Перевод: с английского на все языки

со всех языков на английский

principal+character

  • 101 introduce

    introduce [‚ɪntrə'dju:s]
    (a) (present → one person to another) présenter;
    she introduced me to her sister elle m'a présenté à sa sœur;
    may I introduce you? permettez-moi de ou laissez-moi vous présenter;
    let me introduce myself, I'm John je me présente? John;
    has everyone been introduced? les présentations ont été faites?;
    I don't think we've been introduced, have we? nous n'avons pas été présentés, je crois;
    to introduce a speaker présenter un conférencier;
    the main character is introduced in chapter 2 le personnage principal fait son apparition au chapitre 2;
    Cinema introducing Simon McLean et pour la première fois à l'écran, Simon McLean;
    to be introduced to society (débutante) faire son entrée dans le monde
    (c) (bring in) introduire;
    when were rabbits introduced into Australia? quand a-t-on introduit les lapins en Australie?;
    I'd like to introduce a new topic into the debate, if I may si vous le permettez, j'aimerais introduire dans le débat un nouveau sujet;
    her arrival introduced a note of sadness into the festivities son entrée mit une note de tristesse dans la fête;
    Music the arpeggio introduces the final movement l'arpège marque le début du dernier mouvement
    (d) (laws, legislation) déposer, présenter; (reform, fashion, new methods) introduire;
    the government hopes to introduce the new bill next week le gouvernement espère déposer son nouveau projet de loi la semaine prochaine
    (e) (initiate) initier;
    she introduced me to the pleasures of French cooking elle m'a initié aux ou révélé les délices de la cuisine française;
    to introduce sb to sth initier qn à qch, faire découvrir qch à qn;
    it was my sister who introduced me to yoga c'est ma sœur qui m'a initiée au yoga ou fait découvrir le yoga
    (f) (start) ouvrir, donner le départ de;
    a fanfare introduced the start of the ceremony une fanfare a ouvert la cérémonie
    (g) formal (insert) introduire;
    introduce the wire carefully into the cavity introduisez doucement le fil dans le trou
    (h) Grammar (phrase) introduire

    Un panorama unique de l'anglais et du français > introduce

  • 102 mother

    mother ['mʌðə(r)]
    1 noun
    (a) (parent) mère f;
    she's a good mother c'est une bonne mère;
    she's a mother of three elle est mère de trois enfants;
    mother, this is Douglas maman, je te présente Douglas;
    she's like a mother to me elle est comme une mère pour moi;
    from mother to daughter de mère en fille;
    on my mother's side du côté de ma mère;
    yes, Mother oui, mère, oui, maman;
    she's her mother's daughter c'est bien la fille de sa mère;
    mother's milk lait m maternel;
    British shall I be mother? c'est moi qui fais le service?;
    every mother's son tous sans exception;
    mother's little helper (helpful child) = enfant qui aide sa mère dans les tâches ménagères; figurative humorous = alcool ou médicament consommé pour oublier ses soucis;
    mother and toddler group réunion f de mamans
    (b) (original cause, source) mère f;
    the Mother of parliaments le Parlement britannique (qui a servi de modèle à d'autres parlements)
    he was a big mother c'était une véritable armoire à glace;
    some mother's stolen my drink il y a un enfoiré qui m'a pris mon verre;
    the mother's broken down again cette saloperie est encore tombée en panne
    (d) familiar (large person, thing) mastodonte m;
    I've got a mother of a hangover j'ai une vache de gueule de bois;
    her boyfriend's a big mother son copain est un balaise;
    we had the mother and father of a row nous avons eu une de ces empoignades!
    (a) (motherly) maternel
    the mother bird feeds her young l'oiseau (femelle) nourrit ses petits
    (a) (give birth to) donner naissance à
    (b) (take care of) servir de mère à; (coddle) dorloter, materner;
    she mothers him too much elle le dorlote trop
    Religion mère f;
    Mother superior Mère f supérieure;
    Mother Anna la Mère Anna;
    yes, Mother oui, Mère;
    Mother of God (Virgin Mary) Mère f de Dieu
    ►► mother's boy fils m à sa maman, poule f mouillée;
    mother church église f mère;
    mother company maison f mère;
    mother country (mère) patrie f;
    Mother's Day la fête des Mères;
    Mother Earth la Terre;
    mother figure figure f maternelle;
    American Mother Goose rhyme comptine f;
    mother hen mère f poule;
    mother lode Mining filon m nourricier ou principal; figurative mine f;
    mother love amour m maternel;
    Mother Nature la Nature;
    Geology mother rock roche f mère;
    British humorous mother's ruin gin m;
    Military mother ship ravitailleur m;
    mother tongue langue f maternelle;
    Chemistry mother of vinegar mère f de vinaigre;
    mother wit bon sens m

    Un panorama unique de l'anglais et du français > mother

  • 103 Florey, Howard Walter

    SUBJECT AREA: Medical technology
    [br]
    b. 24 September 1898 Adelaide, Australia
    d. 21 February 1968 Oxford, England
    [br]
    Australian pathologist who contributed to the research and technology resulting in the practical clinical availability of penicillin.
    [br]
    After graduating MB and BS from Adelaide University in 1921, he went to Oxford University, England, as a Rhodes Scholar in 1922. Following a period at Cambridge and as a Rockefeller Fellow in the USA, he returned to Cambridge as Lecturer in Pathology. He was appointed to the Chair of Pathology at Sheffield at the age of 33, and to the Sir William Dunne Chair of Pathology at Oxford in 1935.
    Although historically his name is inseparable from that of penicillin, his experimental interests and achievements covered practically the whole range of general pathology. He was a determined advocate of the benefits to research of maintaining close contact between different disciplines. He was an early believer in the need to study functional changes in cells as much as the morphological changes that these brought about.
    With E. Chain, Florey perceived the potential of Fleming's 1929 note on the bacteria-inhibiting qualities of Penicillium mould. His forthright and dynamic character played a vital part in developing what was perceived to be not just a scientific and medical discovery of unparalleled importance, but a matter of the greatest significance in a war of survival. Between them, Florey and Chain were able to establish the technique of antibiotic isolation and made their findings available to those implementing large-scale fermentation production processes in the USA.
    Despite being domiciled in England, he played an active role in Australian medical and educational affairs and was installed as Chancellor of the Australian National University in 1966.
    [br]
    Principal Honours and Distinctions
    Life peer 1965. Order of Merit 1965. Knighted 1944. FRS 1941. President, Royal Society 1960–5. Nobel Prize for Medicine or Physiology (jointly with E.B.Chain and A.Fleming) 1945. Copley Medal 1957. Commander, Légion d'honneur 1946. British Medical Association Gold Medal 1964.
    Bibliography
    1940, "Penicillin as a chemotherapeutic agent", Lancet (with Chain). 1949, Antibiotics, Oxford (with Chain et al.).
    1962, General Pathology, Oxford.
    MG

    Biographical history of technology > Florey, Howard Walter

  • 104 Hunter, John

    SUBJECT AREA: Medical technology
    [br]
    b. 14 (registered 13) February 1728 East Kilbride, Lanarkshire, Scotland
    d. 16 October 1793 London, England
    [br]
    Scottish surgeon and anatomist, pioneer of experimental methods in medicine and surgery.
    [br]
    The younger brother of William Hunter (1718–83), who was of great distinction but perhaps of slightly less achievement in similar fields, he owed much of his early experience to his brother; William, after a period at Glasgow University, moved to St George's Hospital, London. In his later teens, John assisted a brother-in-law with cabinet-making. This appears to have contributed to the lifelong mechanical skill which he displayed as a dissector and surgeon. This skill was particularly obvious when, after following William to London in 1748, he held post at a number of London teaching hospitals before moving to St George's in 1756. A short sojourn at Oxford in 1755 appears to have been unfruitful.
    Despite his deepening involvement in the study of comparative anatomy, facilitated by the purchase of animals from the Tower menagerie and travelling show people, he accepted an appointment as a staff surgeon in the Army in 1760, participating in the expedition to Belle Isle and also serving in Portugal. He returned home with over 300 specimens in 1763 and, until his appointment as Surgeon to St George's in 1768, was heavily involved in the examination of this and other material, as well as in studies of foetal testicular descent, placental circulation, the nature of pus and lymphatic circulation. In 1772 he commenced lecturing on the theory and practice of surgery, and in 1776 he was appointed Surgeon-Extraordinary to George III.
    He is rightly regarded as the founder of scientific surgery, but his knowledge was derived almost entirely from his own experiments and observations. His contemporaries did not always accept or understand the concepts which led to such aphorisms as, "to perform an operation is to mutilate a patient we cannot cure", and his written comment to his pupil Jenner: "Why think. Why not trie the experiment". His desire to establish the aetiology of gonorrhoea led to him infecting himself, as a result of which he also contracted syphilis. His ensuing account of the characteristics of the disease remains a classic of medicine, although it is likely that the sequelae of the condition brought about his death at a relatively early age. From 1773 he suffered recurrent anginal attacks of such a character that his life "was in the hands of any rascal who chose to annoy and tease him". Indeed, it was following a contradiction at a board meeting at St George's that he died.
    By 1788, with the death of Percival Pott, he had become unquestionably the leading surgeon in Britain, if not Europe. Elected to the Royal Society in 1767, the extraordinary variety of his collections, investigations and publications, as well as works such as the "Treatise on the natural history of the human teeth" (1771–8), gives testimony to his original approach involving the fundamental and inescapable relation of structure and function in both normal and disease states. The massive growth of his collections led to his acquiring two houses in Golden Square to contain them. It was his desire that after his death his collection be purchased and preserved for the nation. It contained 13,600 specimens and had cost him £70,000. After considerable delay, Par-liament voted inadequate sums for this purpose and the collection was entrusted to the recently rechartered Royal College of Surgeons of England, in whose premises this remarkable monument to the omnivorous and eclectic activities of this outstanding figure in the evolution of medicine and surgery may still be seen. Sadly, some of the collection was lost to bombing during the Second World War. His surviving papers were also extensive, but it is probable that many were destroyed in the early nineteenth century.
    [br]
    Principal Honours and Distinctions
    FRS 1767. Copley Medal 1787.
    Bibliography
    1835–7, Works, ed. J.F.Palmer, Philosophical Transactions of the Royal Society, London.
    MG

    Biographical history of technology > Hunter, John

  • 105 Lesseps, Ferdinand de

    SUBJECT AREA: Canals
    [br]
    b. 19 November 1805 Versailles, France
    d. 7 December 1894 La Chesnaye, near Paris, France
    [br]
    French diplomat and canal entrepreneur.
    [br]
    Ferdinand de Lesseps was born into a family in the diplomatic service and it was intended that his should be his career also. He was educated at the Lycée Napoléon in Paris. In 1825, aged 20, he was appointed an attaché to the French consulate in Lisbon. In 1828 he went to the Consulate-General in Tunis and in 1831 was posted from there to Egypt, becoming French Consul in Cairo two years later. For his work there during the plague in 1836 he was awarded the Croix de Chevalier in the Légion d'honneur. During this time he became very friendly with Said Mohammed and the friendship was maintained over the years, although there were no expectations then that Said would occupy any great position of authority.
    De Lesseps then served in other countries. In 1841 he had thought about a canal from the Mediterranean to the Red Sea, and he brooded over the idea until 1854. In October of that year, having retired from the diplomatic service, he returned to Egypt privately. His friend Said became Viceroy and he readily agreed to the proposal to cut the canal. At first there was great international opposition to the idea, and in 1855 de Lesseps travelled to England to try to raise capital. Work finally started in 1859, but there were further delays following the death of Said Pasha in 1863. The work was completed in 1869 and the canal was formally opened by the Empress Eugenic on 20 November 1869. De Lesseps was fêted in France and awarded the Grand Croix de la Légion d'honneur.
    He subsequently promoted the project of the Corinth Canal, but his great ambition in his later years was to construct a canal across the Isthmus of Panama. This idea had been conceived by Spanish adventurers in 1514, but everyone felt the problems and cost would be too great. De Lesseps, riding high in popularity and with his charismatic character, convinced the public of the scheme's feasibility and was able to raise vast sums for the enterprise. He proposed a sea-level canal, which required the excavation of a 350 ft (107 m) cut through terrain; this eventually proved impossible, but work nevertheless started in 1881.
    In 1882 de Lesseps became first President d'-Honneur of the Syndicat des Entrepreneurs de Travaux Publics de France and was elected to the Chair of the French Academy in 1884. By 1891 the Panama Canal was in a disastrous financial crisis: a new company was formed, and because of the vast sums expended a financial investigation was made. The report led to de Lesseps, his son and several high-ranking government ministers and officials being charged with bribery and corruption, but de Lesseps was a very sick man and never appeared at the trial. He was never convicted, although others were, and he died soon after, at the age of 89, at his home.
    [br]
    Principal Honours and Distinctions
    Croix de Chevalier de la Légion d'honneur 1836; Grand Croix 1869.
    Further Reading
    John S.Pudney, 1968, Suez. De Lesseps' Canal, London: Dent.
    John Marlowe, 1964, The Making of the Suez Canal, London: Cresset.
    JHB

    Biographical history of technology > Lesseps, Ferdinand de

  • 106 Maxim, Sir Hiram Stevens

    [br]
    b. 5 February 1840 Brockway's Mills, Maine, USA
    d. 24 November 1916 Streatham, London, England
    [br]
    American (naturalized British) inventor; designer of the first fully automatic machine gun and of an experimental steam-powered aircraft.
    [br]
    Maxim was born the son of a pioneer farmer who later became a wood turner. Young Maxim was first apprenticed to a carriage maker and then embarked on a succession of jobs before joining his uncle in his engineering firm in Massachusetts in 1864. As a young man he gained a reputation as a boxer, but it was his uncle who first identified and encouraged Hiram's latent talent for invention.
    It was not, however, until 1878, when Maxim joined the first electric-light company to be established in the USA, as its Chief Engineer, that he began to make a name for himself. He developed an improved light filament and his electric pressure regulator not only won a prize at the first International Electrical Exhibition, held in Paris in 1881, but also resulted in his being made a Chevalier de la Légion d'honneur. While in Europe he was advised that weapons development was a more lucrative field than electricity; consequently, he moved to England and established a small laboratory at Hatton Garden, London. He began by investigating improvements to the Gatling gun in order to produce a weapon with a faster rate of fire and which was more accurate. In 1883, by adapting a Winchester carbine, he successfully produced a semi-automatic weapon, which used the recoil to cock the gun automatically after firing. The following year he took this concept a stage further and produced a fully automatic belt-fed weapon. The recoil drove barrel and breechblock to the vent. The barrel then halted, while the breechblock, now unlocked from the former, continued rearwards, extracting the spent case and recocking the firing mechanism. The return spring, which it had been compressing, then drove the breechblock forward again, chambering the next round, which had been fed from the belt, as it did so. Keeping the trigger pressed enabled the gun to continue firing until the belt was expended. The Maxim gun, as it became known, was adopted by almost every army within the decade, and was to remain in service for nearly fifty years. Maxim himself joined forces with the large British armaments firm of Vickers, and the Vickers machine gun, which served the British Army during two world wars, was merely a refined version of the Maxim gun.
    Maxim's interests continued to occupy several fields of technology, including flight. In 1891 he took out a patent for a steam-powered aeroplane fitted with a pendulous gyroscopic stabilizer which would maintain the pitch of the aeroplane at any desired inclination (basically, a simple autopilot). Maxim decided to test the relationship between power, thrust and lift before moving on to stability and control. He designed a lightweight steam-engine which developed 180 hp (135 kW) and drove a propeller measuring 17 ft 10 in. (5.44 m) in diameter. He fitted two of these engines into his huge flying machine testrig, which needed a wing span of 104 ft (31.7 m) to generate enough lift to overcome a total weight of 4 tons. The machine was not designed for free flight, but ran on one set of rails with a second set to prevent it rising more than about 2 ft (61 cm). At Baldwyn's Park in Kent on 31 July 1894 the huge machine, carrying Maxim and his crew, reached a speed of 42 mph (67.6 km/h) and lifted off its rails. Unfortunately, one of the restraining axles broke and the machine was extensively damaged. Although it was subsequently repaired and further trials carried out, these experiments were very expensive. Maxim eventually abandoned the flying machine and did not develop his idea for a stabilizer, turning instead to other projects. At the age of almost 70 he returned to the problems of flight and designed a biplane with a petrol engine: it was built in 1910 but never left the ground.
    In all, Maxim registered 122 US and 149 British patents on objects ranging from mousetraps to automatic spindles. Included among them was a 1901 patent for a foot-operated suction cleaner. In 1900 he became a British subject and he was knighted the following year. He remained a larger-than-life figure, both physically and in character, until the end of his life.
    [br]
    Principal Honours and Distinctions
    Chevalier de la Légion d'Honneur 1881. Knighted 1901.
    Bibliography
    1908, Natural and Artificial Flight, London. 1915, My Life, London: Methuen (autobiography).
    Further Reading
    Obituary, 1916, Engineer (1 December).
    Obituary, 1916, Engineering (1 December).
    P.F.Mottelay, 1920, The Life and Work of Sir Hiram Maxim, London and New York: John Lane.
    Dictionary of National Biography, 1912–1921, 1927, Oxford: Oxford University Press.
    CM / JDS

    Biographical history of technology > Maxim, Sir Hiram Stevens

  • 107 Morris, William Richard, Viscount Nuffield

    [br]
    b. 10 October 1877 Worcester, England
    d. 22 August 1963 Nuffield Place, England
    [br]
    English industrialist, car manufacturer and philanthropist.
    [br]
    Morris was the son of Frederick Morris, then a draper. He was the eldest of a family of seven, all of whom, except for one sister, died in childhood. When he was 3 years old, his father moved to Cowley, near Oxford, where he attended the village school. After a short time with a local bicycle firm he set up on his own at the age of 16 with a capital of £4. He manufactured pedal cycles and by 1902 he had designed a motor cycle and was doing car-repair work. By 1912, at the Motor Show, he was able to announce his first car, the 8.9 hp, two-seater Morris Oxford with its characteristic "bull-nose". It could perform at up to 50 mph (80 km/h) and 50 mpg (5.65 1/100 km). It cost £165.
    Though untrained, Morris was a born engineer as well as a natural judge of character. This enabled him to build up a reliable team of assistants in his growing business, with an order for four hundred cars at the Motor Show in 1912. Much of his business was built up in the assembly of components manufactured by outside suppliers. In he moved out of his initial premises by New College in Longwall and bought land at Cowley, where he brought out his second model, the 11.9hp Morris Oxford. This was after the First World War, during which car production was reduced to allow the manufacture of tanks and munitions. He was awarded the OBE in 1917 for his war work. Morris Motors Ltd was incorporated in 1919, and within fifteen months sales of cars had reached over 3,000 a year. By 1923 he was producing 20,000 cars a year, and in 1926 50,000, equivalent to about one-third of Britain's output. With the slump, a substantial overdraft, and a large stock of unsold cars, Morris took the bold decision to cut the prices of cars in stock, which then sold out within three weeks. Other makers followed suit, but Morris was ahead of them.
    Morris was part-founder of the Pressed Steel Company, set up to produce car bodies at Cowley. A clever operation with the shareholding of the Morris Motors Company allowed Morris a substantial overall profit to provide expansion capital. By 1931 his "empire" comprised, in addition to Morris Motors, the MG Car Company, the Wolseley Company, the SU Carburettor Company and Morris Commercial Cars. In 1936, the value of Morris's financial interest in the business was put at some £16 million.
    William Morris was a frugal man and uncomplicated, having little use for all the money he made except to channel it to charitable purposes. It is said that in all he gave away some £30 million during his lifetime, much of it invested by the recipients to provide long-term benefits. He married Elizabeth Anstey in 1904 and lived for thirty years at Nuffield Place. He lived modestly, and even after retirement, when Honorary President of the British Motor Corporation, the result of a merger between Morris Motors and the Austin Motor Company, he drove himself to work in a modest 10 hp Wolseley. His generosity benefited many hospitals in London, Oxford, Birmingham and elsewhere. Oxford Colleges were another class of beneficiary from his largesse.
    [br]
    Principal Honours and Distinctions
    Viscount 1938; Baron (Lord Nuffield) 1934; Baronet 1929; OBE 1917; GBE 1941; CH 1958. FRS 1939. He was a doctor of seven universities and an honorary freeman of seven towns.
    Further Reading
    R.Jackson, 1964, The Nuffield Story.
    P.W.S.Andrews and E.Brunner, The Life of Lord Nuffield.
    IMcN

    Biographical history of technology > Morris, William Richard, Viscount Nuffield

  • 108 Parsons, Sir Charles Algernon

    [br]
    b. 13 June 1854 London, England
    d. 11 February 1931 on board Duchess of Richmond, Kingston, Jamaica
    [br]
    English eingineer, inventor of the steam turbine and developer of the high-speed electric generator.
    [br]
    The youngest son of the Earl of Rosse, he came from a family well known in scientific circles, the six boys growing up in an intellectual atmosphere at Birr Castle, the ancestral home in Ireland, where a forge and large workshop were available to them. Charles, like his brothers, did not go to school but was educated by private tutors of the character of Sir Robert Ball, this type of education being interspersed with overseas holiday trips to France, Holland, Belgium and Spain in the family yacht. In 1871, at the age of 17, he went to Trinity College, Dublin, and after two years he went on to St John's College, Cambridge. This was before the Engineering School had opened, and Parsons studied mechanics and mathematics.
    In 1877 he was apprenticed to W.G.Armstrong \& Co. of Elswick, where he stayed for four years, developing an epicycloidal engine that he had designed while at Cambridge. He then moved to Kitson \& Co. of Leeds, where he went half shares in a small experimental shop working on rocket propulsion for torpedoes.
    In 1887 he married Katherine Bethell, who contracted rheumatic fever from early-morning outdoor vigils with her husband to watch his torpedo experiments while on their honeymoon! He then moved to a partnership in Clarke, Chapman \& Co. at Gateshead. There he joined the electrical department, initially working on the development of a small, steam-driven marine lighting set. This involved the development of either a low-speed dynamo, for direct coupling to a reciprocating engine, or a high-speed engine, and it was this requirement that started Parsons on the track of the steam turbine. This entailed many problems such as the running of shafts at speeds of up to 40,000 rpm and the design of a DC generator for 18,000 rpm. He took out patents for both the turbine and the generator on 23 April 1884. In 1888 he dissolved his partnership with Clarke, Chapman \& Co. to set up his own firm in Newcastle, leaving his patents with the company's owners. This denied him the use of the axial-flow turbine, so Parsons then designed a radial-flow layout; he later bought back his patents from Clarke, Chapman \& Co. His original patent had included the use of the steam turbine as a means of marine propulsion, and Parsons now set about realizing this possibility. He experimented with 2 ft (61 cm) and 6 ft (183 cm) long models, towed with a fishing line or, later, driven by a twisted rubber cord, through a single-reduction set of spiral gearing.
    The first trials of the Turbinia took place in 1894 but were disappointing due to cavitation, a little-understood phenomenon at the time. He used an axial-flow turbine of 2,000 shp running at 2,000 rpm. His work resulted in a far greater understanding of the phenomenon of cavitation than had hitherto existed. Land turbines of up to 350 kW (470 hp) had meanwhile been built. Experiments with the Turbinia culminated in a demonstration which took place at the great Naval Review of 1897 at Spithead, held to celebrate Queen Victoria's Diamond Jubilee. Here, the little Turbinia darted in and out of the lines of heavy warships and destroyers, attaining the unheard of speed of 34.5 knots. The following year the Admiralty placed their first order for a turbine-driven ship, and passenger vessels started operation soon after, the first in 1901. By 1906 the Admiralty had moved over to use turbines exclusively. These early turbines had almost all been direct-coupled to the ship's propeller shaft. For optimum performance of both turbine and propeller, Parsons realized that some form of reduction gearing was necessary, which would have to be extremely accurate because of the speeds involved. Parsons's Creep Mechanism of 1912 ensured that any errors in the master wheel would be distributed evenly around the wheel being cut.
    Parsons was also involved in optical work and had a controlling interest in the firm of Ross Ltd of London and, later, in Sir Howard Grubb \& Sons. He he was an enlightened employer, originating share schemes and other benefits for his employees.
    [br]
    Principal Honours and Distinctions
    Knighted. Order of Merit 1927.
    Further Reading
    A.T.Bowden, 1966, "Charles Parsons: Purveyor of power", in E.G.Semler (ed.), The Great Masters. Engineering Heritage, Vol. II, London: Institution of Mechanical Engineers/Heinemann.
    IMcN

    Biographical history of technology > Parsons, Sir Charles Algernon

  • 109 Raky, Anton

    [br]
    b. 5 January 1868 Seelenberg, Taunus, Germany
    d. 22 August 1943 Berlin, Germany
    [br]
    German inventor of rapid percussion drilling, entrepreneur in the exploration business.
    [br]
    While apprenticed at the drilling company of E. Przibilla, Raky already called attention by his reflections towards developing drilling methods and improving tools. Working as a drilling engineer in Alsace, he was extraordinarily successful in applying an entire new hydraulic boring system in which the rod was directly connected to the chisel. This apparatus, driven by steam, allowed extremely rapid percussions with very low lift.
    With some improvements, his boring rig drilled deep holes at high speed and at least doubled the efficiency of the methods hitherto used. His machine, which was also more reliable, was secured by a patent in 1895. With borrowed capital, he founded the Internationale Bohrgesellschaft in Strasbourg in the same year, and he began a career in the international exploration business that was unequalled as well as breathtaking. Until 1907 the total depth of the drillings carried out by the company was 1,000 km.
    Raky's rapid drilling was unrivalled and predominant until improved rotary drilling took over. His commercial sense in exploiting the technical advantages of his invention by combining drilling with producing the devices in his own factory at Erkelenz, which later became the headquarters of the company, and in speculating on the concessions for the explored deposits made him by far superior to all of his competitors, who were provoked into contests which they generally lost. His flourishing company carried out drilling in many parts of the world; he became the initiator of the Romanian oil industry and his extraordinary activities in exploring potash and coal deposits in different parts of Germany, especially in the Ruhr district, provoked the government in 1905 into stopping granting claims to private companies. Two years later, he was forced to withdraw from his holding company because of his restless and eccentric character. He turned to Russia and, during the First World War, he was responsible for the reconstruction of the destroyed Romanian oilfields. Thereafter, partly financed by mining companies, he continued explorations in several European countries, and in Germany he was pioneering again with exploring oilfields, iron ore and lignite deposits which later grew in economic value. Similar to Glenck a generation before, he was a daring entrepreneur who took many risks and opened new avenues of exploration, and he was constantly having to cope with a weak financial position, selling concessions and shares, most of them to Preussag and Wintershall; however, this could not prevent his business from collapse in 1932. He finally gave up drilling in 1936 and died a poor man.
    [br]
    Principal Honours and Distinctions
    Dr-Ing. (Hon.) Bergakademie Clausthal 1921.
    Further Reading
    G.P.R.Martin, 1967, "Hundert Jahre Anton Raky", Erdöl-Erdgas-Zeitschrift, 83:416–24 (a detailed description).
    D.Hoffmann, 1959, 150 Jahre Tiefbohrungen in Deutschland, Vienna and Hamburg: 32– 4 (an evaluation of his technologial developments).
    WK

    Biographical history of technology > Raky, Anton

  • 110 Short, Hugh Oswald

    SUBJECT AREA: Aerospace
    [br]
    b. 16 January 1883 Derbyshire, England
    d. 4 December 1969 Haslemere, England
    [br]
    English co-founder, with his brothers Horace Short (1872–1917) and Eustace (1875–1932), of the first company to design and build aeroplanes in Britain.
    [br]
    Oswald Short trained as an engineer; he was largely self-taught but was assisted by his brothers Eustace and Horace. In 1898 Eustace and the young Oswald set up a balloon business, building their first balloon in 1901. Two years later they sold observation balloons to the Government of India, and further orders followed. Meanwhile, in 1906 Horace designed a high-altitude balloon with a spherical pressurized gondola, an idea later used by Auguste Piccard, in 1931. Horace, a strange genius with a dominating character, joined his younger brothers in 1908 to found Short Brothers. Their first design, based on the Wright Flyer, was a limited success, but No. 2 won a Daily Mail prize of £1,000. In the same year, 1909, the Wright brothers chose Shorts to build six of their new Model A biplanes. Still using the basic Wright layout, Horace designed the world's first twin-engined aeroplane to fly successfully: it had one engine forward of the pilot, and one aft. During the years before the First World War the Shorts turned to tractor biplanes and specialized in floatplanes for the Admiralty.
    Oswald established a seaplane factory at Rochester, Kent, during 1913–14, and an airship works at Cardington, Bedfordshire, in 1916. Short Brothers went on to build the rigid airship R 32, which was completed in 1919. Unfortunately, Horace died in 1917, which threw a greater responsibility onto Oswald, who became the main innovator. He introduced the use of aluminium alloys combined with a smooth "stressed-skin" construction (unlike Junkers, who used corrugated skins). His sleek biplane the Silver Streak flew in 1920, well ahead of its time, but official support was not forthcoming. Oswald Short struggled on, trying to introduce his all-metal construction, especially for flying boats. He eventually succeeded with the biplane Singapore, of 1926, which had an all-metal hull. The prototype was used by Sir Alan Cobham for his flight round Africa. Several successful all-metal flying boats followed, including the Empire flying boats (1936) and the ubiquitous Sunderland (1937). The Stirling bomber (1939) was derived from the Sunderland. The company was nationalized in 1942 and Oswald Short retired the following year.
    [br]
    Principal Honours and Distinctions
    Honorary Fellow of the Royal Aeronautical Society. Freeman of the City of London. Oswald Short turned down an MBE in 1919 as he felt it did not reflect the achievements of the Short Brothers.
    Bibliography
    1966, "Aircraft with stressed skin metal construction", Journal of the Royal Aeronautical Society (November) (an account of the problems with patents and officialdom).
    Further Reading
    C.H.Barnes, 1967, Shorts Aircraft since 1900, London; reprinted 1989 (a detailed account of the work of the Short brothers).
    JDS

    Biographical history of technology > Short, Hugh Oswald

См. также в других словарях:

  • principal character — index protagonist Burton s Legal Thesaurus. William C. Burton. 2006 …   Law dictionary

  • principal - principle — ◊ principal Principal is used as an adjective or a noun. The principal thing or person in a group is the most important one. His principal interest in life was to be the richest man in Britain. ...the principal character in James Bernard Fagan s… …   Useful english dictionary

  • Character group — In mathematics, a character group is the group of representations of a group by complex valued functions. These functions can be thought of as one dimensional matrix representations and so are special cases of the group characters which arises in …   Wikipedia

  • principal — prin|ci|pal1 W2 [ˈprınsıpəl] adj [only before noun] [Date: 1200 1300; : Old French; Origin: Latin principalis, from princeps; PRINCE] most important = ↑main ▪ His principal reason for making the journey was to visit his family. ▪ Teaching is her… …   Dictionary of contemporary English

  • principal — 1 adjective (only before noun) most important; main: My principal source of income is teaching. | The principal character in the book is called Scarlett. see also: principally 2 noun 1 (singular) technical an amount of money lent to someone, put… …   Longman dictionary of contemporary English

  • Principal — Prin ci*pal, a. [F., from L. principalis. See {Prince}.] 1. Highest in rank, authority, character, importance, or degree; most considerable or important; chief; main; as, the principal officers of a Government; the principal men of a state; the… …   The Collaborative International Dictionary of English

  • Principal axes of a quadric — Principal Prin ci*pal, a. [F., from L. principalis. See {Prince}.] 1. Highest in rank, authority, character, importance, or degree; most considerable or important; chief; main; as, the principal officers of a Government; the principal men of a… …   The Collaborative International Dictionary of English

  • Principal axis — Principal Prin ci*pal, a. [F., from L. principalis. See {Prince}.] 1. Highest in rank, authority, character, importance, or degree; most considerable or important; chief; main; as, the principal officers of a Government; the principal men of a… …   The Collaborative International Dictionary of English

  • Principal challenge — Principal Prin ci*pal, a. [F., from L. principalis. See {Prince}.] 1. Highest in rank, authority, character, importance, or degree; most considerable or important; chief; main; as, the principal officers of a Government; the principal men of a… …   The Collaborative International Dictionary of English

  • Principal of a quadric — Principal Prin ci*pal, a. [F., from L. principalis. See {Prince}.] 1. Highest in rank, authority, character, importance, or degree; most considerable or important; chief; main; as, the principal officers of a Government; the principal men of a… …   The Collaborative International Dictionary of English

  • Principal plane — Principal Prin ci*pal, a. [F., from L. principalis. See {Prince}.] 1. Highest in rank, authority, character, importance, or degree; most considerable or important; chief; main; as, the principal officers of a Government; the principal men of a… …   The Collaborative International Dictionary of English

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»