Перевод: со всех языков на все языки

со всех языков на все языки

mechanical,+pneumatic+and+hydraulic+engineering

  • 41 Booth, Hubert Cecil

    [br]
    b. 1871 Gloucester, England d. 1955
    [br]
    English mechanical, civil and construction engineer best remembered as the inventor of the vacuum cleaner.
    [br]
    As an engineer Booth contributed to the design of engines for Royal Navy battleships, designed and supervised the erection of a number of great wheels (in Blackpool, Vienna and Paris) and later designed factories and bridges.
    In 1900 he attended a demonstration, at St Paneras Station in London, of a new form of railway carriage cleaner that was supposed to blow the dirt into a container. It was not a very successful experiment and Booth, having considered the problem carefully, decided that sucking might be better than blowing. He tried out his idea by placing a piece of damp cloth over an upholstered armchair. When he sucked air by mouth through his cloth the dirt upon it was tangible proof of his theory.
    Various attempts were being made at this time, especially in America, to find a successful cleaner of carpets and upholstery. Booth produced the first truly satisfactory machine, which he patented in 1901, and coined the term "vacuum cleaner". He formed the Vacuum Cleaner Co. (later to become Goblin BVC Ltd) and began to manufacture his machines. For some years the company provided a cleaning service to town houses, using a large and costly vacuum cleaner (the first model cost £350). Painted scarlet, it measured 54×10×42 in. (137×25×110 cm) and was powered by a petrol-driven 5 hp piston engine. It was transported through the streets on a horse-driven van and was handled by a team of operators who parked outside the house to be cleaned. With the aid of several hundred feet of flexible hose extending from the cleaner through the windows into all the rooms, the machine sucked the dirt of decades from the carpets; at the first cleaning the weight of many such carpets was reduced by 50 per cent as the dirt was sucked away.
    Many attempts were made in Europe and America to produce a smaller and less expensive machine. Booth himself designed the chief British model in 1906, the Trolley- Vac, which was wheeled around the house on a trolley. Still elaborate, expensive and heavy, this machine could, however, be operated inside a room and was powered from an electric light fitting. It consisted of a sophisticated electric motor and a belt-driven rotary vacuum pump. Various hoses and fitments made possible the cleaning of many different surfaces and the dust was trapped in a cloth filter within a small metal canister. It was a superb vacuum cleaner but cost 35 guineas and weighed a hundredweight (50 kg), so it was difficult to take upstairs.
    Various alternative machines that were cheaper and lighter were devised, but none was truly efficient until a prototype that married a small electric motor to the machine was produced in 1907 in America.
    [br]
    Further Reading
    The Story of the World's First Vacuum Cleaner, Leatherhead: BSR (Housewares) Ltd. See also Hoover, William Henry.
    DY

    Biographical history of technology > Booth, Hubert Cecil

  • 42 Donkin, Bryan I

    [br]
    b. 22 March 1768 Sandoe, Northumberland, England
    d. 27 February 1855 London, England
    [br]
    English mechanical engineer and inventor.
    [br]
    It was intended that Bryan Donkin should follow his father's profession of surveyor and land agent, so he spent a year or so in that occupation before he was apprenticed to John Hall, millwright of Dartford, Kent. Donkin remained with the firm after completing his apprenticeship, and when the Fourdrinier brothers in 1802 introduced from France an invention for making paper in continuous lengths they turned to John Hall for help in developing the machine: Donkin was chosen to undertake the work. In 1803 the Fourdriniers established their own works in Bermondsey, with Bryan Donkin in charge. By 1808 Donkin had acquired the works, but he continued to manufacture paper-making machines, paying a royalty to the patentees. He also undertook other engineering work including water-wheels for driving paper and other mills. He was also involved in the development of printing machinery and the preservation of food in airtight containers. Some of these improvements were patented, and he also obtained patents relating to gearing, steel pens, paper-making and railway wheels. Other inventions of Bryan Donkin that were not patented concerned revolution counters and improvements in accurate screw threads for use in graduating mathematical scales. Donkin was elected a member of the Society of Arts in 1803 and was later Chairman of the Society's Committee of Mechanics and a Vice-President of the society. He was also a member of the Royal Astronomical Society. In 1818 a group of eight young men founded the Institution of Civil Engineers; two of them were apprentices of Bryan Donkin and he encouraged their enterprise. After a change in the rules permitted the election of members over the age of 35, he himself became a member in 1821. He served on the Council and became a Vice- President, but he resigned from the Institution in 1848.
    [br]
    Principal Honours and Distinctions
    FRS 1838. Vice-President, Institution of Civil Engineers 1826–32, 1835–45. Member, Smeatonian Society of Civil Engineers 1835; President 1843. Society of Arts Gold Medal 1810, 1819.
    Further Reading
    S.B.Donkin, 1949–51, "Bryan Donkin, FRS, MICE 1768–1855", Transactions of the Newcomen Society 27:85–95.
    RTS

    Biographical history of technology > Donkin, Bryan I

  • 43 Archimedes of Syracuse

    [br]
    b. 287 BC
    d. 212 BC
    [br]
    Greek engineer who made the first measurement of specific gravity.
    [br]
    He studied in Alexandria, after which he returned to Syracuse where he spent most of the rest of his life. He made many mathematical discoveries, including the most accurate calculation of pi made up to that time. In engineering he was the founder of the science of hydrostatics. He is well known for the discovery of "Archimedes" Law', that a body wholly or partly immersed in a fluid loses weight equal to the weight of the fluid displaced. He thus made the first measurement of specific gravity.
    Archimedes also proved the law of the lever and developed the theory of mechanical advantage, boasting to his cousin Hieron, "Give me a place to stand on and with a lever I will move the whole world." To prove his point, he launched one of the biggest ships built up to that date. During his time in Egypt, he devised the "Archimedean Screw", still used today in Middle Eastern countries for pumping water. He also built an astronomical instrument to demonstrate the movements of the heavenly bodies, a form of orrery.
    He was General of Ordnance to Heiron, and when the Romans besieged Syracuse, a legionary came across Archimedes drawing geometrical diagrams in the sand. Archimedes immediately told him to 'Keep off and the soldier killed him. He also experimented with burning glasses and mirrors for setting fire to wooden ships.
    [br]
    Further Reading
    L.Sprague de Camp, 1963, Ancient Engineers, Souvenir Press. E.J.Dijksterhuis, 1956, Archimedes, Copenhagen: Munksgaard.
    IMcN

    Biographical history of technology > Archimedes of Syracuse

  • 44 Bullard, Edward Payson

    [br]
    b. 18 April 1841 Uxbridge, Massachusetts, USA
    d. 22 December 1906 Bridgeport, Connecticut, USA
    [br]
    American mechanical engineer and machine-tool manufacturer who designed machines for boring.
    [br]
    Edward Payson Bullard served his apprenticeship at the Whitin Machine Works, Whitinsville, Massachusetts, and worked at the Colt Armory in Hartford, Connecticut, until 1863; he then entered the employ of Pratt \& Whitney, also in Hartford. He later formed a partnership with J.H.Prest and William Parsons manufacturing millwork and tools, the firm being known as Bullard \& Prest. In 1866 Bullard organized the Norwalk Iron Works Company of Norwalk, Connecticut, but afterwards withdrew and continued the business in Hartford. In 1868 the firm of Bullard \& Prest was dissolved and Bullard became Superintendent of a large machine shop in Athens, Georgia. He later organized the machine tool department of Post \& Co. at Cincinnati, and in 1872 he was made General Superintendent of the Gill Car Works at Columbus, Ohio. In 1875 he established a machinery business in Beekman Street, New York, under the name of Allis, Bullard \& Co. Mr Allis withdrew in 1877, and the Bullard Machine Company was organized.
    In 1880 Bullard secured entire control of the business and also became owner of the Bridgeport Machine Tool Works, Bridgeport, Connecticut. In 1883 he designed his first vertical boring and turning mill with a single head and belt feed and a 37 in. (94 cm) capacity; this was the first small boring machine designed to do the accurate work previously done on the face plate of a lathe. In 1889 Bullard gave up his New York interests and concentrated his entire attention on manufacturing at Bridgeport, the business being incorporated in 1894 as the Bullard Machine Tool Company. The company specialized in the construction of boring machines, the design being developed so that it became essentially a vertical turret lathe. After Bullard's death, his son Edward Payson Bullard II (b. 10 July 1872 Columbus, Ohio, USA; d. 26 June 1953 Fairfield, Connecticut, USA) continued as head of the company and further developed the boring machine into a vertical multi-spindle automatic lathe which he called the "Mult-au-matic" lathe. Both father and son were members of the American Society of Mechanical Engineers.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven: Yale University Press; repub. 1926, New York and 1987, Bradley, Ill.: Lindsay Publications Inc. (describes Bullard's machines).
    RTS

    Biographical history of technology > Bullard, Edward Payson

  • 45 Holly, Birdsill

    [br]
    b. Auburn, New York, USA
    d. 27 April 1894 Lockport, New York, USA
    [br]
    American inventor of water-pumping machinery and a steam heating system.
    [br]
    Holly was educated in mechanics and millwrighting work. He was an indefatigable inventor and took out over 150 patents for his ideas. He became Superintendent and later Proprietor of a millwrighting shop in Uniontown, Pennsylvania. Then at Seneca Falls, New York, he began manufacturing hydraulic machinery with the firm of Silsby, Race \& Holly. He made the Silsby fire-engine famous through his invention in 1852 of a rotary pump which was later developed into a steam fire pump. In 1866 he introduced at Lockport, New York, a pressurized water-supply system using a pump rather than an elevated reservoir or standpipe. While this installation at Lockport was powered by a water-wheel, a second one in Dunkirk, New York, used steam-driven pumps, which had a significant effect on the history of steam pumping engines.
    [br]
    Further Reading
    Obituary, 1894, Engineering Record 29.
    Obituary, 1894, Iron Age 53.
    I.McNeil (ed.), 1990, An Encyclopaedia of the History of Technology, London: Routledge (mentions his work on water supply).
    RLH

    Biographical history of technology > Holly, Birdsill

  • 46 Howe, Frederick Webster

    [br]
    b. 28 August 1822 Danvers, Massachusetts, USA
    d. 25 April 1891 Providence, Rhode Island, USA
    [br]
    American mechanical engineer, machine-tool designer and inventor.
    [br]
    Frederick W.Howe attended local schools until the age of 16 and then entered the machine shop of Gay \& Silver at North Chelmsford, Massachusetts, as an apprentice and remained with that firm for nine years. He then joined Robbins, Kendall \& Lawrence of Windsor, Vermont, as Assistant to Richard S. Lawrence in designing machine tools. A year later (1848) he was made Plant Superintendent. During his time with this firm, Howe designed a profiling machine which was used in all gun shops in the United States: a barrel-drilling and rifling machine, and the first commercially successful milling machine. Robbins \& Lawrence took to the Great Exhibition of 1851 in London, England, a set of rifles built on the interchangeable system. The interest this created resulted in a visit of some members of the British Royal Small Arms Commission to America and subsequently in an order for 150 machine tools, jigs and fixtures from Robbins \& Lawrence, to be installed at the small-arms factory at Enfield. From 1853 to 1856 Howe was in charge of the design and building of these machines. In 1856 he established his own armoury at Newark, New Jersey, but transferred after two years to Middletown, Connecticut, where he continued the manufacture of small arms until the outbreak of the Civil War. He then became Superintendent of the armoury of the Providence Tool Company at Providence, Rhode Island, and served in that capacity until the end of the war. In 1865 he went to Bridgeport, Connecticut, to assist Elias Howe with the manufacture of his sewing machine. After the death of Elias Howe, Frederick Howe returned to Providence to join the Brown \& Sharpe Manufacturing Company. As Superintendent of that establishment he worked with Joseph R. Brown in the development of many of the firm's products, including machinery for the Wilcox \& Gibbs sewing machine then being made by Brown \& Sharpe. From 1876 Howe was in business on his own account as a consulting mechanical engineer and in his later years he was engaged in the development of shoe machinery and in designing a one-finger typewriter, which, however, was never completed. He was granted several patents, mainly in the fields of machine tools and firearms. As a designer, Howe was said to have been a perfectionist, making frequent improvements; when completed, his designs were always sound.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; repub. 1926, New York, and 1987, Bradley, 111. (provides biographical details).
    R.S.Woodbury, 1960, History of the Milling Machine, Cambridge, Mass, (describes Howe's contribution to the development of the milling machine).
    RTS

    Biographical history of technology > Howe, Frederick Webster

  • 47 Millington, John

    [br]
    b. 1779
    d. 1868
    [br]
    English engineer and educator.
    [br]
    John Millington was Professor of Mechanics at the Royal Institution, London, from 1817 to 1829. He gave numerous courses on natural philosophy and mechanics and supported the introduction of coal gas for lighting. In 1823 he testified to a Select Committee of the House of Commons that the spread of gas lighting would greatly benefit the preservation of law and order, and with the same utilitarian and penal inclination he devised a treadmill for use in the Bedfordshire House of Correction. Millington was appointed the first Professor of Engineering and the Application of Mechanical Philosophy to the Arts at the newly founded University of London in 1828, but he speedily resigned from the post, preferring to go to Mexico in 1829. Like Trevithick and Robert Stephenson before him, he was attracted to the New World by the possibility of using new techniques to reopen old mines, and he became an engineer to some Mexican mining projects. In 1837 he went to Williamsburg in the United States, being appointed Professor of Chemistry, and it was there that he died in 1868. Millington wrote extensively on scientific subjects.
    [br]
    Further Reading
    Dictionary of National Biography.
    M.Berman, The Royal Institution, pp. 46, 98–9.
    AB

    Biographical history of technology > Millington, John

  • 48 Norton, Charles Hotchkiss

    [br]
    b. 23 November 1851 Plainville, Connecticut, USA
    d. 27 October 1942 Plainville, Connecticut, USA
    [br]
    American mechanical engineer and machine-tool designer.
    [br]
    After an elementary education at the public schools of Plainville and Thomaston, Connecticut, Charles H.Norton started work in 1866 at the Seth Thomas Clock Company in Thomaston. He was soon promoted to machinist, and further progress led to his successive appointments as Foreman, Superintendent of Machinery and Manager of the department making tower clocks. He designed many public clocks.
    In 1886 he obtained a position as Assistant Engineer with the Brown \& Sharpe Manufacturing Company at Providence, Rhode Island, and was engaged in redesigning their universal grinding machine to give it more rigidity and make it more suitable for use as a production machine. In 1890 he left to become a partner in a newly established firm, Leland, Faulconer \& Norton Company at Detroit, Michigan, designing and building machine tools. He withdrew from this firm in 1895 and practised as a consulting mechanical engineer for a short time before returning to Brown \& Sharpe in 1896. There he designed a grinding machine incorporating larger and wider grinding wheels so that heavier cuts could be made to meet the needs of the mass-production industries, especially the automobile industry. This required a heavier and more rigid machine and greater power, but these ideas were not welcomed at Brown \& Sharpe and in 1900 Norton left to found the Norton Grinding Company in Worcester, Massachusetts. Here he was able to develop heavy-production grinding machines, including special machines for grinding crank-shafts and camshafts for the automobile industry.
    In setting up the Norton Grinding Company, Charles H.Norton received financial support from members of the Norton Emery Wheel Company (also of Worcester and known after 1906 as the Norton Company), but he was not related to the founder of that company. The two firms were completely independent until 1919 when they were merged. From that time Charles H.Norton served as Chief Engineer of the machinery division of the Norton Company, until 1934 when he became their Consulting Engineer.
    [br]
    Principal Honours and Distinctions
    City of Philadelphia, John Scott Medal 1925.
    Bibliography
    Further Reading
    Robert S.Woodbury, 1959, History of the Grinding Machine, Cambridge, Mass, (contains biographical information and details of the machines designed by Norton).
    RTS

    Biographical history of technology > Norton, Charles Hotchkiss

  • 49 Stuart, James

    [br]
    b. 2 January 1843 Balgonie, Fife, Scotland
    d. 12 October 1913 Norwich, Norfolk, England
    [br]
    Scottish engineer and educator.
    [br]
    James Stuart established the teaching of engineering as a university discipline at Cambridge. He was born at Balgonie in Fife, where his father managed a linen mill. He attended the University of St Andrews and then studied mathematics at Cambridge University. In 1867 he took up a post as Assistant Tutor at Trinity College, Cambridge, where his skills as a teacher were quickly recognized. The University was at that time adapting itself to the new systems of instruction recommended by the Royal Commission on university reform in the 1850s, and Stuart took an active part in the organization of a new structure of inter-collegiate lecture courses. He made an even more significant contribution to the establishment of extramural courses from which the Cambridge University extension lecture programme developed. This began in 1867, when Stuart took adult classes in Manchester and Crewe. The latter, in particular, brought him into close contact with those involved in practical mechanics and stimulated his interest in the applied sciences. In 1875 he was elected to the newly created Chair of Mechanism and Engineering in Cambridge, and he set out energetically to recruit students and to build up a flourishing unit with its own workshop and foundry, training a new generation of engineers in the applied sciences.
    In November 1884 Stuart was elected to Parliament and embarked on an active but somewhat undistinguished career in politics as a radical Liberal, becoming amongst other things a keen supporter of the women's suffrage movement. This did not endear him to his academic colleagues, and the Engineering School suffered from neglect by Stuart until he resigned the Chair in 1890. By the time he left, however, the University was ready to recognize Engineering as a Tripos subject and to accept properly equipped teaching laboratories, so that his successor J.A. Ewing was able to benefit from Stuart's pioneering work. Stuart continued his political activities and was appointed a Privy Councillor in 1909. He married Elizabeth Colman after resigning the Chair, and on the death of his father-in-law in 1898 he moved to Norwich to take on the direction of the family mustard firm, J. \& J.Colman Ltd.
    [br]
    Further Reading
    Hilken, 1967, Engineering at Cambridge, Ch. 3, pp. 58–106.
    AB

    Biographical history of technology > Stuart, James

  • 50 Whitney, Amos

    [br]
    b. 8 October 1832 Biddeford, Maine, USA
    d. 5 August 1920 Poland Springs, Maine, USA
    [br]
    American mechanical engineer and machine-tool manufacturer.
    [br]
    Amos Whitney was a member of the same distinguished family as Eli Whitney. His father was a locksmith and machinist and he was apprenticed at the age of 14 to the Essex Machine Company of Lawrence, Massachusetts. In 1850 both he and his father were working at the Colt Armory in Hartford, Connecticut, where he first met his future partner, F.A. Pratt. They both subsequently moved to the Phoenix Iron Works, also at Hartford, and in 1860 they started in a small way doing machine work on their own account. In 1862 they took a third partner, Monroe Stannard, and enlarged their workshop. The business continued to expand, but Pratt and Whitney remained at the Phoenix Iron Works until 1864 and in the following year they built their first new factory. The Pratt \& Whitney Company was incorporated in 1869 with a capital of $350,000, Amos Whitney being appointed General Superintendent. The firm specialized in making machine tools and tools particularly for the armament industry. Pratt \& Whitney was one of the leading firms developing the system of interchangeable manufacture which led to the need to establish national standards of measurement. The Rogers-Bond Comparator, developed with the backing of Pratt \& Whitney, played an important part in the establishment of these standards, which formed the basis of the gauges of many various types made by the firm.
    Amos Whitney was made Vice-President of Pratt \& Whitney Company in 1893 and was President from 1898 until 1901, when the company was acquired by the Niles- Bement-Pond Company: he then remained as one of the directors. He was elected a Member of the American Society of Mechanical Engineers in 1913.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; reprinted 1926, New York, and 1987, Bradley, Ill. (describes the origin and development of the Pratt \& Whitney Company).
    RTS

    Biographical history of technology > Whitney, Amos

  • 51 Gascoigne, William

    [br]
    b. 1612 (?) near Leeds, Yorkshire, England
    d. 2 July 1644 Marston Moor, Yorkshire, England
    [br]
    English astronomer and inventor of the micrometer.
    [br]
    As the son of a country gentleman, William Gascoigne would have had opportunities to receive reasonable schooling, but there is no record of how or where he was educated. However, by the late 1630s he had acquired a considerable knowledge of astronomy and was in correspondence with other scholars. About 1638 he invented an instrument to measure small angles in a telescope, consisting of two parallel wires in the eye piece moved by a calibrated screw. His invention remained unknown until it was reinvented thirty years later. He is said to have left the manuscript of a treatise on optics, but this did not survive. He was killed fighting for the royalist side at the battle of Marston Moor.
    [br]
    Further Reading
    C.C.Gillespie (ed.), 1970–6, Dictionary of Scientific Biography, New York, s.v.Gascoigne; Towneley.
    A.F.Burstall, 1963, A History of Mechanical Engineering, London, p. 159 (includes a drawing of Gascoigne's micrometer).
    RTS

    Biographical history of technology > Gascoigne, William

  • 52 Heald, James Nichols

    [br]
    b. 21 September 1864 Barre, Massachusetts, USA
    d. 7 May 1931 Worcester, Massachusetts, USA
    [br]
    American mechanical engineer and machine-tool manufacturer who concentrated on grinding machines.
    [br]
    James N.Heald was the son of Leander S.Heald and was educated at the Worcester Polytechnic Institute, graduating with the degree of Bachelor of Science in 1884. He then joined the firm that had been established by his grandfather, Stephen Heald, in 1826; this was a machine shop and foundry then known as S.Heald \& Son. When his grandfather died in 1888, James Heald took over the management of the business, which then became known as L.S.Heald \& Son. He concentrated on the manufacture of grinding machines and in 1903 bought out his father's interest and organized the Heald Machine Company. James Heald then began the development of a series of grinding machines designed to meet the needs of the expanding automobile industry. Special machines were produced for grinding piston rings making use of the recently invented magnetic chuck, and for cylinder bores he introduced the planetary grinder. Heald was a member of the National Machine Tool Builders' Association and served as its Treasurer and on its Board of Directors. He was elected a member of the American Society of Mechanical Engineers in 1917 and was also a member of the Society of Automotive Engineers.
    [br]
    Further Reading
    Robert S.Woodbury, 1959, History of the Grinding Machine, Cambridge, Mass (describes his grinding machines).
    L.T.C.Rolt, 1965, Tools for the Job, London; repub. 1986 (describes his grinding machines).
    RTS

    Biographical history of technology > Heald, James Nichols

  • 53 Parkhurst, Edward G.

    [br]
    b. 29 August 1830 Thompson, Connecticut, USA
    d. 31 July 1901 Hartford, Connecticut, USA
    [br]
    American mechanical engineer and inventor.
    [br]
    Little is known of the early training of Edward G. Parkhurst, but at the time of Civil War (1861–5) he was employed by the Savage Arms Company of Middletown, Connecticut. In 1869 he joined the Pratt \& Whitney Company of Hartford, Connecticut, as Assistant Superintendent and later took charge of their gun department. He was the inventor of many improvements in machine tools and armaments. Among these was an automatic rod feeder for turret lathes, in which movement of a single lever enabled bar stock to be fed through the lathe spindle and gripped by a collet chuck while the machine was in motion. This was patented in August 1871 and was followed by other patents, particularly for improvements in machine guns and their accessories. Parkhurst retired from Pratt \& Whitney c. 1895 but was afterwards associated with the American Ordnance Company and the Bethlehem Steel Company. He was a founder member of the American Society of Mechanical Engineers in 1880 and served his home city of Hartford as Councillor and Alderman. In 1900 he contributed to the journal American Machinist some articles of reminiscences dealing with the early history of the American machine-tool industry and, in particular, the earliest milling machines and the origin of the turret lathe.
    RTS

    Biographical history of technology > Parkhurst, Edward G.

  • 54 Wilson, Robert

    [br]
    b. September 1803 Dunbar, Haddingtonshire, East Lothian, Scotland
    d. 28 July 1882 Matlock, Derbyshire, England
    [br]
    Scottish mechanical engineer and inventor who developed the self-acting control gear applied to the steam-hammer.
    [br]
    Robert Wilson was the son of a fisherman who was drowned in a lifeboat rescue attempt in December 1810. He received only a meagre education and was apprenticed to a joiner. From a very early age he was much concerned with the idea of applying screw propellers to ships, and his invention was approved by the Highland Society and by the Scottish Society of Arts, who in 1832 awarded him a silver medal. He must have gained some experience as a mechanic and while working on his invention he made the acquaintance of James Nasmyth. In 1838 he became Works Manager at Nasmyth's Bridgewater Foundry and made an important contribution to the success of the steam-hammer by developing the self-acting control gear. From 1845 he was with the Low Moor Ironworks near Bradford, Yorkshire, but in July 1856 he returned to the Bridgewater Foundry so that he was able to take over as Managing Partner after Nasmyth's early retirement at the end of 1856. In 1867 the name of the firm was changed to Nasmyth, Wilson \& Co., and Wilson remained a partner until May 1882, when the firm became a limited company. Wilson often returned to his first invention, and two of his many patents related to improvements in screw propellers. In 1880 he received £500 from the War Department for the use of his double-action screw propeller as applied to the torpedo.
    [br]
    Principal Honours and Distinctions
    Member, Institution of Mechanical Engineers 1857. FRSE 1873. Member, Royal Scottish Society of Arts.
    Bibliography
    1860, The Screw Propeller: Who Invented It?, Glasgow.
    Further Reading
    J.A.Cantrell, 1984, James Nasmyth and the Bridgewater Foundry, Manchester, Appendix F, pp. 262–3 (a short biographical account and a list of his patents).
    RTS

    Biographical history of technology > Wilson, Robert

  • 55 Zonca, Vittorio

    [br]
    b. c. 1568 Italy
    d. 1603 Italy
    [br]
    Italian architect who wrote a book on machines.
    [br]
    All that is known of Zonca is included on the frontispiece of the book that is his only claim to fame. He is there described as architect to the "Magnificent Community of Padua". He compiled a book on machines entitled Novo teatro de machine ed edificii (New Display of Machines and Edifices), illustrated with numerous fine engravings. It was printed in Padua in 1607, four years after his death, by Francesco Bertelli, who said of the book that it "came into my hands", as though he knew nothing of the author.
    During the sixteenth and early seventeenth centuries, a number of illustrated books on technical subjects appeared, compiled by knowledgeable and educated authors. These books greatly helped the spread of information about the technical arts throughout Europe. There were several books on mechanical devices, notably those by Ramelli, Besson and Zonca. In some ways, Zonca's is the most interesting, for it seems closest to the mechanical practice of the time. Several of the machines he describes are referred to as being in use in Padua or Venice and he suggests ways of improving them. The range of machines is wider than in other similar works and includes pumps, cranes, powder mills, printing and bookbinding presses and textile machines. Perhaps the most interesting of these is the water-driven silk-threading machine, since some of its components resemble those in use in the twentieth century. Spinning mills were widely used in the silk industry in sixteenth-century Italy, and Zonca offers a full description of one. He also shows the first example of an oblique treadwheel, driven by oxen for the grinding of grain. Even so, despite all the practical detail, the book ends, like others of its kind, with fantasy, in a description of a perpetual-motion machine.
    [br]
    Further Reading
    A.G.Keller, 1964, A Theatre of Machines, London: Chapman \& Hall (provides brief details and illustrations from the books by Ramelli, Besson and Zonca).
    LRD

    Biographical history of technology > Zonca, Vittorio

  • 56 Reynolds, Osborne

    [br]
    b. 23 April 1842 Belfast, Ireland
    d. 1912 Watchet, Somerset, England
    [br]
    English engineer and educator.
    [br]
    Osborne Reynolds's father, a clergyman and schoolteacher, had been a Fellow of Queens' College, Cambridge; it was to Queens' that the young Reynolds went to study mathematics, graduating as 7th Wrangler in 1867, and going on in his turn to become a Fellow of the College. Reynolds had developed an interest in practical applications of physics and engineering, and for a short time he entered the office of the London civil engineers Lawson and Mansergh. In 1868 he was appointed to the new Chair of Engineering at Owens College, Manchester, and he remained in this post for thirty-seven years, until he retired in 1905. During this period he presided over a department that grew steadily in size and reputation, and undertook prolonged research projects into phenomena such as lubrication, the laws governing the flow of water in pipes, turbulence and other physical features with practical applications. He was elected a Fellow of the Royal Society in 1877, being nominated Royal Medallist in 1888. In 1883 he became a Member of the Institution of Civil Engineers, and in 1885 he was awarded the Telford Premium of the Institution. He served as Secretary of the Manchester Literary and Philosophical Society from 1874 to 1883, and was appointed President in 1888–9 and Dalton Medallist in 1903. He was President of Section G of the British Association for the History of Science in 1887, and in 1884 he received the degree of LLD from Glasgow University. Among his many students at Owens College was J.J. (later Sir Joseph) Thomson (1856–1940), who entered the college in 1871. Reynolds's collected scientific papers were published in 1900–3.
    [br]
    Principal Honours and Distinctions
    FRS 1877. Institution of Civil Engineers Telford Premium 1885. President, Manchester Literary and Philosophical Society 1888–9. Manchester Literary and Philosophical Society, Dalton Medal 1903.
    Further Reading
    Dictionary of National Biography Supplement.
    D.M.McDowell and J.D.Jackson (eds), 1970, Osborne Reynolds and Engineering Science Today, Manchester: Manchester University Press.
    AB

    Biographical history of technology > Reynolds, Osborne

  • 57 Hero of Alexandria

    [br]
    fl. c.62 AD Alexandria
    [br]
    Alexandrian mathematician and mechanician.
    [br]
    Nothing is known of Hero, or Heron, apart from what can be gleaned from the books he wrote. Their scope and style suggest that he was a teacher at the museum or the university of Alexandria, writing textbooks for his students. The longest book, and the one with the greatest technological interest, is Pneumatics. Some of its material is derived from the works of the earlier writers Ctesibius of Alexandria and Philo of Byzantium, but many of the devices described were invented by Hero himself. The introduction recognizes that the air is a body and demonstrates the effects of air pressure, as when air must be allowed to escape from a closed vessel before water can enter. There follow clear descriptions of a variety of mechanical contrivances depending on the effects of either air pressure or heated gases. Most of the devices seem trivial, but such toys or gadgets were popular at the time and Hero is concerned to show how they work. Inventions with a more serious purpose are a fire pump and a water organ. One celebrated gadget is a sphere that is set spinning by jets of steam—an early illustration of the reaction principle on which modern jet propulsion depends.
    M echanics, known only in an Arabic version, is a textbook expounding the theory and practical skills required by the architect. It deals with a variety of questions of mechanics, such as the statics of a horizontal beam resting on vertical posts, the theory of the centre of gravity and equilibrium, largely derived from Archimedes, and the five ways of applying a relatively small force to exert a much larger one: the lever, winch, pulley, wedge and screw. Practical devices described include sledges for transporting heavy loads, cranes and a screw cutter.
    Hero's Dioptra describes instruments used in surveying, together with an odometer or device to indicate the distance travelled by a wheeled vehicle. Catoptrics, known only in Latin, deals with the principles of mirrors, plane and curved, enunciating that the angle of incidence is equal to that of reflection. Automata describes two forms of puppet theatre, operated by strings and drums driven by a falling lead weight attached to a rope wound round an axle. Hero's mathematical work lies in the tradition of practical mathematics stretching from the Babylonians through Islam to Renaissance Europe. It is seen most clearly in his Metrica, a treatise on mensuration.
    Of all his works, Pneumatics was the best known and most influential. It was one of the works of Greek science and technology assimilated by the Arabs, notably Banu Musa ibn Shakir, and was transmitted to medieval Western Europe.
    [br]
    Bibliography
    All Hero's works have been printed with a German translation in Heronis Alexandrini opera quae supersunt omnia, 1899–1914, 5 vols, Leipzig. The book on pneumatics has been published as The Pneumatics of Hero of Alexandria, 1851, trans. and ed. Bennet Wood-croft, London (facs. repr. 1971, introd. Marie Boas Hall, London and New York).
    Further Reading
    A.G.Drachmann, 1948, "Ktesibios, Philon and Heron: A Study in Ancient Pneumatics", Acta Hist. Sci. Nat. Med. 4, Copenhagen: Munksgaard.
    T.L.Heath, 1921, A History of Greek Mathematics, Oxford (still useful for his mathematical work).
    LRD

    Biographical history of technology > Hero of Alexandria

  • 58 Root, Elisha King

    [br]
    b. 10 May 1808 Ludlow, Massachusetts, USA
    d. 31 August 1865 Hartford, Connecticut, USA
    [br]
    American mechanical engineer and inventor.
    [br]
    After an elementary education, Elisha K.Root was apprenticed as a machinist and worked in that occupation at Ware and Chicopee Falls, Massachusetts. In 1832 he went to Collinsville, Connecticut, to join the Collins Company, manufacturers of axes. He started as a lathe hand but soon became Foreman and, in 1845, Superintendent. While with the company, he devised and patented special-purpose machinery for forming axes which transformed the establishment from a primitive workshop to a modern factory.
    In 1849 Root was offered positions by four different manufacturers and accepted the post of Superintendent of the armoury then being planned at Hartford, Connecticut, by Samuel Colt for the manufacture of his revolver pistol, which he had invented in 1835. Initial acceptance of the revolver was slow, but by the mid1840s Colt had received sufficient orders to justify the establishment of a new factory and Root was engaged to design and install the machinery. The principle of interchangeable manufacture was adopted, and Root devised special machines for boring, rifling, making cartridges, etc., and a system of jigs, fixtures, tools and gauges. One of these special machines was a drop hammer that he invented and patented in 1853 and which established the art of die-forging on a modern basis. He was also associated with F.A. Pratt in the design of the "Lincoln" milling machine in 1855.
    When Colt died in 1862, Root became President of the company and continued in that capacity until his own death. It was said that he was one of the ablest and most highly paid mechanics from New England and that he was largely responsible for the success of both the Collins and the Colt companies.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; reprinted 1926, New York, and 1987, Bradley, Ill. (describes Root's work at the Colt Armory).
    Paul Uselding, 1974, "Elisha K.Root, Forging, and the “American System”", "Elisha K.Root, forging, and the “American System”", Technology and Culture 15:543–68 (provides further biographical details, his work with the Collins Company and a list of his patents).
    RTS

    Biographical history of technology > Root, Elisha King

  • 59 Clement (Clemmet), Joseph

    [br]
    bapt. 13 June 1779 Great Asby, Westmoreland, England
    d. 28 February 1844 London, England
    [br]
    English machine tool builder and inventor.
    [br]
    Although known as Clement in his professional life, his baptism at Asby and his death were registered under the name of Joseph Clemmet. He worked as a slater until the age of 23, but his interest in mechanics led him to spend much of his spare time in the local blacksmith's shop. By studying books on mechanics borrowed from his cousin, a watchmaker, he taught himself and with the aid of the village blacksmith made his own lathe. By 1805 he was able to give up the slating trade and find employment as a mechanic in a small factory at Kirkby Stephen. From there he moved to Carlisle for two years, and then to Glasgow where, while working as a turner, he took lessons in drawing; he had a natural talent and soon became an expert draughtsman. From about 1809 he was employed by Leys, Mason \& Co. of Aberdeen designing and making power looms. For this work he built a screw-cutting lathe and continued his self-education. At the end of 1813, having saved about £100, he made his way to London, where he soon found employment as a mechanic and draughtsman. Within a few months he was engaged by Joseph Bramah, and after a trial period a formal agreement dated 1 April 1814 was made by which Clement was to be Chief Draughtsman and Superintendent of Bramah's Pimlico works for five years. However, Bramah died in December 1814 and after his sons took over the business it was agreed that Clement should leave before the expiry of the five-year period. He soon found employment as Chief Draughtsman with Henry Maudslay \& Co. By 1817 Clement had saved about £500, which enabled him to establish his own business at Prospect Place, Newington Butts, as a mechanical draughtsman and manufacturer of high-class machinery. For this purpose he built lathes for his own use and invented various improvements in their detailed design. In 1827 he designed and built a facing lathe which incorporated an ingenious system of infinitely variable belt gearing. He had also built his own planing machine by 1820 and another, much larger one in 1825. In 1828 Clement began making fluted taps and dies and standardized the screw threads, thus anticipating on a small scale the national standards later established by Sir Joseph Whitworth. Because of his reputation for first-class workmanship, Clement was in the 1820s engaged by Charles Babbage to carry out the construction of his first Difference Engine.
    [br]
    Principal Honours and Distinctions
    Society of Arts Gold Medal 1818 (for straightline mechanism), 1827 (for facing lathe); Silver Medal 1828 (for lathe-driving device).
    Bibliography
    Further Reading
    S.Smiles, 1863, Industrial Biography, London, reprinted 1967, Newton Abbot (virtually the only source of biographical information on Clement).
    L.T.C.Rolt, 1965, Tools for the Job, London (repub. 1986); W.Steeds, 1969, A History of Machine Tools 1700–1910, Oxford (both contain descriptions of his machine tools).
    RTS

    Biographical history of technology > Clement (Clemmet), Joseph

  • 60 Donkin, Bryan II

    [br]
    b. 29 April 1809 London, England
    d. 4 December 1893 Blackheath, Kent, England
    [br]
    English mechanical engineer.
    [br]
    Bryan Donkin was the fifth son of Bryan Donkin I (1768–1855) and was educated at schools in Bromley (Kent), London, Paris and Nantes. He was an apprentice in his father's Bermondsey works and soon became an active and valuable assistant in the design and construction of papermaking, printing, pumping and other machinery. In 1829 he was sent to France to superintend the construction of paper mills and other machinery at Nantes. He later became a partner in the firm which in 1858 received an order to construct and set up a large paper mill at St Petersburg. This work took him to Russia several times before its completion in 1862. He obtained several patents relating to paper-making and steam engines. He was elected an associate of the Institution of Civil Engineers in 1835 and a member in 1840.
    [br]
    Principal Honours and Distinctions
    Member, Smeatonian Society of Civil Engineers 1859; President 1872.
    RTS

    Biographical history of technology > Donkin, Bryan II

См. также в других словарях:

  • Mechanical powder press — Contents 1 Function Principles of mechanical presses in the field of Technical Ceramics 2 Application Advantages in the field of Technical Ceramics 3 Context between ceramic compaction …   Wikipedia

  • Mechanical system — This article is about systems that manage mechanical movement. For other uses, see Machine (disambiguation). A mechanical system manages power to accomplish a task that involves forces and movement. Mechanical is derived from the Latin word… …   Wikipedia

  • Control engineering — Control systems play a critical role in space flight Control engineering or Control systems engineering is the engineering discipline that applies control theory to design systems with predictable behaviors. The practice uses sensors to measure… …   Wikipedia

  • Pneumatic valve springs — are metal bellows filled with compressed airCitation last = Scarborough first = Craig author link = last2 = first2 = author2 link = title = F1 Engines Valve technology date = year = url = http://scarbsf1.com/valves.html accessdate = 2007 03 05 ]… …   Wikipedia

  • tunnels and underground excavations — ▪ engineering Introduction        Great tunnels of the world Great tunnels of the worldhorizontal underground passageway produced by excavation or occasionally by nature s action in dissolving a soluble rock, such as limestone. A vertical opening …   Universalium

  • canals and inland waterways — ▪ waterway Introduction       natural or artificial waterways used for navigation, crop irrigation, water supply, or drainage.       Despite modern technological advances in air and ground transportation, inland waterways continue to fill a vital …   Universalium

  • Chuck (engineering) — Self centering three jaw chuck and key with one jaw removed and inverted showing the teeth that engage in the scroll plate. The scroll plate is rotated within the chuck body by the key, the scroll engages the teeth on the underside of the jaws… …   Wikipedia

  • Technological and industrial history of Canada — The technological and industrial history of Canada encompasses the country s development in the areas of transportation, communication, energy, materials, public works, public services (health care), domestic/consumer and defense technologies.… …   Wikipedia

  • harbours and sea works — Introduction harbour also spelled  harbor        any part of a body of water and the manmade structures surrounding it that sufficiently shelters a vessel from wind, waves, and currents, enabling safe anchorage or the discharge and loading of… …   Universalium

  • Lockout-Tagout — and placing it in such a position that no hazardous power sources can be turned on. The procedure requires that a tag be affixed to the locked device indicating that it should not be turned on.When two or more subcontractors are working on… …   Wikipedia

  • Shock absorber — Gas damper A shock absorber is a mechanical device designed to smooth out or damp shock impulse, and dissipate kinetic energy. It is a type of dashpot. Contents …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»