Перевод: с английского на все языки

со всех языков на английский

published+form

  • 101 Cousteau, Jacques-Yves

    SUBJECT AREA: Ports and shipping
    [br]
    b. 11 June 1910 Saint-André-de-Cubzac, France
    [br]
    French marine explorer who invented the aqualung.
    [br]
    He was the son of a country lawyer who became legal advisor and travelling companion to certain rich Americans. At an early age Cousteau acquired a love of travel, of the sea and of cinematography: he made his first film at the age of 13. After an interrupted education he nevertheless passed the difficult entrance examination to the Ecole Navale in Brest, but his naval career was cut short in 1936 by injuries received in a serious motor accident. For his long recuperation he was drafted to Toulon. There he met Philippe Tailliez, a fellow naval officer, and Frédéric Dumas, a champion spearfisher, with whom he formed a long association and began to develop his underwater swimming and photography. He apparently took little part in the Second World War, but under cover he applied his photographic skills to espionage, for which he was awarded the Légion d'honneur after the war.
    Cousteau sought greater freedom of movement underwater and, with Emile Gagnan, who worked in the laboratory of Air Liquide, he began experimenting to improve portable underwater breathing apparatus. As a result, in 1943 they invented the aqualung. Its simple design and robust construction provided a reliable and low-cost unit and revolutionized scientific and recreational diving. Gagnan shunned publicity, but Cousteau revelled in the new freedom to explore and photograph underwater and exploited the publicity potential to the full.
    The Undersea Research Group was set up by the French Navy in 1944 and, based in Toulon, it provided Cousteau with the Opportunity to develop underwater exploration and filming techniques and equipment. Its first aims were minesweeping and exploration, but in 1948 Cousteau pioneered an extension to marine archaeology. In 1950 he raised the funds to acquire a surplus US-built minesweeper, which he fitted out to further his quest for exploration and adventure and named Calypso. Cousteau also sought and achieved public acclaim with the publication in 1953 of The Silent World, an account of his submarine observations, illustrated by his own brilliant photography. The book was an immediate success and was translated into twenty-two languages. In 1955 Calypso sailed through the Red Sea and the western Indian Ocean, and the outcome was a film bearing the same title as the book: it won an Oscar and the Palme d'Or at the Cannes film festival. This was his favoured medium for the expression of his ideas and observations, and a stream of films on the same theme kept his name before the public.
    Cousteau's fame earned him appointment by Prince Rainier as Director of the Oceanographie Institute in Monaco in 1957, a post he held until 1988. With its museum and research centre, it offered Cousteau a useful base for his worldwide activities.
    In the 1980s Cousteau turned again to technological development. Like others before him, he was concerned to reduce ships' fuel consumption by harnessing wind power. True to form, he raised grants from various sources to fund research and enlisted technical help, namely Lucien Malavard, Professor of Aerodynamics at the Sorbonne. Malavard designed a 44 ft (13.4 m) high non-rotating cylinder, which was fitted onto a catamaran hull, christened Moulin à vent. It was intended that its maiden Atlantic crossing in 1983 should herald a new age in ship propulsion, with large royalties to Cousteau. Unfortunately the vessel was damaged in a storm and limped to the USA under diesel power. A more robust vessel, the Alcyone, was fitted with two "Turbosails" in 1985 and proved successful, with a 40 per cent reduction in fuel consumption. However, oil prices fell, removing the incentive to fit the new device; the lucrative sales did not materialize and Alcyone remained the only vessel with Turbosails, sharing with Calypso Cousteau's voyages of adventure and exploration. In September 1995, Cousteau was among the critics of the decision by the French President Jacques Chirac to resume testing of nuclear explosive devices under the Mururoa atoll in the South Pacific.
    [br]
    Principal Honours and Distinctions
    Légion d'honneur. Croix de Guerre with Palm. Officier du Mérite Maritime and numerous scientific and artistic awards listed in such directories as Who's Who.
    Bibliography
    Further Reading
    R.Munson, 1991, Cousteau, the Captain and His World, London: Robert Hale (published in the USA 1989).
    LRD

    Biographical history of technology > Cousteau, Jacques-Yves

  • 102 Einthoven, Willem

    SUBJECT AREA: Medical technology
    [br]
    b. 21 May 1860 Semarang, Java
    d. 28 September 1927 Leiden, the Netherlands
    [br]
    Dutch physiologist, inventor of the string galvanometer and discoverer of the electrocardiogram (ECG).
    [br]
    As a medical student in Utrecht from 1879 Einthoven published an account of pronation and supination of the arm (following his own injury) as well as a paper on stereoscopy through colour differentiation. Soon after graduating in July 1885, he was appointed Professor of Physiology at Leiden.
    In 1895, while involved in the study of the electric action potentials of the heart, he developed the sensitive string galvanometer, and in 1896 he was able to register the electrocardiograms of animals and humans, relating them to the heart sounds. Developing this work, he not only established the detailed geometry of the leads for these recordings, but was able to build up an insight into their variations in different forms of heart disease. In 1924 he further investigated the action currents of the sympathetic nervous system.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Medicine or Physiology 1924.
    Bibliography
    1895, "Uber die form des menschlichen Elektrocardiogramms", Pflügers Archiv.
    Further Reading
    de Waart, 1957, Einthoven, Haarlem (complete list of works).
    MG

    Biographical history of technology > Einthoven, Willem

  • 103 Gillette, King Camp

    [br]
    b. 5 January 1855 Fond du Lac, Wisconsin, USA
    d. 9 July 1932 Los Angeles, California, USA
    [br]
    American inventor and manufacturer, inventor of the safety razor.
    [br]
    Gillette's formal education in Chicago was brought to an end when a disastrous fire destroyed all his father's possessions. Forced to fend for himself, he worked first in the hardware trade in Chicago and New York, then as a travelling salesman. Gillette inherited the family talent for invention, but found that his successful inventions barely paid for those that failed. He was advised by a previous employer, William Painter (inventor of the Crown Cork), to look around for something that could be used widely and then thrown away. In 1895 he succeeded in following that advice of inventing something which people could use and then throw away, so that they would keep coming back for more. An idea came to him while he was honing an old-fashioned razor one morning; he was struck by the fact that only a short piece of the whole length of a cutthroat razor is actually used for shaving, as well as by the potentially dangerous nature of the implement. He "rushed out to purchase some pieces of brass, some steel ribbon used for clock springs, a small hand vise and some files". He thought of using a thin steel blade sharpened on each side, placed between two plates and held firmly together by a handle. Though coming from a family of inventors, Gillette had no formal technical education and was entirely ignorant of metallurgy. For six years he sought a way of making a cheap blade from sheet steel that could be hardened, tempered and sharpened to a keen edge.
    Gillette eventually found financial supporters: Henry Sachs, a Boston lamp manufacturer; his brother-in-law Jacob Heilbron; and William Nickerson, who had a considerable talent for invention. By skilled trial and error rather than expert metallurgical knowledge, Nickerson devised ways of forming and sharpening the blades, and it was these that brought commercial success. In 1901, the American Safety Razor Company, later to be renamed the Gillette Safety Razor Company, was set up. When it started production in 1903 the company was badly in debt, and managed to sell only fifty-one razors and 168 blades; but by the end of the following year, 90,000 razors and 12.4 million blades had been sold. A sound invention coupled with shrewd promotion ensured further success, and eight plants manufacturing safety razors were established in various parts of the world. Gillette's business experiences led him into the realms of social theory about the way society should be organized. He formulated his views in a series of books published over the years 1894 to 1910. He believed that competition led to a waste of up to 90 per cent of human effort and that want and crime would be eliminated by substituting a giant trust to plan production centrally. Unfortunately, the public in America, or anywhere else for that matter, were not ready for this form of Utopia; no omniscient planners were available, and human wants and needs were too various to be supplied by a single agency. Even so, some of his ideas have found favour: air conditioning and government provision of work for the unemployed. Gillette made a fortune from his invention and retired from active participation in the business in 1913, although he remained President until 1931 and Director until his death.
    [br]
    Bibliography
    "Origin of the Gillette razor", Gillette Blade (February/March).
    Further Reading
    Obituary, 1932, New York Times (11 July).
    J.Jewkes, D.Sawers and R.Stillerman, 1958, The Sources of Invention, London: Macmillan.
    LRD / IMcN

    Biographical history of technology > Gillette, King Camp

  • 104 Harrison, John

    [br]
    b. 24 March 1693 Foulby, Yorkshire, England
    d. 24 March 1776 London, England
    [br]
    English horologist who constructed the first timekeeper of sufficient accuracy to determine longitude at sea and invented the gridiron pendulum for temperature compensation.
    [br]
    John Harrison was the son of a carpenter and was brought up to that trade. He was largely self-taught and learned mechanics from a copy of Nicholas Saunderson's lectures that had been lent to him. With the assistance of his younger brother, James, he built a series of unconventional clocks, mainly of wood. He was always concerned to reduce friction, without using oil, and this influenced the design of his "grasshopper" escapement. He also invented the "gridiron" compensation pendulum, which depended on the differential expansion of brass and steel. The excellent performance of his regulator clocks, which incorporated these devices, convinced him that they could also be used in a sea dock to compete for the longitude prize. In 1714 the Government had offered a prize of £20,000 for a method of determining longitude at sea to within half a degree after a voyage to the West Indies. In theory the longitude could be found by carrying an accurate timepiece that would indicate the time at a known longitude, but the requirements of the Act were very exacting. The timepiece would have to have a cumulative error of no more than two minutes after a voyage lasting six weeks.
    In 1730 Harrison went to London with his proposal for a sea clock, supported by examples of his grasshopper escapement and his gridiron pendulum. His proposal received sufficient encouragement and financial support, from George Graham and others, to enable him to return to Barrow and construct his first sea clock, which he completed five years later. This was a large and complicated machine that was made out of brass but retained the wooden wheelwork and the grasshopper escapement of the regulator clocks. The two balances were interlinked to counteract the rolling of the vessel and were controlled by helical springs operating in tension. It was the first timepiece with a balance to have temperature compensation. The effect of temperature change on the timekeeping of a balance is more pronounced than it is for a pendulum, as two effects are involved: the change in the size of the balance; and the change in the elasticity of the balance spring. Harrison compensated for both effects by using a gridiron arrangement to alter the tension in the springs. This timekeeper performed creditably when it was tested on a voyage to Lisbon, and the Board of Longitude agreed to finance improved models. Harrison's second timekeeper dispensed with the use of wood and had the added refinement of a remontoire, but even before it was tested he had embarked on a third machine. The balance of this machine was controlled by a spiral spring whose effective length was altered by a bimetallic strip to compensate for changes in temperature. In 1753 Harrison commissioned a London watchmaker, John Jefferys, to make a watch for his own personal use, with a similar form of temperature compensation and a modified verge escapement that was intended to compensate for the lack of isochronism of the balance spring. The time-keeping of this watch was surprisingly good and Harrison proceeded to build a larger and more sophisticated version, with a remontoire. This timekeeper was completed in 1759 and its performance was so remarkable that Harrison decided to enter it for the longitude prize in place of his third machine. It was tested on two voyages to the West Indies and on both occasions it met the requirements of the Act, but the Board of Longitude withheld half the prize money until they had proof that the timekeeper could be duplicated. Copies were made by Harrison and by Larcum Kendall, but the Board still continued to prevaricate and Harrison received the full amount of the prize in 1773 only after George III had intervened on his behalf.
    Although Harrison had shown that it was possible to construct a timepiece of sufficient accuracy to determine longitude at sea, his solution was too complex and costly to be produced in quantity. It had, for example, taken Larcum Kendall two years to produce his copy of Harrison's fourth timekeeper, but Harrison had overcome the psychological barrier and opened the door for others to produce chronometers in quantity at an affordable price. This was achieved before the end of the century by Arnold and Earnshaw, but they used an entirely different design that owed more to Le Roy than it did to Harrison and which only retained Harrison's maintaining power.
    [br]
    Principal Honours and Distinctions
    Royal Society Copley Medal 1749.
    Bibliography
    1767, The Principles of Mr Harrison's Time-keeper, with Plates of the Same, London. 1767, Remarks on a Pamphlet Lately Published by the Rev. Mr Maskelyne Under the
    Authority of the Board of Longitude, London.
    1775, A Description Concerning Such Mechanisms as Will Afford a Nice or True Mensuration of Time, London.
    Further Reading
    R.T.Gould, 1923, The Marine Chronometer: Its History and Development, London; reprinted 1960, Holland Press.
    —1978, John Harrison and His Timekeepers, 4th edn, London: National Maritime Museum.
    H.Quill, 1966, John Harrison, the Man who Found Longitude, London. A.G.Randall, 1989, "The technology of John Harrison's portable timekeepers", Antiquarian Horology 18:145–60, 261–77.
    J.Betts, 1993, John Harrison London (a good short account of Harrison's work). S.Smiles, 1905, Men of Invention and Industry; London: John Murray, Chapter III. Dictionary of National Biography, Vol. IX, pp. 35–6.
    DV

    Biographical history of technology > Harrison, John

  • 105 Mavor, Henry Alexander

    [br]
    b. 1858 Stranraer, Scotland
    d. 16 July 1915 Mauchline, Ayrshire, Scotland
    [br]
    Scottish engineer who pioneered the use of electricity for lighting, power and the propulsion of ships.
    [br]
    Mavor came from a distinguished Scottish family with connections in medicine, industry and the arts. On completion of his education at Glasgow University, he joined R.J.Crompton \& Co.; then in 1883, along with William C.Muir, he established the Glasgow firm which later became well known as Mavor and Coulson. It pioneered the supply of electricity to public undertakings and equipped the first two generating stations in Scotland. Mavor and his fellow directors appreciated the potential demand by industry in Glasgow for electricity. Two industries were especially well served; first, the coal-mines, where electric lighting and power transformed efficiency and safety beyond recognition; and second, marine engineering. Here Mavor recognized the importance of the variable-speed motor in working with marine propellers which have a tighter range of efficient working speeds. In 1911 he built a 50 ft (15 m) motor launch, appropriately named Electric Arc, at Dumbarton and fitted it with an alternating-current motor driven by a petrol engine and dynamo. Within two years British shipyards were building electrically powered ships, and by the beginning of the First World War the United States Navy had a 20,000-ton collier with this new form of propulsion.
    [br]
    Principal Honours and Distinctions
    Vice-President, Institution of Engineers and Shipbuilders in Scotland 1894–6.
    Bibliography
    Mavor published several papers on electric power supply, distribution and the use of electricity for marine purposes in the Transactions of the Institution of Engineers and Shipbuilders in Scotland between the years 1890 and 1912.
    Further Reading
    Mavor and Coulson Ltd, 1911, Electric Propulsion of Ships, Glasgow.
    FMW

    Biographical history of technology > Mavor, Henry Alexander

  • 106 Momma (Mumma), Jacob

    SUBJECT AREA: Metallurgy
    [br]
    b. early seventeenth century Germany
    d. 1679 England
    [br]
    German (naturalized English) immigrant skilled in the manufacture and production of brass, who also mined and smelted copper.
    [br]
    The protestant Momma family were well known in Aachen, the seventeenth-century centre of German brass production. Subjected to religious pressures, some members of the family moved to nearby Stolberg, while others migrated to Sweden, starting brass manufacture there. Jacob travelled to England, establishing brassworks with two German partners at Esher in Surrey in 1649; theirs was the only such works in England to survive for more than a few years during the seventeenth century.
    Jacob, naturalized English by 1660, is often referred to in England as Mummer or another variant of his name. He became respected, serving as a juror, and was appointed a constable in 1661. During the 1660s Momma was engaged in mining copper at Ecton Hill, Staffordshire, where he was credited with introducing gunpowder to English mining technology. He smelted his ore at works nearby in an effort to secure copper supplies, but the whole project was brief and unprofitable.
    The alternative imported copper required for his brass came mainly from Sweden, its high cost proving a barrier to viable English brass production. In 1662 Momma petitioned Parliament for some form of assistance. A year later he pleaded further for higher tariffs against brass-wire imports as protection from the price manipulation of Swedish exporters. He sought support from the Society of Mineral and Battery Works, the Elizabethan monopoly (see Dockwra, William) claiming jurisdiction over the country's working of brass, but neither petition succeeded. Despite these problems with the high cost of copper supplies in England, Momma continued his business and is recorded as still paying hearth tax on his twenty brass furnaces up to 1664. Although these were abandoned before his death and he claimed to have lost £6,000 on his brassworks, his wire mills survived him for a few years under the management of his son.
    [br]
    Further Reading
    J.Morton, 1985, The rise of the modern copper and brass industry: 1690 to 1750, unpublished thesis: University of Birmingham, 16–25.
    J.Day, 1984, "The continental origins of Bristol Brass", Industrial Archaeology Review 8/1: 32–56.
    John Robey, 1969, "Ecton copper mines in the seventeenth century", Bulletin of the Peak District Mines Historic Society 4(2):145–55 (the most comprehensive published account).
    JD

    Biographical history of technology > Momma (Mumma), Jacob

  • 107 Murray, Matthew

    [br]
    b. 1765 near Newcastle upon Tyne, England
    d. 20 February 1826 Holbeck, Leeds, England
    [br]
    English mechanical engineer and steam engine, locomotive and machine-tool pioneer.
    [br]
    Matthew Murray was apprenticed at the age of 14 to a blacksmith who probably also did millwrighting work. He then worked as a journeyman mechanic at Stockton-on-Tees, where he had experience with machinery for a flax mill at Darlington. Trade in the Stockton area became slack in 1788 and Murray sought work in Leeds, where he was employed by John Marshall, who owned a flax mill at Adel, located about 5 miles (8 km) from Leeds. He soon became Marshall's chief mechanic, and when in 1790 a new mill was built in the Holbeck district of Leeds by Marshall and his partner Benyon, Murray was responsible for the installation of the machinery. At about this time he took out two patents relating to improvements in textile machinery.
    In 1795 he left Marshall's employment and, in partnership with David Wood (1761– 1820), established a general engineering and millwrighting business at Mill Green, Holbeck. In the following year the firm moved to a larger site at Water Lane, Holbeck, and additional capital was provided by two new partners, James Fenton (1754–1834) and William Lister (1796–1811). Lister was a sleeping partner and the firm was known as Fenton, Murray \& Wood and was organized so that Fenton kept the accounts, Wood was the administrator and took charge of the workshops, while Murray provided the technical expertise. The factory was extended in 1802 by the construction of a fitting shop of circular form, after which the establishment became known as the "Round Foundry".
    In addition to textile machinery, the firm soon began the manufacture of machine tools and steam-engines. In this field it became a serious rival to Boulton \& Watt, who privately acknowledged Murray's superior craftsmanship, particularly in foundry work, and resorted to some industrial espionage to discover details of his techniques. Murray obtained patents for improvements in steam engines in 1799, 1801 and 1802. These included automatic regulation of draught, a mechanical stoker and his short-D slide valve. The patent of 1801 was successfully opposed by Boulton \& Watt. An important contribution of Murray to the development of the steam engine was the use of a bedplate so that the engine became a compact, self-contained unit instead of separate components built into an en-gine-house.
    Murray was one of the first, if not the very first, to build machine tools for sale. However, this was not the case with the planing machine, which he is said to have invented to produce flat surfaces for his slide valves. Rather than being patented, this machine was kept secret, although it was apparently in use before 1814.
    In 1812 Murray was engaged by John Blenkinsop (1783–1831) to build locomotives for his rack railway from Middleton Colliery to Leeds (about 3 1/2 miles or 5.6 km). Murray was responsible for their design and they were fitted with two double-acting cylinders and cranks at right angles, an important step in the development of the steam locomotive. About six of these locomotives were built for the Middleton and other colliery railways and some were in use for over twenty years. Murray also supplied engines for many early steamboats. In addition, he built some hydraulic machinery and in 1814 patented a hydraulic press for baling cloth.
    Murray's son-in-law, Richard Jackson, later became a partner in the firm, which was then styled Fenton, Murray \& Jackson. The firm went out of business in 1843.
    [br]
    Principal Honours and Distinctions
    Society of Arts Gold Medal 1809 (for machine for hackling flax).
    Further Reading
    L.T.C.Rolt, 1962, Great Engineers, London (contains a good short biography).
    E.Kilburn Scott (ed.), 1928, Matthew Murray, Pioneer Engineer, Leeds (a collection of essays and source material).
    Year 1831, London.
    L.T.C.Rolt, 1965, Tools for the Job, London; repub. 1986 (provides information on Murray's machine-tool work).
    Some of Murray's correspondence with Simon Goodrich of the Admiralty has been published in Transactions of the Newcomen Society 3 (1922–3); 6(1925–6); 18(1937– 8); and 32 (1959–60).
    RTS

    Biographical history of technology > Murray, Matthew

  • 108 Neri, Antonio Ludovico

    [br]
    b. 29 February 1576 Florence, Italy
    d. 1614 Florence, Italy
    [br]
    Italian glassmaker.
    [br]
    Neri entered the Church and by 1601 was a priest in the household of Alamanno Bertolini in Florence. There he met the Portuguese Sir Emanuel Ximenes, with whom he shared an interest in chemistry. The two later corresponded and the twenty-seven letters extant from Ximenes, who was living in Antwerp, are the main source of information about Neri's life. At the same time, Neri was working as a craftsman in the Medici glasshouse in Florence and then in their works at Pisa. These glasshouses had been flourishing since the fifteenth century with the help of Muranese glassmakers imported from Venice. Ximenes persuaded Neri to spend some time with the glassmakers in Antwerp, probably from 1603/4, for the correspondence breaks off at that point. A final letter in March 1611 refers to Neri's recent return to Florence. In the following year, Neri published the work by which he is known, the L'arte vetraria, the first general treatise on glassmaking. Neri's plan for a further book describing his chemical and medical experiments was thwarted by his early death. L'arte belongs to the medieval tradition of manuscript recipe books. It is divided into seven books, the first being the most interesting, dealing with the materials of glassmaking and their mixing and melting to form crystal and other colourless glasses. Other sections deal with coloured glasses and the making of enamels for goldsmiths' use. Although it was noted by Galileo Galilei (1564–1642), the book made little impression for half a century, the second edition not appearing until 1661. The first Venice edition came out two years later, with a second in 1678. Due to a decline in scientific activity in Italy at this time, L'arte had more influence elsewhere in Europe, especially England, Holland and France. It began to make a real impact with the appearance in 1662 of the English translation by Christopher Merrett (1614–95), physician, naturalist and founder member of the Royal Society. This edition included Merrett's annotations, descriptions of the tools used by English glassmakers and a translation of Agricola's short account of glassmaking in his De re metallica of 1556. Later translations were based on the Merrett translation rather than the Italian original. Ravenscroft probably used Neri's account of lead glass as a starting point for his own researches in the 1670s.
    [br]
    Bibliography
    1612, L'arte vetraria, 7 vols; reprinted 1980, ed. R.Barovier, Milan: Edizioni Polifilo (the introd., in Italian, England and French, contains the most detailed account of Neri's life and work).
    LRD

    Biographical history of technology > Neri, Antonio Ludovico

  • 109 Nobel, Immanuel

    [br]
    b. 1801 Gävle, Sweden
    d. 3 September 1872 Stockholm, Sweden
    [br]
    Swedish inventor and industrialist, particularly noted for his work on mines and explosives.
    [br]
    The son of a barber-surgeon who deserted his family to serve in the Swedish army, Nobel showed little interest in academic pursuits as a child and was sent to sea at the age of 16, but jumped ship in Egypt and was eventually employed as an architect by the pasha. Returning to Sweden, he won a scholarship to the Stockholm School of Architecture, where he studied from 1821 to 1825 and was awarded a number of prizes. His interest then leaned towards mechanical matters and he transferred to the Stockholm School of Engineering. Designs for linen-finishing machines won him a prize there, and he also patented a means of transforming rotary into reciprocating movement. He then entered the real-estate business and was successful until a fire in 1833 destroyed his house and everything he owned. By this time he had married and had two sons, with a third, Alfred (of Nobel Prize fame; see Alfred Nobel), on the way. Moving to more modest quarters on the outskirts of Stockholm, Immanuel resumed his inventions, concentrating largely on India rubber, which he applied to surgical instruments and military equipment, including a rubber knapsack.
    It was talk of plans to construct a canal at Suez that first excited his interest in explosives. He saw them as a means of making mining more efficient and began to experiment in his backyard. However, this made him unpopular with his neighbours, and the city authorities ordered him to cease his investigations. By this time he was deeply in debt and in 1837 moved to Finland, leaving his family in Stockholm. He hoped to interest the Russians in land and sea mines and, after some four years, succeeded in obtaining financial backing from the Ministry of War, enabling him to set up a foundry and arms factory in St Petersburg and to bring his family over. By 1850 he was clear of debt in Sweden and had begun to acquire a high reputation as an inventor and industrialist. His invention of the horned contact mine was to be the basic pattern of the sea mine for almost the next 100 years, but he also created and manufactured a central-heating system based on hot-water pipes. His three sons, Ludwig, Robert and Alfred, had now joined him in his business, but even so the outbreak of war with Britain and France in the Crimea placed severe pressures on him. The Russians looked to him to convert their navy from sail to steam, even though he had no experience in naval propulsion, but the aftermath of the Crimean War brought financial ruin once more to Immanuel. Amongst the reforms brought in by Tsar Alexander II was a reliance on imports to equip the armed forces, so all domestic arms contracts were abruptly cancelled, including those being undertaken by Nobel. Unable to raise money from the banks, Immanuel was forced to declare himself bankrupt and leave Russia for his native Sweden. Nobel then reverted to his study of explosives, particularly of how to adapt the then highly unstable nitroglycerine, which had first been developed by Ascanio Sobrero in 1847, for blasting and mining. Nobel believed that this could be done by mixing it with gunpowder, but could not establish the right proportions. His son Alfred pursued the matter semi-independently and eventually evolved the principle of the primary charge (and through it created the blasting cap), having taken out a patent for a nitroglycerine product in his own name; the eventual result of this was called dynamite. Father and son eventually fell out over Alfred's independent line, but worse was to follow. In September 1864 Immanuel's youngest son, Oscar, then studying chemistry at Uppsala University, was killed in an explosion in Alfred's laboratory: Immanuel suffered a stroke, but this only temporarily incapacitated him, and he continued to put forward new ideas. These included making timber a more flexible material through gluing crossed veneers under pressure and bending waste timber under steam, a concept which eventually came to fruition in the form of plywood.
    In 1868 Immanuel and Alfred were jointly awarded the prestigious Letterstedt Prize for their work on explosives, but Alfred never for-gave his father for retaining the medal without offering it to him.
    [br]
    Principal Honours and Distinctions
    Imperial Gold Medal (Russia) 1853. Swedish Academy of Science Letterstedt Prize (jointly with son Alfred) 1868.
    Bibliography
    Immanuel Nobel produced a short handwritten account of his early life 1813–37, which is now in the possession of one of his descendants. He also had published three short books during the last decade of his life— Cheap Defence of the Country's Roads (on land mines), Cheap Defence of the Archipelagos (on sea mines), and Proposal for the Country's Defence (1871)—as well as his pamphlet (1870) on making wood a more physically flexible product.
    Further Reading
    No biographies of Immanuel Nobel exist, but his life is detailed in a number of books on his son Alfred.
    CM

    Biographical history of technology > Nobel, Immanuel

  • 110 Pierce, John Robinson

    [br]
    b. 27 March 1910 Des Moines, Iowa, USA
    [br]
    American scientist and communications engineer said to be the "father" of communication satellites.
    [br]
    From his high-school days, Pierce showed an interest in science and in science fiction, writing under the pseudonym of J.J.Coupling. After gaining Bachelor's, Master's and PhD degrees at the California Institute of Technology (CalTech) in Pasadena in 1933, 1934 and 1936, respectively, Pierce joined the Bell Telephone Laboratories in New York City in 1936. There he worked on improvements to the travelling-wave tube, in which the passage of a beam of electrons through a helical transmission line at around 7 per cent of the speed of light was made to provide amplification at 860 MHz. He also devised a new form of electrostatically focused electron-multiplier which formed the basis of a sensitive detector of radiation. However, his main contribution to electronics at this time was the invention of the Pierce electron gun—a method of producing a high-density electron beam. In the Second World War he worked with McNally and Shepherd on the development of a low-voltage reflex klystron oscillator that was applied to military radar equipment.
    In 1952 he became Director of Electronic Research at the Bell Laboratories' establishment, Murray Hill, New Jersey. Within two years he had begun work on the possibility of round-the-world relay of signals by means of communication satellites, an idea anticipated in his early science-fiction writings (and by Arthur C. Clarke in 1945), and in 1955 he published a paper in which he examined various possibilities for communications satellites, including passive and active satellites in synchronous and non-synchronous orbits. In 1960 he used the National Aeronautics and Space Administration 30 m (98 1/2 ft) diameter, aluminium-coated Echo 1 balloon satellite to reflect telephone signals back to earth. The success of this led to the launching in 1962 of the first active relay satellite (Telstar), which weighed 170 lb (77 kg) and contained solar-powered rechargeable batteries, 1,000 transistors and a travelling-wave tube capable of amplifying the signal 10,000 times. With a maximum orbital height of 3,500 miles (5,600 km), this enabled a variety of signals, including full bandwidth television, to be relayed from the USA to large receiving dishes in Europe.
    From 1971 until his "retirement" in 1979, Pierce was Professor of Electrical Engineering at CalTech, after which he became Chief Technologist at the Jet Propulsion Laboratories, also in Pasadena, and Emeritus Professor of Engineering at Stanford University.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Morris N.Liebmann Memorial Award 1947; Edison Medal 1963; Medal of Honour 1975. Franklin Institute Stuart Ballantine Award 1960. National Medal of Science 1963. Danish Academy of Science Valdemar Poulsen Medal 1963. Marconi Award 1974. National Academy of Engineering Founders Award 1977. Japan Prize 1985. Arthur C.Clarke Award 1987. Honorary DEng Newark College of Engineering 1961. Honorary DSc Northwest University 1961, Yale 1963, Brooklyn Polytechnic Institute 1963. Editor, Proceedings of the Institute of Radio Engineers 1954–5.
    Bibliography
    23 October 1956, US patent no. 2,768,328 (his development of the travelling-wave tube, filed on 5 November 1946).
    1947, with L.M.Field, "Travelling wave tubes", Proceedings of the Institute of Radio
    Engineers 35:108 (describes the pioneering improvements to the travelling-wave tube). 1947, "Theory of the beam-type travelling wave tube", Proceedings of the Institution of
    Radio Engineers 35:111. 1950, Travelling Wave Tubes.
    1956, Electronic Waves and Messages. 1962, Symbols, Signals and Noise.
    1981, An Introduction to Information Theory: Symbols, Signals and Noise: Dover Publications.
    1990, with M.A.Knoll, Signals: Revolution in Electronic Communication: W.H.Freeman.
    KF

    Biographical history of technology > Pierce, John Robinson

  • 111 Reis, (Johann) Philipp

    SUBJECT AREA: Telecommunications
    [br]
    b. 7 January 1834 Geinherusen, Hesse-Kassel, Germany
    d. 14 January 1874 Friedrichsdorf, Germany
    [br]
    German schoolteacher and inventor who constructed an early form of telephone.
    [br]
    Reis entered the Garniers Institute in Friedrichsdorf in 1844 and then the Hassels Institute in Frankfurt. There he developed an interest in science, but on leaving school in 1850 he was apprenticed to the colour trade by his uncle. This involved study at the trade school and Dr Poppe's Institute in Frankfurt; while there he joined the Frankfurt Physical Society. Following military service in 1855 he studied to be a teacher. After his graduation he obtained a post at Garniers, where he began to pursue experiments with electricity and the development of hearing aids. In 1859 he sent a paper on the radiation of electricity to the editor of Annalen der Physik, but this was rejected, as was a later submission. Undeterred, he continued his experiments and by 1861 he had designed several instruments for the transmission of sound. The transmitter consisted of a membrane on which rested a metal strip that made contact with a metal point and completed an electrical circuit under the action of sound. The receiver consisted of an iron needle surrounded by a coil and resting on a sounding box, the operation probably being achieved by magnetostriction. The invention, which he described in a lecture to the Frankfurt Physical Society on 26 October 1861 and in a published paper, could produce tones and probably also speech, but was largely rejected by the scientific fraternity. The claim to produce speech was discounted in subsequent court cases that upheld the patents of Alexander Bell.
    [br]
    Principal Honours and Distinctions
    On 8 December 1878 a monument to Reis was erected in the Friedrichsdorf Cemetery by the Physical Society of Frankfurt.
    Bibliography
    1860–1, "Über Telephone durch den galvani-schen Strom", Jahresbericht der Physikalische 57.
    Further Reading
    J.Munro, 1891, Heroes of the Telegraph.
    Silvanus P.Thompson, 1883, Philipp Reis. Inventor of the Telephone.
    B.B.Bauer, 1962, "A century of the microphone", Proceedings of the Institute of Radio Engineers: 720.
    KF

    Biographical history of technology > Reis, (Johann) Philipp

  • 112 Schrötter, Anton von

    SUBJECT AREA: Chemical technology
    [br]
    b. 26 November 1802 Olmütz, Austria (now Olomouc, Czech Republic)
    d. 15 April 1875 Vienna, Austria
    [br]
    Austrian scientist known particularly for his discovery in 1845 of red phosphorus, which led to the later development of the safety match.
    [br]
    Anton von Schrötter was the son of an apothecary. At the age of 20 he began his studies at the University of Vienna, first in medicine but later in science and mathematics. He specialized in chemistry and then set up a laboratory in Graz. From 1843 he was a professor of chemistry at the Technische Hochschule in Vienna. Von Schrötter published many papers on various aspects of chemistry, particularly in the field of metallurgy, but it was his demonstration at the Vienna Academy in 1847, which showed that red phosphorus was truly an allotropie form of the element phosphorus, that made him best known. His suggestion that it would be advisable to use such amorphous phosphorus in match manufacture led to Lundström's later development of the safety match and ended the appalling toll that had long been taken on the health of match-factory workers, many of whom had suffered maiming and even death caused by white phosphorus entering the body via defective teeth when they sucked match-heads.
    [br]
    Principal Honours and Distinctions
    Académie Française Prix Montyon 1856. Légion d'Honneur at Paris Exhibition 1855. General Secretary, Vienna Academy of Sciences 1850–75.
    Further Reading
    Moritz Kohn, 1944, "The discovery of red phosphorus (1847)", Journal of Chemical Education 21.
    1975, Dictionary of Science Biography, New York: Charles Scribner.
    DY

    Biographical history of technology > Schrötter, Anton von

  • 113 Sperry, Elmer Ambrose

    [br]
    b. 21 October 1860 Cincinnatus, Cortland County, New York, USA
    d. 16 June 1930 Brooklyn, New York, USA
    [br]
    American entrepreneur who invented the gyrocompass.
    [br]
    Sperry was born into a farming community in Cortland County. He received a rudimentary education at the local school, but an interest in mechanical devices was aroused by the agricultural machinery he saw around him. His attendance at the Normal School in Cortland provided a useful theoretical background to his practical knowledge. He emerged in 1880 with an urge to pursue invention in electrical engineering, then a new and growing branch of technology. Within two years he was able to patent and demonstrate his arc lighting system, complete with its own generator, incorporating new methods of regulating its output. The Sperry Electric Light, Motor and Car Brake Company was set up to make and market the system, but it was difficult to keep pace with electric-lighting developments such as the incandescent lamp and alternating current, and the company ceased in 1887 and was replaced by the Sperry Electric Company, which itself was taken over by the General Electric Company.
    In the 1890s Sperry made useful inventions in electric mining machinery and then in electric street-or tramcars, with his patent electric brake and control system. The patents for the brake were important enough to be bought by General Electric. From 1894 to 1900 he was manufacturing electric motor cars of his own design, and in 1900 he set up a laboratory in Washington, where he pursued various electrochemical processes.
    In 1896 he began to work on the practical application of the principle of the gyroscope, where Sperry achieved his most notable inventions, the first of which was the gyrostabilizer for ships. The relatively narrow-hulled steamship rolled badly in heavy seas and in 1904 Ernst Otto Schuck, a German naval engineer, and Louis Brennan in England began experiments to correct this; their work stimulated Sperry to develop his own device. In 1908 he patented the active gyrostabilizer, which acted to correct a ship's roll as soon as it started. Three years later the US Navy agreed to try it on a destroyer, the USS Worden. The successful trials of the following year led to widespread adoption. Meanwhile, in 1910, Sperry set up the Sperry Gyroscope Company to extend the application to commercial shipping.
    At the same time, Sperry was working to apply the gyroscope principle to the ship's compass. The magnetic compass had worked well in wooden ships, but iron hulls and electrical machinery confused it. The great powers' race to build up their navies instigated an urgent search for a solution. In Germany, Anschütz-Kämpfe (1872–1931) in 1903 tested a form of gyrocompass and was encouraged by the authorities to demonstrate the device on the German flagship, the Deutschland. Its success led Sperry to develop his own version: fortunately for him, the US Navy preferred a home-grown product to a German one and gave Sperry all the backing he needed. A successful trial on a destroyer led to widespread acceptance in the US Navy, and Sperry was soon receiving orders from the British Admiralty and the Russian Navy.
    In the rapidly developing field of aeronautics, automatic stabilization was becoming an urgent need. In 1912 Sperry began work on a gyrostabilizer for aircraft. Two years later he was able to stage a spectacular demonstration of such a device at an air show near Paris.
    Sperry continued research, development and promotion in military and aviation technology almost to the last. In 1926 he sold the Sperry Gyroscope Company to enable him to devote more time to invention.
    [br]
    Principal Honours and Distinctions
    John Fritz Medal 1927. President, American Society of Mechanical Engineers 1928.
    Bibliography
    Sperry filed over 400 patents, of which two can be singled out: 1908. US patent no. 434,048 (ship gyroscope); 1909. US patent no. 519,533 (ship gyrocompass set).
    Further Reading
    T.P.Hughes, 1971, Elmer Sperry, Inventor and Engineer, Baltimore: Johns Hopkins University Press (a full and well-documented biography, with lists of his patents and published writings).
    LRD

    Biographical history of technology > Sperry, Elmer Ambrose

  • 114 Watkins, Alfred

    [br]
    b. 1854 Hereford, England
    d. 7 April 1935 Hereford, England
    [br]
    English photographer who developed the first practical exposure-measuring system.
    [br]
    His first patent was granted on 27 January 1890 and described a method of measuring the "actinic" value of light as a means of determining exposure. A strip of sensitized paper which darkened on exposure to light was used, and the time taken for it to darken to match a standard tint was measured. This time could be used to calculate the necessary exposure time, taking into account the speed of the plate, shutter speed and aperture. Watkins marketed a number of these actinometer designs, of which the most popular was the Watkins Bee Meter, which was in a pocket-watch form, introduced in 1903 and remaining on sale until 1939. Watkins was concerned that photographers recognize that exposure measurement had to take into account the effect of development time and temperature. In 1893 he devised the concept of the "Watkins Factor": he showed that when plates were developed by inspection, as was the practice at the time, a fixed relationship existed between the time of the first appearance of the image and the total time required to give a fully developed negative. The Watkins Factor was the figure that the first time must be multiplied by to give the second time. Watkins published tables of factors for different brands of plates and for different developers, and marketed various aids such as specially calibrated thermometers and clocks, as aids in using "Fac-torial Development" to give consistent negatives. After the early years of the twentieth century Watkins gave up direct participation in photography and devoted his time to a variety of interests, including the plotting of ley lines in England.
    BC

    Biographical history of technology > Watkins, Alfred

  • 115 Weldon, Walter

    SUBJECT AREA: Chemical technology
    [br]
    b. 31 October 1832 Loughborough, England
    d. 20 September 1885 Burstow, Surrey, England
    [br]
    English industrial chemist.
    [br]
    It was intended that Weldon should enter his father's factory in Loughborough, but he decided instead to turn to journalism, which he pursued with varying success in London. His Weldon's Register of Facts and Occurrences in Literature, Science, and Art ran for only four years, from 1860 to 1864, but the fashion magazine Weldon's Journal, which he published with his wife, was more successful. Meanwhile Weldon formed an interest in chemistry, although he had no formal training in that subject. He devoted himself to solving one of the great problems of industrial chemistry at that time. The Leblanc process for the manufacture of soda produced large quantities of hydrochloric acid in gas form. By this time, this by-product was being converted, by oxidation with manganese dioxide, to chlorine, which was much used in the textile and paper industries as a bleaching agent. The manganese ended up as manganese chloride, from which it was difficult to convert back to the oxide, for reuse in treating the hydrochloric acid, and it was an expensive substance. Weldon visited the St Helens district of Lancashire, an important centre for the manufacture of soda, to work on the problem. During the three years from 1866 to 1869, he took out six patents for the regeneration of manganese dioxide by treating the manganese chloride with milk of lime and blowing air through it. The Weldon process was quickly adopted and had a notable economic effect: the price of bleaching powder came down by £6 per ton and production went up fourfold.
    By the time of his death, nearly all chlorine works in the world used Weldon's process. The distinguished French chemist J.B.A.Dumas said of the process, when presenting Weldon with a gold medal, "every sheet of paper and every yard of calico has been cheapened throughout the world". Weldon played an active part in the founding of the Society of Chemical Industry.
    [br]
    Principal Honours and Distinctions
    FRS 1882. President, Society of Chemical Industry 1883–4.
    Further Reading
    T.C.Barker and J.R.Harris, 1954, A Merseyside Town in the Industrial Revolution: St Helens, 1750–1900, Liverpool: Liverpool University Press; reprinted with corrections, 1959, London: Cass.
    S.Miall, 1931, A History of the British Chemical Industry.
    LRD

    Biographical history of technology > Weldon, Walter

  • 116 White, Sir William Henry

    SUBJECT AREA: Ports and shipping
    [br]
    b. 2 February 1845 Devonport, England
    d. 27 February 1913 London, England
    [br]
    English naval architect distinguished as the foremost nineteenth-century Director of Naval Construction, and latterly as a consultant and author.
    [br]
    Following early education at Devonport, White passed the Royal Dockyard entry examination in 1859 to commence a seven-year shipwright apprenticeship. However, he was destined for greater achievements and in 1863 passed the Admiralty Scholarship examinations, which enabled him to study at the Royal School of Naval Architecture at South Kensington, London. He graduated in 1867 with high honours and was posted to the Admiralty Constructive Department. Promotion came swiftly, with appointment to Assistant Constructor in 1875 and Chief Constructor in 1881.
    In 1883 he left the Admiralty and joined the Tyneside shipyard of Sir W.G. Armstrong, Mitchell \& Co. at a salary of about treble that of a Chief Constructor, with, in addition, a production bonus based on tonnage produced! At the Elswick Shipyard he became responsible for the organization and direction of shipbuilding activities, and during his relatively short period there enhanced the name of the shipyard in the warship export market. It is assumed that White did not settle easily in the North East of England, and in 1885, following negotiations with the Admiralty, he was released from his five-year exclusive contract and returned to public service as Director of Naval Construction and Assistant Controller of the Royal Navy. (As part of the settlement the Admiralty released Philip Watts to replace White, and in later years Watts was also to move from that same shipyard and become White's successor as Director of Naval Construction.) For seventeen momentous years White had technical control of ship production for the Royal Navy. The rapid building of warships commenced after the passing of the Naval Defence Act of 1889, which authorized directly and indirectly the construction of around seventy vessels. The total number of ships built during the White era amounted to 43 battleships, 128 cruisers of varying size and type, and 74 smaller vessels. While White did not have the stimulation of building a revolutionary capital ship as did his successor, he did have the satisfaction of ensuring that the Royal Navy was equipped with a fleet of all-round capability, and he saw the size, displacement and speed of the ships increase dramatically.
    In 1902 he resigned from the Navy because of ill health and assumed several less onerous tasks. During the construction of the Cunard Liner Mauretania on the Tyne, he held directorships with the shipbuilders Swan, Hunter and Wigham Richardson, and also the Parsons Marine Turbine Company. He acted as a consultant to many organizations and had an office in Westminster. It was there that he died in February 1913.
    White left a great literary legacy in the form of his esteemed Manual of Naval Architecture, first published in 1877 and reprinted several times since in English, German and other languages. This volume is important not only as a text dealing with first principles but also as an illustration of the problems facing warship designers of the late nineteenth century.
    [br]
    Principal Honours and Distinctions
    KCB 1895. Knight Commander of the Order of the Danneborg (Denmark). FRS. FRSE. President, Institution of Civil Engineers; Mechanical Engineers; Marine Engineers. Vice- President, Institution of Naval Architects.
    Bibliography
    Further Reading
    D.K.Brown, 1983, A Century of Naval Construction, London.
    FMW

    Biographical history of technology > White, Sir William Henry

См. также в других словарях:

  • Form follows function — is a principle associated with modern architecture and industrial design in the 20th century. The principle is that the shape of a building or object should be primarily based upon its intended function or purpose. Wainwright Building by Louis… …   Wikipedia

  • form — n 1: the structure of something (as a document) as distinguished from its matter a defect in form, not substance 2: established procedure according to rule or practice see also form of action 3: a printed or typed document with blank spaces for… …   Law dictionary

  • Form 144 — On December 6, 2007, the SEC published final rules revising Rule 144 under the Securities Act of 1933, which regulates the resale of restricted securities and securities held by affiliates. The amendments to Rule 144, among other things:#Shorten… …   Wikipedia

  • Form-based code — A form based code (FBC) is a means of regulating development to achieve a specific urban form. Form based codes create a predictable public realm by controlling physical form primarily, with a lesser focus on land use, through city or county… …   Wikipedia

  • Form (horse racing) — This article deals with forms in horse racing. For other meanings, see Form (disambiguation). In horse racing, the form of a horse is a record of significant events including its performance in previous races. The form may identify the horse s… …   Wikipedia

  • Laws of Form — (hereinafter LoF ) is a book by G. Spencer Brown, published in 1969, that straddles the boundary between mathematics and of philosophy. LoF describes three distinct logical systems: * The primary arithmetic (described in Chapter 4), whose models… …   Wikipedia

  • On the Tendency of Species to form Varieties; and on the Perpetuation of Varieties and Species by Natural Means of Selection — is the title of a joint presentation of two scientific papers to the Linnean Society of London on 1 July 1858; On The Tendency of Varieties to Depart Indefinitely from the Original Type by Alfred Russel Wallace and an Extract from an unpublished… …   Wikipedia

  • List of compositions by Frédéric Chopin by musical form — A portrait of Chopin in 1847 This is a list of compositions by Frédéric Chopin by musical form. There is a separate list by opus number. Most of Chopin s compositions were for solo piano, although he did compose two piano concertos (his concertos …   Wikipedia

  • Brighton Hove & Sussex Sixth Form College — Infobox UK school name = Brighton Hove Sussex Sixth Form College latitude = 50.834725 longitude = 0.151178 established = 1975 type = Sixth form college religion = Non denominational head label = Principle head = Christopher Thomson MA street =… …   Wikipedia

  • Gorman polar form — is a functional form for indirect utility functions in economics. Imposing this form on utility allows the researcher to treat a society of utility maximizers as if it consisted of a single representative individual. W. M. Gorman showed that… …   Wikipedia

  • Raunkiær plant life-form — The Raunkiær system is a system for categorising plants using life form categories, devised by Christen C. Raunkiær. It was first proposed in a talk to the Danish Botanical Society in 1904 and briefly described in the society s journal Botanisk… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»