-
1 zawieszka sprężynowa wahadłowa
• pendulum springSłownik polsko-angielski dla inżynierów > zawieszka sprężynowa wahadłowa
-
2 гайка для регулировки поджатия пружины
Русско-английский военно-политический словарь > гайка для регулировки поджатия пружины
-
3 воронкообразная пружина
Русско-английский новый политехнический словарь > воронкообразная пружина
-
4 жесткость пружины
Русско-английский военно-политический словарь > жесткость пружины
-
5 извлекатель с плоской ленточной пружиной
Русско-английский военно-политический словарь > извлекатель с плоской ленточной пружиной
-
6 работающая на кручение пружина
Авиация и космонавтика. Русско-английский словарь > работающая на кручение пружина
-
7 работающая на растяжение пружина
Авиация и космонавтика. Русско-английский словарь > работающая на растяжение пружина
-
8 пендельфедер
1) Engineering: pendelum spring2) Mechanic engineering: pendulum spring -
9 пружина подвеса
Mechanic engineering: pendulum spring (час.), suspending spring -
10 маятниковая пружина
Mechanic engineering: pendulum springУниверсальный русско-английский словарь > маятниковая пружина
-
11 маятниковые весы
[lang name="Russian"]безмен, пружинные весы — quick balance
[lang name="Russian"]безмен; пружинные весы — spring balance
-
12 пружинный манометр
-
13 Huygens, Christiaan
SUBJECT AREA: Horology[br]b. 14 April 1629 The Hague, the Netherlandsd. 8 June 1695 The Hague, the Netherlands[br]Dutch scientist who was responsible for two of the greatest advances in horology: the successful application of both the pendulum to the clock and the balance spring to the watch.[br]Huygens was born into a cultured and privileged class. His father, Constantijn, was a poet and statesman who had wide interests. Constantijn exerted a strong influence on his son, who was educated at home until he reached the age of 16. Christiaan studied law and mathematics at Ley den University from 1645 to 1647, and continued his studies at the Collegium Arausiacum in Breda until 1649. He then lived at The Hague, where he had the means to devote his time entirely to study. In 1666 he became a Member of the Académie des Sciences in Paris and settled there until his return to The Hague in 1681. He also had a close relationship with the Royal Society and visited London on three occasions, meeting Newton on his last visit in 1689. Huygens had a wide range of interests and made significant contributions in mathematics, astronomy, optics and mechanics. He also made technical advances in optical instruments and horology.Despite the efforts of Burgi there had been no significant improvement in the performance of ordinary clocks and watches from their inception to Huygens's time, as they were controlled by foliots or balances which had no natural period of oscillation. The pendulum appeared to offer a means of improvement as it had a natural period of oscillation that was almost independent of amplitude. Galileo Galilei had already pioneered the use of a freely suspended pendulum for timing events, but it was by no means obvious how it could be kept swinging and used to control a clock. Towards the end of his life Galileo described such a. mechanism to his son Vincenzio, who constructed a model after his father's death, although it was not completed when he himself died in 1642. This model appears to have been copied in Italy, but it had little influence on horology, partly because of the circumstances in which it was produced and possibly also because it differed radically from clocks of that period. The crucial event occurred on Christmas Day 1656 when Huygens, quite independently, succeeded in adapting an existing spring-driven table clock so that it was not only controlled by a pendulum but also kept it swinging. In the following year he was granted a privilege or patent for this clock, and several were made by the clockmaker Salomon Coster of The Hague. The use of the pendulum produced a dramatic improvement in timekeeping, reducing the daily error from minutes to seconds, but Huygens was aware that the pendulum was not truly isochronous. This error was magnified by the use of the existing verge escapement, which made the pendulum swing through a large arc. He overcame this defect very elegantly by fitting cheeks at the pendulum suspension point, progressively reducing the effective length of the pendulum as the amplitude increased. Initially the cheeks were shaped empirically, but he was later able to show that they should have a cycloidal shape. The cheeks were not adopted universally because they introduced other defects, and the problem was eventually solved more prosaically by way of new escapements which reduced the swing of the pendulum. Huygens's clocks had another innovatory feature: maintaining power, which kept the clock going while it was being wound.Pendulums could not be used for portable timepieces, which continued to use balances despite their deficiencies. Robert Hooke was probably the first to apply a spring to the balance, but his efforts were not successful. From his work on the pendulum Huygens was well aware of the conditions necessary for isochronism in a vibrating system, and in January 1675, with a flash of inspiration, he realized that this could be achieved by controlling the oscillations of the balance with a spiral spring, an arrangement that is still used in mechanical watches. The first model was made for Huygens in Paris by the clockmaker Isaac Thuret, who attempted to appropriate the invention and patent it himself. Huygens had for many years been trying unsuccessfully to adapt the pendulum clock for use at sea (in order to determine longitude), and he hoped that a balance-spring timekeeper might be better suited for this purpose. However, he was disillusioned as its timekeeping proved to be much more susceptible to changes in temperature than that of the pendulum clock.[br]Principal Honours and DistinctionsFRS 1663. Member of the Académie Royale des Sciences 1666.BibliographyFor his complete works, see Oeuvres complètes de Christian Huygens, 1888–1950, 22 vols, The Hague.1658, Horologium, The Hague; repub., 1970, trans. E.L.Edwardes, AntiquarianHorology 7:35–55 (describes the pendulum clock).1673, Horologium Oscillatorium, Paris; repub., 1986, The Pendulum Clock or Demonstrations Concerning the Motion ofPendula as Applied to Clocks, trans.R.J.Blackwell, Ames.The balance spring watch was first described in Journal des Sçavans 25 February 1675, and translated in Philosophical Transactions of the Royal Society (1675) 4:272–3.Further ReadingH.J.M.Bos, 1972, Dictionary of Scientific Biography, ed. C.C.Gillispie, Vol. 6, New York, pp. 597–613 (for a fuller account of his life and scientific work, but note the incorrect date of his death).R.Plomp, 1979, Spring-Driven Dutch Pendulum Clocks, 1657–1710, Schiedam (describes Huygens's application of the pendulum to the clock).S.A.Bedini, 1991, The Pulse of Time, Florence (describes Galileo's contribution of the pendulum to the clock).J.H.Leopold, 1982, "L"Invention par Christiaan Huygens du ressort spiral réglant pour les montres', Huygens et la France, Paris, pp. 154–7 (describes the application of the balance spring to the watch).A.R.Hall, 1978, "Horology and criticism", Studia Copernica 16:261–81 (discusses Hooke's contribution).DV -
14 Harrison, John
[br]b. 24 March 1693 Foulby, Yorkshire, Englandd. 24 March 1776 London, England[br]English horologist who constructed the first timekeeper of sufficient accuracy to determine longitude at sea and invented the gridiron pendulum for temperature compensation.[br]John Harrison was the son of a carpenter and was brought up to that trade. He was largely self-taught and learned mechanics from a copy of Nicholas Saunderson's lectures that had been lent to him. With the assistance of his younger brother, James, he built a series of unconventional clocks, mainly of wood. He was always concerned to reduce friction, without using oil, and this influenced the design of his "grasshopper" escapement. He also invented the "gridiron" compensation pendulum, which depended on the differential expansion of brass and steel. The excellent performance of his regulator clocks, which incorporated these devices, convinced him that they could also be used in a sea dock to compete for the longitude prize. In 1714 the Government had offered a prize of £20,000 for a method of determining longitude at sea to within half a degree after a voyage to the West Indies. In theory the longitude could be found by carrying an accurate timepiece that would indicate the time at a known longitude, but the requirements of the Act were very exacting. The timepiece would have to have a cumulative error of no more than two minutes after a voyage lasting six weeks.In 1730 Harrison went to London with his proposal for a sea clock, supported by examples of his grasshopper escapement and his gridiron pendulum. His proposal received sufficient encouragement and financial support, from George Graham and others, to enable him to return to Barrow and construct his first sea clock, which he completed five years later. This was a large and complicated machine that was made out of brass but retained the wooden wheelwork and the grasshopper escapement of the regulator clocks. The two balances were interlinked to counteract the rolling of the vessel and were controlled by helical springs operating in tension. It was the first timepiece with a balance to have temperature compensation. The effect of temperature change on the timekeeping of a balance is more pronounced than it is for a pendulum, as two effects are involved: the change in the size of the balance; and the change in the elasticity of the balance spring. Harrison compensated for both effects by using a gridiron arrangement to alter the tension in the springs. This timekeeper performed creditably when it was tested on a voyage to Lisbon, and the Board of Longitude agreed to finance improved models. Harrison's second timekeeper dispensed with the use of wood and had the added refinement of a remontoire, but even before it was tested he had embarked on a third machine. The balance of this machine was controlled by a spiral spring whose effective length was altered by a bimetallic strip to compensate for changes in temperature. In 1753 Harrison commissioned a London watchmaker, John Jefferys, to make a watch for his own personal use, with a similar form of temperature compensation and a modified verge escapement that was intended to compensate for the lack of isochronism of the balance spring. The time-keeping of this watch was surprisingly good and Harrison proceeded to build a larger and more sophisticated version, with a remontoire. This timekeeper was completed in 1759 and its performance was so remarkable that Harrison decided to enter it for the longitude prize in place of his third machine. It was tested on two voyages to the West Indies and on both occasions it met the requirements of the Act, but the Board of Longitude withheld half the prize money until they had proof that the timekeeper could be duplicated. Copies were made by Harrison and by Larcum Kendall, but the Board still continued to prevaricate and Harrison received the full amount of the prize in 1773 only after George III had intervened on his behalf.Although Harrison had shown that it was possible to construct a timepiece of sufficient accuracy to determine longitude at sea, his solution was too complex and costly to be produced in quantity. It had, for example, taken Larcum Kendall two years to produce his copy of Harrison's fourth timekeeper, but Harrison had overcome the psychological barrier and opened the door for others to produce chronometers in quantity at an affordable price. This was achieved before the end of the century by Arnold and Earnshaw, but they used an entirely different design that owed more to Le Roy than it did to Harrison and which only retained Harrison's maintaining power.[br]Principal Honours and DistinctionsRoyal Society Copley Medal 1749.Bibliography1767, The Principles of Mr Harrison's Time-keeper, with Plates of the Same, London. 1767, Remarks on a Pamphlet Lately Published by the Rev. Mr Maskelyne Under theAuthority of the Board of Longitude, London.1775, A Description Concerning Such Mechanisms as Will Afford a Nice or True Mensuration of Time, London.Further ReadingR.T.Gould, 1923, The Marine Chronometer: Its History and Development, London; reprinted 1960, Holland Press.—1978, John Harrison and His Timekeepers, 4th edn, London: National Maritime Museum.H.Quill, 1966, John Harrison, the Man who Found Longitude, London. A.G.Randall, 1989, "The technology of John Harrison's portable timekeepers", Antiquarian Horology 18:145–60, 261–77.J.Betts, 1993, John Harrison London (a good short account of Harrison's work). S.Smiles, 1905, Men of Invention and Industry; London: John Murray, Chapter III. Dictionary of National Biography, Vol. IX, pp. 35–6.DV -
15 Guillaume, Charles-Edouard
[br]b. 15 February 1861 Fleurier, Switzerlandd. 13 June 1938 Sèvres, France[br]Swiss physicist who developed two alloys, "invar" and "elinvar", used for the temperature compensation of clocks and watches.[br]Guillaume came from a family of clock-and watchmakers. He was educated at the Gymnasium in Neuchâtel and at Zurich Polytechnic, from which he received his doctorate in 1883 for a thesis on electrolytic capacitors. In the same year he joined the International Bureau of Weights and Measures at Sèvres in France, where he was to spend the rest of his working life. He retired as Director in 1936. At the bureau he was involved in distributing the national standards of the metre to countries subscribing to the General Conference on Weights and Measures that had been held in 1889. This made him aware of the crucial effect of thermal expansion on the lengths of the standards and he was prompted to look for alternative materials that would be less costly than the platinum alloys which had been used. While studying nickel steels he made the surprising discovery that the thermal expansion of certain alloy compositions was less than that of the constituent metals. This led to the development of a steel containing about 36 per cent nickel that had a very low thermal coefficient of expansion. This alloy was subsequently named "invar", an abbreviation of invariable. It was well known that changes in temperature affected the timekeeping of clocks by altering the length of the pendulum, and various attempts had been made to overcome this defect, most notably the mercury-compensated pendulum of Graham and the gridiron pendulum of Harrison. However, an invar pendulum offered a simpler and more effective method of temperature compensation and was used almost exclusively for pendulum clocks of the highest precision.Changes in temperature can also affect the timekeeping of watches and chronometers, but this is due mainly to changes in the elasticity or stiffness of the balance spring rather than to changes in the size of the balance itself. To compensate for this effect Guillaume developed another more complex nickel alloy, "elinvar" (elasticity invariable), whose elasticity remained almost constant with changes in temperature. This had two practical consequences: the construction of watches could be simplified (by using monometallic balances) and more accurate chronometers could be made.[br]Principal Honours and DistinctionsNobel Prize for Physics 1920. Corresponding member of the Académie des Sciences. Grand Officier de la Légion d'honneur 1937. Physical Society Duddell Medal 1928. British Horological Institute Gold Medal 1930.Bibliography1897, "Sur la dilation des aciers au nickel", Comptes rendus hebdomadaires des séances de l'Académie des sciences 124:176.1903, "Variations du module d"élasticité des aciers au nickel', Comptes rendushebdomadaires des séances de l'Académie des sciences 136:498."Les aciers au nickel et leurs applications à l'horlogerie", in J.Grossmann, Horlogerie théorique, Paris, Vol. II, pp. 361–414 (describes the application of invar and elinvar to horology).Sir Richard Glazebrook (ed.), 1923 "Invar and Elinvar", Dictionary of Applied Physics, 5 vols, London, Vol. V, pp. 320–7 (a succinct account in English).Further ReadingR.M.Hawthorne, 1989, Nobel Prize Winners, Physics, 1901–1937, ed. F.N.Magill, Pasadena, Salem Press, pp. 244–51.See also: Le Roy, PierreDVBiographical history of technology > Guillaume, Charles-Edouard
-
16 динамометр
1) General subject: dynamometer2) Naval: weighing machine3) Medicine: dynamometer (прибор для измерения силы мышцы), ergometer, myodynamometer (прибор для определения силы мышцы), sthenometer (прибор для измерения силы, развиваемой какой-л. группой мышц)4) Engineering: force gage, impact weigher, load gage, spring balance, spring gage, testing machine, dyno, spring scale5) Construction: dynamometric measuring appliance (для измерения величины силы), load indicator6) Automobile industry: forcemeter7) Forestry: skyline tension indicator8) Textile: strength testing machine, tester10) Astronautics: force indicator, force measuring device, force-measuring device11) Metrology: force gauge, load cell12) Polymers: breaking tester, pendulum balance, strength tester, strength-testing machine, tensile strength tester, tensile testing machine, tension strength tester13) Automation: force dynamometer14) General subject: push-pull scale (индикатор стрелочного типа)15) Makarov: dynamometer (для измерения мощности работы или вращающего момента), dynamometer (прибор для измерения силы, развиваемой какой-л. группой мышц), load gauge (для измерения усилия), spring balance (для измерения усилия), tensile tester, tension tester, testing machine (испытательная машина) -
17 Tompion, Thomas
SUBJECT AREA: Horology[br]baptized 25 July 1639 Ickwell Green, Englandd. 20 November 1713 London, England[br]English clock-and watchmaker of great skill and ingenuity who laid the foundations of his country's pre-eminence in that field.[br]Little is known about Tompion's early life except that he was born into a family of blacksmiths. When he was admitted into the Clockmakers' Company in 1671 he was described as a "Great Clockmaker", which meant a maker of turret clocks, and as these clocks were made of wrought iron they would have required blacksmithing skills. Despite this background, he also rapidly established his reputation as a watchmaker. In 1674 he moved to premises in Water Lane at the sign of "The Dial and Three Crowns", where his business prospered and he remained for the rest of his life. Assisted by journeymen and up to eleven apprentices at any one time, the output from his workshop was prodigious, amounting to over 5,000 watches and 600 clocks. In his lifetime he was famous for his watches, as these figures suggest, but although they are of high quality they do not differ markedly from those produced by other London watchmakers of that period. He is now known more for the limited number of elaborate clocks that he produced, such as the equation clock and the spring-driven clock of a year's duration, which he made for William III. Around 1711 he took into partnership his nephew by marriage, George Graham, who carried on the business after his death.Although Tompion does not seem to have been particularly innovative, he lived at a time when great advances were being made in horology, which his consummate skill as a craftsman enabled him to exploit. In this he was greatly assisted by his association with Robert Hooke, for whom Tompion constructed a watch with a balance spring in 1675; at that time Hooke was trying to establish his priority over Huygens for this invention. Although this particular watch was not successful, it made Tompion aware of the potential of the balance spring and he became the first person in England to apply Huygens's spiral spring to the balance of a watch. Although Thuret had constructed such a watch somewhat earlier in France, the superior quality of Tompion's wheel work, assisted by Hooke's wheel-cutting engine, enabled him to dominate the market. The anchor escapement (which reduced the amplitude of the pendulum's swing) was first applied to clocks around this time and produced further improvements in accuracy which Tompion and other makers were able to utilize. However, the anchor escapement, like the verge escapement, produced recoil (the clock was momentarily driven in reverse). Tompion was involved in attempts to overcome this defect with the introduction of the dead-beat escapement for clocks and the horizontal escapement for watches. Neither was successful, but they were both perfected later by George Graham.[br]Principal Honours and DistinctionsMaster of the Clockmakers' Company 1703.Bibliography1695, with William Houghton and Edward Barlow, British patent no. 344 (for a horizontal escapement).Further ReadingR.W.Symonds, 1951, Thomas Tompion, His Life and Work, London (a comprehensive but now slightly dated account).H.W.Robinson and W.Adams (eds), 1935, The Diary of Robert Hooke (contains many references to Tompion).D.Howse, 1970, The Tompion clocks at Greenwich and the dead-beat escapement', Antiquarian Horology 7:18–34, 114–33.DV -
18 механизм
(c.s.d. turbine) emergency air
аварийного закрытия (отсечки) воздуха (на турбину ппо) — cut-out valve mechanism
- автомата тяги, исполнительный (имат) — autothrottle actuator
- автоматического включения системы пожаротушения при посадке с убранным шасси — crash switch (activating fire ехtinguishing system on lg up landing)
- автоматического торможенив, инерционный (плечевых ремней) — (shoulder-harness) inertia reel
- блокировки — interlock mechanism
- блокировки рычага управления двигателем — throttle interlock actuator
- блокировки включения систем самолета, двигателя при обжатой передней амортстойке шасси — ground shift mechanism (actuated with nose oleo compressed)
- "болтанки" (тренажера) — rough air mechanism
- ввода парашюта (мвп, катапультного кресла) — parachute deployment cartridge-actuated device
- ввода спасательного парашюта — life-saving parachute deployment cartridge-actuated device
мвп обеспечивает отстрел заголовника катапультного кресла и вводит спасательный парашют.
- ввода стабилизирующего парашюта (катапультного кресла) — drogue parachute /chute/ gun
-, винтовой — screwjaek
- включения противопожарной системы при аварийной посадке — crash switch crash switch is used to energize the fire extinguishing system under crash conditions.
-, винтовой, с шаровой гайкой — ball nut-jack screw
- включения храповика стартора — starter jaw meshing device
-, временной — timer
- выпуска и уборки шасси — landing gear extension and retraction mechanism
данный механизм служит для выпуска и уборки опор шасси и открытия и закрытия створок отсеков шасси, — used to extend and retract the landing gear and open and close the landing gear doors.
- выстрела катапультного кресла — seat ejection gun
- выстрела пиромеханизма — cartridge-actuated device firing mechanism, cad firing mechanism
- газораспределения — valve operating mechanism
механизм, обеспечивающий наполнение цилиндров поршневого двигателя внутреннего сгорания свежим зарядом и очистку их от продуктов сгорания. — the valve operating mechanism is designed to time the intake and exhaust valves for opening and closing.
- горизонтальной коррекции (гпк) — (gyro) levelling mechanism
состоит из жидкостного маятникового переключателя и мотора гориз. коррекции. — consists of liquid level switch and levelling torque motor.
- градиента усилий — force gradient mechanism
- градиента усилий (на ручке управления) (мгу) — stick force gradient mechanism
- зависания элеронов — aileron droop mechanism
-, загрузочный (обеспечивающий заданную зависимость усилий летчика от величины отклонения органа управления) (рис. 17). — load feel unit. elevator (or rudder) load feel unit /mechanism/.
-, загрузочный по числу м. — mach feel
-, загрузочный (работающий по скоростному напору) — q-feel mechanism
-, загрузочный, пружинный — (load) feel spring (mechanism), artificial feel bungee
-, загрузочный (no числу m), пружинный — mach (-feel) spring
- закрылка — flap actuator
- записи маршрута — route recorder
- запрокидывания тележки (шасси) — bogie rotation mechanism
- захвата ног (катапультного кресла) — leg restrainer
- захвата рук (катапультного кресла) — arm restrainer
- изменения кш (передаточнаго отношения от рычагов к поверхностям управления) — gear ratio control mechanism
- изменения шага (воздушно го) винта — propeller pitch-control mechanism
- изменения шага (воздушно го) винта, гидравлический — hydraulic propeller pitch-control mechanism
- измерителя крутящего момента (плунжерный) — torquemeter (plunger) mechanism
- инерционный (привязных плечевых ремней экипажа) — (shoulder harness) inertia reel
- интерцепторов, дифференциальный — speller differential mechanism
-, испопнитепьный — actuator
-, исполнительный (имт) для ограничения макс. температуры газа за турбиной по сигналам впрт. — exhaust gas temperature control actuator, egt /tgt/ еопtrol actuator
-, исполнительный (агрегат управления рна квд) — hp compressor inlet guide vanes actuator, hp igv actuator
- исполнительный (стрелок и индексов прибора) — servo
-, исполнительный индекса зк (заданного курса) (прибора пнп) — heading select index servo а servo controlling the heading select index.
-, исполнительный, стрелки apk (автом. радиокомпаса) (прибора пнп) — adf pointer servo а servo controlling the adf-l (red) pointer.
-, исполнительный, стрелки зпу (заданного путевого угла) (прибора пнп) — course arrow servo а servo controlling course arrow or pointer.
- катапультирования (кресла) — seat ejection gun /catapult/
- компенсатора триммерного эффекта (no тангажу, pb) — pitch trim compensator actuator
- концевых выключателей (mkb, системы закрылков) — limit switch mechanism
- коррекции (гироскопа) — erection mechanism то provide erection torques.
- коррекции частоты (мкч) — frequency corrector
-, коррекционный (км) — compensator
механизм в системе героиндукционного компаса, служащий для сравнения магнитноro курса no сигналам индукционного датчика, и курса, выдаваемого гироагрегатом. — the compensator (unit) constantly compares the flux detector and directional gyro signals, and transmits the output to the slaving amplifier to operate the slaving torque motor of the directional gyro to reset the gyro.
-, коррекционный (гироскопа) — gyro (erection) torquer
-, коррекционный (с лекальным устройством, гироиндукционного компаса) — compensator (with cam strip)
-, кривошипно-шатунный (двиг) — crank mechanism
-, кривошипно-шатунный передаточный (прибора, сигнализатора) — movement
-, кулачковый (в системе управления двигателем вертолета) — cam-box
-, кулачковый центрирующий (шасси) — centering cam device
- легочного автомата — demand oxygen regulator
-, лентопротяжный (записывающей аппаратуры) — tape transport mechanism
-, лентопротяжный (кино, фото) — film transport mechanism
- линейного действия — linear actuator
-, маятниковый (привода постоянных оборотов) — (c.s.d.) pendulum mechanism
- настройки (радиокомпаса) — tuning unit
- настройки времени приемистости — acceleration time adjuster
- настройки регулятора оборотов — speed governor adjuster
- настройки регулятора оборотов малого газа — idling speed governor adjuster
- настройки регулятора числа оборотов ротора вд — hp rotor /shaft/ governor adjuster
- натяга (привязного ремня катапультного кресла) — belt /strap/ retractor
- натяга ножного привязного — lap belt /strap/ retractor
- натяга привязного ремня, проходящего между ног — croach strap retractor
- ограничения расхода топлива (по положению руд) — fuel flow limiter
- ограничения рк (давления воздуха за компрессором высокого давления) — power limiter prevents excessive hp compressor pressure by limiting the fuel flow.
- ограничителя температуры газов за турбиной, исполнительный (имт) — exhaust gas temperature /egt/ control actuator actuated when egt reaches a limiting value.
- ориентации стойки шасси — centering cylinder /jack/
часть шасси самолета, предназначенная для ориентации или разворота стойки при ее выпуске и уборке, — centering cylinder is a provision to centralize the wheels before retraction/extension.
-, осредняющий (секстанта) — integrating mechanism
- останова (гтд) — hp fuel shut-off valve /cock/ assembly
- отдачи ручки (управления) — control stick pusher
- отдачи штурвала (для уменьшения угла атаки) — control column pusher
- отстрела фонаря кабины — canopy remover
- перегонки (рм) — auto-travel mechanism
-, передаточно-множительный (прибора) (рис. 79) — movement, moving element when disassembling the indicator, separate the meter movement from the meter frame.
-, передаточный (прибора) — movement, moving element
- передаточных чисел (в системе управления ла) — gain control unit (gcu)
- переключения "ножниц" стабилизатора — stabilizer assymetric operation control mechanism
- переключения педалей на управление передним(и) колесом (колесами) при обжатии передней амортстойки, т.е. при контакте колеса с земпей. — nosewheel steering ground shift mechanism. when airborne the rudder pedals have no effect on the nosewheel steering. nosewheel contact with the ground allows the pedal motion to be transmitted to the nosewheel steering cable system.
- переключения с бустерного на ручное (штурвальное) управление — power-to-manual reversion mеchanism
- переключения систем самолета, двигателя (по обжатию) амортизатора шасси) — ground shift mechanism (actuated with nose oleo compressed)
- перепуска воздуха из компрессора — compressor bleed valve control mechanism
- перестановки стабилизаторa, винтовой (mпс — horizontal stabilizer screw-jack
- подтяга (цилиндр) замка выпущенного положения — down-lock bungee cylinder
- подтяга патронной ленты — ammunition booster
- подтяга плечевых ремней (инерционный) — shoulder harness inertia reel
- подтяга плечевых тросов — shoulder-harness cable reel (mec hanism)
- подъема и опускания чашки кресла (летчика) — seat pan vertical adjustment mechanism
- подъема ног — leg lift (mechanism)
- подъема сиденья (мпс, для регулирования сиденья по росту летчика) — seat vertical adjustment mechanism
- полетного расстопорения (рычага управления шасси) — (landing gear control lever) flight release (mechanism)
- поперечной коррекции гироскопа — gyro roll (erection) torquer
- последовательноети срабатывания створок шасси — landing gear door sequence mechanism
- притяга ног (на катапультном кресле) — leg restrainer
- притяга плеч, автоматический — shoulder harness inertia reel
при возникновении случайной перегрузки в направлении "спина-грудь" данный механизм стопорит и удерживает летчика от перемещения в направлении полета. — if а back-to-chest g load occurs, the inertia reel prevents the pilot from moving forward.
- притяга поясного ремня — waist harness restrainer
- притяга рук — arm restrainer
-, программный (временной) — timer (tmr)
-, программный циклический — cycling timer
-, программный циклический (в противообпеденительной системе) — anti-icing cycling timer
- продольной коррекции гироскопа — gyro pitch (erection) torquer
- противообледенитепьной системы крыла и хвостового оперения, программный — airfoil de-ice timer
-, пружинный загрузочный — (load) feel spring (mechanism)
- разворота колеса в нейтральное положение (при уборке шасси) — (self-) centering device the nose wheel strut has a self-centering device to force fhe wheel in fore-andaft direction as the load removed.
-, развязывающий (проводок управления самолетом, напр., элеронов) — (control linkage) uncoupling mechanism
- раздвижки закрылков — flap expansion mechanism
- раскрытия вытяжного парашюта (грузов) — extractor release gear а system designed for manual or automatic deployment of the extractor parachute.
- распора (стойки шасси) — lock strut
силовой н кинематический элемент стойки шасси, выполняющий функции складывающегося подкоса, служащего распором между задним (или боковым) подкосом и амортстойкой (рис. 27). — а folding lock strut is fitted between the drag strut (or stay) and the pivot on upper end of the main fitting, it is operated by actuating cylinder when the landing gear is retracted or extended.
-, распределительно-демпфирующий (рдм), переднего колеса шасси — nosewheel steering/damping control valve (and follow-up assembly)
- расцепления (проводки ynравления элеронов и спойлеров) — (aileron and speller control linkage) uncoupling mechanism
- реверсирования винта — propeller reverser
- реверсирования тяги (рис. 53) — thrust reverser
- регулирования компрессора (входных аппаратов) — compressor guide vanes control (mechanism)
- регулировки (высоты) креслa (no росту летчика) — seat vertical adjustment mechanism
- регулирования усилий (ару, автомат регулирования передаточных чисел системы управления ла) — (automatic) gain control (agc)
-, реечный — rack and pinion mechanism
-, рулежно-демпфирующий — nosewheel steering/damping control valve
для распределения рабочей жидкости в гидроцилиндрах управления передним колесом в режиме управления и в режиме демпфирования, — the valve is operated by the steering wheel or rudder pedals. the valve is always returned to neutral by a followup cable system.
- сброса фонаря кабины (разделяющийся после срабатывания) — canopy remover removers are designed to impart thrust necessary to remove the canopy.
- сброса фонаря кабины, толкающий (не разделяющийся после срабатывания) — canopy thruster the thruster does not separate upon functioning.
-, согласования — synchronizer
- согласования крена — roll synchronizer
- согласования курса — heading synchronizer
дпя отработки и преобразования сигналов заданного курса.
- согласования тангажа — pitch synchronizer
- согласования срабатывания створок шасси — lg door sequence /sequencing/ mechanism
- стопорения (поверхности управления) — gust lock
устройство дня фиксации поверхностей управления на стоянке для предотвращения их отклонения порывами ветра. — gust locks protect the control surfaces from movement by wind while the aircraft is on the ground.
- стреляющий (катапультного кресла) — seat ejection gun /catapult/
-, стреляющий, двухтрубный — ejection seat two-stage gun
-, стреляющий для аварийногo сброса подвесного агрегата заправки топливом — refuel pod jettison(ing) mechanism
-, стреляющий комбинированный (ксм) состоит из двухтрубного см первой ступени, порохового реактивного (ракетного) двигателя второй ступени и механизма ввода парашюта. — rocket-assisted /-powered, propelled/ ejection gun /саtapult/
-, стреляющий, пиротехнический — cartridge-actuated mechanism, cad mechanism, gun mechanism
-, стреляющий, стабилизирующего парашюта — drogue (parachute) gun
-, стреляющий, тепескопический (пиромеханизм) — seat ejection telescopic gun
-, стреляющий, унифицированный, комбинированный (ксму, катапупьтного кресла) — rocket-assisted /-powered, propelled/ seat ejection gun /catapult/
обеспечивает катапультирование, ввод дефлектора возд. потока, ввод спасательного парашюта и отделение кресла от летчика. — used to eject the seat, deploy the deflector and parachute, and separate the seat.
-, трехтрубный тепескопический стреляющий (катапультного кресла) — three-stage telescopic gun
- триммера (электрический) — trim tab actuator
- триммерного эффекта (перестановки поверхности управления) — trim(ming) actuator
- триммерного эффекта (рогулирования загрузочного механизма) — feel (unit) actuator
- триммерного эффекта бокового канала — roll trim actuator
- триммерного эффекта крена — roll trim actuator
- триммерного эффекта курса — yaw trim actuator
- триммерного эффекта продольного канала — pitch trim actuator
- триммерного эффекта загружатепя руля направления (руля высоты, элеронов) — rudder (elevator, aileron) load feel (electric) actuator actuator shifts neutral position of load feel mechanism, causing ailerons to re-position.
- триммерного эффекта (загружателя) тангажа — pitch trim actuator
- триммирования — trim(ming) actuator
-, триммирующий — trim(ming) actuator
- (автомат) тряски штурвала (для сигнализации приближения к режиму сваливания) — stick shaker with stall warning test switch depressed, the stick shakers should operate.
- уборки вытяжных звеньев (парашютов) — static link retraction mechanism
- уборки и выпуска шасси — landing gear extension and retraction mechanism
- уборки шасси — landing gear retracting mechanism
- управления — control mechanism
- управления внутренними створками основного реверса тяги — primary reverser bucket actuator
- управления двигателем на режиме обратной тяги (реверса) — оn-reverse thrust engine control (mechanism)
- управления клапанами перепуска воздуха (из компрессора) — compressor bleed valve control mechanism
- управления лентой перепуска воздуха — compressor bleed valve /band/ control mechanism
- управления наружной створкой реверса тяги вентилятора — fan reverser cascade (cover) door actuator
- управления наружными створками основного реверса тяги — primary reverser door actuator
- управления носовым крылом (схемы "утка") — canard actuator
- управления общим шагом (несущего винта) — collective pitch control
- управления приемистостью — acceleration control unit (acu)
узел насоса-регупятора, контролирующий скорость перемещения дозирующей иглы и предотвращающий переобогащение смеси при резкой даче газа. — the unit prevents excessive overfueling (overrich mixture) with possible subsequent engine surging when the throttle is advanced rapidly.
- управления реверсом тяги (мур) — thrust reverser pilot valve
- сбросом оборотов (двигателя) — (engine) deceleration control (unit)
- управления створками реверса — thrust reverser door /bucket/ actuator
- управления створками шасси — landing gear door operating mechanism
- управления циклическим изменением шага (несущ. винта) — cyclic pitch control
- управления шагом винта — propeller pitch control mechanism
-, уравнительный (рулевой машинки aп) — differential gear assembly
-, уравнительный (синхронизации работы силовых цилиндров реверса тяги) — thrust reverser actuators synchronizer
- фиксатора шага (воздушного винта) — pitch lock mechanism
-, фиксирующий — locking mechanism
- флюгирования (воздушного винта) — feathering mechanism
-, фпюгирующий (воздушного винта) — feathering mechanism
-, часовой — clock mechanism
полный завод часового ханизма обеспечивает... часовую работу часов. — the clock mechanism rating, when wound tight, is... hours.
- эффекта триммирования (мэт) заводить часовой м. — trim(ming) actuator wind clock mechanismРусско-английский сборник авиационно-технических терминов > механизм
-
19 болт
bolt, pin, screw, stud* * *болт м.
boltзави́нчивать болт с переко́сом — cross-thread a bolt«отдава́ть» болт — ease off [slacken] a boltрасклепа́ть коне́ц болта́ — rivet [clinch] a boltскрепля́ть болта́ми — boltста́вить болт на кра́ске — secure a bolt with a drop of paintа́нкерный болт — anchor [foundation] bolt, stayboltа́нкерный, винтово́й болт — screw anchorа́нкерный, сквозно́й болт — through [crab] boltа́нкерный, соедини́тельный болт — binding boltбара́шковый болт — butterfly boltболт без наре́зки — blank boltболт быстросъё́мный болт — quick detachable boltвертлю́жный болт — swivel [shackle] boltвзрывно́й болт ( пироболт) — explosive boltви́лочный болт — shackle boltвы́саженный болт — upset boltдвухсре́зный болт — double-shear boltзаершё́нный болт — sprig [barb, rag, hacked, fang] boltзажи́мный болт — clamp boltболт заземле́ния — брит. earthing bolt; амер. grounding boltзатяжно́й болт — draw boltконта́ктный болт — contact boltконтря́щий болт — safety boltкрепё́жный болт — fastening boltкры́шечный болт — cap [bonnet] boltла́пчатый болт — hook boltмаши́нный болт — machine boltболт ма́ятника — pendulum boltмонта́жный болт — assembling [correction] boltнажимно́й болт — pressure boltнажимно́й болт са́льника — gland boltнаправля́ющий болт — guide boltнарезно́й болт — screw boltнатяжно́й болт — adjuster boltодносре́зной болт — single-shear boltотжи́мный болт ( для отжимания одной детали от другой) — puller boltоткидно́й болт — swing [link] boltпа́лубный болт мор. — deck boltподвесно́й болт горн. — hanger boltболт под развё́ртку мор. — reamed boltполучи́стый болт — semi-finished [half-bright] boltпредохрани́тельный болт — safety boltприжимно́й болт — pressure boltпризо́нный болт — templet [tight-fitting] boltпутево́й болт — track [fish] boltразрывно́й болт ( пироболт) — explosive boltраспо́рный болт — stay boltрасшири́тельный болт — expansion boltрегулиро́вочный болт — adjusting boltре́льсовый болт — joint [rail] boltболт рессо́ры — spring boltболт рессо́ры, центра́льный — spring tie boltсамосто́порящий болт — self-locking boltболт с бу́ртиком — flange boltболт с га́йкой — nut boltболт с голо́вкой и у́сом — spiked [head-and-split] boltболт с голо́вкой под чеку́ — cotter [key] boltболт с двойно́й наре́зкой — double-screw boltболт с квадра́тной голо́вкой — square-head boltсквозно́й болт — through boltболт с кони́ческой голо́вкой — cone-headed boltболт с костылько́вой голо́вкой — hook [gib-headed] boltболт с кру́глой голо́вкой — round-head boltболт с крючкообра́зной голо́вкой — hook [gib-headed] boltсоедини́тельный болт — connecting [tie] boltболт с отве́рстием под шплинт — clevis boltболт с пло́ско-вы́пуклой голо́вкой — deck boltболт с пло́ской голо́вкой — flat-head boltболт с потайно́й голо́вкой — countersunk-headed boltболт с проу́шиной — strap boltсрезно́й болт — shear boltболт с Т-обра́зной голо́вкой — T-(head-)boltсто́порный болт — locking [set, binder] boltболт ступи́цы — hub boltстыково́й болт — track [fish] boltстяжно́й болт — coupling [pinch, tie] boltболт с у́сом — spiked [fin-neck] boltболт с ушко́м — eye boltболт с цилиндри́ческой голо́вкой — cheese head boltболт с чеко́й — cotter [key] boltболт с шарово́й голо́вкой — ball-headed boltболт с шестигра́нной голо́вкой — hexagon-head boltболт с шипо́м — nibbed boltтра́нспортный болт — shipping boltупо́рный болт — stop boltустано́вочный болт — adjusting boltфунда́ментный болт — anchor [foundation] bolt, stayboltболт це́пи — chain pinчё́рный болт — black [rough-finished] boltчи́стый болт — bright boltшарни́рный болт — swing [link] boltшату́нный болт — connecting rod boltшпо́ночный болт — key bolt -
20 качающийся транспортёр
1) Agriculture: shaker conveyor2) Railway term: swinging conveyer3) Polygraphy: spring conveyor4) Robots: shuttle5) Cement: oscillating conveyor, pendulum conveyorУниверсальный русско-английский словарь > качающийся транспортёр
- 1
- 2
См. также в других словарях:
Pendulum clock — A pendulum clock is a clock that uses a pendulum, a swinging weight, as its timekeeping element. From its invention in 1656 by Christiaan Huygens until the 1930s, the pendulum clock was the world s most accurate timekeeper, accounting for its… … Wikipedia
Pendulum — This article is about pendulums. For other uses, see Pendulum (disambiguation). Simple gravity pendulum model assumes no friction or air resistance … Wikipedia
Spring pendulum — A spring pendulum is a physical system where a mass is connected to a spring so that the resulting motion contains elements of a simple pendulum as well as a spring. The system is much more complex than a simple pendulum because the properties of … Wikipedia
Spring (device) — Helical or coil springs designed for tension Compression sp … Wikipedia
Torsion pendulum clock — A torsion pendulum clock, or torsion clock, is a mechanical clock which keeps time with a mechanism called a torsion pendulum. This is a weighted disk or wheel, often a decorative wheel with 3 or 4 chrome balls on ornate spokes, suspended by a… … Wikipedia
Torsion spring — A mousetrap powered by a helical torsion spring A torsion spring is a spring that works by torsion or twisting; that is, a flexible elastic object that stores mechanical energy when it is twisted. The amount of force (actually torque) it exerts… … Wikipedia
Wilberforce pendulum — A Wilberforce pendulum, invented by British physicist Lionel Robert Wilberforce around 1896 [cite journal|last=Wilberforce|first=Lionel Robert|date=1896|title=On the vibrations of a loaded spiral spring|journal=Philos. Mag.|volume=38|pages=386… … Wikipedia
Foucault pendulum — The Foucault pendulum (pronEng|fuːˈkoʊ foo KOH ), or Foucault s pendulum, named after the French physicist Léon Foucault, was conceived as an experiment to demonstrate the rotation of the Earth.The experimentThe experimental apparatus consists of … Wikipedia
Ballistic pendulum — A ballistic pendulum is a device for measuring a bullet s momentum, from which it is possible to calculate the velocity and kinetic energy. Ballistic pendulums have been largely rendered obsolete by modern chronographs, which allow direct… … Wikipedia
The Pit and the Pendulum (radio) — The Pit and the Pendulum is a radio program from the American radio anthology series Radio Tales . The anthology series adapted classic works of American and world literature for the radio. The series was a recipient of numerous awards, including … Wikipedia
Now: The Hits of Spring 2010 — Compilation album by Various Released 10 September 2010 Genre Pop, R B, rock Label … Wikipedia