Перевод: со всех языков на все языки

со всех языков на все языки

IMcN

  • 1 IMCN

    сокр. от intercontinental marine-communication network

    English-Russian dictionary of telecommunications and their abbreviations > IMCN

  • 2 Ackermann, Rudolph

    [br]
    b. 20 April 1764 Stolberg, Saxony
    d. 30 March 1834 Finchley, London, England
    [br]
    German-born fine-art publisher and bookseller, noted for his arrangement of the steering of the front wheels of horse-drawn carriages, which is still used in automobiles today.
    [br]
    Ackermann's father was a coachbuilder and harness-maker who in 1775 moved to Schneeberg. Rudolph was educated there and later entered his father's workshop for a short time. He visited Dresden, among other towns in Germany, and was resident in Paris for a short time, but eventually settled in London. For the first ten years of his life there he was employed in making designs for many of the leading coach builders. His steering-gear consisted of an arrangement of the track arms on the stub axles and their connection by the track rod in such a way that the inner wheel moved through a greater angle than the outer one, so giving approximately true rolling of the wheels in cornering. A necessary condition for this is that, in the plan view, the point of intersection of the axes of all the wheels must be at a point which always lies on the projection of the rear axle. In addition, the front wheels are inclined to bring the line of contact of the front wheels under the line of the pivots, about which they turn when cornering. This mechanism was not entirely new, having been proposed for windmill carriages in 1714 by Du Quet, but it was brought into prominence by Ackermann and so has come to bear his name.
    In 1801 he patented a method of rendering paper, cloth and other materials waterproof and set up a factory in Chelsea for that purpose. He was one of the first private persons to light his business premises with gas. He also devoted some time to a patent for movable carriage axles between 1818 and 1820. In 1805 he was put in charge of the preparation of the funeral car for Lord Nelson.
    Most of his life and endeavours were devoted to fine-art printing and publishing. He was responsible for the introduction into England of lithography as a fine art: it had first been introduced as a mechanical process in 1801, but was mainly used for copying until Ackermann took it up in 1817, setting up a press and engaging the services of a number of prominent artists, including W.H.Pyne, W.Combe, Pugin and Thomas Rowlandson. In 1819 he published an English translation of J.A.Senefelder's A Complete Course of Lithography, illustrated with lithographic plates from his press. He was much involved in charitable works for widows, children and wounded soldiers after the war of 1814. In 1830 he suffered "an attack of paralysis" which left him unable to continue in business. He died four years later and was buried at St Clement Danes.
    [br]
    Bibliography
    His fine-art publications are numerous and well known, and include the following:
    The Microcosm of London University of Oxford University of Cambridge The Thames
    Further Reading
    Aubrey F.Burstall, "A history of mechanical engineering", Dictionary of National Biography.
    IMcN

    Biographical history of technology > Ackermann, Rudolph

  • 3 Anderson, John

    SUBJECT AREA: Weapons and armour
    [br]
    b. 1726 Roseneath, Dumbartonshire, Scotland
    d. 13 January 1796
    [br]
    Scottish natural philosopher.
    [br]
    Born in Roseneath manse, son of the minister, he was educated after his father's death by an aunt, a Mrs Turner, to whom he later paid back the cost, and was later an officer in the corps that was raised to resist the rebellion of 1745. He studied at Glasgow, where in 1756 he became Professor of Oriental Languages and, in 1760, Professor of Natural Philosophy; he is notable for allowing artisans to attend his lectures in their working clothes. He planned the fortifications set up to defend Greenock in 1759, and was sympathetic with the French Revolution. He invented a cannon in which the recoil was counteracted by the condensation of air in the carriage. After unsuccessfully trying to interest the Government in this gun, he went to Paris in 1791 and offered it to the National Convention. While there he invented a means of smuggling French newspapers into Germany by the use of small balloons. He lost in a lawsuit with the other professors. In 1786 he published Institutes of Physics, which ran to five editions in ten years, and in 1800 he wrote on Roman antiquities. Upon his death he left all his library and apparatus to an educational institute, which was named after him but has now become the University of Strathclyde, Glasgow.
    [br]
    Bibliography
    1786, Institutes of Physics.
    Further Reading
    Glasgow Mechanics' Magazine.
    IMcN

    Biographical history of technology > Anderson, John

  • 4 Archimedes of Syracuse

    [br]
    b. 287 BC
    d. 212 BC
    [br]
    Greek engineer who made the first measurement of specific gravity.
    [br]
    He studied in Alexandria, after which he returned to Syracuse where he spent most of the rest of his life. He made many mathematical discoveries, including the most accurate calculation of pi made up to that time. In engineering he was the founder of the science of hydrostatics. He is well known for the discovery of "Archimedes" Law', that a body wholly or partly immersed in a fluid loses weight equal to the weight of the fluid displaced. He thus made the first measurement of specific gravity.
    Archimedes also proved the law of the lever and developed the theory of mechanical advantage, boasting to his cousin Hieron, "Give me a place to stand on and with a lever I will move the whole world." To prove his point, he launched one of the biggest ships built up to that date. During his time in Egypt, he devised the "Archimedean Screw", still used today in Middle Eastern countries for pumping water. He also built an astronomical instrument to demonstrate the movements of the heavenly bodies, a form of orrery.
    He was General of Ordnance to Heiron, and when the Romans besieged Syracuse, a legionary came across Archimedes drawing geometrical diagrams in the sand. Archimedes immediately told him to 'Keep off and the soldier killed him. He also experimented with burning glasses and mirrors for setting fire to wooden ships.
    [br]
    Further Reading
    L.Sprague de Camp, 1963, Ancient Engineers, Souvenir Press. E.J.Dijksterhuis, 1956, Archimedes, Copenhagen: Munksgaard.
    IMcN

    Biographical history of technology > Archimedes of Syracuse

  • 5 Armstrong, Sir William George, Baron Armstrong of Cragside

    [br]
    b. 26 November 1810 Shieldfield, Newcastle upon Tyne, England
    d. 27 December 1900 Cragside, Northumbria, England
    [br]
    English inventor, engineer and entrepreneur in hydraulic engineering, shipbuilding and the production of artillery.
    [br]
    The only son of a corn merchant, Alderman William Armstrong, he was educated at private schools in Newcastle and at Bishop Auckland Grammar School. He then became an articled clerk in the office of Armorer Donkin, a solicitor and a friend of his father. During a fishing trip he saw a water-wheel driven by an open stream to work a marble-cutting machine. He felt that its efficiency would be improved by introducing the water to the wheel in a pipe. He developed an interest in hydraulics and in electricity, and became a popular lecturer on these subjects. From 1838 he became friendly with Henry Watson of the High Bridge Works, Newcastle, and for six years he visited the Works almost daily, studying turret clocks, telescopes, papermaking machinery, surveying instruments and other equipment being produced. There he had built his first hydraulic machine, which generated 5 hp when run off the Newcastle town water-mains. He then designed and made a working model of a hydraulic crane, but it created little interest. In 1845, after he had served this rather unconventional apprenticeship at High Bridge Works, he was appointed Secretary of the newly formed Whittle Dene Water Company. The same year he proposed to the town council of Newcastle the conversion of one of the quayside cranes to his hydraulic operation which, if successful, should also be applied to a further four cranes. This was done by the Newcastle Cranage Company at High Bridge Works. In 1847 he gave up law and formed W.G.Armstrong \& Co. to manufacture hydraulic machinery in a works at Elswick. Orders for cranes, hoists, dock gates and bridges were obtained from mines; docks and railways.
    Early in the Crimean War, the War Office asked him to design and make submarine mines to blow up ships that were sunk by the Russians to block the entrance to Sevastopol harbour. The mines were never used, but this set him thinking about military affairs and brought him many useful contacts at the War Office. Learning that two eighteen-pounder British guns had silenced a whole Russian battery but were too heavy to move over rough ground, he carried out a thorough investigation and proposed light field guns with rifled barrels to fire elongated lead projectiles rather than cast-iron balls. He delivered his first gun in 1855; it was built of a steel core and wound-iron wire jacket. The barrel was multi-grooved and the gun weighed a quarter of a ton and could fire a 3 lb (1.4 kg) projectile. This was considered too light and was sent back to the factory to be rebored to take a 5 lb (2.3 kg) shot. The gun was a complete success and Armstrong was then asked to design and produce an equally successful eighteen-pounder. In 1859 he was appointed Engineer of Rifled Ordnance and was knighted. However, there was considerable opposition from the notably conservative officers of the Army who resented the intrusion of this civilian engineer in their affairs. In 1862, contracts with the Elswick Ordnance Company were terminated, and the Government rejected breech-loading and went back to muzzle-loading. Armstrong resigned and concentrated on foreign sales, which were successful worldwide.
    The search for a suitable proving ground for a 12-ton gun led to an interest in shipbuilding at Elswick from 1868. This necessitated the replacement of an earlier stone bridge with the hydraulically operated Tyne Swing Bridge, which weighed some 1450 tons and allowed a clear passage for shipping. Hydraulic equipment on warships became more complex and increasing quantities of it were made at the Elswick works, which also flourished with the reintroduction of the breech-loader in 1878. In 1884 an open-hearth acid steelworks was added to the Elswick facilities. In 1897 the firm merged with Sir Joseph Whitworth \& Co. to become Sir W.G.Armstrong Whitworth \& Co. After Armstrong's death a further merger with Vickers Ltd formed Vickers Armstrong Ltd.
    In 1879 Armstrong took a great interest in Joseph Swan's invention of the incandescent electric light-bulb. He was one of those who formed the Swan Electric Light Company, opening a factory at South Benwell to make the bulbs. At Cragside, his mansion at Roth bury, he installed a water turbine and generator, making it one of the first houses in England to be lit by electricity.
    Armstrong was a noted philanthropist, building houses for his workforce, and endowing schools, hospitals and parks. His last act of charity was to purchase Bamburgh Castle, Northumbria, in 1894, intending to turn it into a hospital or a convalescent home, but he did not live long enough to complete the work.
    [br]
    Principal Honours and Distinctions
    Knighted 1859. FRS 1846. President, Institution of Mechanical Engineers; Institution of Civil Engineers; British Association for the Advancement of Science 1863. Baron Armstrong of Cragside 1887.
    Further Reading
    E.R.Jones, 1886, Heroes of Industry', London: Low.
    D.J.Scott, 1962, A History of Vickers, London: Weidenfeld \& Nicolson.
    IMcN

    Biographical history of technology > Armstrong, Sir William George, Baron Armstrong of Cragside

  • 6 Austin, Herbert, Baron Austin

    [br]
    b. 8 November 1866 Little Missenden, Buckinghamshire, England
    d. 23 May 1941 Lickey Grange, near Bromsgrove, Herefordshire, England
    [br]
    English manufacturer of cars.
    [br]
    The son of Stephen (or Steven) Austin, a farmer of Wentworth, Yorkshire, he was educated at Rotherham Grammar School and then went to Australia with an uncle in 1884. There he became apprenticed as an engineer at the Langlands Foundry in Melbourne. He moved to the Wolseley Sheep Shearing Company, and soon after became its Manager; in 1893 he returned to England, where he became Production Manager to the English branch of the same company in Birmingham. The difficulties of travel in Australia gave him an idea of the advantages of motor-driven vehicles, and in 1895 he produced the first Wolseley car. In 1901 he was appointed to the Wolseley board, and from 1911 he was Chairman.
    His first car was a three-wheeler. An improved model was soon available, and in 1901 the Wolseley company took over the machine tool and motor side of Vickers Sons and Maxim and traded under the name of the Wolseley Tool and Motor Car Company. Herbert Austin was the General Manager. In 1905 he decided to start his own company and formed the Austin Motor Company Ltd, with works at Longbridge, near Birmingham. With a workforce of 270, the firm produced 120 cars in 1906; by 1914 a staff of 2,000 were producing 1,000 cars a year. The First World War saw production facilities turned over to the production of aeroplanes, guns and ammunition.
    Peacetime brought a return to car manufacture, and 1922 saw the introduction of the 7 hp "Baby Austin", a car for the masses. Many other models followed. By 1937 the original Longbridge factory had grown to 220 acres, and the staff had increased to over 16,000, while the number of cars produced had grown to 78,000 per year.
    Herbert Austin was a philanthropist who endowed many hospitals and not a few universities; he was created a Baron in 1936.
    [br]
    Principal Honours and Distinctions
    Baron 1936.
    Further Reading
    1941, Austin Magazine (June).
    IMcN

    Biographical history of technology > Austin, Herbert, Baron Austin

  • 7 Babbage, Charles

    [br]
    b. 26 December 1791 Walworth, Surrey, England
    d. 18 October 1871 London, England
    [br]
    English mathematician who invented the forerunner of the modern computer.
    [br]
    Charles Babbage was the son of a banker, Benjamin Babbage, and was a sickly child who had a rather haphazard education at private schools near Exeter and later at Enfield. Even as a child, he was inordinately fond of algebra, which he taught himself. He was conversant with several advanced mathematical texts, so by the time he entered Trinity College, Cambridge, in 1811, he was ahead of his tutors. In his third year he moved to Peterhouse, whence he graduated in 1814, taking his MA in 1817. He first contributed to the Philosophical Transactions of the Royal Society in 1815, and was elected a fellow of that body in 1816. He was one of the founders of the Astronomical Society in 1820 and served in high office in it.
    While he was still at Cambridge, in 1812, he had the first idea of calculating numerical tables by machinery. This was his first difference engine, which worked on the principle of repeatedly adding a common difference. He built a small model of an engine working on this principle between 1820 and 1822, and in July of the latter year he read an enthusiastically received note about it to the Astronomical Society. The following year he was awarded the Society's first gold medal. He submitted details of his invention to Sir Humphry Davy, President of the Royal Society; the Society reported favourably and the Government became interested, and following a meeting with the Chancellor of the Exchequer Babbage was awarded a grant of £1,500. Work proceeded and was carried on for four years under the direction of Joseph Clement.
    In 1827 Babbage went abroad for a year on medical advice. There he studied foreign workshops and factories, and in 1832 he published his observations in On the Economy of Machinery and Manufactures. While abroad, he received the news that he had been appointed Lucasian Professor of Mathematics at Cambridge University. He held the Chair until 1839, although he neither resided in College nor gave any lectures. For this he was paid between £80 and £90 a year! Differences arose between Babbage and Clement. Manufacture was moved from Clement's works in Lambeth, London, to new, fireproof buildings specially erected by the Government near Babbage's house in Dorset Square, London. Clement made a large claim for compensation and, when it was refused, withdrew his workers as well as all the special tools he had made up for the job. No work was possible for the next fifteen months, during which Babbage conceived the idea of his "analytical engine". He approached the Government with this, but it was not until eight years later, in 1842, that he received the reply that the expense was considered too great for further backing and that the Government was abandoning the project. This was in spite of the demonstration and perfectly satisfactory operation of a small section of the analytical engine at the International Exhibition of 1862. It is said that the demands made on manufacture in the production of his engines had an appreciable influence in improving the standard of machine tools, whilst similar benefits accrued from his development of a system of notation for the movements of machine elements. His opposition to street organ-grinders was a notable eccentricity; he estimated that a quarter of his mental effort was wasted by the effect of noise on his concentration.
    [br]
    Principal Honours and Distinctions
    FRS 1816. Astronomical Society Gold Medal 1823.
    Bibliography
    Babbage wrote eighty works, including: 1864, Passages from the Life of a Philosopher.
    July 1822, Letter to Sir Humphry Davy, PRS, on the Application of Machinery to the purpose of calculating and printing Mathematical Tables.
    Further Reading
    1961, Charles Babbage and His Calculating Engines: Selected Writings by Charles Babbage and Others, eds Philip and Emily Morrison, New York: Dover Publications.
    IMcN

    Biographical history of technology > Babbage, Charles

  • 8 Bailey, Sir Donald Coleman

    SUBJECT AREA: Civil engineering
    [br]
    b. 15 September 1901 Rotherham, Yorkshire, England
    d. 5 May 1985 Bournemouth, Dorset, England
    [br]
    English engineer, designer of the Bailey bridge.
    [br]
    Bailey was educated at the Leys School, Cambridge, before going to Sheffield University where he studied for a degree in engineering. He joined the Civil Service in 1928 and was posted to the staff of the Experimental Bridging Establishment of the Ministry of Supply at Christchurch, Hampshire. There he continued his boyhood hobby of making model bridges of wood and string. He evolved a design for a prefabricated metal bridge assembled from welded panels linked by pinned joints; this became known as the Bailey bridge. Its design was accepted by the War Office in 1941 and from then on it was used throughout the subsequent conflict of the Second World War. It was a great improvement on its predecessor, the Inglis bridge, designed by a Cambridge University professor of engineering, Charles Inglis, with tubular members that were 10 or 12 ft (3.66 m) long; this bridge was notoriously difficult to construct, particularly in adverse weather conditions, whereas the Bailey bridge's panels and joints were far more manageable and easy to assemble. The simple and standardized component parts of the Bailey bridge made it highly adaptable: it could be strengthened by increasing the number of truss girders, and wide rivers could be crossed by a series of Bailey bridges connected by pontoons. Field Marshal Montgomery is recorded as saying that without the Bailey bridge we should not have won the war'.
    [br]
    Principal Honours and Distinctions
    Knighted 1946.
    Further Reading
    Obituary, 1985, The Guardian 6 May.
    IMcN

    Biographical history of technology > Bailey, Sir Donald Coleman

  • 9 Bardeen, John

    [br]
    b. 23 May 1908 Madison, Wisconsin, USA
    d. 30 January 1991 Boston, Massachusetts, USA
    [br]
    American physicist, the first to win the Nobel Prize for Physics twice.
    [br]
    Born the son of a professor of anatomy, he studied electrical engineering at the University of Wisconsin. He then worked for three years as a geophysicist at the Gulf Research Laboratories before taking a PhD in mathematical physics at Princeton, where he was a graduate student. For some time he held appointments at the University of Minnesota and at Harvard, and during the Second World War he joined the US Naval Ordnance Laboratory. In 1945 he joined the Bell Telephone Laboratories to head a new department to work on solid-state devices. While there, he and W.H. Brattain in 1948 published a paper that introduced the transistor. For this he, Brattain and Shockley won the Nobel Prize for Physics in 1956. In 1951 he moved to the University of Illinois as Professor of Physics and Electrical Engineering. There he worked on superconductivity, a phenomenon described in 1911 by Kamerling-Onnes. Bardeen worked with L.N. Cooper and J.A.Schrieffer, and in 1972 they were awarded the Nobel Prize for Physics for the "BCS Theory", which suggested that, under certain circumstances at very low temperatures, electrons can form bound pairs.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Physics (jointly with Brattain and Shockley) 1956, (jointly with Cooper and Schrieffer) 1972.
    Further Reading
    Isaacs and E.Martin (eds), 1985, Longmans Dictionary of 20th Century Biography.
    IMcN

    Biographical history of technology > Bardeen, John

  • 10 Bell, Henry

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1767 Torphichen Mill, near Linlithgow, Scotland
    d. 1830 Helensburgh, Scotland
    [br]
    Scottish projector of the first steamboat service in Europe.
    [br]
    The son of Patrick Bell, a millwright, Henry had two sisters and an elder brother and was educated at the village school. When he was 9 years old Henry was sent to lodge in Falkirk with an uncle and aunt of his mother's so that he could attend the school there. At the age of 12 he left school and agreed to become a mason with a relative. In 1783, after only three years, he was bound apprentice to his Uncle Henry, a millwright at Jay Mill. He stayed there for a further three years and then, in 1786, joined the firm of Shaw \& Hart, shipbuilders of Borrowstoneness. These were to be the builders of William Symington's hull for the Charlotte Dundas. He also spent twelve months with Mr James Inglis, an engineer of Bellshill, Lanarkshire, and then went to London to gain experience, working for the famous John Rennie for some eighteen months. By 1790 he was back in Glasgow, and a year later he took a partner, James Paterson, into his new business of builder and contractor, based in the Trongate. He later referred to himself as "architect", and his partnership with Paterson lasted seven years. He is said to have invented a discharging machine for calico printing, as well as a steam dredger for clearing the River Clyde.
    The Baths Hotel was opened in Helensburgh in 1808, with the hotel-keeper, who was also the first provost of the town, being none other than Henry Bell. It has been suggested that Bell was also the builder of the hotel and this seems very likely. Bell installed a steam engine for pumping sea water out of the Clyde and into the baths, and at first ran a coach service to bring customers from Glasgow three days a week. The driver was his brother Tom. The coach was replaced by the Comet steamboat in 1812.
    While Henry was busy with his provost's duties and making arrangements for the building of his steamboat, his wife Margaret, née Young, whom he married in March 1794, occupied herself with the management of the Baths Hotel. Bell did not himself manufacture, but supervised the work of experts: John and Charles Wood of Port Glasgow, builders of the 43ft 6 in. (13.25 m)-long hull of the Comet; David Napier of Howard Street Foundry for the boiler and other castings; and John Robertson of Dempster Street, who had previously supplied a small engine for pumping water to the baths at the hotel in Helensburgh, for the 3 hp engine. The first trials of the finished ship were held on 24 July 1812, when she was launched from Wood's yard. A regular service was advertised in the Glasgow Chronicle on 5 August and was the first in Europe, preceded only by that of Robert Fulton in the USA. The Comet continued to run until 1820, when it was wrecked.
    Bell received little reward for his promotion of steam navigation, merely small pensions from the Clyde trustees and others. He was buried at the parish church of Rhu.
    [br]
    Further Reading
    Edward Morris, 1844, Life of Henry Bell.
    Henry Bell, 1813, Applying Steam Engines to Vessels.
    IMcN

    Biographical history of technology > Bell, Henry

  • 11 Bentham, Sir Samuel

    SUBJECT AREA: Ports and shipping
    [br]
    b. 11 January 1757 England
    d. 31 May 1831 London, England
    [br]
    English naval architect and engineer.
    [br]
    He was the son of Jeremiah Bentham, a lawyer. His mother died when he was an infant and his early education was at Westminster. At the age of 14 he was apprenticed to a master shipwright at Woolwich and later at Chatham Dockyard, where he made some small improvements in the fittings of ships. In 1778 he completed his apprenticeship and sailed on the Bienfaisant on a summer cruise of the Channel Fleet where he suggested and supervised several improvements to the steering gear and gun fittings.
    Unable to find suitable employment at home, he sailed for Russia to study naval architecture and shipbuilding, arriving at St Petersburg in 1780, whence he travelled throughout Russia as far as the frontier of China, examining mines and methods of working metals. He settled in Kritchev in 1782 and there established a small shipyard with a motley work-force. In 1784 he was appointed to command a battalion. He set up a yard on the "Panopticon" principle, with all workshops radiating from his own central office. He increased the armament of his ships greatly by strengthening the hulls and fitting guns without recoil, which resulted in a great victory over the Turks at Liman in 1788. For this he was awarded the Cross of St George and promoted to Brigadier- General. Soon after, he was appointed to a command in Siberia, where he was responsible for opening up the resources of the country greatly by developing river navigation.
    In 1791 he returned to England, where he was at first involved in the development of the Panopticon for his brother as well as with several other patents. In 1795 he was asked to look into the mechanization of the naval dockyards, and for the next eighteen years he was involved in improving methods of naval construction and machinery. He was responsible for the invention of the steam dredger, the caisson method of enclosing the entrances to docks, and the development of non-recoil cannonades of large calibre.
    His intervention in the maladministration of the naval dockyards resulted in an enquiry that brought about the clearing-away of much corruption, making him very unpopular. As a result he was sent to St Petersburg to arrange for the building of a number of ships for the British navy, in which the Russians had no intention of co-operating. On his return to England after two years he was told that his office of Inspector-General of Navy Works had been abolished and he was appointed to the Navy Board; he had several disagreements with John Rennie and in 1812 was told that this office, too, had been abolished. He went to live in France, where he stayed for thirteen years, returning in 1827 to arrange for the publication of some of his papers.
    There is some doubt about his use of his title: there is no record of his having received a knighthood in England, but it was assumed that he was authorized to use the title, granted to him in Russia, after his presentation to the Tsar in 1809.
    [br]
    Further Reading
    Mary Sophia Bentham, Life of Brigadier-General Sir Samuel Bentham, K.S.G., Formerly Inspector of Naval Works (written by his wife, who died before completing it; completed by their daughter).
    IMcN

    Biographical history of technology > Bentham, Sir Samuel

  • 12 Benz, Karl

    [br]
    b. 25 November 1844 Pfaffenrot, Black Forest, Germany
    d. 4 April 1929 Ladenburg, near Mannheim, Germany
    [br]
    German inventor of one of the first motor cars.
    [br]
    The son of a railway mechanic, it is said that as a child one of his hobbies was the repair of Black Forest clocks. He trained as a mechanical engineer at the Karlsruhe Lyzeum and Polytechnikum under Ferdinand Redtenbacher (d. 1863), who pointed out to him the need for a more portable power source than the steam engine. He went to Maschinenbau Gesellschaft Karlsruhe for workshop experience and then joined Schweizer \& Cie, Mannheim, for two years. In 1868 he went to the Benkiser Brothers at Pforzheim. In 1871 he set up a small machine-tool works at Mannheim, but in 1877, in financial difficulties, he turned to the idea of an entirely new product based on the internal-combustion engine. At this time, N.A. Otto held the patent for the four-stroke internal-combustion engine, so Benz had to put his hopes on a two-stroke design. He avoided the trouble with Dugald Clerk's engine and designed one in which the fuel would not ignite in the pump and in which the cylinder was swept with fresh air between each two firing strokes. His first car had a sparking plug and coil ignition. By 1879 he had developed the engine to a stage where it would run satisfactorily with little attention. On 31 December 1879, with his wife Bertha working the treadle of her sewing machine to charge the batteries, he demonstrated his engine in street trials in Mannheim. In the summer of 1888, unknown to her husband, Bertha drove one of his cars the 80 km (50 miles) to Pforzheim and back with her two sons, aged 13 and 15. She and the elder boy pushed the car up hills while the younger one steered. They bought petrol from an apothecary in Wiesloch and had a brake block repaired in Bauschlott by the village cobbler. Karl Benz's comments on her return from this venture are not recorded! Financial problems prevented immediate commercial production of the automobile, but in 1882 Benz set up the Gasmotorenfabrik Mannheim. After trouble with some of his partners, he left in 1883 and formed a new company, Benz \& Cie, Rheinische Gasmotorenfabrik. Otto's patent was revoked in 1886 and in that year Benz patented a motor car with a gas engine drive. He manufactured a 0.8hp car, the engine running at 250 rpm with a horizontal flywheel, exhibited at the Paris Fair in 1889. He was not successful in finding anyone in France who would undertake manufacture. This first car was a three-wheeler, and soon after he produced a four-wheeled car, but he quarrelled with his co-directors, and although he left the board in 1902 he rejoined it soon after.
    [br]
    Further Reading
    St J.Nixon, 1936, The Invention of the Automobile. E.Diesel et al., 1960, From Engines to Autos. E.Johnson, 1986, The Dawn of Motoring.
    IMcN

    Biographical history of technology > Benz, Karl

  • 13 Bouch, Sir Thomas

    SUBJECT AREA: Civil engineering
    [br]
    b. 22 February 1822 Thursby, Cumberland, England
    d. 1880 Moffat
    [br]
    English designer of the ill-fated Tay railway bridge.
    [br]
    The third son of a merchant sea captain, he was at first educated in the village school. At the age of 17 he was working under a Mr Larmer, a civil engineer, constructing the Lancaster and Carlisle railway. He later moved to be a resident engineer on the Stockton \& Darlington Railway, and from 1849 was Engineer and Manager of the Edinburgh \& Northern Railway. In this last position he became aware of the great inconvenience caused to traffic by the broad estuaries of the Tay and the Forth on the eastern side of Scotland. The railway later became the Edinburgh, Perth \& Dundee, and was then absorbed into the North British in 1854 when Bouch produced his first plans for a bridge across the Tay at an estimated cost of £200,000. A bill was passed for the building of the bridge in 1870. Prior to this, Bouch had built many bridges up to the Redheugh Viaduct, at Newcastle upon Tyne, which had two spans of 240 ft (73 m) and two of 260 ft (79 m). He had also set up in business on his own. He is said to have designed nearly 300 miles (480 km) of railway in the north, as well as a "floating railway" of steam ferries to carry trains across the Forth and the Tay. The Tay bridge, however, was his favourite project; he had hawked it for some twenty years before getting the go-ahead, and the foundation stone of the bridge was laid on 22 July 1871. The total length of the bridge was nearly two miles (3.2 km), while the shore-to-shore distance over the river was just over one mile (1.6 km). It consisted of eighty-five spans, thirteen of which, i.e. "the high girders", were some 245 ft (75 m) long and 100 ft (30 m) above water level to allow for shipping access to Perth, and was a structure of lattice girders on brick and masonry piers topped with ironwork. The first crossing of the bridge was made on 26 September 1877, and the official opening was on 31 May 1878. On Sunday 28 December 1879, at about 7.20 pm, in a wind of probably 90 mph (145 km/h), the thirteen "high girders" were blown into the river below, drowning the seventy-five passengers and crew aboard the 5.20 train from Burntisland. A Court of Enquiry was held and revealed design faults in that the effect of wind pressure had not been adequately taken into account, faults in manufacture in the plugging of flaws in the castings, and inadequate inspection and maintenance; all of these faults were attributed to Bouch, who had been knighted for the building of the bridge. He died at his house in Moffat four months after the enquiry.
    [br]
    Principal Honours and Distinctions
    Knighted. Cross of St George.
    Further Reading
    John Prebble, 1956, The High Girders.
    IMcN

    Biographical history of technology > Bouch, Sir Thomas

  • 14 Bouton, Georges Thadé

    [br]
    b. 22 November 1847 Paris, France
    d. November 1938
    [br]
    French pioneer in automobile manufacture.
    [br]
    Bouton was the son of a painter and learned mechanics at Honfleur and Paris. In 1870 he was fighting in Les Mobiles de Calvados, and in 1881, having finished his training, he joined his brother-in-law, Trepardoux, to open a workshop in rue de la Chapelle for the construction of steam engines for scientific toys. The comte de Dion discovered the workshop and became associated with it in 1882. They also built steam-boilers for automobiles. In 1883 they built their first quadricycle, and in 1887 their first steam tricycle. These were followed in 1892 and 1893 by a car and a steam tractor. After the appearance of the petrol engine they put in hand a star-shaped four-cylinder engine of this type, but it was not until 1895 and 1898 that the first de Dion-Bouton single-cylinder tricycle and their petrol bicycle, respectively, came out. From 1899 the manufacture of de Dion-Bouton was concentrated on the voiturette. Georges Bouton was responsible for the manufacture of all these machines and took part in the first motor races.
    [br]
    Further Reading
    1933, Dictionnaire de biographie française.
    IMcN

    Biographical history of technology > Bouton, Georges Thadé

  • 15 Bowser, Sylvanus F.

    [br]
    fl. 1880s
    [br]
    American mechanic and inventor of the first fuel-dispensing pump.
    [br]
    Bowser lived and worked in Fort Wayne, Texas. In 1885 he was approached by a local storekeeper, Jake Gumper, who had been receiving complaints from some of his customers. Gumper's store stocked both kerosene (lamp oil) and butter, and the two were stored alongside each other; the kerosene cask leaked and tainted the butter. Gumper consulted Bowser, but neither of them considered the obvious idea of moving the two containers further apart; instead, working in an adjacent barn, Bowser set about devising a means of dispensing kerosene in given quantities.
    He delivered his invention to Gumper on 5 September 1885. It was a circular tank with a cylinder soldered inside and an outlet pipe attached to the top. A hand-operated piston controlled two marble valves and wooden plungers which were fitted inside the cylinder. When the wooden handle was raised, a gallon of kerosene flowed from the tank into the cylinder, and when the handle was lowered the liquid was discharged.
    He formed S.F.Bowser \& Co. of Fort Wayne to exploit his invention, and twenty years later the company was producing pumps for motor spirit. In 1925 the Bowser Red Sentry, which registered quantity on a clock dial, was introduced. The first automatic "Bowser" in Britain was put into operation in a Manchester garage in 1921.
    [br]
    Further Reading
    P.Robertson, 1974, The Shell Book of Firsts, London: Ebury Press \& Michael Joseph.
    IMcN

    Biographical history of technology > Bowser, Sylvanus F.

  • 16 Bramah, Joseph

    [br]
    b. 2 April 1749 Stainborough, Yorkshire, England
    d. 9 December 1814 Pimlico, London, England
    [br]
    English inventor of the second patented water-closet, the beer-engine, the Bramah lock and, most important, the hydraulic press.
    [br]
    Bramah was the son of a tenant farmer and was educated at the village school before being apprenticed to a local carpenter, Thomas Allot. He walked to London c.1773 and found work with a Mr Allen that included the repair of some of the comparatively rare water-closets of the period. He invented and patented one of his own, which was followed by a water cock in 1783. His next invention, a greatly improved lock, involved the devising of a number of special machine tools, for it was one of the first devices involving interchangeable components in its manufacture. In this he had the help of Henry Maudslay, then a young and unknown engineer, who became Bramah's foreman before setting up business on his own. In 1784 he moved his premises from Denmark Street, St Giles, to 124 Piccadilly, which was later used as a showroom when he set up a factory in Pimlico. He invented an engine for putting out fires in 1785 and 1793, in effect a reciprocating rotary-vane pump. He undertook the refurbishment and modernization of Norwich waterworks c.1793, but fell out with Robert Mylne, who was acting as Consultant to the Norwich Corporation and had produced a remarkably vague specification. This was Bramah's only venture into the field of civil engineering.
    In 1797 he acted as an expert witness for Hornblower \& Maberley in the patent infringement case brought against them by Boulton and Watt. Having been cut short by the judge, he published his proposed evidence in "Letter to the Rt Hon. Sir James Eyre, Lord Chief Justice of the Common Pleas…etc". In 1795 he was granted his most important patent, based on Pascal's Hydrostatic Paradox, for the hydraulic press which also incorporated the concept of hydraulics for the transmission of both power and motion and was the foundation of the whole subsequent hydraulic industry. There is no truth in the oft-repeated assertion originating from Samuel Smiles's Industrial Biography (1863) that the hydraulic press could not be made to work until Henry Maudslay invented the self-sealing neck leather. Bramah used a single-acting upstroking ram, sealed only at its base with a U-leather. There was no need for a neck leather.
    He also used the concept of the weight-loaded, in this case as a public-house beer-engine. He devised machinery for carbonating soda water. The first banknote-numbering machine was of his design and was bought by the Bank of England. His development of a machine to cut twelve nibs from one goose quill started a patent specification which ended with the invention of the fountain pen, patented in 1809. His coach brakes were an innovation that was followed bv a form of hydropneumatic carriage suspension that was somewhat in advance of its time, as was his patent of 1812. This foresaw the introduction of hydraulic power mains in major cities and included the telescopic ram and the air-loaded accumulator.
    In all Joseph Bramah was granted eighteen patents. On 22 March 1813 he demonstrated a hydraulic machine for pulling up trees by the roots in Hyde Park before a large crowd headed by the Duke of York. Using the same machine in Alice Holt Forest in Hampshire to fell timber for ships for the Navy, he caught a chill and died soon after at his home in Pimlico.
    [br]
    Bibliography
    1778, British patent no. 1177 (water-closet). 1784, British patent no. 1430 (Bramah Lock). 1795, British patent no. 2045 (hydraulic press). 1809, British patent no. 3260 (fountain pen). 1812, British patent no. 3611.
    Further Reading
    I.McNeil, 1968, Joseph Bramah, a Century of Invention.
    S.Smiles, 1863, Industrial Biography.
    H.W.Dickinson, 1942, "Joseph Bramah and his inventions", Transactions of the Newcomen Society 22:169–86.
    IMcN

    Biographical history of technology > Bramah, Joseph

  • 17 Brattain, Walter Houser

    [br]
    b. 10 February 1902 Amoy, China (now Hsiamen)
    d. 13 October 1987 Seattle, Washington, USA
    [br]
    American physicist and co-inventor of the transistor.
    [br]
    Born of American parents in China, he was brought up on a cattle-ranch and graduated from Whitman College, Walla Walla, Washington, in 1924. He then went to the University of Minnesota, where he obtained a PhD in 1929. The same year he joined the staff of Bell Telephone Laboratories as a research physicist and there, during the First World War, he worked on the magnetic detection of submarines. For his work on the invention and development of the transistor, he was awarded the 1956 Nobel Prize for Physics jointly with John Bardeen and William Shockley. He retired in 1967. His interests have been concentrated on the properties of semiconductors such as germanium and silicon.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Physics (jointly with Bardeen and Shockley) 1956.
    Further Reading
    Isaacs and E.Martin (eds), 1985, Longmans Dictionary of 20th Century Biography.
    IMcN

    Biographical history of technology > Brattain, Walter Houser

  • 18 Braun, Wernher Manfred von

    [br]
    b. 23 March 1912 Wirsitz, Germany
    d. 16 June 1977 Alexandria, Virginia, USA
    [br]
    German pioneer in rocket development.
    [br]
    Von Braun's mother was an amateur astronomer who introduced him to the futuristic books of Jules Verne and H.G.Wells and gave him an astronomical telescope. He was a rather slack and undisciplined schoolboy until he came across Herman Oberth's book By Rocket to Interplanetary Space. He discovered that he required a good deal of mathematics to follow this exhilarating subject and immediately became an enthusiastic student.
    The Head of the Ballistics and Armaments branch of the German Army, Professor Karl Becker, had asked the engineer Walter Dornberger to develop a solid-fuel rocket system for short-range attack, and one using liquid-fuel rockets to carry bigger loads of explosives beyond the range of any known gun. Von Braun joined the Verein für Raumschiffsfahrt (the German Space Society) as a young man and soon became a leading member. He was asked by Rudolf Nebel, VfR's chief, to persuade the army of the value of rockets as weapons. Von Braun wisely avoided all mention of the possibility of space flight and some financial backing was assured. Dornberger in 1932 built a small test stand for liquid-fuel rockets and von Braun built a small rocket to test it; the success of this trial won over Dornberger to space rocketry.
    Initially research was carried out at Kummersdorf, a suburb of Berlin, but it was decided that this was not a suitable site. Von Braun recalled holidays as a boy at a resort on the Baltic, Peenemünde, which was ideally suited to rocket testing. Work started there but was not completed until August 1939, when the group of eighty engineers and scientists moved in. A great fillip to rocket research was received when Hitler was shown a film and was persuaded of the efficacy of rockets as weapons of war. A factory was set up in excavated tunnels at Mittelwerk in the Harz mountains. Around 6,000 "vengeance" weapons were built, some 3,000 of which were fired on targets in Britain and 2,000 of which were still in storage at the end of the Second World War.
    Peenemünde was taken by the Russians on 5 May 1945, but by then von Braun was lodging with many of his colleagues at an inn, Haus Ingeburg, near Oberjoch. They gave themselves up to the Americans, and von Braun presented a "prospectus" to the Americans, pointing out how useful the German rocket team could be. In "Operation Paperclip" some 100 of the team were moved to the United States, together with tons of drawings and a number of rocket missiles. Von Braun worked from 1946 at the White Sands Proving Ground, New Mexico, and in 1950 moved to Redstone Arsenal, Huntsville, Alabama. In 1953 he produced the Redstone missile, in effect a V2 adapted to carry a nuclear warhead a distance of 320 km (199 miles). The National Aeronautics and Space Administration (NASA) was formed in 1958 and recruited von Braun and his team. He was responsible for the design of the Redstone launch vehicles which launched the first US satellite, Explorer 1, in 1958, and the Mercury capsules of the US manned spaceflight programme which carried Alan Shepard briefly into space in 1961 and John Glenn into earth orbit in 1962. He was also responsible for the Saturn series of large, staged launch vehicles, which culminated in the Saturn V rocket which launched the Apollo missions taking US astronauts for the first human landing on the moon in 1969. Von Braun announced his resignation from NASA in 1972 and died five years later.
    [br]
    Bibliography
    Further Reading
    P.Marsh, 1985, The Space Business, Penguin. J.Trux, 1985, The Space Race, New English Library. T.Osman, 1983, Space History, Michael Joseph.
    IMcN

    Biographical history of technology > Braun, Wernher Manfred von

  • 19 Brunel, Isambard Kingdom

    [br]
    b. 9 April 1806 Portsea, Hampshire, England
    d. 15 September 1859 18 Duke Street, St James's, London, England
    [br]
    English civil and mechanical engineer.
    [br]
    The son of Marc Isambard Brunel and Sophia Kingdom, he was educated at a private boarding-school in Hove. At the age of 14 he went to the College of Caen and then to the Lycée Henri-Quatre in Paris, after which he was apprenticed to Louis Breguet. In 1822 he returned from France and started working in his father's office, while spending much of his time at the works of Maudslay, Sons \& Field.
    From 1825 to 1828 he worked under his father on the construction of the latter's Thames Tunnel, occupying the position of Engineer-in-Charge, exhibiting great courage and presence of mind in the emergencies which occurred not infrequently. These culminated in January 1828 in the flooding of the tunnel and work was suspended for seven years. For the next five years the young engineer made abortive attempts to find a suitable outlet for his talents, but to little avail. Eventually, in 1831, his design for a suspension bridge over the River Avon at Clifton Gorge was accepted and he was appointed Engineer. (The bridge was eventually finished five years after Brunel's death, as a memorial to him, the delay being due to inadequate financing.) He next planned and supervised improvements to the Bristol docks. In March 1833 he was appointed Engineer of the Bristol Railway, later called the Great Western Railway. He immediately started to survey the route between London and Bristol that was completed by late August that year. On 5 July 1836 he married Mary Horsley and settled into 18 Duke Street, Westminster, London, where he also had his office. Work on the Bristol Railway started in 1836. The foundation stone of the Clifton Suspension Bridge was laid the same year. Whereas George Stephenson had based his standard railway gauge as 4 ft 8½ in (1.44 m), that or a similar gauge being usual for colliery wagonways in the Newcastle area, Brunel adopted the broader gauge of 7 ft (2.13 m). The first stretch of the line, from Paddington to Maidenhead, was opened to traffic on 4 June 1838, and the whole line from London to Bristol was opened in June 1841. The continuation of the line through to Exeter was completed and opened on 1 May 1844. The normal time for the 194-mile (312 km) run from Paddington to Exeter was 5 hours, at an average speed of 38.8 mph (62.4 km/h) including stops. The Great Western line included the Box Tunnel, the longest tunnel to that date at nearly two miles (3.2 km).
    Brunel was the engineer of most of the railways in the West Country, in South Wales and much of Southern Ireland. As railway networks developed, the frequent break of gauge became more of a problem and on 9 July 1845 a Royal Commission was appointed to look into it. In spite of comparative tests, run between Paddington-Didcot and Darlington-York, which showed in favour of Brunel's arrangement, the enquiry ruled in favour of the narrow gauge, 274 miles (441 km) of the former having been built against 1,901 miles (3,059 km) of the latter to that date. The Gauge Act of 1846 forbade the building of any further railways in Britain to any gauge other than 4 ft 8 1/2 in (1.44 m).
    The existence of long and severe gradients on the South Devon Railway led to Brunel's adoption of the atmospheric railway developed by Samuel Clegg and later by the Samuda brothers. In this a pipe of 9 in. (23 cm) or more in diameter was laid between the rails, along the top of which ran a continuous hinged flap of leather backed with iron. At intervals of about 3 miles (4.8 km) were pumping stations to exhaust the pipe. Much trouble was experienced with the flap valve and its lubrication—freezing of the leather in winter, the lubricant being sucked into the pipe or eaten by rats at other times—and the experiment was abandoned at considerable cost.
    Brunel is to be remembered for his two great West Country tubular bridges, the Chepstow and the Tamar Bridge at Saltash, with the latter opened in May 1859, having two main spans of 465 ft (142 m) and a central pier extending 80 ft (24 m) below high water mark and allowing 100 ft (30 m) of headroom above the same. His timber viaducts throughout Devon and Cornwall became a feature of the landscape. The line was extended ultimately to Penzance.
    As early as 1835 Brunel had the idea of extending the line westwards across the Atlantic from Bristol to New York by means of a steamship. In 1836 building commenced and the hull left Bristol in July 1837 for fitting out at Wapping. On 31 March 1838 the ship left again for Bristol but the boiler lagging caught fire and Brunel was injured in the subsequent confusion. On 8 April the ship set sail for New York (under steam), its rival, the 703-ton Sirius, having left four days earlier. The 1,340-ton Great Western arrived only a few hours after the Sirius. The hull was of wood, and was copper-sheathed. In 1838 Brunel planned a larger ship, some 3,000 tons, the Great Britain, which was to have an iron hull.
    The Great Britain was screwdriven and was launched on 19 July 1843,289 ft (88 m) long by 51 ft (15.5 m) at its widest. The ship's first voyage, from Liverpool to New York, began on 26 August 1845. In 1846 it ran aground in Dundrum Bay, County Down, and was later sold for use on the Australian run, on which it sailed no fewer than thirty-two times in twenty-three years, also serving as a troop-ship in the Crimean War. During this war, Brunel designed a 1,000-bed hospital which was shipped out to Renkioi ready for assembly and complete with shower-baths and vapour-baths with printed instructions on how to use them, beds and bedding and water closets with a supply of toilet paper! Brunel's last, largest and most extravagantly conceived ship was the Great Leviathan, eventually named The Great Eastern, which had a double-skinned iron hull, together with both paddles and screw propeller. Brunel designed the ship to carry sufficient coal for the round trip to Australia without refuelling, thus saving the need for and the cost of bunkering, as there were then few bunkering ports throughout the world. The ship's construction was started by John Scott Russell in his yard at Millwall on the Thames, but the building was completed by Brunel due to Russell's bankruptcy in 1856. The hull of the huge vessel was laid down so as to be launched sideways into the river and then to be floated on the tide. Brunel's plan for hydraulic launching gear had been turned down by the directors on the grounds of cost, an economy that proved false in the event. The sideways launch with over 4,000 tons of hydraulic power together with steam winches and floating tugs on the river took over two months, from 3 November 1857 until 13 January 1858. The ship was 680 ft (207 m) long, 83 ft (25 m) beam and 58 ft (18 m) deep; the screw was 24 ft (7.3 m) in diameter and paddles 60 ft (18.3 m) in diameter. Its displacement was 32,000 tons (32,500 tonnes).
    The strain of overwork and the huge responsibilities that lay on Brunel began to tell. He was diagnosed as suffering from Bright's disease, or nephritis, and spent the winter travelling in the Mediterranean and Egypt, returning to England in May 1859. On 5 September he suffered a stroke which left him partially paralysed, and he died ten days later at his Duke Street home.
    [br]
    Further Reading
    L.T.C.Rolt, 1957, Isambard Kingdom Brunel, London: Longmans Green. J.Dugan, 1953, The Great Iron Ship, Hamish Hamilton.
    IMcN

    Biographical history of technology > Brunel, Isambard Kingdom

  • 20 Brunel, Sir Marc Isambard

    [br]
    b. 26 April 1769 Hacqueville, Normandy, France
    d. 12 December 1849 London, England
    [br]
    French (naturalized American) engineer of the first Thames Tunnel.
    [br]
    His mother died when he was 7 years old, a year later he went to college in Gisors and later to the Seminary of Sainte-Nicaise at Rouen. From 1786 to 1792 he followed a career in the French navy as a junior officer. In Rouen he met Sophie Kingdom, daughter of a British Navy contractor, whom he was later to marry. In July 1793 Marc sailed for America from Le Havre. He was to remain there for six years, and became an American citizen, occupying himself as a land surveyor and as an architect. He became Chief Engineer to the City of New York. At General Hamilton's dinner table he learned that the British Navy used over 100,000 ship's blocks every year; this started him thinking how the manufacture of blocks could be mechanized. He roughed out a set of machines to do the job, resigned his post as Chief Engineer and sailed for England in February 1799.
    In London he was shortly introduced to Henry Maudslay, to whom he showed the drawings of his proposed machines and with whom he placed an order for their manufacture. The first machines were completed by mid-1803. Altogether Maudslay produced twenty-one machines for preparing the shells, sixteen for preparing the sheaves and eight other machines.
    In February 1809 he saw troops at Portsmouth returning from Corunna, the victors, with their lacerated feet bound in rags. He resolved to mechanize the production of boots for the Army and, within a few months, had twenty-four disabled soldiers working the machinery he had invented and installed near his Battersea sawmill. The plant could produce 400 pairs of boots and shoes a day, selling at between 9s. 6d. and 20s. a pair. One day in 1817 at Chatham dockyard he observed a piece of scrap keel timber, showing the ravages wrought by the shipworm, Teredo navalis, which, with its proboscis protected by two jagged concave triangular shells, consumes, digests and finally excretes the ship's timbers as it gnaws its way through them. The excreted material provided material for lining the walls of the tunnel the worm had drilled. Brunel decided to imitate the action of the shipworm on a large scale: the Thames Tunnel was to occupy Marc Brunel for most of the remainder of his life. Boring started in March 1825 and was completed by March 1843. The project lay dormant for long periods, but eventually the 1,200 ft (366 m)-long tunnel was completed. Marc Isambard Brunel died at the age of 80 and was buried at Kensal Green cemetery.
    [br]
    Principal Honours and Distinctions
    FRS 1814. Vice-President, Royal Society 1832.
    Further Reading
    P.Clements, 1970, Marc Isambard Brunel, London: Longmans Green.
    IMcN

    Biographical history of technology > Brunel, Sir Marc Isambard

См. также в других словарях:

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»