Перевод: с английского на все языки

со всех языков на английский

short+march

  • 121 Kegel, Karl

    [br]
    b. 19 May 1876 Magdeburg, Germany
    d. 5 March 1959 Freiberg, Saxony, Germany
    [br]
    German professor of mining who established the mining of lignite as a discipline in the science of mining.
    [br]
    Within the long tradition of celebrated teachers at the Mining Academy in Freiberg, Kegel can be considered as probably the last professor teaching the science of mining who was able to cover all the different disciplines. As was the case with a number of his predecessors, he was able to combine theoretical research work with the teaching of students and to support his theories with the practical experience of industry. He has apprenticed at the Mansfeld copper mines, went to the School of Mines at Eisleben (1896–8), worked as an engineer with various mining companies and thereafter became a scholar of the Berlin Mining Academy (1901–4). For twelve years he taught at the Bochum School of Mining until, in 1918, he was appointed Professor of Mining at Freiberg. There, one year later, as a new approach, he introduced lectures on brown-coal mining and mineral economics. He remained Professor at Freiberg until his first retirement in 1941, although he was active again between 1945 and 1951.
    In 1924 Kegel took over a department at the State Research Institute for Brown Coal in Freiberg which he extended into the Institute for Briquetting. In this field his main achievement lies in the initially questioned theory that producing briquettes from lignite is a molecular process rather than the result of bituminous factors. This perception, among others, led Rammler to produce coke from lignite in 1951. Kegel's merits result from having established all the aspects of mining and using lignite as an independent subdiscipline of mining science, based on substantial theories and an innovative understanding of applied technologies.
    [br]
    Bibliography
    1941, Bergmännische Gebirgsmechanik, Halle (Saale). 1948, Brikettierung der Braunkohle, Halle (Saale).
    1953, Lehrbuch des Braunkohlentagebaus, Halle (Saale).
    Further Reading
    E.Kroker, "Karl Kegel", Neue deutsche Biographie, Vol. XI, p. 394 (a reliable short account).
    Bergakademie Freiberg (ed.), 1976, Karl Kegel 1876–1959. Festschrift aus Anlaß seines
    100. Geburtstages, Leipzig (contains substantial biographical information).
    WK

    Biographical history of technology > Kegel, Karl

  • 122 Neri, Antonio Ludovico

    [br]
    b. 29 February 1576 Florence, Italy
    d. 1614 Florence, Italy
    [br]
    Italian glassmaker.
    [br]
    Neri entered the Church and by 1601 was a priest in the household of Alamanno Bertolini in Florence. There he met the Portuguese Sir Emanuel Ximenes, with whom he shared an interest in chemistry. The two later corresponded and the twenty-seven letters extant from Ximenes, who was living in Antwerp, are the main source of information about Neri's life. At the same time, Neri was working as a craftsman in the Medici glasshouse in Florence and then in their works at Pisa. These glasshouses had been flourishing since the fifteenth century with the help of Muranese glassmakers imported from Venice. Ximenes persuaded Neri to spend some time with the glassmakers in Antwerp, probably from 1603/4, for the correspondence breaks off at that point. A final letter in March 1611 refers to Neri's recent return to Florence. In the following year, Neri published the work by which he is known, the L'arte vetraria, the first general treatise on glassmaking. Neri's plan for a further book describing his chemical and medical experiments was thwarted by his early death. L'arte belongs to the medieval tradition of manuscript recipe books. It is divided into seven books, the first being the most interesting, dealing with the materials of glassmaking and their mixing and melting to form crystal and other colourless glasses. Other sections deal with coloured glasses and the making of enamels for goldsmiths' use. Although it was noted by Galileo Galilei (1564–1642), the book made little impression for half a century, the second edition not appearing until 1661. The first Venice edition came out two years later, with a second in 1678. Due to a decline in scientific activity in Italy at this time, L'arte had more influence elsewhere in Europe, especially England, Holland and France. It began to make a real impact with the appearance in 1662 of the English translation by Christopher Merrett (1614–95), physician, naturalist and founder member of the Royal Society. This edition included Merrett's annotations, descriptions of the tools used by English glassmakers and a translation of Agricola's short account of glassmaking in his De re metallica of 1556. Later translations were based on the Merrett translation rather than the Italian original. Ravenscroft probably used Neri's account of lead glass as a starting point for his own researches in the 1670s.
    [br]
    Bibliography
    1612, L'arte vetraria, 7 vols; reprinted 1980, ed. R.Barovier, Milan: Edizioni Polifilo (the introd., in Italian, England and French, contains the most detailed account of Neri's life and work).
    LRD

    Biographical history of technology > Neri, Antonio Ludovico

  • 123 Perkin, Sir William Henry

    [br]
    b. 12 March 1838 London, England
    d. 14 July 1907 Sudbury, England
    [br]
    English chemist, discoverer of aniline dyes, the first synthetic dyestuffs.
    [br]
    He early showed an aptitude for chemistry and in 1853 entered the Royal College of Chemistry as a student under A.W.von Hofmann, the first Professor at the College. By the end of his first year, he had carried out his first piece of chemical research, on the action of cyanogen chloride on phenylamine, which he published in the Journal of the Chemical Society (1857). He became honorary assistant to von Hofmann in 1857; three years previously he had set up his own chemical laboratory at home, where he had discovered the first of the azo dyes, aminoazonapththalene. In 1856 Perkin began work on the synthesis of quinine by oxidizing a salt of allyl toluidine with potassium dichromate. Substituting aniline, he obtained a dark-coloured precipitate which proved to possess dyeing properties: Perkin had discovered the first aniline dye. Upon receiving favourable reports on the new material from manufacturers of dyestuffs, especially Pullars of Perth, Perkin resigned from the College and turned to the commercial exploitation of his discovery. This proved highly successful. From 1858, the dye was manufactured at his Greenford Green works as "Aniline Purple" or "Tyrian Purple". It was later to be referred to by the French as mauve. Perkin's discovery led to the development of the modern dyestuffs industry, supplanting dyes from the traditional vegetable sources. In 1869, he introduced two new methods for making the red dye alizarin, in place of the process that involved the use of the madder plant (Rubia tinctorum). In spite of German competition, he dominated the British market until the end of 1873. After eighteen years in chemical industry, Perkin retired and devoted himself entirely to the pure chemical research which he had been pursuing since the 1850s. He eventually contributed ninety papers to the Chemical Society and further papers to other bodies, including the Royal Society. For example, in 1867 he published his synthesis of unsaturated organic acids, known as "Perkin's synthesis". Other papers followed, on the structure of "Aniline Purple". In 1881 Perkin drew attention to the magnetic-rotatory power of some of the substances he had been dealing with. From then on, he devoted particular attention to the application of this phenomenon to the determination of chemical structure.
    Perkin won wide recognition for his discoveries and other contributions to chemistry.
    The half-centenary of his great discovery was celebrated in July 1906 and later that year he received a knighthood.
    [br]
    Principal Honours and Distinctions
    Knighted 1906. FRS 1866. President, Chemical Society 1883–5. President, Society of Chemical Industry 1884–5. Royal Society Royal Medal 1879; Davy Medal 1889.
    Bibliography
    26 August 1856, British patent no. 1984 (Aniline Purple).
    1867, "The action of acetic anhydride upon the hydrides of salicyl, etc.", Journal of the Chemical Society 20:586 (the first description of Perkin's synthesis).
    Further Reading
    S.M.Edelstein, 1961, biography in Great Chemists, ed. E.Farber, New York: Interscience, pp. 757–72 (a reliable, short account).
    R.Meldola, 1908, Journal of the Chemical Society 93:2,214–57 (the most detailed account).
    LRD

    Biographical history of technology > Perkin, Sir William Henry

  • 124 Phillips, Horatio Frederick

    SUBJECT AREA: Aerospace
    [br]
    b. 2 February 1845 London, England
    d. 15 July 1926 Hampshire, England
    [br]
    English aerodynamicist whose cambered two-surface wing sections provided the foundations for aerofoil design.
    [br]
    At the age of 19, Phillips developed an interest in flight and constructed models with lightweight engines. He spent a large amount of time and money over many years, carrying out practical research into the science of aerodynamics. In the early 1880s he built a wind tunnel with a working section of 15 in. by 10 in. (38 cm by 25 cm). Air was sucked through the working section by an adaptation of the steam injector used in boilers and invented by Henry Giffard, the airship pioneer. Phillips tested aerofoils based on the cross-section of bird's wings, with a greater curvature on the upper surface than the lower. He measured the lift and drag and showed that the major component of lift came from suction on the upper surface, rather than pressure on the lower. He took out patents for his aerofoil sections in 1884 and 1891. In addition to his wind-tunnel test, Phillips tested his wing sections on a whirling arm, as used earlier by Cayley, Wenham and Lilienthal. After a series of tests using an arm of 15 ft (4.57 m) radius, Phillips built a massive whirling arm driven by a steam engine. His test pieces were mounted on the end of the arm, which had a radius of 50 ft (15.24 m), giving them a linear speed of 70 mph (113 km/h). By 1893 Phillips was ready to put his theories to a more practical test, so he built a large model aircraft driven by a steam engine and tethered to run round a circular track. It had a wing span of 19 ft (5.79 m), but it had fifty wings, one above the other. These wings were only 10 in. (25 cm) wide and mounted in a frame, so it looked rather like a Venetian blind. At 40 mph (64 km/h) it lifted off the track. In 1904 Phillips built a full-size multi-wing aeroplane with twenty wings which just lifted off the ground but did not fly. He built another multi-wing machine in 1907, this time with four Venetian blind' frames in tandem, giving it two hundred wings! Phillips made a short flight of almost 500 ft (152 m) which could be claimed to be the first powered aeroplane flight in England by an Englishman. He retired from flying at the age of 62.
    [br]
    Bibliography
    1900, "Mechanical flight and matters relating thereto", Engineering (reprint).
    1891–3, "On the sustentation of weight by mechanical flight", Aeronautical Society of Great Britain 23rd Report.
    Further Reading
    J.Laurence Pritchard, 1957, "The dawn of aerodynamics", Journal of the Royal Aeronautical Society (March) (good descriptions of Phillips's early work and his wind tunnel).
    F.W.Brearey, 1891–3, "Remarks on experiments made by Horatio Phillips", Aeronautical Society of Great Britain 23rd Report.
    JDS

    Biographical history of technology > Phillips, Horatio Frederick

  • 125 Poniatoff, Alexander Mathew

    [br]
    b. 25 March 1892 Kazan District, Russia
    d. 24 October 1980
    [br]
    Russian (naturalized American in 1932) electrical engineer responsible for the development of the professional tape recorder and the first commercially-successful video tape recorder (VTR).
    [br]
    Poniatoff was educated at the University of Kazan, the Imperial College in Moscow, and the Technische Hochschule in Karlsruhe, gaining degrees in mechanical and electrical engineering. He was in Germany when the First World War broke out, but he managed to escape back to Russia, where he served as an Air Force pilot with the Imperial Russian Navy. During the Russian Revolution he was a pilot with the White Russian Forces, and escaped into China in 1920; there he found work as an assistant engineer in the Shanghai Power Company. In 1927 he immigrated to the USA, becoming a US citizen in 1932. He obtained a post in the research and development department of the General Electric Company in Schenectady, New York, and later at Dalmo Victor, San Carlos, California. During the Second World War he was involved in the development of airborne radar for the US Navy.
    In 1944, taking his initials to form the title, Poniatoff founded the AMPEX Corporation to manufacture components for the airborne radar developed at General Electric, but in 1946 he turned to the production of audio tape recorders developed from the German wartime Telefunken Magnetophon machine (the first tape recorder in the truest sense). In this he was supported by the entertainer Bing Crosby, who needed high-quality replay facilities for broadcasting purposes, and in 1947 he was able to offer a professional-quality product and the business prospered.
    With the rapid post-war boom in television broadcasting in the USA, a need soon arose for a video recorder to provide "time-shifting" of live TV programmes between the different US time zones. Many companies therefore endeavoured to produce a video tape recorder (VTR) using the same single-track, fixed-head, longitudinal-scan system used for audio, but the very much higher bandwidth required involved an unacceptably high tape-speed. AMPEX attempted to solve the problem by using twelve parallel tracks and a machine was demonstrated in 1952, but it proved unsatisfactory.
    The development team, which included Charles Ginsburg and Ray Dolby, then devised a four-head transverse-scan system in which a quadruplex head rotating at 14,400 rpm was made to scan across the width of a 2 in. (5 cm) tape with a tape-to-head speed of the order of 160 ft/sec (about 110 mph; 49 m/sec or 176 km/h) but with a longitudinal tape speed of only 15 in./sec (0.38 m/sec). In this way, acceptable picture quality was obtained with an acceptable tape consumption. Following a public demonstration on 14 April 1956, commercial produc-tion of studio-quality machines began to revolutionize the production and distribution of TV programmes, and the perfecting of time-base correctors which could stabilize the signal timing to a few nanoseconds made colour VTRs a practical proposition. However, AMPEX did not rest on its laurels and in the face of emerging competition from helical scan machines, where the tracks are laid diagonally on the tape, the company was able to demonstrate its own helical machine in 1957. Another development was the Videofile system, in which 250,000 pages of facsimile could be recorded on a single tape, offering a new means of archiving information. By 1986, quadruplex VTRs were obsolete, but Poniatoff's role in making television recording possible deserves a place in history.
    Poniatoff was President of AMPEX Corporation until 1955 and then became Chairman of the Board, a position he held until 1970.
    [br]
    Further Reading
    A.Abrahamson, 1953, "A short history of television recording", Part I, JSMPTE 64:73; 1973, Part II, Journal of the Society of Motion Picture and Television Engineers, 82:188 (provides a fuller background).
    Audio Biographies, 1961, ed. G.A.Briggs, Wharfedale Wireless Works, pp. 255–61 (contains a few personal details about Poniatoff's escape from Germany to join the Russian Navy).
    E.Larsen, 1971, A History of Invention.
    Charles Ginsburg, 1981, "The horse or the cowboy. Getting television on tape", Journal of the Royal Television Society 18:11 (a brief account of the AMPEX VTR story).
    KF / GB-N

    Biographical history of technology > Poniatoff, Alexander Mathew

  • 126 Radcliffe, William

    SUBJECT AREA: Textiles
    [br]
    b. 1761 Mellor, Cheshire, England
    d. 1842 Mellor, Cheshire, England
    [br]
    English inventor of the sizing machine.
    [br]
    Radcliffe was brought up in the textile industry and learned carding and spinning as a child. When he was old enough, he became a weaver. It was a time when there were not enough weavers to work up all the yarn being spun on the recently invented spinning machines, so some yarn was exported. Radcliffe regarded this as a sin; meetings were held to prohibit the export, and Radcliffe promised to use his best endeavours to discover means to work up the yarn in England. He owned a mill at Mellor and by 1801 was employing over 1,000 hand-loom weavers. He wanted to improve their efficiency so they could compete against power looms, which were beginning to be introduced at that time.
    His first step was to divide up as much as possible the different weaving processes, not unlike the plan adopted by Arkwright in spinning. In order to strengthen the warp yarns made of cotton and to reduce their tendency to fray during weaving, it was customary to apply an adhesive substance such as starch paste. This was brushed on as the warp was unwound from the back beam during weaving, so only short lengths could be treated before being dried. Instead of dressing the warp in the loom as was hitherto done, Radcliffe had it dressed in a separate machine, relieving the weaver of the trouble and saving the time wasted by the method previously used. Radcliffe employed a young man names Thomas Johnson, who proved to be a clever mechanic. Radcliffe patented his inventions in Johnson's name to avoid other people, especially foreigners, finding out his ideas. He took out his first patent, for a dressing machine, in March 1803 and a second the following year. The combined result of the two patents was the introduction of a beaming machine and a dressing machine which, in addition to applying the paste to the yarns and then drying them, wound them onto a beam ready for the loom. These machines enabled the weaver to work a loom with fewer stoppages; however, Radcliffe did not anticipate that his method of sizing would soon be applied to power looms as well and lead to the commercial success of powered weaving. Other manufacturers quickly adopted Radcliffe's system, and Radcliffe himself soon had to introduce power looms in his own business.
    Radcliffe improved the hand looms themselves when, with the help of Johnson, he devised a cloth taking-up motion that wound the woven cloth onto a roller automatically as the weaver operated the loom. Radcliffe and Johnson also developed the "dandy loom", which was a more compact form of hand loom and was also later adapted for weaving by power. Radcliffe was among the witnesses before the Parliamentary Committee which in 1808 awarded Edmund Cartwright a grant for his invention of the power loom. Later Radcliffe was unsuccessfully to petition Parliament for a similar reward for his contributions to the introduction of power weaving. His business affairs ultimately failed partly through his own obstinacy and his continued opposition to the export of cotton yarn. He lived to be 81 years old and was buried in Mellor churchyard.
    [br]
    Bibliography
    1811, Exportation of Cotton Yarn and Real Cause of the Distress that has Fallen upon the Cotton Trade for a Series of Years Past, Stockport.
    1828, Origin of the New System of Manufacture, Commonly Called "Power-Loom Weaving", Stockport (this should be read, even though it is mostly covers Radcliffe's political aims).
    Further Reading
    A.Barlow, 1870, The History and Principles of Weaving by Hand and by Power, London (provides an outline of Radcliffe's life and work).
    W.English, 1969, The Textile Industry, London (a general background of his inventions). R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (a general background).
    D.J.Jeremy, 1981, Transatlantic Industrial Revolution. The Diffusion of Textile Technologies Between Britain and America, 1790–1830s, Oxford (discusses the spread of the sizing machine in America).
    RLH

    Biographical history of technology > Radcliffe, William

  • 127 Shaw, Percy

    [br]
    b. 1889 Yorkshire, England d. 1975
    [br]
    English inventor of the "catseye" reflecting roadstud.
    [br]
    Little is known of Shaw's youth, but in the 1930s he was running a comparatively successful business repairing roads. One evening in 1933, he was driving to his home in Halifax, West Yorkshire; it was late, dark and foggy and only the reflection of his headlights from the tram-tracks guided him and kept him on the road. He decided to find or make an alternative to tramlines, which were not universal and by that time were being taken up as trams were being replaced with diesel buses.
    Shaw needed a place to work and bought the old Boothtown Mansion, a cloth-merchant's house built in the mid-eighteenth century. There he devoted himself to the production of a prototype of the reflecting roadstud, inspired by the reflective nature of a cat's eyes. Shaw's design consisted of a prism backed by an aluminium mirror, set in pairs in a rubber casing; when traffic passed over the stud, the prisms would be wiped clean as the casing was depressed. In 1934, Shaw obtained permission from the county surveyor to lay, at his own expense, a short stretch of catseyes on a main highway near his home: fifty were laid at Brightlington cross-roads, an accident blackspot near Bradford. This was inspected by a number of surveyors in 1936. The first order for catseyes had already been placed in 1935, for a pedestrian crossing in Baldon, Yorkshire. There were alternative designs in existence, particularly in France, and in 1937 the Ministry of Transport laid an 8 km (5 mile) stretch in Oxfordshire with sample lengths of different types of studs. After two years, most of them had fractured, become displaced or ceased to reflect; only the product of Shaw's company, Reflecting Roadstuds Ltd, was still in perfect condition. The outbreak of the Second World War brought blackout regulations, which caused a great boost to sales of reflecting roadstuds; orders reached some 40,000 per week. Production was limited, however, due to the shortage of rubber supplies after the Japanese overran South-East Asia; until the end of the war, only about 12,000 catseyes were produced a year.
    Over fifty million catseyes have been installed in Britain, where on average there are about two hundred and fifty catseyes in each kilometre of road, if laid in a single line. The success of Shaw's invention brought him great wealth, although he continued to live in the same house, without curtains—which obstructed his view—or carpets—which harboured odours and germs. He had three Rolls-Royce cars, and four television sets which were permanently switched on while he was at home, each tuned to a different channel.
    [br]
    Principal Honours and Distinctions
    OBE 1965.
    Further Reading
    E.de Bono (ed.), 1979, Eureka, London: Thames \& Hudson.
    "Percy's bright idea", En Route (the magazine of the Caravan Club), reprinted in The Police Review, 23 March 1983.
    IMcN

    Biographical history of technology > Shaw, Percy

  • 128 Skinner, Halcyon

    [br]
    b. 6 March 1824 Mantua, Ohio, USA
    d. 28 November 1900 USA
    [br]
    American inventor of a machine for making Royal Axminster and other carpets.
    [br]
    Halcyon was the son of Joseph and Susan Skinner. When he was 8 years old, his parents moved to Stockbridge in Massachusetts, where he obtained education locally and worked on farms. In 1838 his father moved to West Farms, New York, where Halcyon helped his father make violins and guitars for seven years. He then worked as a general carpenter for eight years until he was hired in 1849 by Alexander Smith, a carpet manufacturer. Skinner designed and constructed a hand loom that could weave figured instead of striped carpets, and by 1851 Smith had one hundred of these at work. Skinner was retained by Smith for forty years as a mechanical expert and adviser.
    Weaving carpets by power started in the 1850s on enormous and complex machines. Axminster carpets had traditionally been produced in a similar way to those made by hand in Persia, with the tufts of woollen yarn being knotted around vertical warp threads. To mechanize this process proved very difficult, but Skinner patented a loom in 1856 to weave Axminster carpets although, it was not working successfully until 1860. Then in 1864 he developed a loom for weaving ingrain carpets, and c. 1870 he altered some imported English looms for weaving tapestry carpets to double their output.
    His most important invention was conceived in 1876 and patented on 16 January 1877. This was the Moquette or Royal Axminster loom, which marked yet another important step forward and enabled the use of an unlimited number of colours in carpet designs. This type of loom became known as the Spool Axminster because of the endless chain of spools carrying lengths of coloured yarns, wound in a predetermined order, from which short pieces could be cut and inserted as the tufts. It put Smith's company, Alexander Smith \& Sons, Yonkers, New York, in the lead among American carpet manufacturers. This type of loom was introduced to Britain in 1878 by Tomkinson \& Adam and spread rapidly. Skinner virtually retired in 1889 but continued to live in Yonkers.
    [br]
    Further Reading
    Biography, American Machinist 23.
    Dictionary of American Biography, Vol. XVII.
    G.Robinson, 1966, Carpets, London (for the history and techniques of carpet weaving).
    A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London (includes a section on pile weaving which covers some types of carpets).
    RLH

    Biographical history of technology > Skinner, Halcyon

См. также в других словарях:

  • march — [[t]mɑ͟ː(r)tʃ[/t]] ♦♦♦ marches, marching, marched 1) V ERG When soldiers march somewhere, or when a commanding officer marches them somewhere, they walk there with very regular steps, as a group. [V prep/adv] A Scottish battalion was marching… …   English dictionary

  • March 2010 in sports — << March 2010 >> S M T W T F …   Wikipedia

  • March 2011 in sports — << March 2011 >> S M T W T F …   Wikipedia

  • March 2005 — ← – January 2005 – February 2005 – March – April 2005 – May 2005 – June 2005 – July 2005 – August 2005 – September 2005 – October 2005 – November 2005 – December 2005 – → < Marc …   Wikipedia

  • March 2003 — March 2003: January – February – March – April – May – June – July – August – September – October – November – December – → Contents 1 Events 1.1 March 1, 2003 …   Wikipedia

  • March to the Sea (novel) — March to the Sea   …   Wikipedia

  • March 2010 — was the third month of that year. It began on a Monday and ended after 31 days on a Wednesday. International holidays (See Holidays and observances, on sidebar at right, below) Portal:Current events This is an archived version of Wikipedia s… …   Wikipedia

  • March to the Stars —   …   Wikipedia

  • March Joint Air Reserve Base — Part of Air Force Reserve Command (AFRC) Located near: Riverside, Cal …   Wikipedia

  • March Engineering — March Full name March Engineering Base  United Kingdom …   Wikipedia

  • Short-term effects of alcohol — on the human body can take many forms. The drug alcohol, specifically ethanol, is a central nervous system depressant with a range of side effects. The amount and circumstances of consumption play a large part in determining the extent of… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»