Перевод: с английского на все языки

со всех языков на английский

second+subject+of+power

  • 21 Bramah, Joseph

    [br]
    b. 2 April 1749 Stainborough, Yorkshire, England
    d. 9 December 1814 Pimlico, London, England
    [br]
    English inventor of the second patented water-closet, the beer-engine, the Bramah lock and, most important, the hydraulic press.
    [br]
    Bramah was the son of a tenant farmer and was educated at the village school before being apprenticed to a local carpenter, Thomas Allot. He walked to London c.1773 and found work with a Mr Allen that included the repair of some of the comparatively rare water-closets of the period. He invented and patented one of his own, which was followed by a water cock in 1783. His next invention, a greatly improved lock, involved the devising of a number of special machine tools, for it was one of the first devices involving interchangeable components in its manufacture. In this he had the help of Henry Maudslay, then a young and unknown engineer, who became Bramah's foreman before setting up business on his own. In 1784 he moved his premises from Denmark Street, St Giles, to 124 Piccadilly, which was later used as a showroom when he set up a factory in Pimlico. He invented an engine for putting out fires in 1785 and 1793, in effect a reciprocating rotary-vane pump. He undertook the refurbishment and modernization of Norwich waterworks c.1793, but fell out with Robert Mylne, who was acting as Consultant to the Norwich Corporation and had produced a remarkably vague specification. This was Bramah's only venture into the field of civil engineering.
    In 1797 he acted as an expert witness for Hornblower \& Maberley in the patent infringement case brought against them by Boulton and Watt. Having been cut short by the judge, he published his proposed evidence in "Letter to the Rt Hon. Sir James Eyre, Lord Chief Justice of the Common Pleas…etc". In 1795 he was granted his most important patent, based on Pascal's Hydrostatic Paradox, for the hydraulic press which also incorporated the concept of hydraulics for the transmission of both power and motion and was the foundation of the whole subsequent hydraulic industry. There is no truth in the oft-repeated assertion originating from Samuel Smiles's Industrial Biography (1863) that the hydraulic press could not be made to work until Henry Maudslay invented the self-sealing neck leather. Bramah used a single-acting upstroking ram, sealed only at its base with a U-leather. There was no need for a neck leather.
    He also used the concept of the weight-loaded, in this case as a public-house beer-engine. He devised machinery for carbonating soda water. The first banknote-numbering machine was of his design and was bought by the Bank of England. His development of a machine to cut twelve nibs from one goose quill started a patent specification which ended with the invention of the fountain pen, patented in 1809. His coach brakes were an innovation that was followed bv a form of hydropneumatic carriage suspension that was somewhat in advance of its time, as was his patent of 1812. This foresaw the introduction of hydraulic power mains in major cities and included the telescopic ram and the air-loaded accumulator.
    In all Joseph Bramah was granted eighteen patents. On 22 March 1813 he demonstrated a hydraulic machine for pulling up trees by the roots in Hyde Park before a large crowd headed by the Duke of York. Using the same machine in Alice Holt Forest in Hampshire to fell timber for ships for the Navy, he caught a chill and died soon after at his home in Pimlico.
    [br]
    Bibliography
    1778, British patent no. 1177 (water-closet). 1784, British patent no. 1430 (Bramah Lock). 1795, British patent no. 2045 (hydraulic press). 1809, British patent no. 3260 (fountain pen). 1812, British patent no. 3611.
    Further Reading
    I.McNeil, 1968, Joseph Bramah, a Century of Invention.
    S.Smiles, 1863, Industrial Biography.
    H.W.Dickinson, 1942, "Joseph Bramah and his inventions", Transactions of the Newcomen Society 22:169–86.
    IMcN

    Biographical history of technology > Bramah, Joseph

  • 22 Cousteau, Jacques-Yves

    SUBJECT AREA: Ports and shipping
    [br]
    b. 11 June 1910 Saint-André-de-Cubzac, France
    [br]
    French marine explorer who invented the aqualung.
    [br]
    He was the son of a country lawyer who became legal advisor and travelling companion to certain rich Americans. At an early age Cousteau acquired a love of travel, of the sea and of cinematography: he made his first film at the age of 13. After an interrupted education he nevertheless passed the difficult entrance examination to the Ecole Navale in Brest, but his naval career was cut short in 1936 by injuries received in a serious motor accident. For his long recuperation he was drafted to Toulon. There he met Philippe Tailliez, a fellow naval officer, and Frédéric Dumas, a champion spearfisher, with whom he formed a long association and began to develop his underwater swimming and photography. He apparently took little part in the Second World War, but under cover he applied his photographic skills to espionage, for which he was awarded the Légion d'honneur after the war.
    Cousteau sought greater freedom of movement underwater and, with Emile Gagnan, who worked in the laboratory of Air Liquide, he began experimenting to improve portable underwater breathing apparatus. As a result, in 1943 they invented the aqualung. Its simple design and robust construction provided a reliable and low-cost unit and revolutionized scientific and recreational diving. Gagnan shunned publicity, but Cousteau revelled in the new freedom to explore and photograph underwater and exploited the publicity potential to the full.
    The Undersea Research Group was set up by the French Navy in 1944 and, based in Toulon, it provided Cousteau with the Opportunity to develop underwater exploration and filming techniques and equipment. Its first aims were minesweeping and exploration, but in 1948 Cousteau pioneered an extension to marine archaeology. In 1950 he raised the funds to acquire a surplus US-built minesweeper, which he fitted out to further his quest for exploration and adventure and named Calypso. Cousteau also sought and achieved public acclaim with the publication in 1953 of The Silent World, an account of his submarine observations, illustrated by his own brilliant photography. The book was an immediate success and was translated into twenty-two languages. In 1955 Calypso sailed through the Red Sea and the western Indian Ocean, and the outcome was a film bearing the same title as the book: it won an Oscar and the Palme d'Or at the Cannes film festival. This was his favoured medium for the expression of his ideas and observations, and a stream of films on the same theme kept his name before the public.
    Cousteau's fame earned him appointment by Prince Rainier as Director of the Oceanographie Institute in Monaco in 1957, a post he held until 1988. With its museum and research centre, it offered Cousteau a useful base for his worldwide activities.
    In the 1980s Cousteau turned again to technological development. Like others before him, he was concerned to reduce ships' fuel consumption by harnessing wind power. True to form, he raised grants from various sources to fund research and enlisted technical help, namely Lucien Malavard, Professor of Aerodynamics at the Sorbonne. Malavard designed a 44 ft (13.4 m) high non-rotating cylinder, which was fitted onto a catamaran hull, christened Moulin à vent. It was intended that its maiden Atlantic crossing in 1983 should herald a new age in ship propulsion, with large royalties to Cousteau. Unfortunately the vessel was damaged in a storm and limped to the USA under diesel power. A more robust vessel, the Alcyone, was fitted with two "Turbosails" in 1985 and proved successful, with a 40 per cent reduction in fuel consumption. However, oil prices fell, removing the incentive to fit the new device; the lucrative sales did not materialize and Alcyone remained the only vessel with Turbosails, sharing with Calypso Cousteau's voyages of adventure and exploration. In September 1995, Cousteau was among the critics of the decision by the French President Jacques Chirac to resume testing of nuclear explosive devices under the Mururoa atoll in the South Pacific.
    [br]
    Principal Honours and Distinctions
    Légion d'honneur. Croix de Guerre with Palm. Officier du Mérite Maritime and numerous scientific and artistic awards listed in such directories as Who's Who.
    Bibliography
    Further Reading
    R.Munson, 1991, Cousteau, the Captain and His World, London: Robert Hale (published in the USA 1989).
    LRD

    Biographical history of technology > Cousteau, Jacques-Yves

  • 23 Davenport, Thomas

    SUBJECT AREA: Electricity
    [br]
    b. 9 July 1802 Williamstown, Vermont, USA
    d. 6 July 1851 Salisbury, Vermont, USA
    [br]
    American craftsman and inventor who constructed the first rotating electrical machines in the United States.
    [br]
    When he was 14 years old Davenport was apprenticed to a blacksmith for seven years. At the close of his apprenticeship in 1823 he opened a blacksmith's shop in Brandon, Vermont. He began experimenting with electromagnets after observing one in use at the Penfield Iron Works at Crown Point, New York, in 1831. He saw the device as a possible source of power and by July 1834 had constructed his first electric motor. Having totally abandoned his regular business, Davenport built and exhibited a number of miniature machines; he utilized an electric motor to propel a model car around a circular track in 1836, and this became the first recorded instance of an electric railway. An application for a patent and a model were destroyed in a fire at the United States Patent Office in December 1836, but a second application was made and Davenport received a patent the following year for Improvements in Propelling Machinery by Magnetism and Electromagnetism. A British patent was also obtained. A workshop and laboratory were established in New York, but Davenport had little financial backing for his experiments. He built a total of over one hundred motors but was defeated by the inability to obtain an inexpensive source of power. Using an electric motor of his own design to operate a printing press in 1840, he undertook the publication of a journal, The Electromagnet and Mechanics' Intelligencer. This was the first American periodical on electricity, but it was discontinued after a few issues. In failing health he retired to Vermont where in the last year of his life he continued experiments in electromagnetism.
    [br]
    Bibliography
    1837, US patent no. 132, "Improvements in Propelling Machinery by Magnetism and Electromagnetism".
    6 June 1837 British patent no. 7,386.
    Further Reading
    F.L.Pope, 1891, "Inventors of the electric motor with special reference to the work of Thomas Davenport", Electrical Engineer, 11:1–5, 33–9, 65–71, 93–8, 125–30 (the most comprehensive account).
    Annals of Electricity (1838) 2:257–64 (provides a description of Davenport's motor).
    W.J.King, 1962, The Development of Electrical Technology in the 19th Century, Washington, DC: Smithsonian Institution, Paper 28, pp. 263–4 (a short account).
    GW

    Biographical history of technology > Davenport, Thomas

  • 24 Fox, Uffa

    SUBJECT AREA: Ports and shipping
    [br]
    b. 15 January 1898 Cowes, Isle of Wight, England
    d. 27 October 1972 Isle of Wight (?), England
    [br]
    English yacht designer.
    [br]
    Coming from a family that had originated in East Anglia, his first name was that of an early British king and was to typify his unusual and refreshing zest for life. Fox commenced his professional career as an apprentice with the flying boat and high-speed craft builders Messrs S.E.Saunders, and shortly after the outbreak of the First World War he was conscripted into the Royal Naval Air Service. In 1920 he made his first transatlantic crossing under sail, a much greater adventure then than now, and returned to the United Kingdom as deck-hand on a ship bound for Liverpool. He was to make the crossing under sail twice more. Shortly after his marriage in 1925, he purchased the old Floating Bridge at Cowes and converted it to living accommodation, workshops and drawing offices. By the 1930s his life's work was in full swing, with designs coming off his drawing board for some of the most outstanding mass-produced craft ever built, as well as for some remarkable one-off yachts. His experimentation with every kind of sailing craft, and even with the Eskimo kayak, gave him the knowledge and experience that made his name known worldwide. During the Second World War he designed and produced the world's first airborne parachuted lifeboat. Despite what could be described as a robust lifestyle, coupled with interests in music, art and horseriding, Fox continued to produce great designs and in the late 1940s he introduced the Firefly, followed by the beautiful Flying Fifteen class of racing keel boats. One of his most unusual vessels was Britannia, the 24 ft (7.3 m) waterline craft that John Fairfax was to row across the Atlantic. Later came Britannia II, which Fairfax took across the Pacific!
    [br]
    Principal Honours and Distinctions
    CBE 1959. Royal Designer to Industry (RDI).
    Bibliography
    Fox produced a series of yachting books, most first published in the late 1930s, and some more lighthearted volumes of reminiscences in the 1960s. Some of the best-known titles are: Sail and Power, Racing and Cruising Design, Uffa Fox's Second Book and The Crest of the Wave.
    Further Reading
    J.Dixon, 1978, Uffa Fox. A Personal Biography, Brighton: Angus \& Robertson.
    FMW

    Biographical history of technology > Fox, Uffa

  • 25 Froude, William

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1810 Dartington, Devon, England
    d. 4 May 1879 Simonstown, South Africa
    [br]
    English naval architect; pioneer of experimental ship-model research.
    [br]
    Froude was educated at a preparatory school at Buckfastleigh, and then at Westminster School, London, before entering Oriel College, Oxford, to read mathematics and classics. Between 1836 and 1838 he served as a pupil civil engineer, and then he joined the staff of Isambard Kingdom Brunel on various railway engineering projects in southern England, including the South Devon Atmospheric Railway. He retired from professional work in 1846 and lived with his invalid father at Dartington Parsonage. The next twenty years, while apparently unproductive, were important to Froude as he concentrated his mind on difficult mathematical and scientific problems. Froude married in 1839 and had five children, one of whom, Robert Edmund Froude (1846–1924), was to succeed him in later years in his research work for the Admiralty. Following the death of his father, Froude moved to Paignton, and there commenced his studies on the resistance of solid bodies moving through fluids. Initially these were with hulls towed through a house roof storage tank by wires taken over a pulley and attached to falling weights, but the work became more sophisticated and was conducted on ponds and the open water of a creek near Dartmouth. Froude published work on the rolling of ships in the second volume of the Transactions of the then new Institution of Naval Architects and through this became acquainted with Sir Edward Reed. This led in 1870 to the Admiralty's offer of £2,000 towards the cost of an experimental tank for ship models at Torquay. The tank was completed in 1872 and tests were carried out on the model of HMS Greyhound following full-scale towing trials which had commenced on the actual ship the previous year. From this Froude enunciated his Law of Comparisons, which defines the rules concerning the relationship of the power required to move geometrically similar floating bodies across fluids. It enabled naval architects to predict, from a study of a much less expensive and smaller model, the resistance to motion and the power required to move a full-size ship. The work in the tank led Froude to design a model-cutting machine, dynamometers and machinery for the accurate ruling of graph paper. Froude's work, and later that of his son, was prodigious and covered many fields of ship design, including powering, propulsion, rolling, steering and stability. In only six years he had stamped his academic authority on the new science of hydrodynamics, served on many national committees and corresponded with fellow researchers throughout the world. His health suffered and he sailed for South Africa to recuperate, but he contracted dysentery and died at Simonstown. He will be remembered for all time as one of the greatest "fathers" of naval architecture.
    [br]
    Principal Honours and Distinctions
    FRS. Honorary LLD Glasgow University.
    Bibliography
    1955, The Papers of William Froude, London: Institution of Naval Architects (the Institution also published a memoir by Sir Westcott Abell and an evaluation of his work by Dr R.W.L. Gawn of the Royal Corps of Naval Constructors; this volume reprints all Froude's papers from the Institution of Naval Architects and other sources as diverse as the British Association, the Royal Society of Edinburgh and the Institution of Civil Engineers.
    Further Reading
    A.T.Crichton, 1990, "William and Robert Edmund Froude and the evolution of the ship model experimental tank", Transactions of the Newcomen Society 61:33–49.
    FMW

    Biographical history of technology > Froude, William

  • 26 Hornblower, Jonathan

    [br]
    b. 1753 Cornwall (?), England
    d. 1815 Penryn, Cornwall, England
    [br]
    English mining engineer who patented an early form of compound steam engine.
    [br]
    Jonathan came from a family with an engineering tradition: his grandfather Joseph had worked under Thomas Newcomen. Jonathan was the sixth child in a family of thirteen whose names all began with "J". In 1781 he was living at Penryn, Cornwall and described himself as a plumber, brazier and engineer. As early as 1776, when he wished to amuse himself by making a small st-eam engine, he wanted to make something new and wondered if the steam would perform more than one operation in an engine. This was the foundation for his compound engine. He worked on engines in Cornwall, and in 1778 was Engineer at the Ting Tang mine where he helped Boulton \& Watt erect one of their engines. He was granted a patent in 1781 and in that year tried a large-scale experiment by connecting together two engines at Wheal Maid. Very soon John Winwood, a partner in a firm of iron founders at Bristol, acquired a share in the patent, and in 1782 an engine was erected in a colliery at Radstock, Somerset. This was probably not very successful, but a second was erected in the same area. Hornblower claimed greater economy from his engines, but steam pressures at that time were not high enough to produce really efficient compound engines. Between 1790 and 1794 ten engines with his two-cylinder arrangement were erected in Cornwall, and this threatened Boulton \& Watt's near monopoly. At first the steam was condensed by a surface condenser in the bottom of the second, larger cylinder, but this did not prove very successful and later a water jet was used. Although Boulton \& Watt proceeded against the owners of these engines for infringement of their patent, they did not take Jonathan Hornblower to court. He tried a method of packing the piston rod by a steam gland in 1781 and his work as an engineer must have been quite successful, for he left a considerable fortune on his death.
    [br]
    Bibliography
    1781, British patent no. 1,298 (compound steam engine).
    Further Reading
    R.Jenkins, 1979–80, "Jonathan Hornblower and the compound engine", Transactions of the Newcomen Society 11.
    J.Tann, 1979–80, "Mr Hornblower and his crew, steam engine pirates in the late 18th century", Transactions of the Newcomen Society 51.
    J.Farey, 1827, A Treatise on the Steam Engine, Historical, Practical and Descriptive, reprinted 1971, Newton Abbot: David \& Charles (an almost contemporary account of the compound engine).
    D.S.L.Cardwell, 1971, From Watt to Clausius. The Rise of Thermo dynamics in the Early Industrial Age, London: Heinemann.
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press.
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press.
    RLH

    Biographical history of technology > Hornblower, Jonathan

  • 27 Jobs, Steven Paul

    [br]
    b. 24 February 1955 San Francisco, California, USA
    [br]
    American engineer who, with Stephen Wozniak, built the first home computer.
    [br]
    Moving with his family to Mountain View, Palo Alto, in 1960, Jobs entered Homestead High School, Cupertino, in 1968. At about the same time he joined the Explorers' Club for young engineers set up by Hewlett-Packard Company. As a result of this contact, three years later he met up with Stephen Wozniak, who was working at Hewlett-Packard and helped him with the construction of the first home computer based on the 8-bit MOS Technology 6502 microprocessor. In 1973 he went to Reid College, Portland, Oregon, to study engineering, but he dropped out in the second semester and spent time in India. On his return he obtained a job with Atari to design video games, but he soon met up again with Wozniak, who had been unable to interest Hewlett-Packard in commercial development of his home computer. Together they therefore founded Apple Computer Company to make and market it, and found a willing buyer in the Byte Shop chain store. The venture proved successful, and with the help of a financial backer, Mike Markkula, a second version, the Apple II, was developed in 1976. With Jobs as Chairman, the company experienced a phenomenal growth and by 1983 had 4,700 employees and an annual turnover of US$983 million. The company then began to run into difficulties and John Sculley, a former president of Pepsi-Cola, was brought in to manage the business while Jobs concentrated on developing new computers, including the Apple Macintosh. Eventually a power struggle developed, and with Sculley now Chairman and Chief Executive, Jobs resigned in 1985 to set up his own computer company, NeXt.
    [br]
    Principal Honours and Distinctions
    First National Technology Medal (with Wozniak) 1985.
    Further Reading
    J.S.Young, 1988, Steve Jobs: The Journey is the Reward: Scott Foresman \& Co. (includes a biography and a detailed account of Apple Company).
    M.Moritz, 1984, The Little Kingdom. The Private Story of Apple Computers.
    KF

    Biographical history of technology > Jobs, Steven Paul

  • 28 Kennedy, John

    SUBJECT AREA: Textiles
    [br]
    b. 4 July 1769 Knocknalling, Kirkcudbrightshire, Scotland
    d. 30 October 1855 Ardwick Hall, Manchester, England
    [br]
    Scottish cotton spinner and textile machine maker.
    [br]
    Kennedy was the third son of his father, Robert, and went to the village school in Dalry. On his father's death, he was sent at the age of 14 to Chowbent, Lancashire, where he was apprenticed to William Cannan, a maker of textile machines such as carding frames, Hargreaves's jennies and Arkwright's waterframes. On completion of his apprenticeship in 1791, he moved to Manchester and entered into partnership with Benjamin and William Sandford and James M'Connel, textile machine makers and mule spinners. In 1795 this partnership was terminated and one was made with James M'Connel to form the firm M'Connel \& Kennedy, cotton spinners.
    Kennedy introduced improvements for spinning fine yarns and the firm of M'Connel \& Kennedy became famous for the quality of these products, which were in great demand. He made the spindles turn faster during the second part of the mule carriage's outward draw, and from 1793 onwards he experimented with driving mules by steam engines. Like William Kelly at New Lanark, he succeeded in making the spinning sequences power-operated by 1800, although the spinner had to take over the winding on. This made the mule into a factory machine, but it still required skilled operators. He was also involved with Henry Houldsworth, Junior, in the improvement of the roving frame. In 1803 Kennedy joined the Manchester Literary \& Philosophical Society, to which he presented several papers, including one in 1830 on "A memoir of Samuel Crompton". He retired from the spinning business in 1826, but continued his technical and mechanical pursuits. He was consulted about whether the Liverpool \& Manchester Railway should have moving or stationary steam engines and was an umpire at the Rainhill Trials in 1829.
    [br]
    Further Reading
    Dictionary of National Biography.
    W.Fairbairn, obituary, Manchester Memoirs, Manchester Literary and Philosophical Society.
    C.H.Lee, 1972, A Cotton Enterprise 1795–1840. A History of M'Connel \& Kennedy, Fine
    Cotton Spinners, Manchester (an account of Kennedy's spinning business). R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (provides details of Kennedy's inventions on the mule).
    RLH

    Biographical history of technology > Kennedy, John

  • 29 Lombe, John

    SUBJECT AREA: Textiles
    [br]
    b. c. 1693 probably Norwich, England
    d. 20 November 1722 Derby, England
    [br]
    English creator of the first successful powered textile mill in Britain.
    [br]
    John Lombe's father, Henry Lombe, was a worsted weaver who married twice. John was the second son of the second marriage and was still a baby when his father died in 1695. John, a native of the Eastern Counties, was apprenticed to a trade and employed by Thomas Cotchett in the erection of Cotchett's silk mill at Derby, which soon failed however. Lombe went to Italy, or was sent there by his elder half-brother, Thomas, to discover the secrets of their throwing machinery while employed in a silk mill in Piedmont. He returned to England in 1716 or 1717, bringing with him two expert Italian workmen.
    Thomas Lombe was a prosperous London merchant who financed the construction of a new water-powered silk mill at Derby which is said to have cost over £30,000. John arranged with the town Corporation for the lease of the island in the River Derwent, where Cotchett had erected his mill. During the four years of its construction, John first set up the throwing machines in other parts of the town. The machines were driven manually there, and their product helped to defray the costs of the mill. The silk-throwing machine was very complex. The water wheel powered a horizontal shaft that was under the floor and on which were placed gearwheels to drive vertical shafts upwards through the different floors. The throwing machines were circular, with the vertical shafts running through the middle. The doubled silk threads had previously been wound on bobbins which were placed on spindles with wire flyers at intervals around the outer circumference of the machine. The bobbins were free to rotate on the spindles while the spindles and flyers were driven by the periphery of a horizontal wheel fixed to the vertical shaft. Another horizontal wheel set a little above the first turned the starwheels, to which were attached reels for winding the silk off the bobbins below. Three or four sets of these spindles and reels were placed above each other on the same driving shaft. The machine was very complicated for the time and must have been expensive to build and maintain.
    John lived just long enough to see the mill in operation, for he died in 1722 after a painful illness said to have been the result of poison administered by an Italian woman in revenge for his having stolen the invention and for the injury he was causing the Italian trade. The funeral was said to have been the most superb ever known in Derby.
    [br]
    Further Reading
    Samuel Smiles, 1890, Men of Invention and Industry, London (probably the only biography of John Lombe).
    Rhys Jenkins, 1933–4, "Historical notes on some Derbyshire industries", Transactions of the Newcomen Society 14 (provides an acount of John Lombe and his part in the enterprise at Derby).
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (briefly covers the development of early silk-throwing mills).
    W.English, 1969, The Textile Industry, London (includes a chapter on "Lombe's Silk Machine").
    P.Barlow, 1836, Treatise of Manufactures and Machinery of Great Britain, London (describes Lombe's mill and machinery, but it is not known how accurate the account may be).
    RLH

    Biographical history of technology > Lombe, John

  • 30 Maxim, Sir Hiram Stevens

    [br]
    b. 5 February 1840 Brockway's Mills, Maine, USA
    d. 24 November 1916 Streatham, London, England
    [br]
    American (naturalized British) inventor; designer of the first fully automatic machine gun and of an experimental steam-powered aircraft.
    [br]
    Maxim was born the son of a pioneer farmer who later became a wood turner. Young Maxim was first apprenticed to a carriage maker and then embarked on a succession of jobs before joining his uncle in his engineering firm in Massachusetts in 1864. As a young man he gained a reputation as a boxer, but it was his uncle who first identified and encouraged Hiram's latent talent for invention.
    It was not, however, until 1878, when Maxim joined the first electric-light company to be established in the USA, as its Chief Engineer, that he began to make a name for himself. He developed an improved light filament and his electric pressure regulator not only won a prize at the first International Electrical Exhibition, held in Paris in 1881, but also resulted in his being made a Chevalier de la Légion d'honneur. While in Europe he was advised that weapons development was a more lucrative field than electricity; consequently, he moved to England and established a small laboratory at Hatton Garden, London. He began by investigating improvements to the Gatling gun in order to produce a weapon with a faster rate of fire and which was more accurate. In 1883, by adapting a Winchester carbine, he successfully produced a semi-automatic weapon, which used the recoil to cock the gun automatically after firing. The following year he took this concept a stage further and produced a fully automatic belt-fed weapon. The recoil drove barrel and breechblock to the vent. The barrel then halted, while the breechblock, now unlocked from the former, continued rearwards, extracting the spent case and recocking the firing mechanism. The return spring, which it had been compressing, then drove the breechblock forward again, chambering the next round, which had been fed from the belt, as it did so. Keeping the trigger pressed enabled the gun to continue firing until the belt was expended. The Maxim gun, as it became known, was adopted by almost every army within the decade, and was to remain in service for nearly fifty years. Maxim himself joined forces with the large British armaments firm of Vickers, and the Vickers machine gun, which served the British Army during two world wars, was merely a refined version of the Maxim gun.
    Maxim's interests continued to occupy several fields of technology, including flight. In 1891 he took out a patent for a steam-powered aeroplane fitted with a pendulous gyroscopic stabilizer which would maintain the pitch of the aeroplane at any desired inclination (basically, a simple autopilot). Maxim decided to test the relationship between power, thrust and lift before moving on to stability and control. He designed a lightweight steam-engine which developed 180 hp (135 kW) and drove a propeller measuring 17 ft 10 in. (5.44 m) in diameter. He fitted two of these engines into his huge flying machine testrig, which needed a wing span of 104 ft (31.7 m) to generate enough lift to overcome a total weight of 4 tons. The machine was not designed for free flight, but ran on one set of rails with a second set to prevent it rising more than about 2 ft (61 cm). At Baldwyn's Park in Kent on 31 July 1894 the huge machine, carrying Maxim and his crew, reached a speed of 42 mph (67.6 km/h) and lifted off its rails. Unfortunately, one of the restraining axles broke and the machine was extensively damaged. Although it was subsequently repaired and further trials carried out, these experiments were very expensive. Maxim eventually abandoned the flying machine and did not develop his idea for a stabilizer, turning instead to other projects. At the age of almost 70 he returned to the problems of flight and designed a biplane with a petrol engine: it was built in 1910 but never left the ground.
    In all, Maxim registered 122 US and 149 British patents on objects ranging from mousetraps to automatic spindles. Included among them was a 1901 patent for a foot-operated suction cleaner. In 1900 he became a British subject and he was knighted the following year. He remained a larger-than-life figure, both physically and in character, until the end of his life.
    [br]
    Principal Honours and Distinctions
    Chevalier de la Légion d'Honneur 1881. Knighted 1901.
    Bibliography
    1908, Natural and Artificial Flight, London. 1915, My Life, London: Methuen (autobiography).
    Further Reading
    Obituary, 1916, Engineer (1 December).
    Obituary, 1916, Engineering (1 December).
    P.F.Mottelay, 1920, The Life and Work of Sir Hiram Maxim, London and New York: John Lane.
    Dictionary of National Biography, 1912–1921, 1927, Oxford: Oxford University Press.
    CM / JDS

    Biographical history of technology > Maxim, Sir Hiram Stevens

  • 31 Rammler, Erich

    [br]
    b. 9 July 1901 Tirpersdorf, near Oelsnitz, Germany
    d. 6 November 1986 Freiberg, Saxony, Germany
    [br]
    German mining engineer, developer of metallurgic coke from lignite.
    [br]
    A scholar of the Mining Academy in Freiberg, who in his dissertation dealt with the fineness of coal dust, Rammler started experiments in 1925 relating to firing this material. In the USA this process, based on coal, had turned out to be very effective in large boiler furnaces. Rammler endeavoured to apply the process to lignite and pursued general research work on various thermochemical problems as well as methods of grinding and classifying. As producing power from lignite was of specific interest for the young Soviet Union, with its large demand from its new power stations and its as-yet unexploited lignite deposits, he soon came into contact with the Soviet authorities. In his laboratory in Dresden, which he had bought from the freelance metallurgist Paul Otto Rosin after his emigration and under whom he had been working since he left the Academy, he continued his studies in refining coal and soon gained an international reputation. He opened up means of producing coke from lignite for use in metallurgical processes.
    His later work was of utmost importance after the Second World War when several countries in Eastern Europe, especially East Germany with its large lignite deposits, established their own iron and steel industries. Accordingly, the Soviet administration supported his experiments vigorously after he joined Karl Kegel's Institute for Briquetting in Freiberg in 1945. Through his numerous books and articles, he became the internationally leading expert on refining lignite and Kegel's successor as head of the Institute and Professor at the Bergakademie. Six years later, he produced for the first time high-temperature coke from lignite low in ash and sulphur for smelting in low-shaft furnaces. Rammler was widely honoured and contributed decisively to the industrial development of his country; he demonstrated new technological processes when, under austere conditions, economical and ecological considerations were neglected.
    [br]
    Bibliography
    Rammler, whose list of publications comprises more than 600 titles on various matters of his main scientific concern, also was the co-author (with E.Wächtler) of two articles on the development of briquetting brown coal in Germany, both published in 1985, Freiberger Forschungshefte, D 163 and D 169, Leipzig.
    Further Reading
    E.Wächtler, W.Mühlfriedel and W.Michel, 1976, Erich Rammler, Leipzig, (substantial biography, although packed with communist propaganda).
    M.Rasch, 1989, "Paul Rosin—Ingenieur, Hochschullehrer und Rationalisierungsfachmann". Technikgeschichte 56:101–32 (describes the framework within which Rammler's primary research developed).
    WK

    Biographical history of technology > Rammler, Erich

  • 32 Wankel, Felix

    [br]
    b. 13 August 1902 Lahr, Black Forest, Germany
    d. 9 October 1988 Lindau, Bavaria, Germany
    [br]
    German internal combustion engineer, inventor of the Wankel rotary engine.
    [br]
    Wankel was first employed at the German Aeronautical Research Establishment, where he worked on rotary valves and valve sealing techniques in the early 1930s and during the Second World War. In 1951 he joined NSU Motorenwerk AG, a motor manufacturer based at Neckarsulm, near Stuttgart, and began work on his rotary engine; the idea for this had first occurred to Wankel as early as 1929. He had completed his first design by 1954, and in 1957 his first prototype was tested. The Wankel engine has a three-pointed rotor, like a prism of an equilateral triangle but with the sides bowed outwards. This rotor is geared to a driveshaft and rotates within a closely fitting and slightly oval-shaped chamber so that, on each revolution, the power stroke is applied to each of the three faces of the rotor as they pass a single spark plug. Two or more rotors may be mounted coaxially, their power strokes being timed sequentially. The engine has only two moving parts, the rotor and the output shaft, making it about a quarter less in weight compared with a conventional piston engine; however, its fuel consumption is high and its exhaust emissions are relatively highly pollutant. The average Wankel engine speed is 5,500 rpm. The first production car to use a Wankel engine was the NSU Ro80, though this was preceded by the experimental NSU Spyder prototype, an open two-seater. The Japanese company Mazda is the only other automobile manufacturer to have fitted a Wankel engine to a production car, although licences were taken by Alfa Romeo, Peugeot- Citroën, Daimler-Benz, Rolls-Royce, Toyota, Volkswagen-Audi (the company that bought NSU in the mid-1970s) and many others; Daimler-Benz even produced a Mercedes C-111 prototype with a three-rotor Wankel engine. The American aircraft manufacturer Curtiss-Wright carried out research for a Wankel aero-engine which never went into production, but the Austrian company Rotax produced a motorcycle version of the Wankel engine which was fitted by the British motorcycle manufacturer Norton to a number of its models.
    While Wankel became director of his own research establishment at Lindau, on Lake Constance in southern Germany, Mazda continued to improve the rotary engine and by the time of Wankel's death the Mazda RX-7 coupé had become a successful, if not high-selling, Wankel -engined sports car.
    [br]
    Further Reading
    N.Faith, 1975, Wankel: The Curious Story Behind the Revolutionary Rotary Engine, New York: Stein \& Day.
    IMcN

    Biographical history of technology > Wankel, Felix

  • 33 Baird, John Logie

    [br]
    b. 13 August 1888 Helensburgh, Dumbarton, Scotland
    d. 14 June 1946 Bexhill-on-Sea, Sussex, England
    [br]
    Scottish inventor of mechanically-based television.
    [br]
    Baird attended Larchfield Academy, then the Royal Technical College and Glasgow University. However, before he could complete his electrical-engineering degree, the First World War began, although poor health kept him out of the armed services.
    Employed as an engineer at the Clyde Valley Electrical Company, he lost his position when his diamond-making experiment caused a power failure in Glasgow. He then went to London, where he lived with his sister and tried manufacturing household products of his own design. To recover from poor health, he then went to Hastings and, using scrap materials, began experiments with imaging systems. In 1924 he transmitted outline images over wires, and by 1925 he was able to transmit recognizable human faces. In 1926 he was able to transmit moving images at a resolution of thirty lines per image and a frequency of ten images per second over an infrared link. Also that year, he started the world's first television station, which he named 2TV. In 1927 he transmitted moving images from London to Glasgow, and later that year to a passenger liner. In 1928 he demonstrated colour television.
    In 1936, when the BBC wanted to begin television service, Baird's system lost out in a competition with Marconi Electric and Musical Industries (EMI). In 1946 Baird reported that he had successfully completed research on a stereo television system.
    [br]
    Further Reading
    R.Tiltman, 1933, Baird of Television, London: Seeley Service; repub. 1974, New York: Arno Press.
    J.Rowland, 1967, The Television Man: The Story of John Logie Baird, New York: Roy Publishers.
    F.Macgregor, 1984, Famous Scots, Gordon Wright (contains a short biography on Baird).
    HO

    Biographical history of technology > Baird, John Logie

  • 34 Duddell, William du Bois

    SUBJECT AREA: Electricity
    [br]
    b. 1872 Kensington, London, England
    d. 4 November 1917 London, England
    [br]
    English engineer, inventor of the first practical oscillograph.
    [br]
    After an education at the College of Stanislas, Cannes, Duddell served an apprenticeship with Davy Paxman of Colchester. Studying under Ayrton and Mather at the Central Technical College in South Kensington, he found the facilities for experimental work of exceptional value to him and remained there for some years. In 1897 Duddell produced a galvanometer which was sufficiently responsive to display an alternating-current wave-form. This instrument, with a coil carrying a mirror in the air gap of a powerful electromagnet, had a small periodic time. An oscillating mirror driven by a synchronous motor spread out the deflection on a time-scale. This development became the first commercial oscillograph and brought Duddell into prominence as a first-rate designer of special instruments. The Duddell oscillograph remained in use until after the Second World War, examples being used for recording short-circuit tests on high-power switchgear and other rapidly varying or transient phenomena. His next important work was to collaborate with Professor Marchant at Liverpool University to investigate the characteristics of the electric arc. This led to the suggestion that, coupled to a resonant circuit, the electric arc could form a generator of high-frequency currents. This arrangement was later developed by Poulson for wireless telegraphy. Duddell spent the last years of his life on government research as a member of the Admiralty Board of Inventions and Research and also of the Inventions Board of the Ministry of Munitions.
    [br]
    Principal Honours and Distinctions
    CBE 1916. FRS 1907. Royal Society Hughes Medal 1912. President, Institution of Electrical Engineers 1912 and 1913.
    Bibliography
    1897, Electrician, 39:636–8 (describes his oscillograph). 5 March 1898, British patent no. 5,449 (the oscillograph).
    1899, with E.W.Marchant, "Experiments on alternate current arcs by aid of oscillograph", Journal of the Institution of Electrical Engineers 28: 1–107.
    Further Reading
    V.J.Phillips, 1987, Waveforms, Bristol (a comprehensive account).
    1945, "50 years of scientific instrument manufacture", Engineering, 159:461.
    GW

    Biographical history of technology > Duddell, William du Bois

  • 35 Gresley, Sir Herbert Nigel

    [br]
    b. 19 June 1876 Edinburgh, Scotland
    d. 5 April 1941 Hertford, England
    [br]
    English mechanical engineer, designer of the A4-class 4–6–2 locomotive holding the world speed record for steam traction.
    [br]
    Gresley was the son of the Rector of Netherseale, Derbyshire; he was educated at Marlborough and by the age of 13 was skilled at making sketches of locomotives. In 1893 he became a pupil of F.W. Webb at Crewe works, London \& North Western Railway, and in 1898 he moved to Horwich works, Lancashire \& Yorkshire Railway, to gain drawing-office experience under J.A.F.Aspinall, subsequently becoming Foreman of the locomotive running sheds at Blackpool. In 1900 he transferred to the carriage and wagon department, and in 1904 he had risen to become its Assistant Superintendent. In 1905 he moved to the Great Northern Railway, becoming Superintendent of its carriage and wagon department at Doncaster under H.A. Ivatt. In 1906 he designed and produced a bogie luggage van with steel underframe, teak body, elliptical roof, bowed ends and buckeye couplings: this became the prototype for East Coast main-line coaches built over the next thirty-five years. In 1911 Gresley succeeded Ivatt as Locomotive, Carriage \& Wagon Superintendent. His first locomotive was a mixed-traffic 2–6–0, his next a 2–8–0 for freight. From 1915 he worked on the design of a 4–6–2 locomotive for express passenger traffic: as with Ivatt's 4 4 2s, the trailing axle would allow the wide firebox needed for Yorkshire coal. He also devised a means by which two sets of valve gear could operate the valves on a three-cylinder locomotive and applied it for the first time on a 2–8–0 built in 1918. The system was complex, but a later simplified form was used on all subsequent Gresley three-cylinder locomotives, including his first 4–6–2 which appeared in 1922. In 1921, Gresley introduced the first British restaurant car with electric cooking facilities.
    With the grouping of 1923, the Great Northern Railway was absorbed into the London \& North Eastern Railway and Gresley was appointed Chief Mechanical Engineer. More 4–6– 2s were built, the first British class of such wheel arrangement. Modifications to their valve gear, along lines developed by G.J. Churchward, reduced their coal consumption sufficiently to enable them to run non-stop between London and Edinburgh. So that enginemen might change over en route, some of the locomotives were equipped with corridor tenders from 1928. The design was steadily improved in detail, and by comparison an experimental 4–6–4 with a watertube boiler that Gresley produced in 1929 showed no overall benefit. A successful high-powered 2–8–2 was built in 1934, following the introduction of third-class sleeping cars, to haul 500-ton passenger trains between Edinburgh and Aberdeen.
    In 1932 the need to meet increasing road competition had resulted in the end of a long-standing agreement between East Coast and West Coast railways, that train journeys between London and Edinburgh by either route should be scheduled to take 8 1/4 hours. Seeking to accelerate train services, Gresley studied high-speed, diesel-electric railcars in Germany and petrol-electric railcars in France. He considered them for the London \& North Eastern Railway, but a test run by a train hauled by one of his 4–6–2s in 1934, which reached 108 mph (174 km/h), suggested that a steam train could better the railcar proposals while its accommodation would be more comfortable. To celebrate the Silver Jubilee of King George V, a high-speed, streamlined train between London and Newcastle upon Tyne was proposed, the first such train in Britain. An improved 4–6–2, the A4 class, was designed with modifications to ensure free running and an ample reserve of power up hill. Its streamlined outline included a wedge-shaped front which reduced wind resistance and helped to lift the exhaust dear of the cab windows at speed. The first locomotive of the class, named Silver Link, ran at an average speed of 100 mph (161 km/h) for 43 miles (69 km), with a maximum speed of 112 1/2 mph (181 km/h), on a seven-coach test train on 27 September 1935: the locomotive went into service hauling the Silver Jubilee express single-handed (since others of the class had still to be completed) for the first three weeks, a round trip of 536 miles (863 km) daily, much of it at 90 mph (145 km/h), without any mechanical troubles at all. Coaches for the Silver Jubilee had teak-framed, steel-panelled bodies on all-steel, welded underframes; windows were double glazed; and there was a pressure ventilation/heating system. Comparable trains were introduced between London Kings Cross and Edinburgh in 1937 and to Leeds in 1938.
    Gresley did not hesitate to incorporate outstanding features from elsewhere into his locomotive designs and was well aware of the work of André Chapelon in France. Four A4s built in 1938 were equipped with Kylchap twin blast-pipes and double chimneys to improve performance still further. The first of these to be completed, no. 4468, Mallard, on 3 July 1938 ran a test train at over 120 mph (193 km/h) for 2 miles (3.2 km) and momentarily achieved 126 mph (203 km/h), the world speed record for steam traction. J.Duddington was the driver and T.Bray the fireman. The use of high-speed trains came to an end with the Second World War. The A4s were then demonstrated to be powerful as well as fast: one was noted hauling a 730-ton, 22-coach train at an average speed exceeding 75 mph (120 km/h) over 30 miles (48 km). The war also halted electrification of the Manchester-Sheffield line, on the 1,500 volt DC overhead system; however, anticipating eventual resumption, Gresley had a prototype main-line Bo-Bo electric locomotive built in 1941. Sadly, Gresley died from a heart attack while still in office.
    [br]
    Principal Honours and Distinctions
    Knighted 1936. President, Institution of Locomotive Engineers 1927 and 1934. President, Institution of Mechanical Engineers 1936.
    Further Reading
    F.A.S.Brown, 1961, Nigel Gresley, Locomotive Engineer, Ian Allan (full-length biography).
    John Bellwood and David Jenkinson, Gresley and Stanier. A Centenary Tribute (a good comparative account).
    PJGR

    Biographical history of technology > Gresley, Sir Herbert Nigel

  • 36 Harrison, John

    [br]
    b. 24 March 1693 Foulby, Yorkshire, England
    d. 24 March 1776 London, England
    [br]
    English horologist who constructed the first timekeeper of sufficient accuracy to determine longitude at sea and invented the gridiron pendulum for temperature compensation.
    [br]
    John Harrison was the son of a carpenter and was brought up to that trade. He was largely self-taught and learned mechanics from a copy of Nicholas Saunderson's lectures that had been lent to him. With the assistance of his younger brother, James, he built a series of unconventional clocks, mainly of wood. He was always concerned to reduce friction, without using oil, and this influenced the design of his "grasshopper" escapement. He also invented the "gridiron" compensation pendulum, which depended on the differential expansion of brass and steel. The excellent performance of his regulator clocks, which incorporated these devices, convinced him that they could also be used in a sea dock to compete for the longitude prize. In 1714 the Government had offered a prize of £20,000 for a method of determining longitude at sea to within half a degree after a voyage to the West Indies. In theory the longitude could be found by carrying an accurate timepiece that would indicate the time at a known longitude, but the requirements of the Act were very exacting. The timepiece would have to have a cumulative error of no more than two minutes after a voyage lasting six weeks.
    In 1730 Harrison went to London with his proposal for a sea clock, supported by examples of his grasshopper escapement and his gridiron pendulum. His proposal received sufficient encouragement and financial support, from George Graham and others, to enable him to return to Barrow and construct his first sea clock, which he completed five years later. This was a large and complicated machine that was made out of brass but retained the wooden wheelwork and the grasshopper escapement of the regulator clocks. The two balances were interlinked to counteract the rolling of the vessel and were controlled by helical springs operating in tension. It was the first timepiece with a balance to have temperature compensation. The effect of temperature change on the timekeeping of a balance is more pronounced than it is for a pendulum, as two effects are involved: the change in the size of the balance; and the change in the elasticity of the balance spring. Harrison compensated for both effects by using a gridiron arrangement to alter the tension in the springs. This timekeeper performed creditably when it was tested on a voyage to Lisbon, and the Board of Longitude agreed to finance improved models. Harrison's second timekeeper dispensed with the use of wood and had the added refinement of a remontoire, but even before it was tested he had embarked on a third machine. The balance of this machine was controlled by a spiral spring whose effective length was altered by a bimetallic strip to compensate for changes in temperature. In 1753 Harrison commissioned a London watchmaker, John Jefferys, to make a watch for his own personal use, with a similar form of temperature compensation and a modified verge escapement that was intended to compensate for the lack of isochronism of the balance spring. The time-keeping of this watch was surprisingly good and Harrison proceeded to build a larger and more sophisticated version, with a remontoire. This timekeeper was completed in 1759 and its performance was so remarkable that Harrison decided to enter it for the longitude prize in place of his third machine. It was tested on two voyages to the West Indies and on both occasions it met the requirements of the Act, but the Board of Longitude withheld half the prize money until they had proof that the timekeeper could be duplicated. Copies were made by Harrison and by Larcum Kendall, but the Board still continued to prevaricate and Harrison received the full amount of the prize in 1773 only after George III had intervened on his behalf.
    Although Harrison had shown that it was possible to construct a timepiece of sufficient accuracy to determine longitude at sea, his solution was too complex and costly to be produced in quantity. It had, for example, taken Larcum Kendall two years to produce his copy of Harrison's fourth timekeeper, but Harrison had overcome the psychological barrier and opened the door for others to produce chronometers in quantity at an affordable price. This was achieved before the end of the century by Arnold and Earnshaw, but they used an entirely different design that owed more to Le Roy than it did to Harrison and which only retained Harrison's maintaining power.
    [br]
    Principal Honours and Distinctions
    Royal Society Copley Medal 1749.
    Bibliography
    1767, The Principles of Mr Harrison's Time-keeper, with Plates of the Same, London. 1767, Remarks on a Pamphlet Lately Published by the Rev. Mr Maskelyne Under the
    Authority of the Board of Longitude, London.
    1775, A Description Concerning Such Mechanisms as Will Afford a Nice or True Mensuration of Time, London.
    Further Reading
    R.T.Gould, 1923, The Marine Chronometer: Its History and Development, London; reprinted 1960, Holland Press.
    —1978, John Harrison and His Timekeepers, 4th edn, London: National Maritime Museum.
    H.Quill, 1966, John Harrison, the Man who Found Longitude, London. A.G.Randall, 1989, "The technology of John Harrison's portable timekeepers", Antiquarian Horology 18:145–60, 261–77.
    J.Betts, 1993, John Harrison London (a good short account of Harrison's work). S.Smiles, 1905, Men of Invention and Industry; London: John Murray, Chapter III. Dictionary of National Biography, Vol. IX, pp. 35–6.
    DV

    Biographical history of technology > Harrison, John

  • 37 Heathcote, John

    SUBJECT AREA: Textiles
    [br]
    b. 7 August 1783 Duffield, Derbyshire, England
    d. 18 January 1861 Tiverton, Devonshire, England
    [br]
    English inventor of the bobbin-net lace machine.
    [br]
    Heathcote was the son of a small farmer who became blind, obliging the family to move to Long Whatton, near Loughborough, c.1790. He was apprenticed to W.Shepherd, a hosiery-machine maker, and became a frame-smith in the hosiery industry. He moved to Nottingham where he entered the employment of an excellent machine maker named Elliott. He later joined William Caldwell of Hathern, whose daughter he had married. The lace-making apparatus they patented jointly in 1804 had already been anticipated, so Heathcote turned to the problem of making pillow lace, a cottage industry in which women made lace by arranging pins stuck in a pillow in the correct pattern and winding around them thread contained on thin bobbins. He began by analysing the complicated hand-woven lace into simple warp and weft threads and found he could dispense with half the bobbins. The first machine he developed and patented, in 1808, made narrow lace an inch or so wide, but the following year he made much broader lace on an improved version. In his second patent, in 1809, he could make a type of net curtain, Brussels lace, without patterns. His machine made bobbin-net by the use of thin brass discs, between which the thread was wound. As they passed through the warp threads, which were arranged vertically, the warp threads were moved to each side in turn, so as to twist the bobbin threads round the warp threads. The bobbins were in two rows to save space, and jogged on carriages in grooves along a bar running the length of the machine. As the strength of this fabric depended upon bringing the bobbin threads diagonally across, in addition to the forward movement, the machine had to provide for a sideways movement of each bobbin every time the lengthwise course was completed. A high standard of accuracy in manufacture was essential for success. Called the "Old Loughborough", it was acknowledged to be the most complicated machine so far produced. In partnership with a man named Charles Lacy, who supplied the necessary capital, a factory was established at Loughborough that proved highly successful; however, their fifty-five frames were destroyed by Luddites in 1816. Heathcote was awarded damages of £10,000 by the county of Nottingham on the condition it was spent locally, but to avoid further interference he decided to transfer not only his machines but his entire workforce elsewhere and refused the money. In a disused woollen factory at Tiverton in Devonshire, powered by the waters of the river Exe, he built 300 frames of greater width and speed. By continually making inventions and improvements until he retired in 1843, his business flourished and he amassed a large fortune. He patented one machine for silk cocoon-reeling and another for plaiting or braiding. In 1825 he brought out two patents for the mechanical ornamentation or figuring of lace. He acquired a sound knowledge of French prior to opening a steam-powered lace factory in France. The factory proved to be a successful venture that lasted many years. In 1832 he patented a monstrous steam plough that is reputed to have cost him over £12,000 and was claimed to be the best in its day. One of its stated aims was "improved methods of draining land", which he hoped would develop agriculture in Ireland. A cable was used to haul the implement across the land. From 1832 to 1859, Heathcote represented Tiverton in Parliament and, among other benefactions, he built a school for his adopted town.
    [br]
    Bibliography
    1804, with William Caldwell, British patent no. 2,788 (lace-making machine). 1808. British patent no. 3,151 (machine for making narrow lace).
    1809. British patent no. 3,216 (machine for making Brussels lace). 1813, British patent no. 3,673.
    1825, British patent no. 5,103 (mechanical ornamentation of lace). 1825, British patent no. 5,144 (mechanical ornamentation of lace).
    Further Reading
    V.Felkin, 1867, History of the Machine-wrought Hosiery and Lace Manufacture, Nottingham (provides a full account of Heathcote's early life and his inventions).
    A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London (provides more details of his later years).
    W.G.Allen, 1958 John Heathcote and His Heritage (biography).
    M.R.Lane, 1980, The Story of the Steam Plough Works, Fowlers of Leeds, London (for comments about Heathcote's steam plough).
    W.English, 1969, The Textile Industry, London, and C.Singer (ed.), 1958, A History of
    Technology, Vol. V, Oxford: Clarendon Press (both describe the lace-making machine).
    RLH

    Biographical history of technology > Heathcote, John

  • 38 Leonardo da Vinci

    [br]
    b. 15 April 1452 Vinci, near Florence, Italy,
    d. 2 May 1519 St Cloux, near Amboise, France.
    [br]
    Italian scientist, engineer, inventor and artist.
    [br]
    Leonardo was the illegitimate son of a Florentine lawyer. His first sixteen years were spent with the lawyer's family in the rural surroundings of Vinci, which aroused in him a lifelong love of nature and an insatiable curiosity in it. He received little formal education but extended his knowledge through private reading. That gave him only a smattering of Latin, a deficiency that was to be a hindrance throughout his active life. At sixteen he was apprenticed in the studio of Andrea del Verrochio in Florence, where he received a training not only in art but in a wide variety of crafts and technical arts.
    In 1482 Leonardo went to Milan, where he sought and obtained employment with Ludovico Sforza, later Duke of Milan, partly to sculpt a massive equestrian statue of Ludovico but the work never progressed beyond the full-scale model stage. He did, however, complete the painting which became known as the Virgin of the Rocks and in 1497 his greatest artistic achievement, The Last Supper, commissioned jointly by Ludovico and the friars of Santa Maria della Grazie and painted on the wall of the monastery's refectory. Leonardo was responsible for the court pageants and also devised a system of irrigation to supply water to the plains of Lombardy. In 1499 the French army entered Milan and deposed Leonardo's employer. Leonardo departed and, after a brief visit to Mantua, returned to Florence, where for a time he was employed as architect and engineer to Cesare Borgia, Duke of Romagna. Around 1504 he completed another celebrated work, the Mona Lisa.
    In 1506 Leonardo began his second sojourn in Milan, this time in the service of King Louis XII of France, who appointed him "painter and engineer". In 1513 Leonardo left for Rome in the company of his pupil Francesco Melzi, but his time there was unproductive and he found himself out of touch with the younger artists active there, Michelangelo above all. In 1516 he accepted with relief an invitation from King François I of France to reside at the small château of St Cloux in the royal domain of Amboise. With the pension granted by François, Leonardo lived out his remaining years in tranquility at St Cloux.
    Leonardo's career can hardly be regarded as a success or worthy of such a towering genius. For centuries he was known only for the handful of artistic works that he managed to complete and have survived more or less intact. His main activity remained hidden until the nineteenth and twentieth centuries, during which the contents of his notebooks were gradually revealed. It became evident that Leonardo was one of the greatest scientific investigators and inventors in the history of civilization. Throughout his working life he extended a searching curiosity over an extraordinarily wide range of subjects. The notes show careful investigation of questions of mechanical and civil engineering, such as power transmission by means of pulleys and also a form of chain belting. The notebooks record many devices, such as machines for grinding and polishing lenses, a lathe operated by treadle-crank, a rolling mill with conical rollers and a spinning machine with pinion and yard divider. Leonardo made an exhaustive study of the flight of birds, with a view to designing a flying machine, which obsessed him for many years.
    Leonardo recorded his observations and conclusions, together with many ingenious inventions, on thousands of pages of manuscript notes, sketches and drawings. There are occasional indications that he had in mind the publication of portions of the notes in a coherent form, but he never diverted his energy into putting them in order; instead, he went on making notes. As a result, Leonardo's impact on the development of science and technology was virtually nil. Even if his notebooks had been copied and circulated, there were daunting impediments to their understanding. Leonardo was left-handed and wrote in mirror-writing: that is, in reverse from right to left. He also used his own abbreviations and no punctuation.
    At his death Leonardo bequeathed his entire output of notes to his friend and companion Francesco Melzi, who kept them safe until his own death in 1570. Melzi left the collection in turn to his son Orazio, whose lack of interest in the arts and sciences resulted in a sad period of dispersal which endangered their survival, but in 1636 the bulk of them, in thirteen volumes, were assembled and donated to the Ambrosian Library in Milan. These include a large volume of notes and drawings compiled from the various portions of the notebooks and is now known as the Codex Atlanticus. There they stayed, forgotten and ignored, until 1796, when Napoleon's marauding army overran Italy and art and literary works, including the thirteen volumes of Leonardo's notebooks, were pillaged and taken to Paris. After the war in 1815, the French government agreed to return them but only the Codex Atlanticus found its way back to Milan; the rest remained in Paris. The appendix to one notebook, dealing with the flight of birds, was later regarded as of sufficient importance to stand on its own. Four small collections reached Britain at various times during the seventeenth and eighteenth centuries; of these, the volume in the Royal Collection at Windsor Castle is notable for its magnificent series of anatomical drawings. Other collections include the Codex Leicester and Codex Arundel in the British Museum in London, and the Madrid Codices in Spain.
    Towards the end of the nineteenth century, Leonardo's true stature as scientist, engineer and inventor began to emerge, particularly with the publication of transcriptions and translations of his notebooks. The volumes in Paris appeared in 1881–97 and the Codex Atlanticus was published in Milan between 1894 and 1904.
    [br]
    Principal Honours and Distinctions
    "Premier peintre, architecte et mécanicien du Roi" to King François I of France, 1516.
    Further Reading
    E.MacCurdy, 1939, The Notebooks of Leonardo da Vinci, 2 vols, London; 2nd edn, 1956, London (the most extensive selection of the notes, with an English translation).
    G.Vasari (trans. G.Bull), 1965, Lives of the Artists, London: Penguin, pp. 255–271.
    C.Gibbs-Smith, 1978, The Inventions of Leonardo da Vinci, Oxford: Phaidon. L.H.Heydenreich, Dibner and L. Reti, 1981, Leonardo the Inventor, London: Hutchinson.
    I.B.Hart, 1961, The World of Leonardo da Vinci, London: Macdonald.
    LRD / IMcN

    Biographical history of technology > Leonardo da Vinci

  • 39 Ma Jun (Ma Chun)

    [br]
    fl. 220–265 China
    [br]
    Chinese engineer and inventor.
    [br]
    Ma Jun was active at the court of Emperor Ming Ti and achieved several useful inventions in a number of fields. First, he made improvements in the silk-weaving loom by simplifying the heddles and treadles, thereby enabling a greater variety of patterns to be woven. Second, he constructed a "south pointing carriage", which was a two-wheeled cart with a train of gears arranged so that whichever direction the vehicle turned, the figure mounted on top of it would always point south. This may seem trivial, but the carriage may have had useful applications, possibly in surveying. During the period 227 to 239, Ma Jun also made a square-pallet chain pump, usually attributed to Bi Lan (186 AD), Loyang, that was used to irrigate parks and gardens. Other inventions included rotary ballistae and mechanical toys that were worked by water power, such as puppets operated by horizontal jack wheels.
    [br]
    Further Reading
    J.Needham, Science and Civilisation in China, Cambridge: Cambridge University Press, 1965, Vol. IV, 2, pp. 39–42, 286–8, 295, 303, 346, 350, 524, 532–3.
    LRD

    Biographical history of technology > Ma Jun (Ma Chun)

  • 40 Morrison, William Murray

    [br]
    b. 7 October 1873 Birchwood, Inverness-shire, Scotland
    d. 21 May 1948 London, England
    [br]
    Scottish pioneer in the development of the British aluminium industry and Highlands hydroelectric energy.
    [br]
    After studying at the West of Scotland Technical College in Glasgow, in January 1895 Morrison was appointed Engineer to the newly formed British Aluminium Company Limited (BAC); it was with this organization that he spent his entire career. The company secured the patent rights to the Héroult and Bayer processes. It constructed a 200 tonne per year electrolytic plant at Foyers on the shore of Loch Ness, together with an adjacent 5000 kW hydroelectric scheme, and it built an alumina factory at Larne Harbour in north-eastern Ireland. Morrison was soon Manager at Foyers, and he became the company's Joint Technical Adviser. In 1910 he was made General Manager, and later he was appointed Managing Director. Morrison successfully brought about improvements in all parts of the production process; between 1915 and 1930 he increased the size of individual electrolytic cells by a factor of five, from 8,000 to 40,000 amperes. Soon after 1901, BAC built a second works for electrolytic reduction, at Kinlochleven in Argyllshire, where the primary design originated from Morrison. In the 1920s a third plant was erected at Fort William, in the lee of Ben Nevis, with hydroelectric generators providing some 75 MW. Alumina factories were constructed at Burntisland on the Firth of Forth and, in the 1930s, at Newport in Monmouthshire. Rolling mills were developed at Milton in Staffordshire, Warrington, and Falkirk in Stirlingshire, this last coming into use in the 1940s, by which time the company had a primary-metal output of more than 30,000 tonnes a year. Morrison was closely involved in all of these developments. He retired in 1946 as Deputy Chairman of BAC.
    [br]
    Principal Honours and Distinctions
    Commander of the Order of St Olav of Norway 1933 (BAC had manufacturing interests in Norway). Knighted 1943. Vice-Chairman, British Non-Ferrous Metals Research Association, Faraday Society, Institute of Metals. Institute of Metals Platinum Medal 1942.
    Bibliography
    1939, "Aluminium and highland water power", Journal of the Institute of Metals 65:17– 36 (seventeenth autumn lecture),
    JKA

    Biographical history of technology > Morrison, William Murray

См. также в других словарях:

  • Power (philosophy) — Powerful redirects here. For other uses, see Power (disambiguation). Power is a measurement of an entity s ability to control its environment, including the behavior of other entities. The term authority is often used for power perceived as… …   Wikipedia

  • Power line communication — or power line carrier (PLC), also known as power line digital subscriber line (PDSL), mains communication, power line telecom (PLT), power line networking (PLN), or broadband over power lines (BPL) are systems for carrying data on a conductor… …   Wikipedia

  • Second Superpower — is a term used to conceptualize a global civil society as a world force comparable to or counterbalancing the United States of America. In the modern world, China and the former Soviet Union have been the often selected candidates which cover the …   Wikipedia

  • Second Avenue Subway — Planned route of the NYC Subway Second Avenue Line ( T , in teal). Overview Type Rapid transit System …   Wikipedia

  • Second Schleswig War — Part of the wars of German unification The Battle of Dybbøl by Jørgen Valentin Sonne, 1871 …   Wikipedia

  • Power of Dreams — were a Dublin based pop/rock band, built around Craig and Keith Walker. They released their critically acclaimed EP A Little Piece of God on Keith Cullen s Setanta Records in 1989. Following a six figure bidding war between rival record companies …   Wikipedia

  • Second Amendment to the United States Constitution — The Second Amendment (Amendment II) to the United States Constitution is a part of the United States Bill of Rights that protects the pre existing individual right to possess and carry weapons (i.e. keep and bear arms ) in case of confrontation.… …   Wikipedia

  • Second law of thermodynamics — The second law of thermodynamics is an expression of the universal law of increasing entropy, stating that the entropy of an isolated system which is not in equilibrium will tend to increase over time, approaching a maximum value at… …   Wikipedia

  • power — The right, ability, authority, or faculty of doing something. Authority to do any act which the grantor might himself lawfully perform. Porter v. Household Finance Corp. of Columbus, D.C.Ohio, 385 F.Supp. 336, 341. A power is an ability on the… …   Black's law dictionary

  • Second-order logic — In logic and mathematics second order logic is an extension of first order logic, which itself is an extension of propositional logic.[1] Second order logic is in turn extended by higher order logic and type theory. First order logic uses only… …   Wikipedia

  • Second Boer War — Infobox Military Conflict conflict=Second Anglo Boer War partof=the Boer Wars caption=Boer guerrillas during the Second Boer War date=11 October 1899 ndash; 31 May 1902 place=South Africa casus belli=The Jameson Raid, 1895 96 [Thomas Pakenham,… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»