera to produce the picture sequences, and also a projector to show the films directly onto a screen. The large-format images gave pictures of high quality for the period; the Biograph went on public show in America in September 1896, and subsequently throughout the world, operating until around 1905. In May 1897 Dickson returned to England and set up as a producer of Biograph films, recording, among other subjects, Queen Victoria's Diamond Jubilee celebrations in 1897, Pope Leo XIII in 1898, and scenes of the Boer War in 1899 and 1900. Many of the Biograph subjects were printed as reels for the Mutoscope to produce the "what the butler saw" machines which were a feature of fairgrounds and seaside arcades until modern times. Dickson's contact with the Biograph Company, and with it his involvement in cinematography, ceased in 1911.
    [br]
    Further Reading
    Gordon Hendricks, 1961, The Edison Motion Picture Myth.
    —1966, The Kinetoscope.
    —1964, The Beginnings of the Biograph.
    BC

    Biographical history of technology > Dickson, William Kennedy Laurie

  • 93 Hero of Alexandria

    [br]
    fl. c.62 AD Alexandria
    [br]
    Alexandrian mathematician and mechanician.
    [br]
    Nothing is known of Hero, or Heron, apart from what can be gleaned from the books he wrote. Their scope and style suggest that he was a teacher at the museum or the university of Alexandria, writing textbooks for his students. The longest book, and the one with the greatest technological interest, is Pneumatics. Some of its material is derived from the works of the earlier writers Ctesibius of Alexandria and Philo of Byzantium, but many of the devices described were invented by Hero himself. The introduction recognizes that the air is a body and demonstrates the effects of air pressure, as when air must be allowed to escape from a closed vessel before water can enter. There follow clear descriptions of a variety of mechanical contrivances depending on the effects of either air pressure or heated gases. Most of the devices seem trivial, but such toys or gadgets were popular at the time and Hero is concerned to show how they work. Inventions with a more serious purpose are a fire pump and a water organ. One celebrated gadget is a sphere that is set spinning by jets of steam—an early illustration of the reaction principle on which modern jet propulsion depends.
    M echanics, known only in an Arabic version, is a textbook expounding the theory and practical skills required by the architect. It deals with a variety of questions of mechanics, such as the statics of a horizontal beam resting on vertical posts, the theory of the centre of gravity and equilibrium, largely derived from Archimedes, and the five ways of applying a relatively small force to exert a much larger one: the lever, winch, pulley, wedge and screw. Practical devices described include sledges for transporting heavy loads, cranes and a screw cutter.
    Hero's Dioptra describes instruments used in surveying, together with an odometer or device to indicate the distance travelled by a wheeled vehicle. Catoptrics, known only in Latin, deals with the principles of mirrors, plane and curved, enunciating that the angle of incidence is equal to that of reflection. Automata describes two forms of puppet theatre, operated by strings and drums driven by a falling lead weight attached to a rope wound round an axle. Hero's mathematical work lies in the tradition of practical mathematics stretching from the Babylonians through Islam to Renaissance Europe. It is seen most clearly in his Metrica, a treatise on mensuration.
    Of all his works, Pneumatics was the best known and most influential. It was one of the works of Greek science and technology assimilated by the Arabs, notably Banu Musa ibn Shakir, and was transmitted to medieval Western Europe.
    [br]
    Bibliography
    All Hero's works have been printed with a German translation in Heronis Alexandrini opera quae supersunt omnia, 1899–1914, 5 vols, Leipzig. The book on pneumatics has been published as The Pneumatics of Hero of Alexandria, 1851, trans. and ed. Bennet Wood-croft, London (facs. repr. 1971, introd. Marie Boas Hall, London and New York).
    Further Reading
    A.G.Drachmann, 1948, "Ktesibios, Philon and Heron: A Study in Ancient Pneumatics", Acta Hist. Sci. Nat. Med. 4, Copenhagen: Munksgaard.
    T.L.Heath, 1921, A History of Greek Mathematics, Oxford (still useful for his mathematical work).
    LRD

    Biographical history of technology > Hero of Alexandria

  • 94 Lithgow, James

    SUBJECT AREA: Ports and shipping
    [br]
    b. 27 January 1883 Port Glasgow, Renfrewshire, Scotland
    d. 23 February 1952 Langbank, Renfrewshire, Scotland
    [br]
    Scottish shipbuilder; creator of one of the twentieth century's leading industrial organizations.
    [br]
    Lithgow attended Glasgow Academy and then spent a year in Paris. In 1901 he commenced a shipyard apprenticeship with Russell \& Co., where his father, William Lithgow, was sole proprietor. For years Russell's had topped the Clyde tonnage output and more than once had been the world's leading yard. Along with his brother Henry, Lithgow in 1908 was appointed a director, and in a few years he was Chairman and the yard was renamed Lithgows Ltd. By the outbreak of the First World War the Lithgow brothers were recognized as good shipbuilders and astute businessmen. In 1914 he joined the Royal Artillery; he rose to the rank of major and served with distinction, but his skills in administration were recognized and he was recalled home to become Director of Merchant Shipbuilding when British shipping losses due to submarine attack became critical. This appointment set a pattern, with public duties becoming predominant and the day-to-day shipyard business being organized by his brother. During the interwar years, Lithgow served on many councils designed to generate work and expand British commercial interests. His public appointments were legion, but none was as controversial as his directorship of National Shipbuilders Security Ltd, formed to purchase and "sterilize" inefficient shipyards that were hindering recovery from the Depression. To this day opinions are divided on this issue, but it is beyond doubt that Lithgow believed in the task in hand and served unstintingly. During the Second World War he was Controller of Merchant Shipbuilding and Repairs and was one of the few civilians to be on the Board of Admiralty. On the cessation of hostilities, Lithgow devoted time to research boards and to the expansion of the Lithgow Group, which now included the massive Fairfield Shipyard as well as steel, marine engineering and other companies.
    Throughout his life Lithgow worked for the Territorial Army, but he was also a devoted member of the Church of Scotland. He gave practical support to the lona Community, no doubt influenced by unbounded love of the West Highlands and Islands of Scotland.
    [br]
    Principal Honours and Distinctions
    Military Cross and mentioned in dispatches during the First World War. Baronet 1925. Grand Cross of the Order of the British Empire 1945. Commander of the Order of the Orange-Nassau (the Netherlands). CB 1947. Served as the employers' representative on the League of Nations International Labour Conference in the 1930s. President, British Iron and Steel Cofederation 1943.
    Further Reading
    J.M.Reid, 1964, James Lithgow, Master of Work, London: Hutchinson.
    FMW

    Biographical history of technology > Lithgow, James

  • 95 Robert, Nicolas Louis

    SUBJECT AREA: Paper and printing
    [br]
    b. 2 December 1761 Paris, France
    d. 8 August 1828 Dreux, France
    [br]
    French inventor of the papermaking machine.
    [br]
    Robert was born into a prosperous family and received a fair education, after which he became a lawyer's clerk. In 1780, however, he enlisted in the Army and joined the artillery, serving with distinction in the West Indies, where he fought against the English. When dissatisfied with his prospects, Robert returned to Paris and obtained a post as proof-reader to the firm of printers and publishers owned by the Didot family. They were so impressed with his abilities that they promoted him, c. 1790, to "clerk inspector of workmen" at their paper mill at Essonnes, south of Paris, under the control of Didot St Leger.
    It was there that Robert conceived the idea of a continuous papermaking machine. In 1797 he made a model of it and, after further models, he obtained a patent in 1798. The paper was formed on a continuously revolving wire gauze, from which the sheets were lifted off and hung up to dry. Didot was at first scathing, but he came round to encouraging Robert to make a success of the machine. However, they quarrelled over the financial arrangements and Robert left to try setting up his own mill near Rouen. He failed for lack of capital, and in 1800 he returned to Essonnes and sold his patent to Didot for part cash, part proceeds from the operation of the mill. Didot left for England to enlist capital and technical skills to exploit the invention, while Robert was left in charge at Essonnes. It was the Fourdrinier brothers and Bryan Donkin who developed the papermaking machine into a form in which it could succeed. Meanwhile the mill at Essonnes under Robert's direction had begun to falter and declined to the point where it had to be sold. He had never received the full return from the sale of his patent, but he managed to recover his rights in it. This profited him little, for Didot obtained a patent in France for the Fourdrinier machine and had two examples erected in 1814 and the following year, respectively, neatly side-tracking Robert, who was now without funds or position. To support himself and his family, Robert set up a primary school in Dreux and there passed his remaining years. Although it was the Fourdrinier papermaking machine that was generally adopted, it is Robert who deserves credit for the original initiative.
    [br]
    Further Reading
    R.H.Clapperton, 1967, The Papermaking Machine, Oxford: Pergamon Press, pp. 279–83 (provides a full description of Robert's invention and patent, together with a biography).
    LRD

    Biographical history of technology > Robert, Nicolas Louis

  • 96 Roberts, Richard

    [br]
    b. 22 April 1789 Carreghova, Llanymynech, Montgomeryshire, Wales
    d. 11 March 1864 London, England
    [br]
    Welsh mechanical engineer and inventor.
    [br]
    Richard Roberts was the son of a shoemaker and tollkeeper and received only an elementary education at the village school. At the age of 10 his interest in mechanics was stimulated when he was allowed by the Curate, the Revd Griffith Howell, to use his lathe and other tools. As a young man Roberts acquired a considerable local reputation for his mechanical skills, but these were exercised only in his spare time. For many years he worked in the local limestone quarries, until at the age of 20 he obtained employment as a pattern-maker in Staffordshire. In the next few years he worked as a mechanic in Liverpool, Manchester and Salford before moving in 1814 to London, where he obtained employment with Henry Maudslay. In 1816 he set up on his own account in Manchester. He soon established a reputation there for gear-cutting and other general engineering work, especially for the textile industry, and by 1821 he was employing about twelve men. He built machine tools mainly for his own use, including, in 1817, one of the first planing machines.
    One of his first inventions was a gas meter, but his first patent was obtained in 1822 for improvements in looms. His most important contribution to textile technology was his invention of the self-acting spinning mule, patented in 1825. The normal fourteen-year term of this patent was extended in 1839 by a further seven years. Between 1826 and 1828 Roberts paid several visits to Alsace, France, arranging cottonspinning machinery for a new factory at Mulhouse. By 1826 he had become a partner in the firm of Sharp Brothers, the company then becoming Sharp, Roberts \& Co. The firm continued to build textile machinery, and in the 1830s it built locomotive engines for the newly created railways and made one experimental steam-carriage for use on roads. The partnership was dissolved in 1843, the Sharps establishing a new works to continue locomotive building while Roberts retained the existing factory, known as the Globe Works, where he soon after took as partners R.G.Dobinson and Benjamin Fothergill (1802–79). This partnership was dissolved c. 1851, and Roberts continued in business on his own for a few years before moving to London as a consulting engineer.
    During the 1840s and 1850s Roberts produced many new inventions in a variety of fields, including machine tools, clocks and watches, textile machinery, pumps and ships. One of these was a machine controlled by a punched-card system similar to the Jacquard loom for punching rivet holes in plates. This was used in the construction of the Conway and Menai Straits tubular bridges. Roberts was granted twenty-six patents, many of which, before the Patent Law Amendment Act of 1852, covered more than one invention; there were still other inventions he did not patent. He made his contribution to the discussion which led up to the 1852 Act by publishing, in 1830 and 1833, pamphlets suggesting reform of the Patent Law.
    In the early 1820s Roberts helped to establish the Manchester Mechanics' Institute, and in 1823 he was elected a member of the Literary and Philosophical Society of Manchester. He frequently contributed to their proceedings and in 1861 he was made an Honorary Member. He was elected a Member of the Institution of Civil Engineers in 1838. From 1838 to 1843 he served as a councillor of the then-new Municipal Borough of Manchester. In his final years, without the assistance of business partners, Roberts suffered financial difficulties, and at the time of his death a fund for his aid was being raised.
    [br]
    Principal Honours and Distinctions
    Member, Institution of Civil Engineers 1838.
    Further Reading
    There is no full-length biography of Richard Roberts but the best account is H.W.Dickinson, 1945–7, "Richard Roberts, his life and inventions", Transactions of the Newcomen Society 25:123–37.
    W.H.Chaloner, 1968–9, "New light on Richard Roberts, textile engineer (1789–1864)", Transactions of the Newcomen Society 41:27–44.
    RTS

    Biographical history of technology > Roberts, Richard

  • 97 Stuart, James

    [br]
    b. 2 January 1843 Balgonie, Fife, Scotland
    d. 12 October 1913 Norwich, Norfolk, England
    [br]
    Scottish engineer and educator.
    [br]
    James Stuart established the teaching of engineering as a university discipline at Cambridge. He was born at Balgonie in Fife, where his father managed a linen mill. He attended the University of St Andrews and then studied mathematics at Cambridge University. In 1867 he took up a post as Assistant Tutor at Trinity College, Cambridge, where his skills as a teacher were quickly recognized. The University was at that time adapting itself to the new systems of instruction recommended by the Royal Commission on university reform in the 1850s, and Stuart took an active part in the organization of a new structure of inter-collegiate lecture courses. He made an even more significant contribution to the establishment of extramural courses from which the Cambridge University extension lecture programme developed. This began in 1867, when Stuart took adult classes in Manchester and Crewe. The latter, in particular, brought him into close contact with those involved in practical mechanics and stimulated his interest in the applied sciences. In 1875 he was elected to the newly created Chair of Mechanism and Engineering in Cambridge, and he set out energetically to recruit students and to build up a flourishing unit with its own workshop and foundry, training a new generation of engineers in the applied sciences.
    In November 1884 Stuart was elected to Parliament and embarked on an active but somewhat undistinguished career in politics as a radical Liberal, becoming amongst other things a keen supporter of the women's suffrage movement. This did not endear him to his academic colleagues, and the Engineering School suffered from neglect by Stuart until he resigned the Chair in 1890. By the time he left, however, the University was ready to recognize Engineering as a Tripos subject and to accept properly equipped teaching laboratories, so that his successor J.A. Ewing was able to benefit from Stuart's pioneering work. Stuart continued his political activities and was appointed a Privy Councillor in 1909. He married Elizabeth Colman after resigning the Chair, and on the death of his father-in-law in 1898 he moved to Norwich to take on the direction of the family mustard firm, J. \& J.Colman Ltd.
    [br]
    Further Reading
    Hilken, 1967, Engineering at Cambridge, Ch. 3, pp. 58–106.
    AB

    Biographical history of technology > Stuart, James

  • 98 ar-sa جزء ويب

    A set of prewritten ASP.NET pages that can be used by individuals with no programming skills to configure a Web application.

    English-Arabic terms dictionary > ar-sa جزء ويب

  • 99 Web Site Administration tool

    A set of prewritten ASP.NET pages that can be used by individuals with no programming skills to configure a Web application.

    English-Arabic terms dictionary > Web Site Administration tool

  • 100 persona

    "A fictional reality, collecting together real data describing the important characteristics of a particular user group in a fictional character. A persona describes the typical skills, abilities, needs, desires, working habits, tasks,and backgrounds of a particular set of users."

    English-Arabic terms dictionary > persona

См. также в других словарях:

  • Skills for Care — is the strategic body for workforce development in adult social care in England.Skills for Care’s vision is * To put employers in the driving seat on social care workforce issues * To create a trained and qualified workforce providing high… …   Wikipedia

  • Skills Canada — (French: Compétences Canada) is an Olympic style competition which actively promotes careers in the technology and trades fields. Competitors are of high school or post secondary ages.The purpose of Skills Canada is to open the eyes of young… …   Wikipedia

  • set your sights on doing something — set (your) sights (on (doing something)) to decide what you want to get or achieve something. I think they set their sights too high – they ll never find someone for the job who has all those skills. Once she sets her sights on something, she won …   New idioms dictionary

  • set your sights on — set (your) sights (on (doing something)) to decide what you want to get or achieve something. I think they set their sights too high – they ll never find someone for the job who has all those skills. Once she sets her sights on something, she won …   New idioms dictionary

  • set your sights — set (your) sights (on (doing something)) to decide what you want to get or achieve something. I think they set their sights too high – they ll never find someone for the job who has all those skills. Once she sets her sights on something, she won …   New idioms dictionary

  • set sights on doing something — set (your) sights (on (doing something)) to decide what you want to get or achieve something. I think they set their sights too high – they ll never find someone for the job who has all those skills. Once she sets her sights on something, she won …   New idioms dictionary

  • set sights on — set (your) sights (on (doing something)) to decide what you want to get or achieve something. I think they set their sights too high – they ll never find someone for the job who has all those skills. Once she sets her sights on something, she won …   New idioms dictionary

  • set sights — set (your) sights (on (doing something)) to decide what you want to get or achieve something. I think they set their sights too high – they ll never find someone for the job who has all those skills. Once she sets her sights on something, she won …   New idioms dictionary

  • Skills Framework for the Information Age — The Skills Framework for the Information Age (SFIA) is a UK government backed initiative to attempt to define a competency framework for IT, which will describe the roles IT practitioners in the United Kingdom fill and the skills needed to fulfil …   Wikipedia

  • set off — verb 1. put in motion or move to act (Freq. 4) trigger a reaction actuate the circuits • Syn: ↑trip, ↑actuate, ↑trigger, ↑activate, ↑spark off, ↑ …   Useful english dictionary

  • Study skills — [ Charles Sprague Pearce (1896), Library of Congress Thomas Jefferson Building, Washington, D.C.] Study skills are strategies and methods of purposeful learning, usually centered around reading and writing. Effective study skills are considered… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»