Перевод: с русского на все языки

со всех языков на русский

on+a+different+plane

  • 1 Aircraft or elements maneuvering in relation to one another, but in different planes and/or altitudes

    Универсальный русско-английский словарь > Aircraft or elements maneuvering in relation to one another, but in different planes and/or altitudes

  • 2 плоскость

    ж
    2) сторона, сфера aspect, plane, sphere

    рассма́тривать де́ло в ино́й пло́скости — to take a different view of the matter, to view/to consider another aspect of the matter, to consider sth from a different angle

    Русско-английский учебный словарь > плоскость

  • 3 модульный центр обработки данных (ЦОД)

    1. modular data center

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)

  • 4 способ

    сущ.
    1. means; 2. way; 3. mode; 4. method
    Английские соответствия русского существительного способ имеют в виду не только метод или путь достижения цели, но и более конкретный механизм совершения действия.
    1. means — средство, способ, путь (имеет только одну форму means, может согласовываться с глаголами как в единственном, так и во множественном числе; относится как к образу действия, так и к конкретному механизму, при помощи которого это действие совершена и поэтому также соответствует русскому существительному средство): a safe (sure) means — безопасный (верный) способ/безопасное (верное) средство; by peaceful means — мирным путем; by some means or other — тем или иным способом; by means of smth — посредством чего-либо; by all means — во что бы то ни стало/конечно; by no means — никоим образом; ways and means — пути и способы; means of transportation — транспортные средства; means of communication (of protection) — средства связи (защиты)/способы связи (зашиты); to find the means to settle the conflict — найти пути урегулирования конфликта/найти средства урегулирования конфликта; to use every possible means — использовать все возможные средства/использовать все возможные пути/использовать все возможные способы/использовать все возможные механизмы There is no means of getting to the station within an hour. — Отсюда нельзя добраться до вокзала меньше, чем за час ( нет средств связи с вокзалом). The quickest means of travel is by plane. — Самый быстрый способ передвижения — самолет. Every means has been tried. — Были испробованы все способы./Были испробованы все средства. This is a dangerous means. — Это опасное средство./Это опасный способ./Это опасный механизм. All such means are always unpleasant. — Все такие средства всегда неприятны./Все такие способы всегда неприятны.
    2. way — способ, образ действия, метод, манера: n way of life — образ жизни; ways of doing things — разные способы действия. There are so many ways to prepare chicken. — Курицу можно приготовь разными способам и./Существует множество способов приготовления курицы. Is there any other way of doing it? — Есть какой-нибудь другой способ это сделать? She has a special way of speaking. — У нее особая манера говорить. Let me show you a way of doing it. — Давай я покажу тебе, как это надо делать./Давай я покажу тебе, каким образом это надо делать.
    3. mode — способ, образ (специальный способ достижения чего-либо, способ что-либо сделать; стилистически более официально): a new mode of life — новый образ жизни E-mail is becoming increasingly popular mode of communication. — Электронная почта все больше приобретает популярность как способ связи./Электронная почта все больше приобретает популярность как вил общения./ Электронная почта все больше приобретает популярность как вид связи.
    4. method — метод, способ, средство: Английское существительное method вызывает два ряда образных ассоциаций: а) сравнение с дорогой, по которой надо или можно пройти для достижения цели u b) c инструментами, используемыми для достижения цели; оба ряда ассоциаций проявляются в явном виде в словосочетаниях, где используются названия инструментов и слова, связанные с понятием дорога: a) This is a certain road/path to success. — Это верная дорога к успеху. Maybe we should try a different approach. — Нам, вероятно, надо попробовать другой подход. We have explored several different avenues. — Мы испробовали несколько разных путей в исследовании. Не showed us what to do step by step. — Он показал нам шаг за шагом, что надо делать. The job is a stepping stone for me. — Эта работа для меня начало пути. There is a useful shortcut that I can show you. — Я могу показать вам полезный и более быстрый путь./Я могу показать вам полезный и короткий путь. We need to move things along a bit faster. — Нам всем надо немного поторопиться. b) It takes years to learn to use the tools of the trade. — Чтобы овладеть приемами и методами ремесла нужны годы. We have a very efficient mechanism for dealing with this. — У нас есть очень эффективный механизм, чтобы справиться с этим. Some search engines are more powerful than others forgetting information. — Для получения информации некоторые исследовательские методы более пригодны, чем другие. It is an important part of the machinery of government. — Это важная часть государственной машины. It is an effective instrument of government. — Это эффективный способ управления. We don't have much political leverage in this matter. — У нас нет достаточных политических рычагов в этом вопросе. I know very little of the internal workings of the company. — Мне мало известны методы работы этой компании./Мне мало известен механизм действия этой компании. Every thing is running like clockwork. — Все работает как часы. You should set the wheels in motion now. — Теперь вам надо запустить механизмы/сделатьтак, чтобы все завертелось. We need to move up a gear. — Надо пустить в ход все рычаги.

    Русско-английский объяснительный словарь > способ

  • 5 винт (воздушный)


    propeller
    лопастный агрегат, приводимый во вращение двигателем для преобразования мощности (крутящего момента) двигателя в тягу (рис. 58) — function of propeller is conversion of engine shaft torque into thrust.
    -, автоматический (ав) — automatically controllable propeller
    -, авторотирующий — windmilling propeller
    -, воздушный — propeller
    -, гидравлический — hydraulically-controlled propeller
    воздушный винт изменяемого шага, у которого перестановка лопастей в обоих направлениях (на больший шаг и на меньший) или только в одном направлении производится под действием масла, подаваемого в механизм винта. — a propeller the blades of which are adjusted hydraulically to a low and a high pitch angle.
    -, гидромеханический — hydro-mechanical propeller
    - двухсторонней схемыpropeller with double-acting system
    -, зафлюгированный — feathered propeller
    - изменяемого шага (виш, управляемый автоматически и принудительно) — variable-pitch propeller
    воздушный винт, лопасти которого во время работы могут принудительно или автоматически поворачиваться вокруг своих осей (изменять шаг) — a propeller the pitch setting of which can be changed by the flight crew or by automatic means while the propeller is rotating.
    - изменяемого шага с наземной регулировкойground adjustable-pitch propeller
    - изменяемого шага (с принудительным управлением)manually controllable propeller
    -, моноблочный — integral propeller
    -, находящийся на упоре полетного малого шага — propeller blades set in flightfine-pitch stop position
    - неизменяемого шагаfixed-pitch propeller
    воздушный винт, попасти которого не могут поворачиваться вокруг своих осей. — a propeller having no provision for changing the pitch setting.
    -, неотбалансированный — out-of-balance propeller
    -, неуравновешенный — out-of-balance propeller
    - переменного шага — controllable /variable/ pitch propeller
    -, разбалансированный — out-of-balance propeller
    -, реверсивный — reversible-pitch propeller
    воздушный винт, лопасти которого во время работы могут быть установлены в такое положение, при котором его вращение создает отрицательную сипу тяги. — reversible-pitch propellers. 200 complete cycles of control must be made from the lowest normal pitch to the maximum reverse pitch.
    - с наземной регулировкой шагаground adjustable-pitch propeller
    - с неодинаковым уводом лопастей от плоскости вращения — out-of-track propeller a propeller having the blade tilt ot one blade different from that of the other(s).
    - с неодинаковым шагом лопастей — out-of-pitch propeller a propeller having the blade angle of one blade different from that of any other.
    - с упором земного малого шагаground-fine-pitch propeller
    - с упором полетного малого шага — flight-low/-fine/-pitch propeller
    -, типичный (для испытаний) — representative propeller
    -, толкающий — pusher propeller a propeller producing compression in the propeller shaft.
    -, тянущий — tractor propeller a propeller producing tension in the propeller shaft.
    - фиксированного шагаadjustable-pitch propeller
    воздушный винт, попасти которого могут быть установлены под любым углом к плоскости вращения, но во время работы винта поворачиваться вокруг своих осей не могут. — a propeller, the blades of which can be adjusted to a desired pitch when not rotating.
    -, флюгерный (флюгируемый) — feathering propeller
    воздушный винт изменяемого шага, попасти которого могут быть установлены в положение "по потоку", характеризуемое тем, что в случае выключенного двигателя винт в полете прекращает вращаться и имеет минимальное лобовое сопротивление. — the propeller the blades of which can be set nearly parallel with the line of flight of the airplane for the purpose to decrease air resistance in case of engine failure, so that the propeller will not be rotated by the air.
    -, четырехлопастный — four-blade(d) propeller
    -, электромеханический — electrically-operated propeller
    балансировка в. — propeller balancing
    зазор между в. и элементами конструкции самолета — propeller structural clearance
    клиренс в. — propeller clearance
    обдувка от в. — slipstream
    обороты (воздушного) в. — propeller speed
    плоскость вращения в. — propeller disc plane
    площадь диска в. — propeller disc area
    площадь ометаемая воздушным в. — propeller disc area
    поступь в. — propeller effective pitch
    спед за в. — propeller wake
    характеристика воздушного винта в. — propeller characteristic
    шаг в. — propeller pitch
    балансировать в. — balance the propeller
    вводить винт во флюгер вращать в. по (через) 30о — feather the propeller turn the.propeller in increments of approx. 30 deg.
    выводить в. из реверса — unreverse the propeller
    выводить в. из флюгера — unfeather the propeller
    застопорить в. — brake the propeller
    затяжелять в. — set the propeller blades to higher pitch
    зафлюгировать в. — feather the propeller
    изменять шаг в. — change the propeller pitch
    облегчать в. — move the propeller blades to lower pitch
    отбалансировать в. — balance the propeller
    поворачивать в. постепенно через...град. — turn the propeller in increments of... deg.
    расфлюгировать в. — unfeather the propeller
    реверсировать в. — reverse the propeller
    снимать в. с упора полетного малого шага — unlatch the propeller flight low-pitch stop
    ставить в. на упор малого полетного шага — latch the propeller flight lowpitch stop
    флюгировать в. — feather the propeller

    Русско-английский сборник авиационно-технических терминов > винт (воздушный)

  • 6 в зависимости от обстоятельств

    Those substances are able to rotate the plane of polarized light to the left or to the right, as the case may be.

    The temperature of the solution is controlled by introducing hot or cold solution, as the situation requires.

    * * *
    В зависимости от обстоятельств-- The patent application may contain several independent claims in the same category or, according to the circumstances, several independent claims in different categories.

    Русско-английский научно-технический словарь переводчика > в зависимости от обстоятельств

  • 7 в пределах

    Different functional groups within the same molecule may react with each other.

    Coastal marshes lie within the tidal zone.

    * * *
    В пределах -- within; within the limits; within the boundaries; to the extent; over
     Such gearing typically has several natural frequencies within its operating range.
     Within the limits of experimental errors, the rates of NaCl capture hold constant irrespective of the superficial gas velocity.
     The supplier shall control preservation process to the extent necessary to ensure conformance to specified requirements.
     Over each cell the vortex shedding frequency is constant.

    Русско-английский научно-технический словарь переводчика > в пределах

  • 8 в пределах

    Русско-английский научно-технический словарь переводчика > в пределах

  • 9 позволять

    The motor mercury interruptor admits control of the rate of make and break.

    This allows (or permits) zero-setting the meter.

    The bottom plunger moulding press allows for loading when the mould is in the open position.

    This enables (or permits, or allows) the temperature to be found at any point.

    This enables an easy replacement of the drum section.

    The alloying elements make it possible to co-deposit substantial quantities of tungsten.

    A central focusing screw makes possible the focusing of both barrels simultaneously.

    Electric-motor drives permit efficient power generation...

    The right-angle milling attachment permits (of) milling in the horizontal plane.

    Aircraft model testing provides (or furnishes) a means for rapidly evaluating...

    A laser-anemometer enables one to make two-dimensional velocity-component measurements optically.

    This arrangement has enabled tooling costs to be reduced.

    A multi-bender arrangement permits making a sequence of different-angle bends.

    A modification of the square-jaw clutch permits more convenient engagement.

    The first step lets us describe the dependence of...

    These curves allow one (or us, etc.) to write...

    Русско-английский научно-технический словарь переводчика > позволять

  • 10 конденсатор

    capacitor, condenser
    * * *
    конденса́тор м.
    1. хим., тепл. condenser
    2. эл. capacitor
    конденса́тор блоки́рует прохожде́ние постоя́нного то́ка — a capacitor blocks the passage of direct current
    герметизи́ровать конденса́тор — encapsulate a capacitor
    конденса́тор заряжа́ется — a capacitor charges
    опрессо́вывать конденса́тор — mould a capacitor
    получа́ть конденса́тор ме́тодом напыле́ния — evaporate a capacitor
    конденса́тор пробива́ет — a capacitor breaks down [is punctured]
    конденса́тор разделя́ет це́пи с ра́зными часто́тами — a capacitor decouples [isolates] circuits operating at different frequencies
    конденса́тор разряжа́ется — a capacitor discharges
    конденса́тор слу́жит для накопле́ния электри́ческой эне́ргии — a capacitor stores electrical energy
    конденса́тор шунти́рует рези́стор по высо́кой частоте́ — a capacitor by-passes r.f. around a resistor
    аммиа́чный конденса́тор — ammonia condenser
    барометри́ческий конденса́тор — barometric condenser
    блокиро́вочный конденса́тор — by-pass capacitor
    боково́й конденса́тор — side-entry [side-inlet] condenser
    бума́жный конденса́тор — paper capacitor
    ва́куумный конденса́тор — vacuum capacitor
    конденса́тор возду́шного охлажде́ния — air-cooled condenser
    возду́шный конденса́тор — air capacitor
    конденса́тор вольтодоба́вки тлв.boost capacitor
    выра́внивающий конденса́тор — roll-off capacitor
    высоково́льтный конденса́тор — high-voltage capacitor
    конденса́тор высо́кого у́ровня — high-level condenser
    газонапо́лненный конденса́тор — gas-filled capacitor
    двухко́рпусный конденса́тор — twin condenser
    двухпото́чный конденса́тор — two-flow condenser
    двухтру́бный конденса́тор («труба в трубе») — double-pipe condenser
    двухходово́й конденса́тор — two-pass condenser
    дифференциа́льный конденса́тор — differential capacitor
    диффузио́нный конденса́тор — diffused capacitor
    заря́дный конденса́тор — charging capacitor
    защи́тный конденса́тор — protective capacitor
    измери́тельный конденса́тор — instrument capacitor
    и́мпульсный конденса́тор — pulse capacitor
    конденса́тор интегра́льной схе́мы — integrated circuit [IC] capacitor
    интегра́льный конденса́тор — integrated capacitor
    интегри́рующий конденса́тор — integrating capacitor
    ио́нный конденса́тор — gas-filled capacitor
    искрогаси́тельный конденса́тор — spark-quench capacitor
    испари́тельный конденса́тор — evaporative condenser
    квадрупо́льный конденса́тор — quadrupole condenser
    керами́ческий конденса́тор — ceramic capacitor
    керами́ческий, высокочасто́тный конденса́тор — r.f. ceramic capacitor
    керами́ческий, низкочасто́тный конденса́тор — a.f. ceramic capacitor
    кожухотру́бный конденса́тор — shell-and-tube condenser
    конденса́тор колеба́тельного ко́нтура — tuned-circuit capacitor
    конденса́тор колеба́тельного ко́нтура, выходно́го — tank capacitor
    конта́ктный конденса́тор — direct-contact condenser
    кре́мниевый конденса́тор — silicon capacitor, varactor
    логарифми́ческий конденса́тор — logarithmic capacitor
    ма́сляный конденса́тор — oil(-filled) capacitor
    металлобума́жный конденса́тор — metallized paper capacitor
    мета́лл-о́кисел-полупроводнико́вый [МОП] конденса́тор — metal oxide semiconductor [MOS] capacitor
    микроминиатю́рный конденса́тор — microcapacitor
    конденса́тор микросхе́мы — microcapacitor
    многоходово́й конденса́тор — multipass condenser
    накопи́тельный конденса́тор — reservoir capacitor
    конденса́тор на осно́ве поликарбона́тной плё́нки — polycarbonate capacitor
    настро́ечный конденса́тор — tuning capacitor
    нейтроди́нный конденса́тор — neutralizing capacitor
    нелине́йный конденса́тор — non-linear capacitor
    нерегенерати́вный конденса́тор — non-regenerative condenser
    конденса́тор ни́зкого у́ровня — low-level condenser
    конденса́тор обра́тной свя́зи — feedback capacitor
    однопото́чный конденса́тор — single-flow condenser
    одноходово́й конденса́тор — single-pass condenser
    ороси́тельный конденса́тор — reflux condenser
    конденса́тор па́мяти вчт.memory capacitor
    конденса́тор переме́нной ё́мкости — variable capacitor
    перехо́дный конденса́тор — interstage capacitor
    печа́тный конденса́тор — printed capacitor
    плё́ночный конденса́тор — film-type condenser
    плё́ночный, полистиро́льный конденса́тор — metallized polystyrene capacitor
    пло́ский конденса́тор — flat [parallel-plate, plane] capacitor
    пове́рхностный конденса́тор — surface condenser
    погружно́й конденса́тор — shell-and-coil condenser
    конденса́тор, подбира́емый при регулиро́вке — alignment [aligning] capacitor
    подстро́ечный конденса́тор — ( параллельный) trimmer (capacitor); ( последовательный) padder
    по́лный конденса́тор — (total) condenser
    полупереме́нный конденса́тор — adjustable capacitor
    помехоподавля́ющий конденса́тор автоinterference suppression capacitor
    конденса́тор постоя́нной ё́мкости — fixed capacitor
    предвари́тельный конденса́тор — precondenser
    промежу́точный конденса́тор — intercondenser
    противото́чный конденса́тор — counter-current condenser
    проходно́й конденса́тор — feed-through capacitor
    прямото́чный конденса́тор — parallel-current [co-current] condenser
    пусково́й конденса́тор — starting capacitor
    развя́зывающий конденса́тор — decoupling capacitor
    раздели́тельный конденса́тор (по постоя́нному то́ку) — (d.c.) blocking capacitor
    конденса́тор растя́жки диапазо́на — band-spreading capacitor
    регенерати́вный конденса́тор — regenerative condenser
    самопрото́чный конденса́тор — scoop condenser
    светочувстви́тельный конденса́тор — light-sensitive capacitor
    конденса́тор свя́зи — coupling condenser
    конденса́тор свя́зи (по переме́нному то́ку) — (a.c.) coupling capacitor
    сегнетоэлектри́ческий конденса́тор — ferroelectric capacitor
    силово́й конденса́тор — power capacitor
    слюдяно́й конденса́тор — mica capacitor
    конденса́тор смеше́ния — direct-contact condenser
    сопряга́ющий конденса́тор — tracking capacitor
    конденса́тор со структу́рой мета́лл-нитри́д-кре́мний — metal-nitride-silicon capacitor
    конденса́тор с разбры́згиванием, ци́нковый — splash condenser
    танта́ловый конденса́тор — tantalum capacitor
    телефо́нный конденса́тор — telephone capacitor
    толстоплё́ночный конденса́тор — thick-film capacitor
    тонкоплё́ночный конденса́тор — thin-film capacitor
    укора́чивающий конденса́тор ( в антенне) — loading capacitor
    фазосдвига́ющий конденса́тор — phase-shifting capacitor
    цилиндри́ческий конденса́тор — tubular capacitor
    эже́кторный конденса́тор — ejector-jet condenser
    электролити́ческий конденса́тор — electrolytic capacitor
    электролити́ческий, жи́дкостный конденса́тор — wet electrolytic capacitor
    электролити́ческий, поляризо́ванный конденса́тор — polarized electrolytic capacitor
    электролити́ческий, сухо́й конденса́тор — dry electrolytic capacitor
    электролити́ческий, фольго́вый конденса́тор — foil-type electrolytic capacitor
    * * *

    Русско-английский политехнический словарь > конденсатор

  • 11 давно известно, что

    Geologists have long been aware that the organic matter required for petroleum to be formed has accumulated in...

    It has long been known that sunspots usually appear in pairs or groups.

    * * *
    Давно известно, что
     It has long been known that cylindrical roller bearings are subjected to relatively large, intermittent thrust loads in a number of applications.
     It has long been recognized that seal rings faces may deflect out of their original lapped-in plane.
     It has been known for years that differences of this order of magnitude are shown by published data and equations obtained by different methods.

    Русско-английский научно-технический словарь переводчика > давно известно, что

  • 12 описываться

    Описываться - to be described, to be outlined, to be reported, to be represented, to be delineated (излагаться); to be governed, to obey (уравнением)
     The extensions to more complex loadings are described by P. [...].
     The basic analytical design approach used to establish specific cooling geometry arrangements for actual combustor application is outlined in [...].
     A case similar to the first series but with somewhat different conditions at the duct entry has also been reported in reference [...].
     The moving interface is represented by a succession of concentric circles.
     The steady state value of h for each heating rate is delineated by a horizontal line.
     However, wave propagation is nonuniform in the direction normal to the plane of the shear layer and is governed by (...).

    Русско-английский научно-технический словарь переводчика > описываться

См. также в других словарях:

  • plane — noun 1 ⇨ See also ↑aeroplane, ↑airplane ADJECTIVE ▪ light, small ▪ commercial, passenger ▪ the first generation of passenger planes, like the Boeing 707 …   Collocations dictionary

  • Plane symmetry — means a symmetry of a pattern in the Euclidean plane; that is, a transformation of the plane that carries any directioned lines to lines and preserves many different distances. If one has a pattern in the plane, the set of plane symmetries that… …   Wikipedia

  • Different Directions (John Denver album) — Different Directions Studio album by John Denver Released …   Wikipedia

  • Plane (tool) — A plane is a tool for shaping wood. Planes are used to flatten, reduce the thickness of, and impart a smooth surface to a rough piece of lumber. Special types of planes are designed to cut joints or decorative mouldings.Hand planes are generally… …   Wikipedia

  • Plane (Dungeons & Dragons) — Ethereal plane redirects here. For the mystical concept, see Etheric plane. The planes of the Dungeons Dragons roleplaying game constitutes the multiverse in which the game takes place. In the earliest versions of Dungeons Dragons, the concept of …   Wikipedia

  • Plane (Magic: The Gathering) — In Magic: The Gathering, planes are parallel universes in the Multiverse (which used to be referred to as Dominia.) Planes are often confused with planets by Magic players, because most planes are named after their primary planets. The two main… …   Wikipedia

  • Plane (geometry) — Two intersecting planes in three dimensional space In mathematics, a plane is a flat, two dimensional surface. A plane is the two dimensional analogue of a point (zero dimensions), a line (one dimension) and a space (three dimensions). Planes can …   Wikipedia

  • plane — plane1 W3S2 [pleın] n ↑cockpit, ↑wing, ↑tail ▬▬▬▬▬▬▬ 1¦(aircraft)¦ 2¦(level)¦ 3¦(tool)¦ 4¦(tree)¦ 5¦(surface)¦ ▬▬▬▬▬▬▬ [Sense: 1; Date: 1900 2000; …   Dictionary of contemporary English

  • plane — [[t]ple͟ɪn[/t]] ♦♦ planes, planing, planed 1) N COUNT A plane is a vehicle with wings and one or more engines, which can fly through the air. He had plenty of time to catch his plane... Her mother was killed in a plane crash. ...fighter planes.… …   English dictionary

  • plane — 1. n., adj., & v. n. 1 a a flat surface on which a straight line joining any two points on it would wholly lie. b an imaginary flat surface through or joining etc. material objects. 2 a level surface. 3 colloq. = AEROPLANE. 4 a flat surface… …   Useful english dictionary

  • Plane of reference — A term used in celestial mechanics, the plane of reference is the plane by means of which orbital elements (positions) are defined. The two main orbital elements that are measured with respect to the plane of reference are the inclination and the …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»