Перевод: со всех языков на все языки

со всех языков на все языки

required+subject

  • 101 Popoff, Andrei Alexandrovitch

    SUBJECT AREA: Ports and shipping
    [br]
    b. 21 September 1821 Russia
    d. 6 March 1898 Russia
    [br]
    Russian admiral and naval constructor involved in the building of unusual warships.
    [br]
    After graduating from the Naval School Popoff served in the Russian Navy, ultimately commanding the cruiser Meteor. During the Crimean War he was Captain of a steamship and was later Manager of Artillery Supplies at Sevastopol. At the conclusion of the war he was appointed to supervise the construction of all steamships and so started his real career in naval procurement. For the best part of thirty years he oversaw the Russian naval building programme, producing many new ships at St Petersburg. Probably the finest was the battleship Petr Veliki (Peter the Great), of 9,000 tons displacement, built at Galernii Island in 1869. With some major refits the ship remained in the fleet until 1922. Two remarkable ships were produced at St Petersburg, the Novgorod and the Vice Admiral Popoff in 1874 and 1876, respectively. Their hull form was almost circular in the hope of creating stable and steady gun platforms and to lessen the required depth of water for their duties as defence ships in the shallow waters of the Black Sea and the Sea of Azov. Despite support for the idea from Sir Edward Reed of the Royal Navy, the designs failed owing to unpleasant oscillations and poor manoeuvring qualities. One further attempt was made to find a successful outcome to this good idea in the construction of the Russian Imperial Yacht Livadia at Elder's Glasgow shipyard in 1880: for many reasons the Livadia never fulfilled her purpose. Despite their great advantages, the age of the Popoffkas was over. Popoff had a remarkable effect on Russian shipbuilding and warship design. He had authority, and used it wisely at a time when the Russian shipbuilding industry was developing quickly.
    [br]
    Principal Honours and Distinctions
    Honorary Associate of the Institution of Naval Architects, London.
    Further Reading
    Fred T.Jane, 1899, The Imperial Russian Navy, London.
    AK / FMW

    Biographical history of technology > Popoff, Andrei Alexandrovitch

  • 102 Ramsbottom, John

    [br]
    b. 11 September 1814 Todmorden, Lancashire, England
    d. 20 May 1897 Alderley Edge, Cheshire, England
    [br]
    English railway engineer, inventor of the reversing rolling mill.
    [br]
    Ramsbottom's initial experience was gained at the locomotive manufacturers Sharp, Roberts \& Co. At the age of 28 he was Manager of the Longsight works of the Manchester \& Birmingham Railway, which, with other lines, became part of the London \& North Western Railway (L \& NWR) in 1846. Ramsbottom was appointed Locomotive Superintendent of its north-eastern division. Soon after 1850 came his first major invention, that of the split-ring piston, consisting of castiron rings fitted round the piston to ensure a steam-tight fit in the cylinder. This proved to be successful, with a worldwide application. In 1856 he introduced sight-feed lubrication and the form of safety valve that bears his name. In 1857 he became Locomotive Superintendent of the L \& NWR at Crewe, producing two notable classes of locomotives: 2–4–0s for passenger traffic; and 0–6–0s for goods. They were of straightforward design and robust construction, and ran successfully for many years. His most spectacular railway invention was the water trough between the rails which enabled locomotives to replenish their water tanks without stopping.
    As part of his policy of making Crewe works as independent as possible, Ramsbottom made several metallurgical innovations. He installed one of the earliest Bessemer converters for steelmaking. More important, in 1866 he coupled the engine part of a railway engine to a two-high rolling mill so that the rolls could be run in either direction, and quickly change direction, by means of the standard railway link reversing gear. This greatly speeded up the rolling of iron or steel into the required sections. He eventually retired in 1871.
    [br]
    Further Reading
    J.N.Weatwood, 1977, Locomotive Designers in the Age of Steam, London: Sidgwick \& Jackson, pp. 43–7.
    W.K.V.Gale, 1969, Iron and Steel, London: Longmans, p. 80 (provides brief details of his reversing mill).
    F.C.Hammerton, 1937, John Ramsbottom, the Father of the Modern Locomotive,
    London.
    LRD

    Biographical history of technology > Ramsbottom, John

  • 103 Ransome, Frederick

    [br]
    b. 18 June 1818 Rushmere, Suffolk, England
    d. 19 April 1893 London, England
    [br]
    English engineer and inventor of a type of artificial stone.
    [br]
    Frederick Ransome was the son of James Ransome (1782–1849) and grandson of Robert Ransome, founder of the well-known Ipswich firm of engineers. He did not become a partner in the family firm, but devoted his life to experiments to develop an artificial stone. These experiments were recorded in a paper which he presented to the Institution of Civil Engineers in 1848 and in a long series of over thirty patents dating from 1844. The material so formed was a sandstone, the particles of which were bonded together by a silicate of lime. It could be moulded into any required form while in its initial soft state, and when hard was suitable for surface-dressing or carving. It was used for many public buildings, but time proved it unsuitable for outside work. Ransome also used his artificial stone to make grinding wheels by incorporating emery powder in the mixture. These were found to be much superior to those made of natural stone. Another use of the artificial stone was in a porous form which could be used as a filter. In later years Ransome turned his attention to the manufacture of Portland cement and of a cheaper substitute incorporating blast-furnace slag. He also invented a rotary kiln for burning the cement, the first of these being built in 1887. It was 26 ft (7.9 m) long and 5 ft (1.5 m) in diameter; although reasonably successful, the development of such kilns of much greater length was carried out in America rather than England. Ransome was elected an Associate of the Institution of Civil Engineers in 1848 and served as an Associate of
    [br]
    Bibliography
    1848, "On the manufacture of artificial stone with a silica base", Minutes of the Proceedings of the Institution of Civil Engineers 7:57.
    RTS

    Biographical history of technology > Ransome, Frederick

  • 104 Riefler, Sigmund

    SUBJECT AREA: Horology
    [br]
    b. 9 August 1847 Maria Rain, Germany
    d. 21 October 1912 Munich, Germany
    [br]
    German engineer who invented the precision clock that bears his name.
    [br]
    Riefler's father was a scientific-instrument maker and clockmaker who in 1841 had founded the firm of Clemens Riefler to make mathematical instruments. After graduating in engineering from the University of Munich Sigmund worked as a surveyor, but when his father died in 1876 he and his brothers ran the family firm. Sigmund was responsible for technical development and in this capacity he designed a new system of drawing-instruments which established the reputation of the firm. He also worked to improve the performance of the precision clock, and in 1889 he was granted a patent for a new form of escapement. This escapement succeeded in reducing the interference of the clock mechanism with the free swinging of the pendulum by impulsing the pendulum through its suspension strip. It proved to be the greatest advance in precision timekeeping since the introduction of the dead-beat escapement about two hundred years earlier. When the firm of Clemens Riefler began to produce clocks with this escapement in 1890, they replaced clocks with Graham's dead-beat escapement as the standard regulator for use in observatories and other applications where the highest precision was required. In 1901 a movement was fitted with electrical rewind and was encapsulated in an airtight case, at low pressure, so that the timekeeping was not affected by changes in barometric pressure. This became the standard practice for precision clocks. Although the accuracy of the Riefler clock was later surpassed by the Shortt free-pendulum clock and the quartz clock, it remained in production until 1965, by which time over six hundred instruments had been made.
    [br]
    Principal Honours and Distinctions
    Franklin Institute John Scott Medal 1894. Honorary doctorate, University of Munich 1897. Vereins zur Förderung des Gewerbefleisses in Preussen Gold Medal 1900.
    Bibliography
    1907, Präzisionspendeluhren und Zeitdienstanlagen fürSternwarten, Munich (for a complete bibliography see D.Riefler below).
    Further Reading
    D.Riefler, 1981, Riefler-Präzisionspendeluhren, Munich (the definitive work on Riefler and his clock).
    A.L.Rawlings, 1948, The Science of Clocks and Watches, 2nd edn; repub. 1974 (a technical assessment of the Riefler escapement in its historical context).
    DV

    Biographical history of technology > Riefler, Sigmund

  • 105 Riley, James

    SUBJECT AREA: Metallurgy
    [br]
    b. 1840 Halifax, England
    d. 15 July 1910 Harrogate, England
    [br]
    English steelmaker who promoted the manufacture of low-carbon bulk steel by the open-hearth process for tin plate and shipbuilding; pioneer of nickel steels.
    [br]
    After working as a millwright in Halifax, Riley found employment at the Ormesby Ironworks in Middlesbrough until, in 1869, he became manager of the Askam Ironworks in Cumberland. Three years later, in 1872, he was appointed Blast-furnace Manager at the pioneering Siemens Steel Company's works at Landore, near Swansea in South Wales. Using Spanish ore, he produced the manganese-rich iron (spiegeleisen) required as an additive to make satisfactory steel. Riley was promoted in 1874 to be General Manager at Landore, and he worked with William Siemens to develop the use of the latter's regenerative furnace for the production of open-hearth steel. He persuaded Welsh makers of tin plate to use sheets rolled from lowcarbon (mild) steel instead of from charcoal iron and, partly by publishing some test results, he was instrumental in influencing the Admiralty to build two naval vessels of mild steel, the Mercury and the Iris.
    In 1878 Riley moved north on his appointment as General Manager of the Steel Company of Scotland, a firm closely associated with Charles Tennant that was formed in 1872 to make steel by the Siemens process. Already by 1878, fourteen Siemens melting furnaces had been erected, and in that year 42,000 long tons of ingots were produced at the company's Hallside (Newton) Works, situated 8 km (5 miles) south-east of Glasgow. Under Riley's leadership, steelmaking in open-hearth furnaces was initiated at a second plant situated at Blochairn. Plates and sections for all aspects of shipbuilding, including boilers, formed the main products; the company also supplied the greater part of the steel for the Forth (Railway) Bridge. Riley was associated with technical modifications which improved the performance of steelmaking furnaces using Siemens's principles. He built a gasfired cupola for melting pig-iron, and constructed the first British "universal" plate mill using three-high rolls (Lauth mill).
    At the request of French interests, Riley investigated the properties of steels containing various proportions of nickel; the report that he read before the Iron and Steel Institute in 1889 successfully brought to the notice of potential users the greatly enhanced strength that nickel could impart and its ability to yield alloys possessing substantially lower corrodibility.
    The Steel Company of Scotland paid dividends in the years to 1890, but then came a lean period. In 1895, at the age of 54, Riley moved once more to another employer, becoming General Manager of the Glasgow Iron and Steel Company, which had just laid out a new steelmaking plant at Wishaw, 25 km (15 miles) south-east of Glasgow, where it already had blast furnaces. Still the technical innovator, in 1900 Riley presented an account of his experiences in introducing molten blast-furnace metal as feed for the open-hearth steel furnaces. In the early 1890s it was largely through Riley's efforts that a West of Scotland Board of Conciliation and Arbitration for the Manufactured Steel Trade came into being; he was its first Chairman and then its President.
    In 1899 James Riley resigned from his Scottish employment to move back to his native Yorkshire, where he became his own master by acquiring the small Richmond Ironworks situated at Stockton-on-Tees. Although Riley's 1900 account to the Iron and Steel Institute was the last of the many of which he was author, he continued to contribute to the discussion of papers written by others.
    [br]
    Principal Honours and Distinctions
    President, West of Scotland Iron and Steel Institute 1893–5. Vice-President, Iron and Steel Institute, 1893–1910. Iron and Steel Institute (London) Bessemer Gold Medal 1887.
    Bibliography
    1876, "On steel for shipbuilding as supplied to the Royal Navy", Transactions of the Institute of Naval Architects 17:135–55.
    1884, "On recent improvements in the method of manufacture of open-hearth steel", Journal of the Iron and Steel Institute 2:43–52 plus plates 27–31.
    1887, "Some investigations as to the effects of different methods of treatment of mild steel in the manufacture of plates", Journal of the Iron and Steel Institute 1:121–30 (plus sheets II and III and plates XI and XII).
    27 February 1888, "Improvements in basichearth steel making furnaces", British patent no. 2,896.
    27 February 1888, "Improvements in regenerative furnaces for steel-making and analogous operations", British patent no. 2,899.
    1889, "Alloys of nickel and steel", Journal of the Iron and Steel Institute 1:45–55.
    Further Reading
    A.Slaven, 1986, "James Riley", in Dictionary of Scottish Business Biography 1860–1960, Volume 1: The Staple Industries (ed. A.Slaven and S. Checkland), Aberdeen: Aberdeen University Press, 136–8.
    "Men you know", The Bailie (Glasgow) 23 January 1884, series no. 588 (a brief biography, with portrait).
    J.C.Carr and W.Taplin, 1962, History of the British Steel Industry, Harvard University Press (contains an excellent summary of salient events).
    JKA

    Biographical history of technology > Riley, James

  • 106 Roebling, John Augustus

    SUBJECT AREA: Civil engineering
    [br]
    b. 12 July 1806 Muhlhausen, Prussia
    d. 22 July 1869 Brooklyn, New York, USA
    [br]
    German/American bridge engineer and builder.
    [br]
    The son of Polycarp Roebling, a tobacconist, he studied mathematics at Dr Unger's Pedagogium in Erfurt and went on to the Royal Polytechnic Institute in Berlin, from which he graduated in 1826 with honours in civil engineering. He spent the next three years working for the Prussian government on the construction of roads and bridges. With his brother and a group of friends, he emigrated to the United States, sailing from Bremen on 23 May 1831 and docking in Philadelphia eleven weeks later. They bought 7,000 acres (2,800 hectares) in Butler County, western Pennsylvania, and established a village, at first called Germania but later known as Saxonburg. Roebling gave up trying to establish himself as a farmer and found work for the state of Pennsylvania as Assistant Engineer on the Beaver River canal and others, then surveying a railroad route across the Allegheny Mountains. During his canal work, he noted the failings of the hemp ropes that were in use at that time, and recalled having read of wire ropes in a German journal; he built a rope-walk at his Saxonburg farm, bought a supply of iron wire and trained local labour in the method of wire twisting.
    At this time, many canals crossed rivers by means of aqueducts. In 1844, the Pennsylvania Canal aqueduct across the Allegheny River was due to be renewed, having become unsafe. Roebling made proposals which were accepted by the canal company: seven wooden spans of 162 ft (49 m) each were supported on either side by a 7 in. (18 cm) diameter cable, Roebling himself having to devise all the machinery required for the erection. He subsequently built four more suspension aqueducts, one of which was converted to a toll bridge and was still in use a century later.
    In 1849 he moved to Trenton, New Jersey, where he set up a new wire rope plant. In 1851 he started the construction (completed in 1855) of an 821 ft (250 m) long suspension railroad bridge across the Niagara River, 245 ft (75 m) above the rapids; each cable consisted of 3,640 wrought iron wires. A lower deck carried road traffic. He also constructed a bridge across the Ohio River between Cincinnati and Covington, a task which was much protracted due to the Civil War; this bridge was finally completed in 1866.
    Roebling's crowning achievement was to have been the design and construction of the bridge over the Hudson River between Brooklyn and Staten Island, New York, but he did not live to see its completion. It had a span of 1,595 ft (486 m), designed to bear a load of 18,700 tons (19,000 tonnes) with a headroom of 135 ft (41 m). The work of building had barely started when, at the Brooklyn wharf, a boat crushed Roebling's foot against the timbering and he died of tetanus three weeks later. His son, Washington Augustus Roebling, then took charge of this great work.
    [br]
    Further Reading
    D.B.Steinman and S.R.Watson, 1941, Bridges and their Builders, New York: Dover Books.
    D.McCullough, 1982, The Great Bridge: The Epic Story of the Building of the Brooklyn Bridge, New York: Simon \& Schuster.
    IMcN

    Biographical history of technology > Roebling, John Augustus

  • 107 Roebuck, John

    SUBJECT AREA: Chemical technology
    [br]
    b. 1718 Sheffield, England
    d. 17 July 1794
    [br]
    English chemist and manufacturer, inventor of the lead-chamber process for sulphuric acid.
    [br]
    The son of a prosperous Sheffield manufacturer, Roebuck forsook the family business to pursue studies in medicine at Edinburgh University. There he met Dr Joseph Black (1727–99), celebrated Professor of Chemistry, who aroused in Roebuck a lasting interest in chemistry. Roebuck continued his studies at Leyden, where he took his medical degree in 1742. He set up in practice in Birmingham, but in his spare time he continued chemical experiments that might help local industries.
    Among his early achievements was his new method of refining gold and silver. Success led to the setting up of a large laboratory and a reputation as a chemical consultant. It was at this time that Roebuck devised an improved way of making sulphuric acid. This vital substance was then made by burning sulphur and nitre (potassium nitrate) over water in a glass globe. The scale of the process was limited by the fragility of the glass. Roebuck substituted "lead chambers", or vessels consisting of sheets of lead, a metal both cheap and resistant to acids, set in wooden frames. After the first plant was set up in 1746, productivity rose and the price of sulphuric acid fell sharply. Success encouraged Roebuck to establish a second, larger plant at Prestonpans, near Edinburgh. He preferred to rely on secrecy rather than patents to preserve his monopoly, but a departing employee took the secret with him and the process spread rapidly in England and on the European continent. It remained the standard process until it was superseded by the contact process towards the end of the nineteenth century. Roebuck next turned his attention to ironmaking and finally selected a site on the Carron river, near Falkirk in Scotland, where the raw materials and water power and transport lay close at hand. The Carron ironworks began producing iron in 1760 and became one of the great names in the history of ironmaking. Roebuck was an early proponent of the smelting of iron with coke, pioneered by Abraham Darby at Coalbrookdale. To supply the stronger blast required, Roebuck consulted John Smeaton, who c. 1760 installed the first blowing cylinders of any size.
    All had so far gone well for Roebuck, but he now leased coal-mines and salt-works from the Duke of Hamilton's lands at Borrowstonness in Linlithgow. The coal workings were plagued with flooding which the existing Newcomen engines were unable to overcome. Through his friendship with Joseph Black, patron of James Watt, Roebuck persuaded Watt to join him to apply his improved steam-engine to the flooded mine. He took over Black's loan to Watt of £1,200, helped him to obtain the first steam-engine patent of 1769 and took a two-thirds interest in the project. However, the new engine was not yet equal to the task and the debts mounted. To satisfy his creditors, Roebuck had to dispose of his capital in his various ventures. One creditor was Matthew Boulton, who accepted Roebuck's two-thirds share in Watt's steam-engine, rather than claim payment from his depleted estate, thus initiating a famous partnership. Roebuck was retained to manage Borrowstonness and allowed an annuity for his continued support until his death in 1794.
    [br]
    Further Reading
    Memoir of John Roebuck in J.Roy. Soc. Edin., vol. 4 (1798), pp. 65–87.
    S.Gregory, 1987, "John Roebuck, 18th century entrepreneur", Chem. Engr. 443:28–31.
    LRD

    Biographical history of technology > Roebuck, John

  • 108 Senefelder, Alois

    SUBJECT AREA: Paper and printing
    [br]
    b. 6 November 1771 Prague, Bohemia (now Czech Republic)
    d. 26 February 1834 Munich, Germany
    [br]
    German inventor of lithography.
    [br]
    Soon after his birth, Senefelder's family moved to Mannheim, where his father, an actor, had obtained a position in the state theatre. He was educated there, until he gained a scholarship to the university of Ingolstadt. The young Senefelder wanted to follow his father on to the stage, but the latter insisted that he study law. He nevertheless found time to write short pieces for the theatre. One of these, when he was 18 years old, was an encouraging success. When his father died in 1791, he gave up his studies and took to a new life as poet and actor. However, the wandering life of a repertory actor palled after two years and he settled for the more comfortable pursuit of playwriting. He had some of his work printed, which acquainted him with the art of printing, but he fell out with his bookseller. He therefore resolved to carry out his own printing, but he could not afford the equipment of a conventional letterpress printer. He began to explore other ways of printing and so set out on the path that was to lead to an entirely new method.
    He tried writing in reverse on a copper plate with some acid-resisting material and etching the plate, to leave a relief image that could then be inked and printed. He knew that oily substances would resist acid, but it required many experiments to arrive at a composition of wax, soap and charcoal dust dissolved in rainwater. The plates wore down with repeated polishing, so he substituted stone plates. He continued to etch them and managed to make good prints with them, but he went on to make the surprising discovery that etching was unnecessary. If the image to be printed was made with the oily composition and the stone moistened, he found that only the oily image received the ink while the moistened part rejected it. The printing surface was neither raised (as in letterpress printing) nor incised (as in intaglio printing): Senefelder had discovered the third method of printing.
    He arrived at a workable process over the years 1796 to 1799, and in 1800 he was granted an English patent. In the same year, lithography (or "writing on stone") was introduced into France and Senefelder himself took it to England, but it was some time before it became widespread; it was taken up by artists especially for high-quality printing of art works. Meanwhile, Senefelder improved his techniques, finding that other materials, even paper, could be used in place of stone. In fact, zinc plates were widely used from the 1820s, but the name "lithography" stuck. Although he won world renown and was honoured by most of the crowned heads of Europe, he never became rich because he dissipated his profits through restless experimenting.
    With the later application of the offset principle, initiated by Barclay, lithography has become the most widely used method of printing.
    [br]
    Bibliography
    1911, Alois Senefelder, Inventor of Lithography, trans. J.W.Muller, New York: Fuchs \& Line (Senefelder's autobiography).
    Further Reading
    W.Weber, 1981, Alois Senefelder, Erfinder der Lithographie, Frankfurt-am-Main: Polygraph Verlag.
    M.Tyman, 1970, Lithography 1800–1950, London: Oxford University Press (describes the invention and its development; with biographical details).
    LRD

    Biographical history of technology > Senefelder, Alois

  • 109 Seppings, Robert

    SUBJECT AREA: Ports and shipping
    [br]
    b. 11 December 1767 near Fakenham, Norfolk, England
    d. 25 April 1840 Taunton, Somerset, England
    [br]
    English naval architect who as Surveyor to the Royal Navy made fundamental improvements in wooden ship construction.
    [br]
    After the death of his father, Seppings at the age of 14 moved to his uncle's home in Plymouth, where shortly after (1782) he was apprenticed to the Master Shipwright. His indentures were honoured fully by 1789 and he commenced his climb up the professional ladder of the ship construction department of the Royal Dockyards. In 1797 he became Assistant Master Shipwright at Plymouth, and in 1804 he was appointed Master Shipwright at Chatham. In 1813 Sir William Rule, Surveyor to the Navy, retired and the number of surveyors was increased to three, with Seppings being appointed the junior. Later he was to become Surveyor to the Royal Navy, a post he held until his retirement in 1832. Seppings introduced many changes to ship construction in the early part of the nineteenth century. It is likely that the introduction of these innovations required positive and confident management, and their acceptance tells us much about Seppings. The best-known changes were the round bow and stern in men-of-war and the alteration to framing systems.
    The Seppings form of diagonal bracing ensured that wooden ships, which are notorious for hogging (i.e. drooping at the bow and stern), were stronger and therefore able to be built with greater length. This change was complemented by modifications to the floors, frames and futtocks (analogous to the ribs of a ship). These developments were to be taken further once iron composite construction (wooden sheathing on iron frames) was adopted in the United Kingdom mid-century.
    [br]
    Principal Honours and Distinctions
    FRS. Knighted (by the Prince Regent aboard the warship Royal George) 1819.
    Bibliography
    Throughout his life Seppings produced a handful of pamphlets and published letters, as well as two papers that were published in the Philosophical Transactions of the Royal Society (1814 and 1820).
    Further Reading
    A description of the thinking in the Royal Navy at the beginning of the nineteenth century can be found in: J.Fincham, 1851, A History of Naval Architecture, London; B.Lavery, 1989, Nelson's Navy. The Ships, Men and Organisation 1793–1815, London: Conway.
    T.Wright, 1982, "Thomas Young and Robert Seppings: science and ship construction in the early nineteenth century", Transactions of the Newcomen Society 53:55–72.
    Seppings's work can be seen aboard the frigate Unicorn, launched in Chatham in 1824 and now on view to the public at Dundee. Similarly, his innovations in ship construction can be readily understood from many of the models at the National Maritime Museum, Greenwich.
    FMW

    Biographical history of technology > Seppings, Robert

  • 110 Smith, J.

    SUBJECT AREA: Textiles
    [br]
    fl. 1830s Scotland
    [br]
    Scottish inventor of the first endless chain of flats for carding.
    [br]
    Carding by hand required a pair of hand cards. The lump of tangled fibres was teased out by pulling one card across the other to even out the fibres and transfer them onto one of the cards from which they could be rolled up into a rollag or slubbing. When Arkwright began to use cylinder cards, the fibres were teased out as they passed from one cylinder to the next. In order to obtain a greater carding area, he soon introduced smaller cylinders and placed strips of flat card above the periphery of the main cylinder. These became clogged with short fibres and dirt, so they had to be lifted off and cleaned or "stripped" at intervals. The first to invent a self-stripping card was Archibald Buchanan, at the Catrine mills in Ayrshire, with his patent in 1823. In his arrangement each flat was turned upside down and stripped by a rotary brush. This was improved by Smith in 1834 and patented in the same year. Smith fixed the flats on an endless chain so that they travelled around the periphery of the top of the main cylinder. Just after the point where they left the cylinder, Smith placed a rotary brush and a comb to clear the brush. In this way each flat in turn was properly and regularly cleaned.
    Smith was an able mechanic and Managing Partner of the Deanston mills in Scotland. He visited Manchester, where he was warmly received on the introduction of his machine there at about the same time as he patented it in Scotland. The carding engine he designed was complex, for he arranged a double feed to obtain greater production. While this part of his patent was not developed, his chain or endless flats became the basis used in later cotton carding engines. He took out at least half a dozen other patents for textile machinery. These included two in 1834, the first for a self-acting mule and the second with J.C. Dyer for improvements to winding on to spools. There were further spinning patents in 1839 and 1844 and more for preparatory machinery including carding in 1841 and 1842. He was also interested in agriculture and invented a subsoil plough and other useful things.
    [br]
    Bibliography
    1834, British patent no. 6,560 (self-stripping card). 1834, British patent no. 656 (self-acting mule). 1839, British patent no. 8,054.
    1841, British patent no. 8,796 (carding machine). 1842, British patent no. 9,313 (carding machine).
    1844, British patent no. 10,080.
    Further Reading
    E.Leigh, 1875, The Science of Modern Cotton Spinning Manchester (provides a good account of Smith's carding engine).
    W.English, 1969, The Textile Industry, London (covers the development of the carding engine).
    RLH

    Biographical history of technology > Smith, J.

  • 111 Smith, Oberlin

    [br]
    b. 22 March 1840 Cincinnati, Ohio, USA
    d. 18 July 1926
    [br]
    American mechanical engineer, pioneer in experiments with magnetic recording.
    [br]
    Of English descent, Smith embarked on an education in mechanical engineering, graduating from West Jersey Academy, Bridgeton, New Jersey, in 1859. In 1863 he established a machine shop in Bridgeton, New Jersey, that became the Ferracute Machine Company in 1877, eventually specializing in the manufacture of presses for metalworking. He seems to have subscribed to design principles considered modern even in the 1990s, "always giving attention to the development of artistic form in combination with simplicity, and with massive strength where required" (bibliographic reference below). He was successful in his business, and developed and patented a large number of mechanical constructions.
    Inspired by the advent of the phonograph of Edison, in 1878 Smith obtained the tin-foil mechanical phonograph, analysed its shortcomings and performed some experiments in magnetic recording. He filed a caveat in the US Patent Office in order to be protected while he "reduced the invention to practice". However, he did not follow this trail. When there was renewed interest in practical sound recording and reproduction in 1888 (the constructions of Berliner and Bell \& Tainter), Smith published an account of his experiments in the journal Electrical World. In a corrective letter three weeks later it is clear that he was aware of the physical requirements for the interaction between magnetic coil and magnetic medium, but his publications also indicate that he did not as such obtain reproduction of recorded sound.
    Smith did not try to develop magnetic recording, but he felt it imperative that he be given credit for conceiving the idea of it. When accounts of Valdemar Poulsen's work were published in 1900, Smith attempted to prove some rights in the invention in the US Patent Office, but to no avail.
    He was a highly respected member of both his community and engineering societies, and in later life became interested in the anti-slavery cause that had also been close to the heart of his parents, as well as in the YMCA movement and in women's suffrage.
    [br]
    Bibliography
    Apart from numerous technical papers, he wrote the book Press Working of Metals, 1896. His accounts on the magnetic recording experiments were "Some possible forms of phonograph", Electrical World (8 September 1888): 161 ff, and "Letter to the Editor", Electrical World (29 September 1888): 179.
    Further Reading
    F.K.Engel, 1990, Documents on the Invention of Magnetic Recording in 1878, New York: Audio Engineering Society, Reprint no. 2,914 (G2) (a good overview of the material collected by the Oberlin Smith Society, Bridgeton, New Jersey, in particular as regards the recording experiments; it is here that it is doubted that Valdemar Poulsen developed his ideas independently).
    GB-N

    Biographical history of technology > Smith, Oberlin

  • 112 Soane, Sir John

    [br]
    b. 20 September 1753 Whitchurch, England
    d. 20 January 1837 London, England
    [br]
    English architect whose highly personalized architectural style foreshadowed the modern architecture of a century later.
    [br]
    Between 1777 and 1780 Soane studied in Italy on a Travelling Scholarship, working in Rome but also making extensive excursions further south to Paestum and Sicily to study the early and more severely simple Greek temples there.
    His architectural career began in earnest with his appointment as Surveyor to the Bank of England in 1788. He held this post until 1833 and during this time developed his highly individual style, which was based upon a wide range of classical sources extending from early Greek to Byzantine themes. His own work became progressively more linear and austere, his domes and arches shallower and more segmental. During the 1790s and early 1800s Soane redesigned several halls in the Bank, notably the Bank Stock Office, which in 1791 necessitated technological experimentation.
    The redesigning was required because of security problems which limited window openings to high-level positions and a need for fireproof construction because the site was so restricted. Soane solved the difficulties by introducing light through lunettes set high in the walls and through a Roman-style oculus in the centrally placed shallow dome. He utilized hollow terracotta pots as a lightweight material in the segmental vaulting.
    Sadly, the majority of Soane's work in the Bank interior was lost in the rebuilding during the 1930s, but Soane went on to develop his architectural style in his houses and churches as well as in a quantity of public buildings in Whitehall and Westminster.
    [br]
    Principal Honours and Distinctions
    Knighted 1831. Fellow Society of Antiquaries 1795. RA 1802. Royal Academy Professor of Architecture 1806. FRS 1821.
    Further Reading
    Sir John Summerson, 1952, Sir John Soane, 1753–1837, Art and Technics. Dorothy Stroud, 1961, The Architecture of Sir John Soane, Studio.
    DY

    Biographical history of technology > Soane, Sir John

  • 113 Stanhope, Charles, 3rd Earl

    [br]
    b. 3 August 1753 London, England
    d. 15 December 1816 Chevening, Kent, England
    [br]
    English politician, scientist and inventor.
    [br]
    Stanhope's schooling at Eton was interrupted in 1764 when the family moved to Geneva; there, he soon showed a talent for scientific pursuits. In 1771 he contributed a paper on the pendulum to the Swedish Academy, which awarded him a prize for it. After his return to London in 1774, he threw himself into politics, earning himself not only a reputation for promoting the liberty of the individual, but also unpopularity for championing the French Revolution.
    Stanhope is best known for his inventions in printing. In 1800 he introduced the first successful iron press, known by his name. Its iron frame enabled a whole forme to be printed at one pull, thus speeding up production. The press retained the traditional screw but incorporated a system of levers which increased the pressure on the platen up to the moment of contact with the type, so that fine, sharp impressions were obtained and the work of the pressman was made easier. Stanhope's process for moulding and reproducing formes, known as stereotyping, became important when curved formes were required for cylinder presses. His invention of logotypes for casting type, however, proved a failure. Throughout his political activities, Stanhope devoted time and money to scientific and mechanical matters. Of these, the development of steamships is noteworthy. He took out patents in 1790 and 1807, and in 1796 he constructed the Kent for the Admiralty, but it was unsuccessful. In 1810, however, he claimed that a vessel 110 ft (33.5 m) long and 7 ft (2.1 m) in draught "outsailed the swiftest vessels in the Navy".
    [br]
    Further Reading
    G.Stanhope, 1914, The Life of Charles, Third Earl Stanhope, London.
    H.Hart, 1966, Charles Earl Stanhope and the Oxford University Press, London: Printing Historical Society (a reprint of a paper, originally published in 1896, describing Stanhope's printing inventions; with copious quotations from Stanhope's own writings, together with an essay on the Stanhope press by James Moran).
    LRD

    Biographical history of technology > Stanhope, Charles, 3rd Earl

  • 114 Taylor, David Watson

    SUBJECT AREA: Ports and shipping
    [br]
    b. 4 March 1864 Louisa County, Virginia, USA
    d. 29 July 1940 Washington, DC, USA
    [br]
    American hydrodynamicist and Rear Admiral in the United States Navy Construction Corps.
    [br]
    Taylor's first years were spent on a farm in Virginia, but at the age of 13 he went to RandolphMacon College, graduating in 1881, and from there to the US Naval Academy, Annapolis. He graduated at the head of his class, had some sea time, and then went to the Royal Naval College in Greenwich, England, where in 1888 he again came top of the class with the highest-ever marks of any student, British or overseas.
    On his return to the United States he held various posts as a constructor, ending this period at the Mare Island Navy Yard in California. In 1894 he was transferred to Washington, where he joined the Bureau of Construction and started to interest the Navy in ship model testing. Under his direction, the first ship model tank in the United States was built at Washington and for fourteen years operated under his control. The work of this establishment gave him the necessary information to write the highly acclaimed text The Speed and Power of Ships, which with revisions is still in use. By the outbreak of the First World War he was one of the world's most respected naval architects, and had been retained as a consultant by the British Government in the celebrated case of the collision between the White Star Liner Olympic and HMS Hawke.
    In December 1914 Taylor became a Rear-Admiral and was appointed Chief Constructor of the US Navy. His term of office was extremely stressful, with over 1,000 ships constructed for the war effort and with the work of the fledgling Bureau for Aeronautics also under his control. The problems were not over in 1918 as the Washington Treaty required drastic pruning of the Navy and a careful reshaping of the defence force.
    Admiral Taylor retired from active service at the beginning of 1923 but retained several consultancies in aeronautics, shipping and naval architecture. For many years he served as consultant to the ship-design company now known as Gibbs and Cox. Many honours came his way, but the most singular must be the perpetuation of his name in the David Taylor Medal, the highest award of the Society of Naval Architects and Marine Engineers in the United States. Similarly, the Navy named its ship test tank facility, which was opened in Maryland in 1937, the David W. Taylor Model Basin.
    [br]
    Principal Honours and Distinctions
    President, Society of Naval Architects and Marine Engineers 1925–7. United States Distinguished Service Medal. American Society of Civil Engineers John Fritz Medal. Institution of Naval Architects Gold Medal 1894 (the first American citizen to receive it). Society of Naval Architects and Marine Engineers David W.Taylor Medal 1936 (the first occasion of this award).
    Bibliography
    Resistance of Ships and Screw Propulsion. 1911, The Speed and Power of Ships, New York: Wiley.
    Taylor gave many papers to the Maritime Institutions of both the United States and the United Kingdom.
    FMW

    Biographical history of technology > Taylor, David Watson

  • 115 Taylor, William

    [br]
    b. 11 June 1865 London, England
    d. 28 February 1937 Laughton, Leicestershire, England
    [br]
    English mechanical engineer and metrologist, originator of standard screw threads for lens mountings and inventor of "Dimple" golf balls.
    [br]
    William Taylor served an apprenticeship from 1880 to 1885 in London with Paterson and Cooper, electrical engineers and instrument makers. He studied at the Finsbury Technical College under Professors W.E.Ayrton (1847–1908) and John Perry (1850–1920). He remained with Paterson and Cooper until 1887, when he joined his elder brother, who had set up in Leicester as a manufacturer of optical instruments. The firm was then styled T.S. \& W.Taylor and a few months later, when H.W.Hobson joined them as a partner, it became Taylor, Taylor and Hobson, as it was known for many years.
    William Taylor was mainly responsible for technical developments in the firm and he designed the special machine tools required for making lenses and their mountings. However, his most notable work was in originating methods of measuring and gauging screw threads. He proposed a standard screw-thread for lens mountings that was adopted by the Royal Photographic Society, and he served on screw thread committees of the British Standards Institution and the British Association. His interest in golf led him to study the flight of the golf ball, and he designed and patented the "Dimple" golf ball and a mechanical driving machine for testing golf balls.
    He was an active member of the Institution of Mechanical Engineers, being elected Associate Member in 1894, Member in 1901 and Honorary Life Member in 1936. He served on the Council from 1918 and was President in 1932. He took a keen interest in engineering education and advocated the scientific study of materials, processes and machine tools, and of management. His death occurred suddenly while he was helping to rescue his son's car from a snowdrift.
    [br]
    Principal Honours and Distinctions
    OBE 1918. FRS 1934. President, Institution of Mechanical Engineers 1932.
    Further Reading
    K.J.Hume, 1980, A History of Engineering Metrology, London, 110–21 (a short account of William Taylor and of Taylor, Taylor and Hobson).
    RTS

    Biographical history of technology > Taylor, William

  • 116 Tompion, Thomas

    SUBJECT AREA: Horology
    [br]
    baptized 25 July 1639 Ickwell Green, England
    d. 20 November 1713 London, England
    [br]
    English clock-and watchmaker of great skill and ingenuity who laid the foundations of his country's pre-eminence in that field.
    [br]
    Little is known about Tompion's early life except that he was born into a family of blacksmiths. When he was admitted into the Clockmakers' Company in 1671 he was described as a "Great Clockmaker", which meant a maker of turret clocks, and as these clocks were made of wrought iron they would have required blacksmithing skills. Despite this background, he also rapidly established his reputation as a watchmaker. In 1674 he moved to premises in Water Lane at the sign of "The Dial and Three Crowns", where his business prospered and he remained for the rest of his life. Assisted by journeymen and up to eleven apprentices at any one time, the output from his workshop was prodigious, amounting to over 5,000 watches and 600 clocks. In his lifetime he was famous for his watches, as these figures suggest, but although they are of high quality they do not differ markedly from those produced by other London watchmakers of that period. He is now known more for the limited number of elaborate clocks that he produced, such as the equation clock and the spring-driven clock of a year's duration, which he made for William III. Around 1711 he took into partnership his nephew by marriage, George Graham, who carried on the business after his death.
    Although Tompion does not seem to have been particularly innovative, he lived at a time when great advances were being made in horology, which his consummate skill as a craftsman enabled him to exploit. In this he was greatly assisted by his association with Robert Hooke, for whom Tompion constructed a watch with a balance spring in 1675; at that time Hooke was trying to establish his priority over Huygens for this invention. Although this particular watch was not successful, it made Tompion aware of the potential of the balance spring and he became the first person in England to apply Huygens's spiral spring to the balance of a watch. Although Thuret had constructed such a watch somewhat earlier in France, the superior quality of Tompion's wheel work, assisted by Hooke's wheel-cutting engine, enabled him to dominate the market. The anchor escapement (which reduced the amplitude of the pendulum's swing) was first applied to clocks around this time and produced further improvements in accuracy which Tompion and other makers were able to utilize. However, the anchor escapement, like the verge escapement, produced recoil (the clock was momentarily driven in reverse). Tompion was involved in attempts to overcome this defect with the introduction of the dead-beat escapement for clocks and the horizontal escapement for watches. Neither was successful, but they were both perfected later by George Graham.
    [br]
    Principal Honours and Distinctions
    Master of the Clockmakers' Company 1703.
    Bibliography
    1695, with William Houghton and Edward Barlow, British patent no. 344 (for a horizontal escapement).
    Further Reading
    R.W.Symonds, 1951, Thomas Tompion, His Life and Work, London (a comprehensive but now slightly dated account).
    H.W.Robinson and W.Adams (eds), 1935, The Diary of Robert Hooke (contains many references to Tompion).
    D.Howse, 1970, The Tompion clocks at Greenwich and the dead-beat escapement', Antiquarian Horology 7:18–34, 114–33.
    DV

    Biographical history of technology > Tompion, Thomas

  • 117 Tull, Jethro

    [br]
    b. 30 March 1674 Basildon, Essex, England
    d. February 1741 Hungerford, Berkshire, England
    [br]
    English farmer who developed and publicized a system of row crop husbandry.
    [br]
    Jethro Tull was born into an English landowning family. He was educated at St John's College, Oxford, but left without a degree at the age of 17. He then spent three years on the Grand Tour before returning to study law at Gray's Inn in London. After six years he was admitted to the Bar, but he never practised, moving instead to one of his father's farms near Oxford.
    Because of labour problems he chose to plant sainfoin (Onobrychis viciaefolia) as a forage crop because it required less frequent reseeding than grass. The seed itself was expensive and of poor fertility, so he began to experiment. He discovered that the depth of sowing as well as the planting rate influenced germination and the rate of growth, he found the optimum rate could be gained with one plant per ft2, a much lower density than could be achieved by broadcasting. His experiments created labour problems. He is traditionally and incorrectly credited with the invention of the seed drill, but he did develop and use a drill on his own farm to achieve the planting rate and depth he needed without having to rely on his workforce.
    In 1711 Tull became ill and went to France, having first sold his original farm and moved to "Properous", near Hungerford. In France he developed a husbandry technique that used a horse hoe to stir the soil between the rows of plants achieved with his drill. He incorrectly believed that his increased yields were the result of nutrients released from the soil by this method, whereas they were more likely to have been the result of a reduction in weed competition as a result of the repeated cultivation.
    [br]
    Bibliography
    1731, The New Horse-Hoeing Husbandry, or an Essay on the Principals of Tillage and Vegetation (sets out the ideas and innovations for which he was already well known).
    Further Reading
    T.H.Marshall, 1929, "Jethro Tull and the new husbandry of the 18th century", Economic History Review 11:41–60 (the relevance and significance of Tull's work was already under discussion before his death; Marshall discusses the controversy).
    G.E.Fussell, 1973, Jethro Tull. His Influence on Mechanised Agriculture (presents a pro- Tull account).
    AP

    Biographical history of technology > Tull, Jethro

  • 118 Türck, Ludwig

    SUBJECT AREA: Medical technology
    [br]
    b. 22 July 1810 Vienna, Austria
    d. 25 February 1868 Vienna, Austria
    [br]
    Austrian neurologist, developer of the techniques of laryngoscopy.
    [br]
    The son of a wealthy jeweller, he attended medical school in Vienna and qualified in 1836. Until 1844 he was engaged in research into the anatomy and physiology of the nervous system. In 1844, while on a visit to Paris, he came to the attention of Baron Türckheim, Director of the General Hospital in Vienna. The consequence was the establishment of a special division of the hospital for nervous diseases, with Türck in charge.
    In 1857 he was appointed Chief Physician to the largest hospital in Vienna and at the same time he became aware of the invention in 1855 by Manuel García, a music teacher of Paris, of a practical laryngoscope. Türck adapted the apparatus to clinical purposes and proceeded to establish the diagnostic and therapeutic techniques required for its efficient use. Some conflict over priority ensued following a publication by Johann Nepomuk Czermak in 1858, but eventually a professional declaration asserted Türck's priority.
    [br]
    Bibliography
    1862, Recherches cliniques sur diverses maladies du larynx, de la trachée et du pharynx étudiées à l'aide du laryngoscope, Paris.
    Papers in Allgemein. Wien. med. Zeit. 1856–68.
    MG

    Biographical history of technology > Türck, Ludwig

  • 119 Voelcker, John Christopher

    [br]
    b. 24 September 1822 Frankfurt am Main, Germany
    d. 5 December 1884 England
    [br]
    German analytical chemist resident in England whose reports on feedstuffs and fertilizers had a considerable influence on the quality of these products.
    [br]
    The son of a merchant in the city of his birth, John Christopher had delicate health and required private tuition to overcome the loss of his early years of schooling. At the age of 22 he went to study chemistry at Göttingen University and then worked for a short time for Liebig at Giessen. In 1847 he obtained a post as Analyst and Consulting Chemist at the Agricultural Chemistry Association of Scotland's Edinburgh office, and two years later he became Professor of Chemistry at the Royal Agricultural College in Cirencester, retaining this post until 1862. In 1855 he was appointed Chemist to the Bath and West Agricultural Society, and in that capacity organized lectures and field trials, and in 1857 he also became Consulting Chemist to the Royal Agricultural Society of England. Initially he studied the properties of farmyard manure and also the capacity of the soil to absorb ammonia, potash and sodium. As Consulting Chemist to farmers he analysed feedstuffs and manures; his assessments of artificial manures did much to force improvements in standards. During the 1860s he worked on milk and dairy products. He published the results of his work each year in the Journal of the Royal Agricultural Society of England. In 1877 he became involved in the field trials initiated and funded by the Duke of Bedford on his Woburn farm, and he continued his association with this venture until his death.
    [br]
    Principal Honours and Distinctions
    FRS. Founder and Vice-President, Institute of Chemistry of Great Britain and Northern Ireland 1877. Member Chemical Society 1849; he was a member of Council as well as its Vice-President at the time of his death. Member of the Board of Studies, Royal Agricultural College, Cirencester; Honorary Professor from 1882.
    Bibliography
    His papers are to be found in the Journal of the Royal Agricultural Society of England, for which he began to write reports in 1855, and also in the Journal of the Bath and West Society.
    Further Reading
    J.H.Gilbert, 1844, obituary, Journal of the Royal Agricultural Society of England, pp. 308–21 (a detailed account).
    Sir E.John Russell, A History of Agricultural Science in Great Britain.
    AP

    Biographical history of technology > Voelcker, John Christopher

  • 120 Watkins, Alfred

    [br]
    b. 1854 Hereford, England
    d. 7 April 1935 Hereford, England
    [br]
    English photographer who developed the first practical exposure-measuring system.
    [br]
    His first patent was granted on 27 January 1890 and described a method of measuring the "actinic" value of light as a means of determining exposure. A strip of sensitized paper which darkened on exposure to light was used, and the time taken for it to darken to match a standard tint was measured. This time could be used to calculate the necessary exposure time, taking into account the speed of the plate, shutter speed and aperture. Watkins marketed a number of these actinometer designs, of which the most popular was the Watkins Bee Meter, which was in a pocket-watch form, introduced in 1903 and remaining on sale until 1939. Watkins was concerned that photographers recognize that exposure measurement had to take into account the effect of development time and temperature. In 1893 he devised the concept of the "Watkins Factor": he showed that when plates were developed by inspection, as was the practice at the time, a fixed relationship existed between the time of the first appearance of the image and the total time required to give a fully developed negative. The Watkins Factor was the figure that the first time must be multiplied by to give the second time. Watkins published tables of factors for different brands of plates and for different developers, and marketed various aids such as specially calibrated thermometers and clocks, as aids in using "Fac-torial Development" to give consistent negatives. After the early years of the twentieth century Watkins gave up direct participation in photography and devoted his time to a variety of interests, including the plotting of ley lines in England.
    BC

    Biographical history of technology > Watkins, Alfred

См. также в других словарях:

  • required subject — necessary subject …   English contemporary dictionary

  • subject — I adj. (cannot stand alone) subject to (subject to change) II n. topic, theme 1) to bring up, broach; pursue; tackle a subject 2) to address, cover, deal with, discuss, take up, treat a subject 3) to dwell on; exhaust; go into a subject 4) to… …   Combinatory dictionary

  • Subject-matter expert — A subject matter expert (SME) or domain expert is a person who is an expert in a particular area or topic. When spoken, sometimes the acronym SME is spelled out ( S M E ) and other times voiced as a word ( smee ).[citation needed] The term domain …   Wikipedia

  • subject subject topredicate — nonexempt onexempt adj. 1. Not exempt; subject to (some specified) rule. Opposite of {exempt}. [Narrower terms: {liable to(predicate)}; {subject, subject to(predicate)}] [WordNet 1.5] 2. Specifically: (U. S. Labor Law) Not exempt from the… …   The Collaborative International Dictionary of English

  • Required Minimum Distribution Method — One of three methods by which early retirees of any age can access their retirement funds without penalty before turning 59 ½. Normally, funds withdrawn before age 59 ½ are assessed a 10% early withdrawal penalty. Funds must be… …   Investment dictionary

  • IRA Required Minimum Distributions — Required Minimum Distributions, often referred to as RMDs, are amounts that the federal government requires you to withdraw annually from traditional IRAs and employer sponsored retirement plansLifetime DistributionsAmericans with IRA plans are… …   Wikipedia

  • Human subject research — (HSR), or human subject use (HSU) involves the use of human beings as research subjects. It is an important part of medical research, and many people volunteer for clinical trials of medical treatments. People also volunteer to be subjects for… …   Wikipedia

  • Library of Congress Subject Headings — The Library of Congress Subject Headings (LCSH) comprise a thesaurus (in the information technology sense) of subject headings, maintained by the United States Library of Congress, for use in bibliographic records. LC Subject Headings are an… …   Wikipedia

  • SAT Subject Tests — The SAT Subject Tests is the collective name for 20 multiple choice standardized tests given on individual subjects. A student typically chooses which tests to take depending upon college entrance requirements for the schools in which he or she… …   Wikipedia

  • SAT Subject Test in World History — The SAT Subject Test in World History is the name of a one hour multiple choice test given on World History by the Collegeboard. A student chooses to take it depending on the college entrance requirements. Until 1994, the SAT Subject Tests were… …   Wikipedia

  • SAT Subject Test in Chemistry — The SAT Subject Test in Chemistry is the name of a one hour multiple choice test given on chemistry by The College Board. A student chooses whether to take the test depending upon college entrance requirements for the schools in which the student …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»