Перевод: со всех языков на все языки

со всех языков на все языки

royal+scottish+academy

  • 21 президент Шотландской королевской академии

    Универсальный русско-английский словарь > президент Шотландской королевской академии

  • 22 член-корреспондент Шотландской королевской академии

    Универсальный русско-английский словарь > член-корреспондент Шотландской королевской академии

  • 23 H.R.S.A.

    English-Slovenian dictionary > H.R.S.A.

  • 24 P.R.S.A.

    English-Slovenian dictionary > P.R.S.A.

  • 25 Pasley, General Sir Charles William

    SUBJECT AREA: Civil engineering
    [br]
    b. 8 September 1780 Eskdalemuir, Dumfriesshire, Scotland
    d. 19 April 1861 London, England
    [br]
    Scottish Colonel-Commandant, Royal Engineers.
    [br]
    At first he was educated by Andrew Little of Lan-gholm. At the age of 14 he was sent to school at Selkirk, where he stayed for two years until joining the Royal Military Academy at Woolwich in August 1796. He was commissioned as Second Lieutenant in the Royal Artillery and transferred to the Royal Engineers on 1 April 1798. He served at Minorca, Malta, Naples, Sicily, Calabria and in the siege of Copenhagen and in other campaigns. He was promoted First Captain in 1807, and was on the staff of Sir John Moore at the battle of Coruna. He was wounded at the siege of Flushing in 1809 and was invalided for a year, employing his time in learning German.
    In November 1810 he published his Essay on Military Policy and Institutions of the British Empire, which ran through four editions. In 1811 he was in command of a company of Royal Military Artificers at Plymouth and there he devised a method of education by which the NCOs and troops could teach themselves without "mathematical masters". His system was a great success and was adopted at Chatham and throughout the corps. In 1812 he was appointed Director of the School of Military Engineering at Chatham. He remained at Chatham until 1841, when he was appointed Inspector-General of Railways. During this period he organized improved systems of sapping, mining, telegraphing, pontooning and exploding gunpowder on land or under water, and prepared pamphlets and courses of instruction in these and other subjects. In May 1836 he started what is probably the most important work for which he is remembered. This, was a book on Limes, Calcareous Cements, Mortar, Stuccos and Concretes. The general adoption of Joseph Aspdin's Portland Cement was largely due to Pasley's recommendation of the material.
    He was married twice: first in 1814 at Chatham to Harriet Cooper; and then on 30 March 1819 at Rochester to Martha Matilda Roberts, with whom he had six children— she died in 1881.
    [br]
    Principal Honours and Distinctions
    KGB 1846. FRS 1816. Honorary DCL, Oxford University 1844.
    Bibliography
    1810, Essay on Military Policy and Institutions of the British Empire. Limes, Calcareous Cements, Mortar, Stuccos and Concretes.
    Further Reading
    Porter, History of the Corps of Royal Engineers. DNB. Proceedings of the Royal Society.
    IMcN

    Biographical history of technology > Pasley, General Sir Charles William

  • 26 Cruickshank, William

    SUBJECT AREA: Electricity
    [br]
    d. 1810/11 Scotland
    [br]
    Scottish chemist and surgeon, inventor of a trough battery developed from Volta's pile.
    [br]
    Cruickshank graduated MA from King's College, Aberdeen, in 1765, and later gained a Diploma of the Royal College of Surgeons. When chemistry was introduced in 1788 into the course at the Royal Military Academy in Woolwich, Cruickshank became a member of staff, serving as Assistant to Dr A.Crawford, the Lecturer in Chemistry. Upon Crawford's death in 1796 Cruickshank succeeded him as Lecturer and held the post until his retirement due to ill health in 1804. He also held the senior posts of Chemist to the Ordnance at Woolwich and Surgeon to the Ordnance Medical Department. He should not be confused with William Cumberland Cruickshank (1745–1800), who was also a surgeon and Fellow of the Royal Society. In 1801, shortly after Volta's announcement of his pile, Cruickshank built a voltaic pile to facilitate his experiments in electrochemistry. The pile had zinc and silver plates about 1½ in2 (10 cm2) with interposed papers moistened with ammonium chloride. Dissatisfied with this arrangement, Cruickshank devised a horizontal trough battery in which a wooden box was divided into cells, each holding a pair of zinc and silver or zinc and copper plates. Charged with a dilute solution of ammonium chloride, the battery, which was typically of sixty cells, was found to be more convenient to use than a pile and it, or a derivative, was generally adopted for electrochemical experiments including tose of Humphrey Davy during the early years of the nineteenth century.
    [br]
    Principal Honours and Distinctions
    FRS 1802.
    Bibliography
    1801, article in Nicholsons Journal 4:187–91 (describes Cruickshank's original pile). 1801, article in Nicholsons Journal 4:245–64 (describes his trough battery).
    Further Reading
    B.Bowers, 1982, A History of Electric Light and Power, London (a short account). A.Courts, 1959, "William Cruickshank", Annals of Science 15:121–33 GW

    Biographical history of technology > Cruickshank, William

  • 27 Kirkaldy, David

    [br]
    b. 4 April 1820 Mayfield, Dundee, Scotland
    d. 25 January 1897 London, England
    [br]
    Scottish engineer and pioneer in materials testing.
    [br]
    The son of a merchant of Dundee, Kirkaldy was educated there, then at Merchiston Castle School, Edinburgh, and at Edinburgh University. For a while he worked in his father's office, but with a preference for engineering, in 1843 he commenced an apprenticeship at the Glasgow works of Robert Napier. After four years in the shops he was transferred to the drawing office and in a very few years rose to become Chief. Here Kirkaldy demonstrated a remarkable talent both for the meticulous recording of observations and data and for technical drawing. His work also had an aesthetic appeal and four of his drawings of Napier steamships were shown at the Paris Exhibition of 1855, earning both Napier and Kirkaldy a medal. His "as fitted" set of drawings of the Cunard Liner Persia, which had been built in 1855, is now in the possession of the National Maritime Museum at Greenwich, London; it is regarded as one of the finest examples of its kind in the world, and has even been exhibited at the Royal Academy in London.
    With the impending order for the Royal Naval Ironclad Black Prince (sister ship to HMS Warrior, now preserved at Portsmouth) and for some high-pressure marine boilers and engines, there was need for a close scientific analysis of the physical properties of iron and steel. Kirkaldy, now designated Chief Draughtsman and Calculator, was placed in charge of this work, which included comparisons of puddled steel and wrought iron, using a simple lever-arm testing machine. The tests lasted some three years and resulted in Kirkaldy's most important publication, Experiments on Wrought Iron and Steel (1862, London), which gained him wide recognition for his careful and thorough work. Napier's did not encourage him to continue testing; but realizing the growing importance of materials testing, Kirkaldy resigned from the shipyard in 1861. For the next two and a half years Kirkaldy worked on the design of a massive testing machine that was manufactured in Leeds and installed in premises in London, at The Grove, Southwark.
    The works was open for trade in January 1866 and engineers soon began to bring him specimens for testing on the great machine: Joseph Cubitt (son of William Cubitt) brought him samples of the materials for the new Blackfriars Bridge, which was then under construction. Soon The Grove became too cramped and Kirkaldy moved to 99 Southwark Street, reopening in January 1874. In the years that followed, Kirkaldy gained a worldwide reputation for rigorous and meticulous testing and recording of results, coupled with the highest integrity. He numbered the most distinguished engineers of the time among his clients.
    After Kirkaldy's death, his son William George, whom he had taken into partnership, carried on the business. When the son died in 1914, his widow took charge until her death in 1938, when the grandson David became proprietor. He sold out to Treharne \& Davies, chemical consultants, in 1965, but the works finally closed in 1974. The future of the premises and the testing machine at first seemed threatened, but that has now been secured and the machine is once more in working order. Over almost one hundred years of trading in South London, the company was involved in many famous enquiries, including the analysis of the iron from the ill-fated Tay Bridge (see Bouch, Sir Thomas).
    [br]
    Principal Honours and Distinctions
    Institution of Engineers and Shipbuilders in Scotland Gold Medal 1864.
    Bibliography
    1862, Results of an Experimental Inquiry into the Tensile Strength and Other Properties of Wrought Iron and Steel (originally presented as a paper to the 1860–1 session of the Scottish Shipbuilders' Association).
    Further Reading
    D.P.Smith, 1981, "David Kirkaldy (1820–97) and engineering materials testing", Transactions of the Newcomen Society 52:49–65 (a clear and well-documented account).
    LRD / FMW

    Biographical history of technology > Kirkaldy, David

  • 28 Meek, Marshall

    SUBJECT AREA: Ports and shipping
    [br]
    b. 22 April 1925 Auchtermuchty, Fife, Scotland
    [br]
    Scottish naval architect and leading twentieth-century exponent of advanced maritime technology.
    [br]
    After early education at Cupar in Fife, Meek commenced training as a naval architect, taking the then popular sandwich apprenticeship of alternate half years at the University of Glasgow (with a Caird Scholarship) and at a shipyard, in his case the Caledon of Dundee. On leaving Dundee he worked for five years with the British Ship Research Association before joining Alfred Holt \& Co., owners of the Blue Funnel Line. During his twenty-five years at Liverpool, he rose to Chief Naval Architect and Director and was responsible for bringing the cargo-liner concept to its ultimate in design. When the company had become Ocean Fleets, it joined with other British shipowners and looked to Meek for the first purpose-built containership fleet in the world. This required new ship designs, massive worldwide investment in port facilities and marketing to win public acceptance of freight containers, thereby revolutionizing dry-cargo shipping. Under the houseflag of OCL (now POCL), this pioneer service set the highest standards of service and safety and continues to operate on almost every ocean.
    In 1979 Meek returned to the shipbuilding industry when he became Head of Technology at British Shipbuilders. Closely involved in contemporary problems of fuel economy and reduced staffing, he held the post for five years before his appointment as Managing Director of the National Maritime Institute. He was deeply involved in the merger with the British Ship Research Association to form British Maritime Technology (BMT), an organization of which he became Deputy Chairman.
    Marshall Meek has held many public offices, and is one of the few to have been President of two of the United Kingdom's maritime institutions. He has contributed over forty papers to learned societies, has acted as Visiting Professor to Strathclyde University and University College London, and serves on advisory committees to the Ministry of Defence, the Department of Transport and Lloyd's Register of Shipping. While in Liverpool he served as a Justice of the Peace.
    [br]
    Principal Honours and Distinctions
    CBE 1989. Fellow of the Royal Academy of Engineering 1990. President, Royal Institution of Naval Architects 1990–3; North East Coast Institution of Engineers and Shipbuilders 1984–6. Royal Designer for Industry (RDI) 1986. Royal Institution of Naval Architects Silver Medal (on two occasions).
    Bibliography
    1970, "The first OCL containerships", Transactions of the Royal Institution of Naval Architects.
    FMW

    Biographical history of technology > Meek, Marshall

  • 29 Linton, Hercules

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1 January 1836 Inverbervie, Kincardineshire, Scotland
    d. 15 May 1900 Inverbervie, Kincardineshire, Scotland
    [br]
    Scottish naval architect and shipbuilder; designer of the full-rigged ship Cutty Sark.
    [br]
    Linton came from a north-east Scottish family with shipbuilding connections. After education at Arbuthnott and then Arbroath Academy, he followed his father by becoming an apprentice at the Aberdeen shipyard of Alex Hall in January 1855. Thus must have been an inspiring time for him as the shipyards of Aberdeen were at the start of their rise to world renown. Hall's had just introduced the hollow, lined Aberdeen Bow which heralded the great years of the Aberdeen Clippers. Linton stayed on with Hall's until around 1863, when he joined the Liverpool Under-writers' Register as a ship surveyor; he then worked for similar organizations in different parts of England and Scotland. Early in 1868 Linton joined in partnership with William Dundas Scott and the shipyard of Scott and Linton was opened on the banks of the River Leven, a tributary of the Clyde, at Dumbarton. The operation lasted for about three years until bankruptcy forced closure, the cause being the age-old shipbuilder's problem of high capital investment with slow cash flow. Altogether, nine ships were built, the most remarkable being the record-breaking composite-built clipper ship Cutty Sark. At the time of the closure the tea clipper was in an advanced state of outfitting and was towed across the water to Denny's shipyard for completion. Linton worked for a while with Gourlay Brothers of Dundee, and then with the shipbuilders Oswald Mordaunt, of Woolston near Southampton, before returning to the Montrose area in 1884. His wife died the following year and thereafter Linton gradually reduced his professional commitments.
    [br]
    Further Reading
    Robert E.Brettle, 1969, The Cutty Sark, Her Designer and Builder. Hercules Linton 1836–1900, Cambridge: Heffer.
    Frank C.G.Carr, "The restoration of the Cutty Sark", Transactions of the Royal Institution
    of Naval Architects 108:193–216.
    Fred M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuilding, Cambridge: PSL.
    FMW

    Biographical history of technology > Linton, Hercules

  • 30 Fairbairn, William

    SUBJECT AREA: Ports and shipping
    [br]
    b. 19 February 1789 Kelso, Roxburghshire, Scotland
    d. 18 August 1874 Farnham, Surrey, England
    [br]
    Scottish engineer and shipbuilder, pioneer in the use of iron in structures.
    [br]
    Born in modest circumstances, Fairbairn nevertheless enjoyed a broad and liberal education until around the age of 14. Thereafter he served an apprenticeship as a millwright in a Northumberland colliery. This seven-year period marked him out as a man of determination and intellectual ability; he planned his life around the practical work of pit-machinery maintenance and devoted his limited free time to the study of mathematics, science and history as well as "Church, Milton and Recreation". Like many before and countless thousands after, he worked in London for some difficult and profitless years, and then moved to Manchester, the city he was to regard as home for the rest of his life. In 1816 he was married. Along with a workmate, James Lillie, he set up a general engineering business, which steadily enlarged and ultimately involved both shipbuilding and boiler-making. The partnership was dissolved in 1832 and Fairbairn continued on his own. Consultancy work commissioned by the Forth and Clyde Canal led to the construction of iron steamships by Fairbairn for the canal; one of these, the PS Manchester was lost in the Irish Sea (through the little-understood phenomenon of compass deviation) on her delivery voyage from Manchester to the Clyde. This brought Fairbairn to the forefront of research in this field and confirmed him as a shipbuilder in the novel construction of iron vessels. In 1835 he operated the Millwall Shipyard on the Isle of Dogs on the Thames; this is regarded as one of the first two shipyards dedicated to iron production from the outset (the other being Tod and MacGregor of Glasgow). Losses at the London yard forced Fairbairn to sell off, and the yard passed into the hands of John Scott Russell, who built the I.K. Brunel -designed Great Eastern on the site. However, his business in Manchester went from strength to strength: he produced an improved Cornish boiler with two firetubes, known as the Lancashire boiler; he invented a riveting machine; and designed the beautiful swan-necked box-structured crane that is known as the Fairbairn crane to this day.
    Throughout his life he advocated the widest use of iron; he served on the Admiralty Committee of 1861 investigating the use of this material in the Royal Navy. In his later years he travelled widely in Europe as an engineering consultant and published many papers on engineering. His contribution to worldwide engineering was recognized during his lifetime by the conferment of a baronetcy by Queen Victoria.
    [br]
    Principal Honours and Distinctions
    Created Baronet 1869. FRS 1850. Elected to the Academy of Science of France 1852. President, Institution of Mechnical Engineers 1854. Royal Society Gold Medal 1860. President, British Association 1861.
    Bibliography
    Fairbairn wrote many papers on a wide range of engineering subjects from water-wheels to iron metallurgy and from railway brakes to the strength of iron ships. In 1856 he contributed the article on iron to the 8th edition of Encyclopaedia Britannica.
    Further Reading
    W.Pole (ed.), 1877, The Life of Sir William Fairbairn Bart, London: Longmans Green; reprinted 1970, David and Charles Reprints (written in part by Fairbairn, but completed and edited by Pole).
    FMW

    Biographical history of technology > Fairbairn, William

  • 31 Baird, John Logie

    [br]
    b. 13 August 1888 Helensburgh, Dumbarton, Scotland
    d. 14 June 1946 Bexhill-on-Sea, Sussex, England
    [br]
    Scottish inventor of mechanically-based television.
    [br]
    Baird attended Larchfield Academy, then the Royal Technical College and Glasgow University. However, before he could complete his electrical-engineering degree, the First World War began, although poor health kept him out of the armed services.
    Employed as an engineer at the Clyde Valley Electrical Company, he lost his position when his diamond-making experiment caused a power failure in Glasgow. He then went to London, where he lived with his sister and tried manufacturing household products of his own design. To recover from poor health, he then went to Hastings and, using scrap materials, began experiments with imaging systems. In 1924 he transmitted outline images over wires, and by 1925 he was able to transmit recognizable human faces. In 1926 he was able to transmit moving images at a resolution of thirty lines per image and a frequency of ten images per second over an infrared link. Also that year, he started the world's first television station, which he named 2TV. In 1927 he transmitted moving images from London to Glasgow, and later that year to a passenger liner. In 1928 he demonstrated colour television.
    In 1936, when the BBC wanted to begin television service, Baird's system lost out in a competition with Marconi Electric and Musical Industries (EMI). In 1946 Baird reported that he had successfully completed research on a stereo television system.
    [br]
    Further Reading
    R.Tiltman, 1933, Baird of Television, London: Seeley Service; repub. 1974, New York: Arno Press.
    J.Rowland, 1967, The Television Man: The Story of John Logie Baird, New York: Roy Publishers.
    F.Macgregor, 1984, Famous Scots, Gordon Wright (contains a short biography on Baird).
    HO

    Biographical history of technology > Baird, John Logie

  • 32 Lithgow, James

    SUBJECT AREA: Ports and shipping
    [br]
    b. 27 January 1883 Port Glasgow, Renfrewshire, Scotland
    d. 23 February 1952 Langbank, Renfrewshire, Scotland
    [br]
    Scottish shipbuilder; creator of one of the twentieth century's leading industrial organizations.
    [br]
    Lithgow attended Glasgow Academy and then spent a year in Paris. In 1901 he commenced a shipyard apprenticeship with Russell \& Co., where his father, William Lithgow, was sole proprietor. For years Russell's had topped the Clyde tonnage output and more than once had been the world's leading yard. Along with his brother Henry, Lithgow in 1908 was appointed a director, and in a few years he was Chairman and the yard was renamed Lithgows Ltd. By the outbreak of the First World War the Lithgow brothers were recognized as good shipbuilders and astute businessmen. In 1914 he joined the Royal Artillery; he rose to the rank of major and served with distinction, but his skills in administration were recognized and he was recalled home to become Director of Merchant Shipbuilding when British shipping losses due to submarine attack became critical. This appointment set a pattern, with public duties becoming predominant and the day-to-day shipyard business being organized by his brother. During the interwar years, Lithgow served on many councils designed to generate work and expand British commercial interests. His public appointments were legion, but none was as controversial as his directorship of National Shipbuilders Security Ltd, formed to purchase and "sterilize" inefficient shipyards that were hindering recovery from the Depression. To this day opinions are divided on this issue, but it is beyond doubt that Lithgow believed in the task in hand and served unstintingly. During the Second World War he was Controller of Merchant Shipbuilding and Repairs and was one of the few civilians to be on the Board of Admiralty. On the cessation of hostilities, Lithgow devoted time to research boards and to the expansion of the Lithgow Group, which now included the massive Fairfield Shipyard as well as steel, marine engineering and other companies.
    Throughout his life Lithgow worked for the Territorial Army, but he was also a devoted member of the Church of Scotland. He gave practical support to the lona Community, no doubt influenced by unbounded love of the West Highlands and Islands of Scotland.
    [br]
    Principal Honours and Distinctions
    Military Cross and mentioned in dispatches during the First World War. Baronet 1925. Grand Cross of the Order of the British Empire 1945. Commander of the Order of the Orange-Nassau (the Netherlands). CB 1947. Served as the employers' representative on the League of Nations International Labour Conference in the 1930s. President, British Iron and Steel Cofederation 1943.
    Further Reading
    J.M.Reid, 1964, James Lithgow, Master of Work, London: Hutchinson.
    FMW

    Biographical history of technology > Lithgow, James

  • 33 Mylne, Robert

    [br]
    b. 1733 Edinburgh, Scotland d. 1811
    [br]
    Scottish engineer, architect and bridge-builder.
    [br]
    Mylne was the eldest son of Thomas Mylne, Surveyor to the City of Edinburgh. Little is known of his early education. In 1754, at the age of 21, he left Edinburgh by sea and journeyed to Rome, where he attended the Academy of St Luke. There he received the first prize for architecture. In 1759 he left Rome to travel back to England, where he arrived in time for the competition then going ahead for the design and building of a new bridge across the Thames at Blackfriars. Against 68 other competitors, Mylne won the competition; the work took some ten years to complete.
    In 1760 he was appointed Engineer and Architect to the City of London, and in 1767 Joint Engineer to the New River Company together with Henry Mill, who died within a few years to leave Mylne to become Chief Engineer in 1770. Thus for the next forty years he was in charge of all the works for the New River Company between Clerkenwell and Ware, the opposite ends of London's main water supply. By 1767 he had also been appointed to a number of other important posts, which included Surveyor to Canterbury Cathedral and St Paul's Cathedral. In addition to undertaking his responsibilities for these great public buildings, he designed many private houses and villas all over the country, including several buildings for the Duke of Argyll on the Inverary Castle estate.
    Mylne was also responsible for the design of a great number of bridges, waterworks and other civil engineering works throughout Britain. Called in to advise on the Norwich city waterworks, he fell out with Joseph Bramah in a somewhat spectacular dispute.
    For much of his life Mylne lived at the Water House at the New River Head at Islington, from which he could direct much of the work on that waterway that came under his supervision. He also had residences in New Bridge Street and, as Clerk of Works, at Greenwich Hospital. Towards the end of his life he built himself a small house at Amwell, a country retreat at the outer end of the New River. He kept a diary from 1762 to 1810 which includes only brief memoranda but which shows a remarkable diligence in travelling all over the country by stagecoach and by postchaise. He was a freemason, as were many of his family; he married Mary Home on 10 September 1770, with whom he had ten children, four of whom survived into adulthood.
    [br]
    Principal Honours and Distinctions
    Fellow of the Royal Society 1767.
    Further Reading
    Dictionary of National Biography, London.
    A.E.Richardson, 1955, Robert Mylne, 1733–1811, Engineer and Architect, London: Batsford.

    Biographical history of technology > Mylne, Robert

  • 34 Rankine, William John Macquorn

    [br]
    b. 5 July 1820 Edinburgh, Scotland
    d. 1872
    [br]
    [br]
    Rankine was educated at Ayr Academy and Glasgow High School, although he appears to have learned much of his basic mathematics and physics through private study. He attended Edinburgh University and then assisted his father, who was acting as Superintendent of the Edinburgh and Dalkeith Railway. This introduction to engineering practice was followed in 1838 by his appointment as a pupil to Sir John MacNeill, and for the next four years he served under MacNeill on his Irish railway projects. While still in his early twenties, Rankine presented pioneering papers on metal fatigue and other subjects to the Institution of Civil Engineers, for which he won a prize, but he appears to have resigned from the Civils in 1857 after an argument because the Institution would not transfer his Associate Membership into full Membership. From 1844 to 1848 Rankine worked on various projects for the Caledonian Railway Company, but his interests were becoming increasingly theoretical and a series of distinguished papers for learned societies established his reputation as a leading scholar in the new science of thermodynamics. He was elected Fellow of the Royal Society in 1853. At the same time, he remained intimately involved with practical questions of applied science, in shipbuilding, marine engineering and electric telegraphy, becoming associated with the influential coterie of fellow Scots such as the Thomson brothers, Napier, Elder, and Lewis Gordon. Gordon was then the head of a large and successful engineering practice, but he was also Regius Professor of Engineering at the University of Glasgow, and when he retired from the Chair to pursue his business interests, Rankine, who had become his Assistant, was appointed in his place.
    From 1855 until his premature death in 1872, Rankine built up an impressive engineering department, providing a firm theoretical basis with a series of text books that he wrote himself and most of which remained in print for many decades. Despite his quarrel with the Institution of Civil Engineers, Rankine took a keen interest in the institutional development of the engineering profession, becoming the first President of the Institution of Engineers and Shipbuilders in Scotland, which he helped to establish in 1857. Rankine campaigned vigorously for the recognition of engineering studies as a full university degree at Glasgow, and he achieved this in 1872, the year of his death. Rankine was one of the handful of mid-nineteenth century engineers who virtually created engineering as an academic discipline.
    [br]
    Principal Honours and Distinctions
    FRS 1853. First President, Institution of Engineers and Shipbuilders in Scotland, 1857.
    Bibliography
    1858, Manual of Applied Mechanics.
    1859, Manual of the Steam Engine and Other Prime Movers.
    1862, Manual of Civil Engineering.
    1869, Manual of Machinery and Millwork.
    Further Reading
    J.Small, 1957, "The institution's first president", Proceedings of the Institution of Engineers and Shipbuilders in Scotland: 687–97.
    H.B.Sutherland, 1972, Rankine. His Life and Times.
    AB

    Biographical history of technology > Rankine, William John Macquorn

См. также в других словарях:

  • Royal Scottish Academy — Die Royal Scottish Academy ist eine unabhängige, private Institution, die von bedeutenden Künstlern und Architekten geführt wird. Die Akademie wurde 1826 von elf Künstlern gegründet. Die Akademie ist im Royal Scottish Academy Building in… …   Deutsch Wikipedia

  • Royal Scottish Academy — The Royal Scottish Academy is Scotland’s premier organisation promoting contemporary Scottish art. Founded in 1826, the RSA maintains a unique position in Scotland as an independently funded institution led by eminent artists and architects whose …   Wikipedia

  • Royal scottish academy of music and drama — Le bâtiment du RSAMD à Glasgow Le Royal Scottish Academy of Music and Drama (RSAMD, en français Académie Royale de Musique et d Art Dramatique d Écosse) est un conservatoire situé à Glasgow en Écosse. Il a été fondé en 1845. Selon le classement… …   Wikipédia en Français

  • Royal Scottish Academy of Music and Drama — Infobox University name = Royal Scottish Academy of Music and Drama latin name = image size = 200px motto = mottoeng = established = 1845 type = Conservatoire endowment = staff = chancellor = principal = Professor John Wallace rector = students …   Wikipedia

  • Royal Scottish Academy Building — The Royal Scottish Academy Building, situated in the centre of Edinburgh, was designed by William Henry Playfair during the 19th century. Along with the adjacent National Gallery of Scotland, their neo classical design helped transform Edinburgh… …   Wikipedia

  • Royal Scottish Academy of Music and Drama — Le bâtiment du RSAMD à Glasgow Le Royal Conservatoire of Scotland (anciennement, Royal Scottish Academy of Music and Drama, RSAMD, en français Académie Royale de Musique et d Art Dramatique d Écosse) est un conservatoire situé à Glasgow en Écosse …   Wikipédia en Français

  • Royal Scottish Academy — an organization formed in 1826 to encourage painting, sculpture and architecture in Scotland, similar to the Royal Academy in London. Its buildings are in Princes Street, Edinburgh. * * * …   Universalium

  • (the) Royal Scottish Academy — the Royal Scottish Academy [the Royal Scottish Academy] an organization formed in 1826 to encourage painting, ↑sculpture and architecture in Scotland, similar to the ↑Royal Academy in London. Its buildings are in ↑Princes Street, ↑Edinburgh …   Useful english dictionary

  • Royal Scottish Society of Painters in Watercolour — The Royal Scottish Society of Painters in Watercolours (RSW) is a Scottish organization of painters.It was founded in 1876, with the support of the Royal Scottish Academy, by artists to promote, through exhibition, the medium of watercolour and… …   Wikipedia

  • Royal Scottish Society of Painters in Watercolour — Die Royal Scottish Society of Painters in Watercolours (RSW) ist eine schottische Vereinigung von Künstlern. Die RSW wurde 1876 mit Unterstützung der Royal Scottish Academy in Edinburgh gegründet. Die Gründungsmitglieder, die meisten Maler,… …   Deutsch Wikipedia

  • Royal Military Academy Sandhurst — Infobox Military Unit unit name=Royal Military Academy Sandhurst caption=Cap Badge of the Royal Military Academy Sandhurst dates=1802 (as Royal Military College)–Present country=United Kingdom branch=British Army command structure=Army Recruiting …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»