Перевод: со всех языков на все языки

со всех языков на все языки

railways+and+locomotives

  • 21 Pihl, Carl Abraham

    [br]
    b. 16 January 1825 Stavanger, Norway
    d. 14 September 1897 Kristiania (now Oslo), Norway
    [br]
    Norwegian railway engineer, protagonist of narrow-gauge railways.
    [br]
    Pihl trained as an engineer at Göteborg, Sweden, and then moved to London, where he worked under Robert Stephenson during 1845 and 1846. In 1850 he returned to Norway and worked with the English contractors building the first railway in Norway, the Norwegian Trunk Railway from Kristiania to Eidsvold, for which the English standard gauge was used. Subsequently he worked in England for a year, but in 1856 joined the Norwegian government's Road Department, which was to have responsibility for railways. In 1865 a distinct Railway Department was set up, and Pihl became Director for State Railway Construction. Because of the difficulties of the terrain and limited traffic, Pihl recommended that in the case of two isolated lines to be built the outlay involved in ordinary railways would not be justified, and that they should be built to the narrow gauge of 3 ft 6 in. (1.07 m). His recommendation was accepted by the Government in 1857 and the two lines were built to this gauge and opened during 1861–4. Six of their seven locomotives, and all their rolling stock, were imported from Britain. The lines cost £3,000 and £5,000 per mile, respectively; a standard-gauge line built in the same period cost £6,400 per mile.
    Subsequently, many hundreds of miles of Norwegian railways were built to 3 ft 6 in. (1.07 m) gauge under Pihl's direction. They influenced construction of railways to this gauge in Australia, Southern Africa, New Zealand, Japan and elsewhere. However, in the late 1870s controversy arose in Norway over the economies that could in fact be gained from the 3 ft 6 in. (1,07 m) gauge. This controversy in the press, in discussion and in the Norwegian parliament became increasingly acrimonious during the next two decades; the standard-gauge party may be said to have won with the decision in 1898, the year after Pihl's death, to build the Bergen-Oslo line to standard gauge.
    [br]
    Principal Honours and Distinctions
    Knight of the Order of St Olaf 1862; Commander of the Order of St Olaf 1877. Commander of the Royal Order of Vasa 1867. Royal Order of the Northern Star 1882.
    Further Reading
    P.Allen and P.B.Whitehouse, 1959, Narrow Gauge Railways of Europe, Ian Allan (describes the Norwegian Battle of the Gauges).
    PJGR

    Biographical history of technology > Pihl, Carl Abraham

  • 22 Blenkinsop, John

    [br]
    b. 1783 near Newcastle upon Tyne, England
    d. 22 January 1831 Leeds, England
    [br]
    English coal-mine manager who made the first successful commercial use of steam locomotives.
    [br]
    In 1808 Blenkinsop became agent to J.C.Brandling, MP, owner of Middleton Colliery, from which coal was carried to Leeds over the Middle-ton Waggonway. This had been built by Brandling's ancestor Charles Brandling, who in 1758 obtained an Act of Parliament to establish agreements with owners of land over which the wagon way was to pass. That was the first railway Act of Parliament.
    By 1808 horse haulage was becoming uneconomic because the price of fodder had increased due to the Napoleonic wars. Brandling probably saw the locomotive Catch-Me- Who-Can demonstrated by Richard Trevithick. In 1811 Blenkinsop patented drive by cog-wheel and rack rail, the power to be provided preferably by a steam engine. His object was to produce a locomotive able to haul a substantial load, while remaining light enough to minimize damage to rails made from cast iron which, though brittle, was at that date the strongest material from which rails could be made. The wagonway, formerly of wood, was relaid with iron-edge rails; along one side rails cast with rack teeth were laid beside the running surface. Locomotives incorporating Blenkinsop's cog-wheel drive were designed by Matthew Murray and built by Fenton Murray \& Wood. The design was developed from Trevithick's to include two cylinders, for easier starting and smoother running. The first locomotive was given its first public trial on 24 June 1812, when it successfully hauled eight wagons of coal, on to which fifty spectators climbed. Locomotives of this type entered regular service later in the summer and proved able to haul loads of 110 tons; Trevithick's locomotive of 1804 had managed 25 tons.
    Blenkinsop-type locomotives were introduced elsewhere in Britain and in Europe, and those upon the Kenton \& Coxlodge Wagonway, near Newcastle upon Tyne, were observed by George Stephenson. The Middleton locomotives remained at work until 1835.
    [br]
    Bibliography
    10 April, 1811, "Certain Mechanical Means by which the Conveyance of Coals, Minerals and Other Articles is Facilitated….", British patent no. 3,431.
    Further Reading
    J.Bushell, 1975, The World's Oldest Railway, Sheffield: Turntable (describes Blenkinsop's work).
    E.K.Scott (ed.), 1928, Matthew Murray, Pioneer Engineer, Leeds.
    C.von Oeynhausen and H.von Dechen, 1971, Railways in England 1826 and 1827, Cambridge: W.Heffer \& Sons.
    PJGR

    Biographical history of technology > Blenkinsop, John

  • 23 England, George

    [br]
    b. 1811 or 1812 Newcastle upon Tyne, England
    d. 4 March 1878 Cannes, France
    [br]
    English locomotive builder who built the first locomotives for the narrow-gauge Festiniog Railway.
    [br]
    England trained with John Penn \& Sons, marine engine and boilermakers, and set up his own business at Hatcham Iron Works, South London, in about 1840. This was initially a general engineering business and made traversing screw jacks, which England had patented, but by 1850 it was building locomotives. One of these, Little England, a 2–2– 2T light locomotive owing much to the ideas of W.Bridges Adams, was exhibited at the Great Exhibition of 1851, and England then prospered, supplying many railways at home and abroad with small locomotives. In 1863 he built two exceptionally small 0–4–0 tank locomotives for the Festiniog Railway, which enabled the latter's Manager and Engineer C.E. Spooner to introduce steam traction on this line with its gauge of just under 2 ft (60 cm). England's works had a reputation for good workmanship, suggesting he inspired loyalty among his employees, yet he also displayed increasingly tyrannical behaviour towards them: the culmination was a disastrous strike in 1865 that resulted in the loss of a substantial order from the South Eastern Railway. From 1866 George England became associated with development of locomotives to the patent of Robert Fairlie, but in 1869 he retired due to ill health and leased his works to a partnership of his son (also called George England), Robert Fairlie and J.S.Fraser under the title of the Fairlie Engine \& Steam Carriage Company. However, George England junior died within a few months, locomotive production ceased in 1870 and the works was sold off two years later.
    [br]
    Bibliography
    1839, British patent no. 8,058 (traversing screw jack).
    Further Reading
    Aspects of England's life and work are described in: C.H.Dickson, 1961, "Locomotive builders of the past", Stephenson Locomotive Society Journal, p. 138.
    A.R.Bennett, 1907, "Locomotive building in London", Railway Magazine, p. 382.
    R.Weaver, 1983, "English Ponies", Festiniog Railway Magazine (spring): 18.
    PJGR

    Biographical history of technology > England, George

  • 24 Crampton, Thomas Russell

    [br]
    b. 6 August 1816 Broadstairs, Kent, England
    d. 19 April 1888 London, England
    [br]
    English engineer, pioneer of submarine electric telegraphy and inventor of the Crampton locomotive.
    [br]
    After private education and an engineering apprenticeship, Crampton worked under Marc Brunel, Daniel Gooch and the Rennie brothers before setting up as a civil engineer in 1848. His developing ideas on locomotive design were expressed through a series of five patents taken out between 1842 and 1849, each making a multiplicity of claims. The most typical feature of the Crampton locomotive, however, was a single pair of driving wheels set to the rear of the firebox. This meant they could be of large diameter, while the centre of gravity of the locomotive remained low, for the boiler barrel, though large, had only small carrying-wheels beneath it. The cylinders were approximately midway along the boiler and were outside the frames, as was the valve gear. The result was a steady-riding locomotive which neither pitched about a central driving axle nor hunted from side to side, as did other contemporary locomotives, and its working parts were unusually accessible for maintenance. However, adhesive weight was limited and the long wheelbase tended to damage track. Locomotives of this type were soon superseded on British railways, although they lasted much longer in Germany and France. Locomotives built to the later patents incorporated a long, coupled wheelbase with drive through an intermediate crankshaft, but they mostly had only short lives. In 1851 Crampton, with associates, laid the first successful submarine electric telegraph cable. The previous year the brothers Jacob and John Brett had laid a cable, comprising a copper wire insulated with gutta-percha, beneath the English Channel from Dover to Cap Gris Nez: signals were passed but within a few hours the cable failed. Crampton joined the Bretts' company, put up half the capital needed for another attempt, and designed a much stronger cable. Four gutta-percha-insulated copper wires were twisted together, surrounded by tarred hemp and armoured by galvanized iron wires; this cable was successful.
    Crampton was also active in railway civil engineering and in water and gas engineering, and c. 1882 he invented a hydraulic tunnel-boring machine intended for a Channel tunnel.
    [br]
    Principal Honours and Distinctions
    Vice-President, Institution of Mechanical Engineers. Officier de la Légion d'Honneur (France).
    Bibliography
    1842, British patent no. 9,261.
    1845. British patent no. 10,854.
    1846. British patent no. 11,349.
    1847. British patent no. 11,760.
    1849, British patent no. 12,627.
    1885, British patent no. 14,021.
    Further Reading
    M.Sharman, 1933, The Crampton Locomotive, Swindon: M.Sharman; P.C.Dewhurst, 1956–7, "The Crampton locomotive", Parts I and II, Transactions of the Newcomen Society 30:99 (the most important recent publications on Crampton's locomotives).
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Shepperton: Ian Allen. J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles, 102–4.
    R.B.Matkin, 1979, "Thomas Crampton: Man of Kent", Industrial Past 6 (2).
    PJGR

    Biographical history of technology > Crampton, Thomas Russell

  • 25 Johnson, Samuel Waite

    [br]
    b. 14 October 1831 Bramley, Leeds, England
    d. 14 January 1912 Nottingham, England
    [br]
    English locomotive engineer, designer of Midland Railway's successful compound locomotives.
    [br]
    After an apprenticeship with E.B.Wilson, Leeds, Johnson worked successively for the Great Northern, Manchester Sheffield \& Lincolnshire, Edinburgh \& Glasgow and Great Eastern Railways before being appointed Locomotive Superintendent of the Midland Railway in 1873. There he remained for the rest of his working life, becoming notable for well-designed, well-finished locomotives. Of these, the most famous were his 4–2–2 express locomotives, introduced in 1887. The use of a single pair of driving-wheels was made possible at this late date by application of steam sanding gear (invented in 1886 by F. Holt) to enable them to haul heavy trains without slipping. In 1901, almost at the end of his career, he produced the first Midland compound 4–4–0, with a single internal high-pressure cylinder and two external low-pressure ones. The system had been devised by W.M.Smith, working on the North Eastern Railway under Wilson Worsdell. These locomotives were successful enough to be developed and built in quantity by Johnson's successors and were adopted as a standard locomotive by the London Midland \& Scottish Railway after the grouping of 1923.
    [br]
    Principal Honours and Distinctions
    President, Institution of Mechanical Engineers 1898.
    Further Reading
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Ian Allan, Ch. 11 (describes Johnson's career).
    E.L.Ahrons, 1927, The British Steam Railway Locomotive 1825–1925, The Locomotive Publishing Co. (describes Johnson's locomotives).
    PJGR

    Biographical history of technology > Johnson, Samuel Waite

  • 26 Vignoles, Charles Blacker

    [br]
    b. 31 May 1793 Woodbrook, Co. Wexford, Ireland
    d. 17 November 1875 Hythe, Hampshire, England
    [br]
    English surveyor and civil engineer, pioneer of railways.
    [br]
    Vignoles, who was of Huguenot descent, was orphaned in infancy and brought up in the family of his grandfather, Dr Charles Hutton FRS, Professor of Mathematics at the Royal Military Academy, Woolwich. After service in the Army he travelled to America, arriving in South Carolina in 1817. He was appointed Assistant to the state's Civil Engineer and surveyed much of South Carolina and subsequently Florida. After his return to England in 1823 he established himself as a civil engineer in London, and obtained work from the brothers George and John Rennie.
    In 1825 the promoters of the Liverpool \& Manchester Railway (L \& MR) lost their application for an Act of Parliament, discharged their engineer George Stephenson and appointed the Rennie brothers in his place. They in turn employed Vignoles to resurvey the railway, taking a route that would minimize objections. With Vignoles's route, the company obtained its Act in 1826 and appointed Vignoles to supervise the start of construction. After Stephenson was reappointed Chief Engineer, however, he and Vignoles proved incompatible, with the result that Vignoles left the L \& MR early in 1827.
    Nevertheless, Vignoles did not sever all connection with the L \& MR. He supported John Braithwaite and John Ericsson in the construction of the locomotive Novelty and was present when it competed in the Rainhill Trials in 1829. He attended the opening of the L \& MR in 1830 and was appointed Engineer to two railways which connected with it, the St Helens \& Runcorn Gap and the Wigan Branch (later extended to Preston as the North Union); he supervised the construction of these.
    After the death of the Engineer to the Dublin \& Kingstown Railway, Vignoles supervised construction: the railway, the first in Ireland, was opened in 1834. He was subsequently employed in surveying and constructing many railways in the British Isles and on the European continent; these included the Eastern Counties, the Midland Counties, the Sheffield, Ashton-under-Lyme \& Manchester (which proved for him a financial disaster from which he took many years to recover), and the Waterford \& Limerick. He probably discussed rail of flat-bottom section with R.L. Stevens during the winter of 1830–1 and brought it into use in the UK for the first time in 1836 on the London \& Croydon Railway: subsequently rail of this section became known as "Vignoles rail". He considered that a broader gauge than 4 ft 8½ in. (1.44 m) was desirable for railways, although most of those he built were to this gauge so that they might connect with others. He supported the atmospheric system of propulsion during the 1840s and was instrumental in its early installation on the Dublin \& Kingstown Railway's Dalkey extension. Between 1847 and 1853 he designed and built the noted multi-span suspension bridge at Kiev, Russia, over the River Dnieper, which is more than half a mile (800 m) wide at that point.
    Between 1857 and 1863 he surveyed and then supervised the construction of the 155- mile (250 km) Tudela \& Bilbao Railway, which crosses the Cantabrian Pyrenees at an altitude of 2,163 ft (659 m) above sea level. Vignoles outlived his most famous contemporaries to become the grand old man of his profession.
    [br]
    Principal Honours and Distinctions
    Fellow of the Royal Astronomical Society 1829. FRS 1855. President, Institution of Civil Engineers 1869–70.
    Bibliography
    1830, jointly with John Ericsson, British patent no. 5,995 (a device to increase the capability of steam locomotives on grades, in which rollers gripped a third rail).
    1823, Observations upon the Floridas, New York: Bliss \& White.
    1870, Address on His Election as President of the Institution of Civil Engineers.
    Further Reading
    K.H.Vignoles, 1982, Charles Blacker Vignoles: Romantic Engineer, Cambridge: Cambridge University Press (good modern biography by his great-grandson).
    PJGR

    Biographical history of technology > Vignoles, Charles Blacker

  • 27 Bousquet, Gaston du

    [br]
    b. 20 August 1839 Paris, France
    d. 24 March 1910 Paris, France
    [br]
    French locomotive engineer noted for the successful development of compound locomotives.
    [br]
    Bousquet spent his entire working life with the Northern Railway of France, reaching the position of Chief Engineer of Rolling Stock and Motive Power in 1890. In 1886 he was associated with Alfred de Glehn, technical head of locomotive builder Société Alsacienne de Constructions Mécaniques, in the building of a four-cylinder, four-crank, compound 2–2–2–0 partly derived from the work of F.W. Webb. In continuing association with de Glehn, Bousquet then designed a four-cylinder, compound 440 with the low-pressure cylinders beneath the smokebox and the high-pressure ones outside the frames; the first was completed in 1891. The details were well designed and the locomotive was the forerunner of a highly successful series. It was developed into 4–6–0, 4–4–2 and 4–6–2 types, and examples were used in quantity by all the principal French railways and by some in Germany, while G.J. Churchward brought three of the 4–4–2s to the Great Western Railway in England for comparison with his own locomotives. In 1905 Bousquet introduced an articulated 0–6–2+2–6–0 compound tank locomotive for freight trains: the two driving bogies supported a frame carrying boiler, tanks, etc. At the time of his death he was working on compound 4–6–4 locomotives.
    [br]
    Further Reading
    J.T.van Riemsdijk, 1970, "The compound locomotive (Part 1)", Transactions of the New comen Society 43; 1972, Part 2, Transactions of the New comen Society 44 (fully describes Bousquet's locomotives).
    PJGR

    Biographical history of technology > Bousquet, Gaston du

  • 28 Gresley, Sir Herbert Nigel

    [br]
    b. 19 June 1876 Edinburgh, Scotland
    d. 5 April 1941 Hertford, England
    [br]
    English mechanical engineer, designer of the A4-class 4–6–2 locomotive holding the world speed record for steam traction.
    [br]
    Gresley was the son of the Rector of Netherseale, Derbyshire; he was educated at Marlborough and by the age of 13 was skilled at making sketches of locomotives. In 1893 he became a pupil of F.W. Webb at Crewe works, London \& North Western Railway, and in 1898 he moved to Horwich works, Lancashire \& Yorkshire Railway, to gain drawing-office experience under J.A.F.Aspinall, subsequently becoming Foreman of the locomotive running sheds at Blackpool. In 1900 he transferred to the carriage and wagon department, and in 1904 he had risen to become its Assistant Superintendent. In 1905 he moved to the Great Northern Railway, becoming Superintendent of its carriage and wagon department at Doncaster under H.A. Ivatt. In 1906 he designed and produced a bogie luggage van with steel underframe, teak body, elliptical roof, bowed ends and buckeye couplings: this became the prototype for East Coast main-line coaches built over the next thirty-five years. In 1911 Gresley succeeded Ivatt as Locomotive, Carriage \& Wagon Superintendent. His first locomotive was a mixed-traffic 2–6–0, his next a 2–8–0 for freight. From 1915 he worked on the design of a 4–6–2 locomotive for express passenger traffic: as with Ivatt's 4 4 2s, the trailing axle would allow the wide firebox needed for Yorkshire coal. He also devised a means by which two sets of valve gear could operate the valves on a three-cylinder locomotive and applied it for the first time on a 2–8–0 built in 1918. The system was complex, but a later simplified form was used on all subsequent Gresley three-cylinder locomotives, including his first 4–6–2 which appeared in 1922. In 1921, Gresley introduced the first British restaurant car with electric cooking facilities.
    With the grouping of 1923, the Great Northern Railway was absorbed into the London \& North Eastern Railway and Gresley was appointed Chief Mechanical Engineer. More 4–6– 2s were built, the first British class of such wheel arrangement. Modifications to their valve gear, along lines developed by G.J. Churchward, reduced their coal consumption sufficiently to enable them to run non-stop between London and Edinburgh. So that enginemen might change over en route, some of the locomotives were equipped with corridor tenders from 1928. The design was steadily improved in detail, and by comparison an experimental 4–6–4 with a watertube boiler that Gresley produced in 1929 showed no overall benefit. A successful high-powered 2–8–2 was built in 1934, following the introduction of third-class sleeping cars, to haul 500-ton passenger trains between Edinburgh and Aberdeen.
    In 1932 the need to meet increasing road competition had resulted in the end of a long-standing agreement between East Coast and West Coast railways, that train journeys between London and Edinburgh by either route should be scheduled to take 8 1/4 hours. Seeking to accelerate train services, Gresley studied high-speed, diesel-electric railcars in Germany and petrol-electric railcars in France. He considered them for the London \& North Eastern Railway, but a test run by a train hauled by one of his 4–6–2s in 1934, which reached 108 mph (174 km/h), suggested that a steam train could better the railcar proposals while its accommodation would be more comfortable. To celebrate the Silver Jubilee of King George V, a high-speed, streamlined train between London and Newcastle upon Tyne was proposed, the first such train in Britain. An improved 4–6–2, the A4 class, was designed with modifications to ensure free running and an ample reserve of power up hill. Its streamlined outline included a wedge-shaped front which reduced wind resistance and helped to lift the exhaust dear of the cab windows at speed. The first locomotive of the class, named Silver Link, ran at an average speed of 100 mph (161 km/h) for 43 miles (69 km), with a maximum speed of 112 1/2 mph (181 km/h), on a seven-coach test train on 27 September 1935: the locomotive went into service hauling the Silver Jubilee express single-handed (since others of the class had still to be completed) for the first three weeks, a round trip of 536 miles (863 km) daily, much of it at 90 mph (145 km/h), without any mechanical troubles at all. Coaches for the Silver Jubilee had teak-framed, steel-panelled bodies on all-steel, welded underframes; windows were double glazed; and there was a pressure ventilation/heating system. Comparable trains were introduced between London Kings Cross and Edinburgh in 1937 and to Leeds in 1938.
    Gresley did not hesitate to incorporate outstanding features from elsewhere into his locomotive designs and was well aware of the work of André Chapelon in France. Four A4s built in 1938 were equipped with Kylchap twin blast-pipes and double chimneys to improve performance still further. The first of these to be completed, no. 4468, Mallard, on 3 July 1938 ran a test train at over 120 mph (193 km/h) for 2 miles (3.2 km) and momentarily achieved 126 mph (203 km/h), the world speed record for steam traction. J.Duddington was the driver and T.Bray the fireman. The use of high-speed trains came to an end with the Second World War. The A4s were then demonstrated to be powerful as well as fast: one was noted hauling a 730-ton, 22-coach train at an average speed exceeding 75 mph (120 km/h) over 30 miles (48 km). The war also halted electrification of the Manchester-Sheffield line, on the 1,500 volt DC overhead system; however, anticipating eventual resumption, Gresley had a prototype main-line Bo-Bo electric locomotive built in 1941. Sadly, Gresley died from a heart attack while still in office.
    [br]
    Principal Honours and Distinctions
    Knighted 1936. President, Institution of Locomotive Engineers 1927 and 1934. President, Institution of Mechanical Engineers 1936.
    Further Reading
    F.A.S.Brown, 1961, Nigel Gresley, Locomotive Engineer, Ian Allan (full-length biography).
    John Bellwood and David Jenkinson, Gresley and Stanier. A Centenary Tribute (a good comparative account).
    PJGR

    Biographical history of technology > Gresley, Sir Herbert Nigel

  • 29 Krauss, Georg

    [br]
    b. 25 December 1826 Augsburg, Germany
    d. 5 November 1906 Munich, Germany
    [br]
    German locomotive engineer, founder of the locomotive builders Krauss \& Co.
    [br]
    Krauss entered the Maffei locomotive works, Munich, as a fitter and subsequently worked successively for the Bavarian State Railways and the Swiss North Eastern Railway, which he left in 1866 to found Locomotivfabrik Krauss in Munich. The firm became one of the most important locomotive builders in Germany. A second factory was established in Munich in 1872 and a third at Linz, Austria, in 1880: by the time of Krauss's death, these factories had built more than 5,500 locomotives. The second Munich factory was predominantly for small locomotives, and to increase the sales of these Krauss promoted the construction of many local railways in south Germany and Austria. The firm survived to amalgamate with Maffei and take the name Krauss-Maffei AG in 1940.
    [br]
    Further Reading
    J.Marshall, 1978, A Biographical Dictionary of Railway Engineers, Newton Abbot: David \& Charles.
    Biographical note, 1985–6, Transactions of the Newcomen Society 57:46.
    PJGR

    Biographical history of technology > Krauss, Georg

  • 30 Murray, Matthew

    [br]
    b. 1765 near Newcastle upon Tyne, England
    d. 20 February 1826 Holbeck, Leeds, England
    [br]
    English mechanical engineer and steam engine, locomotive and machine-tool pioneer.
    [br]
    Matthew Murray was apprenticed at the age of 14 to a blacksmith who probably also did millwrighting work. He then worked as a journeyman mechanic at Stockton-on-Tees, where he had experience with machinery for a flax mill at Darlington. Trade in the Stockton area became slack in 1788 and Murray sought work in Leeds, where he was employed by John Marshall, who owned a flax mill at Adel, located about 5 miles (8 km) from Leeds. He soon became Marshall's chief mechanic, and when in 1790 a new mill was built in the Holbeck district of Leeds by Marshall and his partner Benyon, Murray was responsible for the installation of the machinery. At about this time he took out two patents relating to improvements in textile machinery.
    In 1795 he left Marshall's employment and, in partnership with David Wood (1761– 1820), established a general engineering and millwrighting business at Mill Green, Holbeck. In the following year the firm moved to a larger site at Water Lane, Holbeck, and additional capital was provided by two new partners, James Fenton (1754–1834) and William Lister (1796–1811). Lister was a sleeping partner and the firm was known as Fenton, Murray \& Wood and was organized so that Fenton kept the accounts, Wood was the administrator and took charge of the workshops, while Murray provided the technical expertise. The factory was extended in 1802 by the construction of a fitting shop of circular form, after which the establishment became known as the "Round Foundry".
    In addition to textile machinery, the firm soon began the manufacture of machine tools and steam-engines. In this field it became a serious rival to Boulton \& Watt, who privately acknowledged Murray's superior craftsmanship, particularly in foundry work, and resorted to some industrial espionage to discover details of his techniques. Murray obtained patents for improvements in steam engines in 1799, 1801 and 1802. These included automatic regulation of draught, a mechanical stoker and his short-D slide valve. The patent of 1801 was successfully opposed by Boulton \& Watt. An important contribution of Murray to the development of the steam engine was the use of a bedplate so that the engine became a compact, self-contained unit instead of separate components built into an en-gine-house.
    Murray was one of the first, if not the very first, to build machine tools for sale. However, this was not the case with the planing machine, which he is said to have invented to produce flat surfaces for his slide valves. Rather than being patented, this machine was kept secret, although it was apparently in use before 1814.
    In 1812 Murray was engaged by John Blenkinsop (1783–1831) to build locomotives for his rack railway from Middleton Colliery to Leeds (about 3 1/2 miles or 5.6 km). Murray was responsible for their design and they were fitted with two double-acting cylinders and cranks at right angles, an important step in the development of the steam locomotive. About six of these locomotives were built for the Middleton and other colliery railways and some were in use for over twenty years. Murray also supplied engines for many early steamboats. In addition, he built some hydraulic machinery and in 1814 patented a hydraulic press for baling cloth.
    Murray's son-in-law, Richard Jackson, later became a partner in the firm, which was then styled Fenton, Murray \& Jackson. The firm went out of business in 1843.
    [br]
    Principal Honours and Distinctions
    Society of Arts Gold Medal 1809 (for machine for hackling flax).
    Further Reading
    L.T.C.Rolt, 1962, Great Engineers, London (contains a good short biography).
    E.Kilburn Scott (ed.), 1928, Matthew Murray, Pioneer Engineer, Leeds (a collection of essays and source material).
    Year 1831, London.
    L.T.C.Rolt, 1965, Tools for the Job, London; repub. 1986 (provides information on Murray's machine-tool work).
    Some of Murray's correspondence with Simon Goodrich of the Admiralty has been published in Transactions of the Newcomen Society 3 (1922–3); 6(1925–6); 18(1937– 8); and 32 (1959–60).
    RTS

    Biographical history of technology > Murray, Matthew

  • 31 Abt, Roman

    [br]
    b. 17 July 1850 Bünzen, Switzerland
    d. 1 May 1933 Lucerne, Switzerland
    [br]
    Swiss locomotive engineer, inventor of the Abt rack rail system.
    [br]
    Abt trained under N. Riggenbach and worked for his short-lived International Company for Mountain Railways during the 1870s, and subsequently invented the Abt rack system as an improvement on Riggenbach's ladder rack, in which the rungs gave trouble by working loose. Abt's rack system, in what became its usual form, comprises two machined racks side by side with their teeth staggered so that a tooth in one rack is opposite a recess in the other, and at least one tooth is always engaged with a locomotive's driving pinions. This system was first used in 1884 on the mixed rack-and-adhesion Harz Railway in Germany, and then largely superseded Riggenbach's system for new rack railways built worldwide to an eventual total of seventy-two, including the Snowdon Mountain Railway in the UK that was built in the 1890s. In many cases Abt himself designed locomotives and rolling stock, and supervised their construction.
    [br]
    Bibliography
    1877–8, Abstract in Minutes of Proceedings of the Institution of Civil Engineers, Vol. 52 (part II) (abstract of a paper given by Abt in which he described eight Riggenbach system railways then operating; his own system was patented in 1882).
    Further Reading
    J.Marshall, 1978, A Biographical Dictionary of Railway Engineers, Newton Abbot: David \& Charles.
    O.J.Morris, 1951, Snowdon Mountain Railway, Ian Allan.
    PJGR

    Biographical history of technology > Abt, Roman

  • 32 Marsh, Sylvester

    [br]
    b. 30 September 1803 Campton, New Hampshire, USA
    d. 30 December 1884 Concord, New Hampshire, USA
    [br]
    American pioneer of mountain rack railways.
    [br]
    Marsh, a businessman whose interests successively included packing pork and dealing in corn, was inspired by a rack railway built in 1847 up the 1 in 16.5 Jefferson incline, Indiana, to design and build a line to the 6,293 ft (1,918 m) summit of Mount Washington, New Hampshire. The gradient averaged 1 in 4 and Marsh installed a rack made from wrought iron with rungs fastened between upright bearers that were deep enough for the teeth of a locomotive's driving pinion to engage with two rungs at a time; counter-pressure brakes controlled a locomotive's descent. The Mount Washington Cog Railway was the first mountain rack railway: it opened in 1869 and even now continues to operate with steam locomotives.
    [br]
    Bibliography
    Marsh took out four US patents relating to rack railways between 1861 and 1870.
    Further Reading
    O.J.Morris, 1951, The Snowdon Mountain Railway, Shepperton: Ian Allan. P.B.Whitehouse, J.B.Snell and J.B.Hollingsworth, 1978, Steam for Pleasure, London: Routledge \& Kegan Paul.
    J.R.Day and B.C.Wilson, 1957, Unusual Railways, F.Muller.
    PJGR

    Biographical history of technology > Marsh, Sylvester

  • 33 Bury, Edward

    [br]
    b. 22 October 1794 Salford, Lancashire, England
    d. 25 November 1858 Scarborough, Yorkshire, England
    [br]
    English steam locomotive designer and builder.
    [br]
    Bury was the earliest engineer to build locomotives distinctively different from those developed by Robert Stephenson yet successful in mainline passenger service. A Liverpool sawmill owner, he set up as a locomotive manufacturer while the Liverpool \& Manchester Railway was under construction and, after experiments, completed the four-wheeled locomotive Liverpool in 1831. It included features that were to be typical of his designs: a firebox in the form of a vertical cylinder with a dome-shaped top and the front flattened to receive the tubes, and inside frames built up from wrought-iron bars. In 1838 Bury was appointed to supply and maintain the locomotives for the London \& Birmingham Railway (L \& BR), then under construction by Robert Stephenson, on the grounds that the latter should not also provide its locomotives. For several years the L \& BR used Bury locomotives exclusively, and they were also used on several other early main lines. Following export to the USA, their bar frames became an enduring feature of locomotive design in that country. Bury claimed, with justification, that his locomotives were economical in maintenance and fuel: the shape of the firebox promoted rapid circulation of water. His locomotives were well built, but some of their features precluded enlargement of the design to produce more powerful locomotives and within a few years they were outclassed.
    [br]
    Principal Honours and Distinctions
    FRS 1844.
    Bibliography
    1840, "On the locomotive engines of the London and Birmingham Railway", Transactions of the Institution of Civil Engineers 3 (4) (provides details of his locomotives and the thinking behind them).
    Further Reading
    C.F.Dendy Marshall, 1953, A History of'Railway Locomotives Down to the End of the Year 1831, London: The Locomotive Publishing Co. (describes Bury's early work).
    P.J.G.Ransom, 1990, The Victorian Railway and How It Evolved, London: Heinemann, pp. 167–8 and 174–6.
    PJGR

    Biographical history of technology > Bury, Edward

  • 34 Worsdell, Thomas William

    [br]
    b. 14 January 1838 Liverpool, England
    d. 28 June 1916 Arnside, Westmorland, England
    [br]
    English locomotive engineer, pioneer of the use of two-cylinder compound locomotives in Britain.
    [br]
    T.W.Worsdell was the son of Nathaniel Worsdell. After varied training, which included some time in the drawing office of the London \& North Western Railway's Crewe Works, he moved to the Pennsylvania Railroad, USA, in 1865 and shortly became Master Mechanic in charge of its locomotive workshops in Altoona. In 1871, however, he accepted an invitation from F.W. Webb to return to Crewe as Works Manager: it was while he was there that Webb produced his first compound locomotive by rebuilding an earlier simple.
    In 1881 T.W.Worsdell was appointed Locomotive Superintendent of the Great Eastern Railway. Working with August von Borries, who was Chief Mechanical Engineer of the Hannover Division of the Prussian State Railways, he developed a two-cylinder compound derived from the work of J.T.A. Mallet. Von Borries produced his compound 2–4–0 in 1880, Worsdell followed with a 4–4–0 in 1884; the restricted British loading gauge necessitated substitution of inside cylinders for the outside cylinders used by von Borries, particularly the large low-pressure one. T.W.Worsdell's compounds were on the whole successful and many were built, particularly on the North Eastern Railway, to which he moved as Locomotive Superintendent in 1885. There, in 1888, he started to build, uniquely, two-cylinder compound "single driver" 4–2–2s: one of them was recorded as reaching 86 mph (138 km/h). He also equipped his locomotives with a large side-window cab, which gave enginemen more protection from the elements than was usual in Britain at that time and was no doubt appreciated in the harsh winter climate of northeast England. The idea for the cab probably originated from his American experience. When T.W.Worsdell retired from the North Eastern Railway in 1890 he was succeeded by his younger brother, Wilson Worsdell, who in 1899 introduced the first 4– 6–0s intended for passenger trains in England.
    [br]
    Further Reading
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Shepperton: Ian Allan, Ch. 15 (biography).
    E.L.Ahrons, 1927, The British Steam Railway Locomotive 1825–1925, London: The Locomotive Publishing Co., pp. 253–5 (describes his locomotives). C.Fryer, 1990, Experiments with Steam, Patrick Stephens, Ch. 7.
    PJGR

    Biographical history of technology > Worsdell, Thomas William

  • 35 Joy, David

    [br]
    b. 3 March 1825 Leeds, England
    d. 14 March 1903 Hampstead, London, England
    [br]
    English mechanical engineer, designer of the locomotive Jenny Lind and of Joy's valve gear for steam engines.
    [br]
    By the mid-1840s Joy was Chief Draughtsman at E.B.Wilson's locomotive works at Leeds. During that period, attempts by engineers to design ever larger and more powerful locomotives were producing ungainly types, such as the long-boiler and the Cramp ton, which were to prove blind alleys in locomotive development. Joy rediscovered the proper route with his Jenny Lind 2–2–2, built in 1847. His locomotive had minimal overhang, with the firebox between the driving and trailing axles; the driving axle supported inside frames which stopped short at the firebox, allowing the latter to be wide, while leading and trailing wheels were held by outside plate frames which had a degree of elasticity. The boiler was low-pitched, the steam pressure high at 120 psi (8.4 kg/cm2). The result was a powerful locomotive which rode well and immediately became popular, a forerunner of many later designs. Joy subsequently had a varied career with successive railways and engineering firms. In the late 1850s he invented steam reversing gear for large, marine steam engines, a hydraulic organ blower and a pneumatic hammer. In 1879 he invented his radial valve gear for steam engines, which was adopted by F.W. Webb for the London \& North Western Railway's locomotives and was also much used in marine steam engines.
    [br]
    Bibliography
    1879, British patent no. 929 (valve gear).
    Further Reading
    Obituary, 1903, Engineering (20 March).
    Obituary, 1903, The Engineer (20 March).
    PJGR

    Biographical history of technology > Joy, David

  • 36 Outram, Benjamin

    [br]
    b. 1 April 1764 Alfreton, England
    d. 22 May 1805 London, England
    [br]
    English ironmaster and engineer of canals and tramroads, protagonist of angled plate rails in place of edge rails.
    [br]
    Outram's father was one of the principal promoters of the Cromford Canal, Derbyshire, and Benjamin Outram became Assistant to the canal's Engineer, William Jessop. In 1789 Outram was appointed Superintendent in charge of construction, and his responsibilities included the 2,978 yd (2,723 m) Butterley Tunnel; while the tunnel was being driven, coal and iron ore were encountered. Outram and a partner purchased the Butterley Hall estate above the tunnel and formed Outram \& Co. to exploit the coal and iron: a wide length of the tunnel beneath the company's furnace was linked to the surface by shafts to become in effect an underground wharf. Jessop soon joined the company, which grew and prospered to eventually become the long-lived Butterley Company.
    As a canal engineer, Outram's subsequent projects included the Derby, Huddersfield Narrow and Peak Forest Canals. On the Derby Canal he built a small iron aqueduct, which though designed later than the Longdon Aqueduct of Thomas Telford was opened earlier, in 1796, to become the first iron aqueduct.
    It is as a tramroad engineer that Outram is best known. In 1793 he completed a mile-long (1.6 km) tramroad from Outram \& Co.'s limestone quarry at Crich to the Cromford Canal, for which he used plate rails of the type recently developed by John Curr. He was, however, able to use a wider gauge—3 ft 6 in. (1.07 m) between the flanges—and larger wagons than Curr had been able to use underground in mines. It appears to have been Outram's idea to mount the rails on stone blocks, rather than wooden sleepers.
    Outram then engineered tramroads to extend the lines of the Derby and Peak Forest Canals. He encouraged construction of such tramroads in many parts of Britain, often as feeders of traffic to canals. He acted as Engineer, and his company often provided the rails and sometimes undertook the entire construction of a line. Foreseeing that lines would be linked together, he recommended a gauge of 4 ft 2 in. (1.27 m) between the flanges as standard, and for twenty years or so Outram's plateways, with horses or gravity as motive power, became the usual form of construction for new railways. However, experience then showed that edge rails, weight for weight, could carry greater load, and were indeed almost essential for the introduction of steam locomotives.
    [br]
    Further Reading
    R.B.Schofield, 1986, "The design and construction of the Cromford Canal, 1788–1794", Transactions of the Newcomen Society 57 (provides good coverage of Outram's early career).
    P.J.Riden, 1973, The Butterley Company and railway construction, 1790–1830', Transport History 6(1) (covers Outram's development of tramroads).
    R.A.Mott, 1969, Tramroads of the eighteenth century and their originator: John Curr', Transactions of the Newcomen Society 42.
    "Dowie" (A.R.Cowlishaw, J.H.Price and R.G.P. Tebb), 1971, The Crich Mineral Railways, Crich: Tramway Publications.
    PJGR

    Biographical history of technology > Outram, Benjamin

  • 37 Riggenbach, Niklaus

    [br]
    b. 21 May 1817 Gebweiler, Alsace
    d. 25 July 1899 Olten, Switzerland
    [br]
    Swiss locomotive engineer and pioneer of mountain rack railways.
    [br]
    Riggenbach came from a Basle family and was educated in Basle, Lyons and Paris, where he was so impressed by the new railway to Saint-Germain that he decided to devote himself to work in that field. He worked for Kessler's locomotive works in Karlsruhe, which built the first locomotives for the Zurich-Baden Railway. This was the first railway in Switzerland and when it was opened in 1847 Riggenbach drove the first train. He subsequently became Locomotive Superintendent of the Swiss Central Railway, and the problems of operating a steeply graded line solely by adhesion led him to develop a rack railway which incorporated a ladder rack similar to that of Sylvester Marsh. However, it was only after the Swiss Consul in Washington had reported enthusiastically on the Mount Washington Cog Railway that Riggenbach and associates were able to get a concession for their first line, which was laid up the Rigi mountain and was opened in 1871. That same year Riggenbach opened a quarry railway operated for the first time by a mixture of rack and adhesion. From this start, rack railways were built widely in Switzerland and to a lesser extent in many other parts of the world. His Rigi railway continues to operate.
    [br]
    Bibliography
    Riggenbach patented his rack railway in 1863.
    Further Reading
    M.Dietschy, 1971, "Le Chemin de fer du Rigi à 100 ans", Chemins defer régionaux et
    urbains 106.
    O.J.Morris, 1951, The Snow don Mountain Railway, Ian Allan.
    See also: Abt, Roman
    PJGR

    Biographical history of technology > Riggenbach, Niklaus

  • 38 Sprague, Frank Julian

    [br]
    b. 25 July 1857 Milford, Connecticut, USA
    d. 25 October 1934 New York, USA
    [br]
    American electrical engineer and inventor, a leading innovator in electric propulsion systems for urban transport.
    [br]
    Graduating from the United States Naval Academy, Annapolis, in 1878, Sprague served at sea and with various shore establishments. In 1883 he resigned from the Navy and obtained employment with the Edison Company; but being convinced that the use of electricity for motive power was as important as that for illumination, in 1884 he founded the Sprague Electric Railway and Motor Company. Sprague began to develop reliable and efficient motors in large sizes, marketing 15 hp (11 kW) examples by 1885. He devised the method of collecting current by using a wooden, spring-loaded rod to press a roller against the underside of an overhead wire. The installation by Sprague in 1888 of a street tramway on a large scale in Richmond, Virginia, was to become the prototype of the universally adopted trolley system with overhead conductor and the beginning of commercial electric traction. Following the success of the Richmond tramway the company equipped sixty-seven other railways before its merger with Edison General Electric in 1890. The Sprague traction motor supported on the axle of electric streetcars and flexibly mounted to the bogie set a pattern that was widely adopted for many years.
    Encouraged by successful experiments with multiple-sheave electric elevators, the Sprague Elevator Company was formed and installed the first set of high-speed passenger cars in 1893–4. These effectively displaced hydraulic elevators in larger buildings. From experience with control systems for these, he developed his system of multiple-unit control for electric trains, which other engineers had considered impracticable. In Sprague's system, a master controller situated in the driver's cab operated electrically at a distance the contactors and reversers which controlled the motors distributed down the train. After years of experiment, Sprague's multiple-unit control was put into use for the first time in 1898 by the Chicago South Side Elevated Railway: within fifteen years multiple-unit operation was used worldwide.
    [br]
    Principal Honours and Distinctions
    President, American Institute of Electrical Engineers 1892–3. Franklin Institute Elliot Cresson Medal 1904, Franklin Medal 1921. American Institute of Electrical Engineers Edison Medal 1910.
    Bibliography
    1888, "The solution of municipal rapid transit", Trans. AIEE 5:352–98. See "The multiple unit system for electric railways", Cassiers Magazine, (1899) London, repub. 1960, 439–460.
    1934, "Digging in “The Mines of the Motor”", Electrical Engineering 53, New York: 695–706 (a short autobiography).
    Further Reading
    Lionel Calisch, 1913, Electric Traction, London: The Locomotive Publishing Co., Ch. 6 (for a near-contemporary view of Sprague's multiple-unit control).
    D.C.Jackson, 1934, "Frank Julian Sprague", Scientific Monthly 57:431–41.
    H.C.Passer, 1952, "Frank Julian Sprague: father of electric traction", in Men of Business, ed. W. Miller, Cambridge, Mass., pp. 212–37 (a reliable account).
    ——1953, The Electrical Manufacturers: 1875–1900, Cambridge, Mass. P.Ransome-Wallis (ed.), 1959, The Concise Encyclopaedia of World Railway
    Locomotives, London: Hutchinson, p. 143..
    John Marshall, 1978, A Biographical Dictionary of Railway Engineers, Newton Abbot: David \& Charles.
    GW / PJGR

    Biographical history of technology > Sprague, Frank Julian

  • 39 Forrester, George

    [br]
    b. 1780/1 Scotland
    d. after 1841
    [br]
    Scottish locomotive builder and technical innovator.
    [br]
    George Forrester \& Co. built locomotives at the Vauxhall Foundry, Liverpool, between 1834 and c.1847. The first locomotives built by them, in 1834, were three for the Dublin \& Kingstown Railway and one for the Liverpool \& Manchester Railway; they were the first locomotives to have outside horizontal cylinders and the first to have four fixed eccentrics to operate the valves, in place of two loose eccentrics. Two locomotives built by Forrester in 1835 for the Dublin \& Kingstown Railway were the first tank locomotives to run regularly on a public railway, and two more supplied in 1836 to the London \& Greenwich Railway were the first such locomotives in England. Little appears to be known about Forrester himself. In the 1841 census his profession is shown as "civil engineer, residence 1 Lord Nelson Street". Directories for Liverpool, contemporary with Forrester \& Co.'s locomotive building period, describe the firm variously as engineers, iron founders and boilermakers, located at (successively) 234,224 and 40 Vauxhall Road. Works Manager until 1840 was Alexander Allan, who subsequently used the experience he had gained with Forrester in the design of his "Crewe Type" outside-cylinder locomotive, which became widely used.
    [br]
    Further Reading
    E.L.Ahrons, 1927, The British Steam Railway Locomotive 1825–1925, The Locomotive Publishing Co., pp. 29, 43, 50 and 83.
    J.Lowe, 1975, British Steam Locomotive Builders, Cambridge: Goose \& Son.
    R.H.G.Thomas, 1986, London's First Railway: The London \& Greenwich, B.T.Batsford, p. 176.
    PJGR

    Biographical history of technology > Forrester, George

  • 40 Borsig, Johann Carl Friedrich August

    [br]
    b. 25 June 1804 Breslau, Germany (now Wroclaw, Poland)
    d. 7 July 1854 Berlin, Germany
    [br]
    German pioneer manufacturer of locomotives and rails.
    [br]
    Borsig established a small works at Berlin in 1837 that ten years later had expanded sufficiently to employ 1,200 people. In that year it produced sixty-seven locomotives. Borsig copied the long-boiler type then popular in Britain and which had been exported to Germany by British manufacturers: it became the standard goods engine in Germany for many years, and the name Borsig became one of the famous names of locomotive building. In 1847 Borsig established an iron-works near Berlin that from 1851 started to produce good-quality rails; German railways previously had to import these from Britain.
    [br]
    Further Reading
    J.Marshall, 1978, A Biographical Dictionary of Railway Engineers, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Borsig, Johann Carl Friedrich August

См. также в других словарях:

  • Model Railways and Locomotives Magazine — Model Railways and Locomotive Magazine was an early British magazine devoted to railway modelling. The first volume was published in January 1909. It was edited by Henry Greenly and W J Bassett Lowke who are well known in the history of Model… …   Wikipedia

  • railways and railroads — The world’s first railway along which passengers travelled on trains pulled by steam locomotives was opened in 1825 between Stockton and Darlington in north east England. By the early 1900s, when railways reached the height of their popularity,… …   Universalium

  • East African Railways and Harbours Corporation — East African Railways EAR Création 1er mai 1948 Disparition 11 février 1977 Prédécesseur Kenya and Uganda railway and harbour (KUR) et Tanganyika railways (TR) …   Wikipédia en Français

  • East African Railways And Harbours Corporation — L East african railways and harbours corporation ou EAR était une compagnie ferroviaire chargée d exploiter les réseaux des anciennes colonies britanniques du Kenya, de l Ouganda et du Tanganyika (actuelle Tanzanie) qui présentaient tous la… …   Wikipédia en Français

  • East african railways and harbours corporation — L East african railways and harbours corporation ou EAR était une compagnie ferroviaire chargée d exploiter les réseaux des anciennes colonies britanniques du Kenya, de l Ouganda et du Tanganyika (actuelle Tanzanie) qui présentaient tous la… …   Wikipédia en Français

  • Railways of Montenegro — EMU train at the Podgorica Rail Station Operation National railway Жељезница Црне Горе / Željeznica Crne Gore (ŽCG) …   Wikipedia

  • Locomotives of New Zealand — currently in operation owned by KiwiRail consist of 172 diesel electric locomotives, 22 electric locomotives, 59 electric multiple units, 3 railcars, and 103 shunting locomotives. There are also 29 diesel multiple units in Auckland, owned by the… …   Wikipedia

  • Locomotives of the London, Midland and Scottish Railway — The London, Midland and Scottish Railway had the largest stock of steam locomotives of any of the Big Four pre Nationalisation railway companies. Despite early troubles arising from factions within the new company, the LMS went on to build some… …   Wikipedia

  • Railways in Guyana — The Railways of Guyana comprised two public railways and several industrial railways, including the first in South America. Contents 1 Demerara Berbice railway 1.1 Route 1.2 History 1.3 Service …   Wikipedia

  • Indian Railways — Infobox Company name = भारतीय रेल, Indian Railways company type = Departmental Undertaking of The Ministry of Railways, Government of India foundation = April 16, 1853, nationalized in 1951 location city = New Delhi location country = India… …   Wikipedia

  • Locomotives of the Great Western Railway — The Great Western Railway had an uninterrupted life of over a century to develop its locomotive designs as it was barely affected by the Grouping of 1923. As a result its locomotive history is a long and interesting one. BackgroundNumbering and… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»