Перевод: со всех языков на все языки

со всех языков на все языки

mac-адрес

  • 41 RARP

    Сеть; Протокол Reverse Address Resolution Protocol Протокол обратного сопоставления адреса Протокол второго уровня, используемый для преобразования IP-адреса станции в ее MAC-адрес.

    English-Russian dictionary of computer abbreviations and terms > RARP

  • 42 DSG tunnel address

    1. адрес туннеля DSG

     

    адрес туннеля DSG
    Непосредственная ссылка на целевой адрес MAC туннеля DSG. Если происходит обращение к исходному адресу MAC, целевому адресу IP или к исходному адресу IP, такое обращение должно быть явно зафиксировано (МСЭ-Т J.128).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > DSG tunnel address

  • 43 access address

    адрес доступа, адрес обращения; указатель, [адресная] ссылка
    см., например, МАС-адрес (MAC address)

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > access address

  • 44 address

    адрес || адресовать
    - absolute address
    - actual address
    - address of address
    - allophone address
    - arithmetic address
    - auxiliary address
    - B address
    - base address
    - binary-coded address
    - blank address
    - block address
    - broadcast address
    - broken address
    - calculated address
    - call address
    - constant address
    - coordinate address
    - core memory address
    - current address
    - data address
    - destination address
    - direct address
    - dot address
    - drop address
    - dummy address
    - effective address
    - e-mail address
    - end address
    - entry-point address
    - executive address
    - explicit address
    - external device address
    - external address
    - extra address
    - final address
    - first-level address
    - fixed address
    - floating address
    - floating-point address
    - foreign address
    - frame address
    - generated address
    - global address
    - hash address
    - high load address
    - higher address
    - home address
    - host address
    - host apparent address
    - immediate address
    - implicit address
    - indexed address
    - indexing address
    - indirect address
    - initial address
    - instruction address
    - interleaved addresses
    - invalid address
    - key address
    - last field address
    - leading address
    - link address
    - linkage address
    - listener address
    - load-point address
    - load address
    - location address
    - logical address
    - lower address
    - memory address
    - multicast address
    - multilevel address
    - native address
    - network address
    - Nth-level address
    - number address
    - octal address
    - offset address
    - one-level address
    - operand address
    - out-of-range address
    - overflow exit address
    - page address
    - physical address
    - pointer address
    - preset address
    - presumptive address
    - program address
    - real address
    - reference address
    - regional address
    - relative address
    - relocatable address
    - relocation address
    - restart address
    - result address
    - return address
    - second-level address
    - self-relative address
    - sense address
    - single-level address
    - source address
    - specific address
    - starting address
    - start address
    - stop address
    - storage address
    - store address
    - subnet address
    - subroutine return address
    - symbolic address
    - synthetic address
    - talker address
    - talk address
    - transport address
    - true address
    - two-coordinate address
    - two-level address
    - unique address
    - unload address
    - variable address
    - vector address
    - virtual address
    - windowed address
    - word address
    - zero address
    - zero-level address

    English-Russian dictionary of computer science and programming > address

  • 45 технология коммутации

    1. switching technology

     

    технология коммутации
    -
    [Интент]

    Современные технологии коммутации
    [ http://www.xnets.ru/plugins/content/content.php?content.84]

    Статья подготовлена на основании материалов опубликованных в журналах "LAN", "Сети и системы связи", в книге В.Олифер и Н.Олифер "Новые технологии и оборудование IP-сетей", на сайтах www.citforum.ru и опубликована в журнале "Компьютерные решения" NN4-6 за 2000 год.

    Введение

    На сегодня практически все организации, имеющие локальные сети, остановили свой выбор на сетях типа Ethernet. Данный выбор оправдан тем, что начало внедрения такой сети сопряжено с низкой стоимостью и простотой реализации, а развитие - с хорошей масштабируемостью и экономичностью.

    Бросив взгляд назад - увидим, что развитие активного оборудования сетей шло в соответствии с требованиями к полосе пропускания и надежности. Требования, предъявляемые к большей надежности, привели к отказу от применения в качестве среды передачи коаксиального кабеля и перевода сетей на витую пару. В результате такого перехода отказ работы соединения между одной из рабочих станций и концентратором перестал сказываться на работе других рабочих станций сети. Но увеличения производительности данный переход не принес, так как концентраторы используют разделяемую (на всех пользователей в сегменте) полосу пропускания. По сути, изменилась только физическая топология сети - с общей шины на звезду, а логическая топология по-прежнему осталась - общей шиной.

    Дальнейшее развитие сетей шло по нескольким путям:

    • увеличение скорости,
    • внедрение сегментирования на основе коммутации,
    • объединение сетей при помощи маршрутизации.

    Увеличение скорости при прежней логической топологии - общая шина, привело к незначительному росту производительности в случае большого числа портов.

    Большую эффективность в работе сети принесло сегментирование сетей с использованием технология коммутации пакетов. Коммутация наиболее действенна в следующих вариантах:

    Вариант 1, именуемый связью "многие со многими" – это одноранговые сети, когда одновременно существуют потоки данных между парами рабочих станций. При этом предпочтительнее иметь коммутатор, у которого все порты имеют одинаковую скорость, (см. Рисунок 1).

    5001

    Вариант 2, именуемый связью "один со многими" – это сети клиент-сервер, когда все рабочие станции работают с файлами или базой данных сервера. В данном случае предпочтительнее иметь коммутатор, у которого порты для подключения рабочих станций имеют одинаковую небольшую скорость, а порт, к которому подключается сервер, имеет большую скорость,(см. Рисунок 2).

    5002

    Когда компании начали связывать разрозненные системы друг с другом, маршрутизация обеспечивала максимально возможную целостность и надежность передачи трафика из одной сети в другую. Но с ростом размера и сложности сети, а также в связи со все более широким применением коммутаторов в локальных сетях, базовые маршрутизаторы (зачастую они получали все данные, посылаемые коммутаторами) стали с трудом справляться со своими задачами.

    Проблемы с трафиком, связанные с маршрутизацией, проявляются наиболее остро в средних и крупных компаниях, а также в деятельности операторов Internet, так как они вынуждены иметь дело с большими объемами IP-трафика, причем этот трафик должен передаваться своевременно и эффективно.

    С подключением настольных систем непосредственно к коммутаторам на 10/100 Мбит/с между ними и магистралью оказывается все меньше промежуточных устройств. Чем выше скорость подключения настольных систем, тем более скоростной должна быть магистраль. Кроме того, на каждом уровне устройства должны справляться с приходящим трафиком, иначе возникновения заторов не избежать.

    Рассмотрению технологий коммутации и посвящена данная статья.

    Коммутация первого уровня

    Термин "коммутация первого уровня" в современной технической литературе практически не описывается. Для начала дадим определение, с какими характеристиками имеет дело физический или первый уровень модели OSI:

    физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

    Смысл коммутации на первом уровне модели OSI означает физическое (по названию уровня) соединение. Из примеров коммутации первого уровня можно привести релейные коммутаторы некоторых старых телефонных и селекторных систем. В более новых телефонных системах коммутация первого уровня применяется совместно с различными способами сигнализации вызовов и усиления сигналов. В сетях передачи данных данная технология применяется в полностью оптических коммутаторах.

    Коммутация второго уровня

    Рассматривая свойства второго уровня модели OSI и его классическое определение, увидим, что данному уровню принадлежит основная доля коммутирующих свойств.

    Определение. Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

    На самом деле, определяемая канальным уровнем модели OSI функциональность служит платформой для некоторых из сегодняшних наиболее эффективных технологий. Большое значение функциональности второго уровня подчеркивает тот факт, что производители оборудования продолжают вкладывать значительные средства в разработку устройств с такими функциями.

    С технологической точки зрения, коммутатор локальных сетей представляет собой устройство, основное назначение которого - максимальное ускорение передачи данных за счет параллельно существующих потоков между узлами сети. В этом - его главное отличие от других традиционных устройств локальных сетей – концентраторов (Hub), предоставляющих всем потокам данных сети всего один канал передачи данных.

    Коммутатор позволяет передавать параллельно несколько потоков данных c максимально возможной для каждого потока скоростью. Эта скорость ограничена физической спецификацией протокола, которую также часто называют "скоростью провода". Это возможно благодаря наличию в коммутаторе большого числа центров обработки и продвижения кадров и шин передачи данных.

    Коммутаторы локальных сетей в своем основном варианте, ставшем классическим уже с начала 90-х годов, работают на втором уровне модели OSI, применяя свою высокопроизводительную параллельную архитектуру для продвижения кадров канальных протоколов. Другими словами, ими выполняются алгоритмы работы моста, описанные в стандартах IEEE 802.1D и 802.1H. Также они имеют и много других дополнительных функций, часть которых вошла в новую редакцию стандарта 802.1D-1998, а часть остается пока не стандартизованной.

    Коммутаторы ЛВС отличаются большим разнообразием возможностей и, следовательно, цен - стоимость 1 порта колеблется в диапазоне от 50 до 1000 долларов. Одной из причин столь больших различий является то, что они предназначены для решения различных классов задач. Коммутаторы высокого класса должны обеспечивать высокую производительность и плотность портов, а также поддерживать широкий спектр функций управления. Простые и дешевые коммутаторы имеют обычно небольшое число портов и не способны поддерживать функции управления. Одним из основных различий является используемая в коммутаторе архитектура. Поскольку большинство современных коммутаторов работают на основе патентованных контроллеров ASIC, устройство этих микросхем и их интеграция с остальными модулями коммутатора (включая буферы ввода-вывода) играет важнейшую роль. Контроллеры ASIC для коммутаторов ЛВС делятся на 2 класса - большие ASIC, способные обслуживать множество коммутируемых портов (один контроллер на устройство) и небольшие ASIC, обслуживающие по несколько портов и объединяемые в матрицы коммутации.

    Существует 3 варианта архитектуры коммутаторов:
     

    На рисунке 3 показана блок-схема коммутатора с архитектурой, используемой для поочередного соединения пар портов. В любой момент такой коммутатор может обеспечить организацию только одного соединения (пара портов). При невысоком уровне трафика не требуется хранение данных в памяти перед отправкой в порт назначения - такой вариант называется коммутацией на лету cut-through. Однако, коммутаторы cross-bar требуют буферизации на входе от каждого порта, поскольку в случае использования единственно возможного соединения коммутатор блокируется (рисунок 4). Несмотря на малую стоимость и высокую скорость продвижения на рынок, коммутаторы класса cross-bar слишком примитивны для эффективной трансляции между низкоскоростными интерфейсами Ethernet или token ring и высокоскоростными портами ATM и FDDI.

    5003

    5004

    Коммутаторы с разделяемой памятью имеют общий входной буфер для всех портов, используемый как внутренняя магистраль устройства (backplane). Буферизагия данных перед их рассылкой (store-and-forward - сохранить и переслать) приводит к возникновению задержки. Однако, коммутаторы с разделяемой памятью, как показано на рисунке 5 не требуют организации специальной внутренней магистрали для передачи данных между портами, что обеспечивает им более низкую цену по сравнению с коммутаторами на базе высокоскоростной внутренней шины.

    5005

    На рисунке 6 показана блок-схема коммутатора с высокоскоростной шиной, связывающей контроллеры ASIC. После того, как данные преобразуются в приемлемый для передачи по шине формат, они помещаются на шину и далее передаются в порт назначения. Поскольку шина может обеспечивать одновременную (паралельную) передачу потока данных от всех портов, такие коммутаторы часто называют "неблокируемыми" (non-blocking) - они не создают пробок на пути передачи данных.

    5006

    Применение аналогичной параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня модели OSI.

    Коммутация третьего уровня

    В продолжении темы о технологиях коммутации рассмотренных в предыдущем номера повторим, что применение параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня. Это позволило существенно, в 10-100 раз повысить скорость маршрутизации по сравнению с традиционными маршрутизаторами, в которых один центральный универсальный процессор выполняет программное обеспечение маршрутизации.

    По определению Сетевой уровень (третий) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" это, по сути, независимый сетевой кабель (иногда называемый сегментом).

    Коммутация на третьем уровне - это аппаратная маршрутизация. Традиционные маршрутизаторы реализуют свои функции с помощью программно-управляемых процессоров, что будем называть программной маршрутизацией. Традиционные маршрутизаторы обычно продвигают пакеты со скоростью около 500000 пакетов в секунду. Коммутаторы третьего уровня сегодня работают со скоростью до 50 миллионов пакетов в секунду. Возможно и дальнейшее ее повышение, так как каждый интерфейсный модуль, как и в коммутаторе второго уровня, оснащен собственным процессором продвижения пакетов на основе ASIC. Так что наращивание количества модулей ведет к наращиванию производительности маршрутизации. Использование высокоскоростной технологии больших заказных интегральных схем (ASIC) является главной характеристикой, отличающей коммутаторы третьего уровня от традиционных маршрутизаторов. Коммутаторы 3-го уровня делятся на две категории: пакетные (Packet-by-Packet Layer 3 Switches, PPL3) и сквозные (Cut-Through Layer 3 Switches, CTL3). PPL3 - означает просто быструю маршрутизацию (Рисунок_7). CTL3 – маршрутизацию первого пакета и коммутацию всех остальных (Рисунок 8).

    5007

    5008

    У коммутатора третьего уровня, кроме реализации функций маршрутизации в специализированных интегральных схемах, имеется несколько особенностей, отличающих их от традиционных маршрутизаторов. Эти особенности отражают ориентацию коммутаторов 3-го уровня на работу, в основном, в локальных сетях, а также последствия совмещения в одном устройстве коммутации на 2-м и 3-м уровнях:
     

    • поддержка интерфейсов и протоколов, применяемых в локальных сетях,
    • усеченные функции маршрутизации,
    • обязательная поддержка механизма виртуальных сетей,
    • тесная интеграция функций коммутации и маршрутизации, наличие удобных для администратора операций по заданию маршрутизации между виртуальными сетями.

    Наиболее "коммутаторная" версия высокоскоростной маршрутизации выглядит следующим образом (рисунок 9). Пусть коммутатор третьего уровня построен так, что в нем имеется информация о соответствии сетевых адресов (например, IP-адресов) адресам физического уровня (например, MAC-адресам) Все эти МАС-адреса обычным образом отображены в коммутационной таблице, независимо от того, принадлежат ли они данной сети или другим сетям.

    5009

    Первый коммутатор, на который поступает пакет, частично выполняет функции маршрутизатора, а именно, функции фильтрации, обеспечивающие безопасность. Он решает, пропускать или нет данный пакет в другую сеть Если пакет пропускать нужно, то коммутатор по IP-адресу назначения определяет МАС-адрес узла назначения и формирует новый заголовок второго уровня с найденным МАС-адресом. Затем выполняется обычная процедура коммутации по данному МАС-адресу с просмотром адресной таблицы коммутатора. Все последующие коммутаторы, построенные по этому же принципу, обрабатывают данный кадр как обычные коммутаторы второго уровня, не привлекая функций маршрутизации, что значительно ускоряет его обработку. Однако функции маршрутизации не являются для них избыточными, поскольку и на эти коммутаторы могут поступать первичные пакеты (непосредственно от рабочих станций), для которых необходимо выполнять фильтрацию и подстановку МАС-адресов.

    Это описание носит схематический характер и не раскрывает способов решения возникающих при этом многочисленных проблем, например, проблемы построения таблицы соответствия IP-адресов и МАС-адресов

    Примерами коммутаторов третьего уровня, работающих по этой схеме, являются коммутаторы SmartSwitch компании Cabletron. Компания Cabletron реализовала в них свой протокол ускоренной маршрутизации SecureFast Virtual Network, SFVN.

    Для организации непосредственного взаимодействия рабочих станций без промежуточного маршрутизатора необходимо сконфигурировать каждую из них так, чтобы она считала собственный интерфейс маршрутизатором по умолчанию. При такой конфигурации станция пытается самостоятельно отправить любой пакет конечному узлу, даже если этот узел находится в другой сети. Так как в общем случае (см. рисунок 10) станции неизвестен МАС-адрес узла назначения, то она генерирует соответствующий ARP-запрос, который перехватывает коммутатор, поддерживающий протокол SFVN. В сети предполагается наличие сервера SFVN Server, являющегося полноценным маршрутизатором и поддерживающего общую ARP-таблицу всех узлов SFVN-сети. Сервер возвращает коммутатору МАС-адрес узла назначения, а коммутатор, в свою очередь, передает его исходной станции. Одновременно сервер SFVN передает коммутаторам сети инструкции о разрешении прохождения пакета с МАС-адресом узла назначения через границы виртуальных сетей. Затем исходная станция передает пакет в кадре, содержащем МАС-адрес узла назначения. Этот кадр проходит через коммутаторы, не вызывая обращения к их блокам маршрутизации. Отличие протокола SFVN компании Cabletron от - описанной выше общей схемы в том, что для нахождения МАС-адреса по IP-адресу в сети используется выделенный сервер.

    5010

    Протокол Fast IP компании 3Com является еще одним примером реализации подхода с отображением IP-адреса на МАС-адрес. В этом протоколе основными действующими лицами являются сетевые адаптеры (что не удивительно, так как компания 3Com является признанным лидером в производстве сетевых адаптеров Ethernet) С одной стороны, такой подход требует изменения программного обеспечения драйверов сетевых адаптеров, и это минус Но зато не требуется изменять все остальное сетевое оборудование.

    При необходимости передать пакет узлу назначения другой сети, исходный узел в соответствии с технологией Fast IP должен передать запрос по протоколу NHRP (Next Hop Routing Protocol) маршрутизатору сети. Маршрутизатор переправляет этот запрос узлу назначения, как обычный пакет Узел назначения, который также поддерживает Fast IP и NHRP, получив запрос, отвечает кадром, отсылаемым уже не маршрутизатору, а непосредственно узлу-источнику (по его МАС-адресу, содержащемуся в NHRP-запросе). После этого обмен идет на канальном уровне на основе известных МАС-адресов. Таким образом, снова маршрутизировался только первый пакет потока (как на рисунке 9 кратковременный поток), а все остальные коммутировались (как на рисунке 9 долговременный поток).

    Еще один тип коммутаторов третьего уровня — это коммутаторы, работающие с протоколами локальных сетей типа Ethernet и FDDI. Эти коммутаторы выполняют функции маршрутизации не так, как классические маршрутизаторы. Они маршрутизируют не отдельные пакеты, а потоки пакетов.

    Поток — это последовательность пакетов, имеющих некоторые общие свойства. По меньшей мере, у них должны совпадать адрес отправителя и адрес получателя, и тогда их можно отправлять по одному и тому же маршруту. Если классический способ маршрутизации использовать только для первого пакета потока, а все остальные обрабатывать на основании опыта первого (или нескольких первых) пакетов, то можно значительно ускорить маршрутизацию всего потока.

    Рассмотрим этот подход на примере технологии NetFlow компании Cisco, реализованной в ее маршрутизаторах и коммутаторах. Для каждого пакета, поступающего на порт маршрутизатора, вычисляется хэш-функция от IP-адресов источника, назначения, портов UDP или TCP и поля TOS, характеризующего требуемое качество обслуживания. Во всех маршрутизаторах, поддерживающих данную технологию, через которые проходит данный пакет, в кэш-памяти портов запоминается соответствие значения хэш-функции и адресной информации, необходимой для быстрой передачи пакета следующему маршрутизатору. Таким образом, образуется квазивиртуальный канал (см. Рисунок 11), который позволяет быстро передавать по сети маршрутизаторов все последующие пакеты этого потока. При этом ускорение достигается за счет упрощения процедуры обработки пакета маршрутизатором - не просматриваются таблицы маршрутизации, не выполняются ARP-запросы.

    5011

    Этот прием может использоваться в маршрутизаторах, вообще не поддерживающих коммутацию, а может быть перенесен в коммутаторы. В этом случае такие коммутаторы тоже называют коммутаторами третьего уровня. Примеров маршрутизаторов, использующих данный подход, являются маршрутизаторы Cisco 7500, а коммутаторов третьего уровня — коммутаторы Catalyst 5000 и 5500. Коммутаторы Catalyst выполняют усеченные функции описанной схемы, они не могут обрабатывать первые пакеты потоков и создавать новые записи о хэш-функциях и адресной информации потоков. Они просто получают данную информацию от маршрутизаторов 7500 и обрабатывают пакеты уже распознанных маршрутизаторами потоков.

    Выше был рассмотрен способ ускоренной маршрутизации, основанный на концепции потока. Его сущность заключается в создании квазивиртуальных каналов в сетях, которые не поддерживают виртуальные каналы в обычном понимании этого термина, то есть сетях Ethernet, FDDI, Token Ring и т п. Следует отличать этот способ от способа ускоренной работы маршрутизаторов в сетях, поддерживающих технологию виртуальных каналов — АТМ, frame relay, X 25. В таких сетях создание виртуального канала является штатным режимом работы сетевых устройств. Виртуальные каналы создаются между двумя конечными точками, причем для потоков данных, требующих разного качества обслуживания (например, для данных разных приложений) может создаваться отдельный виртуальный канал. Хотя время создания виртуального канала существенно превышает время маршрутизации одного пакета, выигрыш достигается за счет последующей быстрой передачи потока данных по виртуальному каналу. Но в таких сетях возникает другая проблема — неэффективная передача коротких потоков, то есть потоков, состоящих из небольшого количества пакетов (классический пример — пакеты протокола DNS).

    Накладные расходы, связанные с созданием виртуального канала, приходящиеся на один пакет, снижаются при передаче объемных потоков данных. Однако они становятся неприемлемо высокими при передаче коротких потоков. Для того чтобы эффективно передавать короткие потоки, предлагается следующий вариант, при передаче нескольких первых пакетов выполняется обычная маршрутизация. Затем, после того как распознается устойчивый поток, для него строится виртуальный канал, и дальнейшая передача данных происходит с высокой скоростью по этому виртуальному каналу. Таким образом, для коротких потоков виртуальный канал вообще не создается, что и повышает эффективность передачи.

    По такой схеме работает ставшая уже классической технология IP Switching компании Ipsilon. Для того чтобы сети коммутаторов АТМ передавали бы пакеты коротких потоков без установления виртуального канала, компания Ipsilon предложила встроить во все коммутаторы АТМ блоки IP-маршрутизации (рисунок 12), строящие обычные таблицы маршрутизации по обычным протоколам RIP и OSPF.

    5012

    Компания Cisco Systems выдвинула в качестве альтернативы технологии IP Switching свою собственную технологию Tag Switching, но она не стала стандартной. В настоящее время IETF работает над стандартным протоколом обмена метками MPLS (Multi-Protocol Label Switching), который обобщает предложение компаний Ipsilon и Cisco, а также вносит некоторые новые детали и механизмы. Этот протокол ориентирован на поддержку качества обслуживания для виртуальных каналов, образованных метками.

    Коммутация четвертого уровня

    Свойства четвертого или транспортного уровня модели OSI следующие: транспортный уровень обеспечивает услуги по транспортировке данных. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения данными из другой системы).

    Некоторые производители заявляют, что их системы могут работать на втором, третьем и даже четвертом уровнях. Однако рассмотрение описания стека TCP/IP (рисунок 1), а также структуры пакетов IP и TCP (рисунки 2, 3), показывает, что коммутация четвертого уровня является фикцией, так как все относящиеся к коммутации функции осуществляются на уровне не выше третьего. А именно, термин коммутация четвертого уровня с точки зрения описания стека TCP/IP противоречий не имеет, за исключением того, что при коммутации должны указываться адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя. Пакеты TCP имеют поля локальный порт отправителя и локальный порт получателя (рисунок 3), несущие смысл точек входа в приложение (в программу), например Telnet с одной стороны, и точки входа (в данном контексте инкапсуляции) в уровень IP. Кроме того, в стеке TCP/IP именно уровень TCP занимается формированием пакетов из потока данных идущих от приложения. Пакеты IP (рисунок 2) имеют поля адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя и следовательно могут наряду с MAC адресами использоваться для коммутации. Тем не менее, название прижилось, к тому же практика показывает, что способность системы анализировать информацию прикладного уровня может оказаться полезной — в частности для управления трафиком. Таким образом, термин "зависимый от приложения" более точно отражает функции так называемых коммутаторов четвертого уровня.

    5013

    5014

    5015

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > технология коммутации

  • 46 switching technology

    1. технология коммутации

     

    технология коммутации
    -
    [Интент]

    Современные технологии коммутации
    [ http://www.xnets.ru/plugins/content/content.php?content.84]

    Статья подготовлена на основании материалов опубликованных в журналах "LAN", "Сети и системы связи", в книге В.Олифер и Н.Олифер "Новые технологии и оборудование IP-сетей", на сайтах www.citforum.ru и опубликована в журнале "Компьютерные решения" NN4-6 за 2000 год.

    Введение

    На сегодня практически все организации, имеющие локальные сети, остановили свой выбор на сетях типа Ethernet. Данный выбор оправдан тем, что начало внедрения такой сети сопряжено с низкой стоимостью и простотой реализации, а развитие - с хорошей масштабируемостью и экономичностью.

    Бросив взгляд назад - увидим, что развитие активного оборудования сетей шло в соответствии с требованиями к полосе пропускания и надежности. Требования, предъявляемые к большей надежности, привели к отказу от применения в качестве среды передачи коаксиального кабеля и перевода сетей на витую пару. В результате такого перехода отказ работы соединения между одной из рабочих станций и концентратором перестал сказываться на работе других рабочих станций сети. Но увеличения производительности данный переход не принес, так как концентраторы используют разделяемую (на всех пользователей в сегменте) полосу пропускания. По сути, изменилась только физическая топология сети - с общей шины на звезду, а логическая топология по-прежнему осталась - общей шиной.

    Дальнейшее развитие сетей шло по нескольким путям:

    • увеличение скорости,
    • внедрение сегментирования на основе коммутации,
    • объединение сетей при помощи маршрутизации.

    Увеличение скорости при прежней логической топологии - общая шина, привело к незначительному росту производительности в случае большого числа портов.

    Большую эффективность в работе сети принесло сегментирование сетей с использованием технология коммутации пакетов. Коммутация наиболее действенна в следующих вариантах:

    Вариант 1, именуемый связью "многие со многими" – это одноранговые сети, когда одновременно существуют потоки данных между парами рабочих станций. При этом предпочтительнее иметь коммутатор, у которого все порты имеют одинаковую скорость, (см. Рисунок 1).

    5001

    Вариант 2, именуемый связью "один со многими" – это сети клиент-сервер, когда все рабочие станции работают с файлами или базой данных сервера. В данном случае предпочтительнее иметь коммутатор, у которого порты для подключения рабочих станций имеют одинаковую небольшую скорость, а порт, к которому подключается сервер, имеет большую скорость,(см. Рисунок 2).

    5002

    Когда компании начали связывать разрозненные системы друг с другом, маршрутизация обеспечивала максимально возможную целостность и надежность передачи трафика из одной сети в другую. Но с ростом размера и сложности сети, а также в связи со все более широким применением коммутаторов в локальных сетях, базовые маршрутизаторы (зачастую они получали все данные, посылаемые коммутаторами) стали с трудом справляться со своими задачами.

    Проблемы с трафиком, связанные с маршрутизацией, проявляются наиболее остро в средних и крупных компаниях, а также в деятельности операторов Internet, так как они вынуждены иметь дело с большими объемами IP-трафика, причем этот трафик должен передаваться своевременно и эффективно.

    С подключением настольных систем непосредственно к коммутаторам на 10/100 Мбит/с между ними и магистралью оказывается все меньше промежуточных устройств. Чем выше скорость подключения настольных систем, тем более скоростной должна быть магистраль. Кроме того, на каждом уровне устройства должны справляться с приходящим трафиком, иначе возникновения заторов не избежать.

    Рассмотрению технологий коммутации и посвящена данная статья.

    Коммутация первого уровня

    Термин "коммутация первого уровня" в современной технической литературе практически не описывается. Для начала дадим определение, с какими характеристиками имеет дело физический или первый уровень модели OSI:

    физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

    Смысл коммутации на первом уровне модели OSI означает физическое (по названию уровня) соединение. Из примеров коммутации первого уровня можно привести релейные коммутаторы некоторых старых телефонных и селекторных систем. В более новых телефонных системах коммутация первого уровня применяется совместно с различными способами сигнализации вызовов и усиления сигналов. В сетях передачи данных данная технология применяется в полностью оптических коммутаторах.

    Коммутация второго уровня

    Рассматривая свойства второго уровня модели OSI и его классическое определение, увидим, что данному уровню принадлежит основная доля коммутирующих свойств.

    Определение. Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

    На самом деле, определяемая канальным уровнем модели OSI функциональность служит платформой для некоторых из сегодняшних наиболее эффективных технологий. Большое значение функциональности второго уровня подчеркивает тот факт, что производители оборудования продолжают вкладывать значительные средства в разработку устройств с такими функциями.

    С технологической точки зрения, коммутатор локальных сетей представляет собой устройство, основное назначение которого - максимальное ускорение передачи данных за счет параллельно существующих потоков между узлами сети. В этом - его главное отличие от других традиционных устройств локальных сетей – концентраторов (Hub), предоставляющих всем потокам данных сети всего один канал передачи данных.

    Коммутатор позволяет передавать параллельно несколько потоков данных c максимально возможной для каждого потока скоростью. Эта скорость ограничена физической спецификацией протокола, которую также часто называют "скоростью провода". Это возможно благодаря наличию в коммутаторе большого числа центров обработки и продвижения кадров и шин передачи данных.

    Коммутаторы локальных сетей в своем основном варианте, ставшем классическим уже с начала 90-х годов, работают на втором уровне модели OSI, применяя свою высокопроизводительную параллельную архитектуру для продвижения кадров канальных протоколов. Другими словами, ими выполняются алгоритмы работы моста, описанные в стандартах IEEE 802.1D и 802.1H. Также они имеют и много других дополнительных функций, часть которых вошла в новую редакцию стандарта 802.1D-1998, а часть остается пока не стандартизованной.

    Коммутаторы ЛВС отличаются большим разнообразием возможностей и, следовательно, цен - стоимость 1 порта колеблется в диапазоне от 50 до 1000 долларов. Одной из причин столь больших различий является то, что они предназначены для решения различных классов задач. Коммутаторы высокого класса должны обеспечивать высокую производительность и плотность портов, а также поддерживать широкий спектр функций управления. Простые и дешевые коммутаторы имеют обычно небольшое число портов и не способны поддерживать функции управления. Одним из основных различий является используемая в коммутаторе архитектура. Поскольку большинство современных коммутаторов работают на основе патентованных контроллеров ASIC, устройство этих микросхем и их интеграция с остальными модулями коммутатора (включая буферы ввода-вывода) играет важнейшую роль. Контроллеры ASIC для коммутаторов ЛВС делятся на 2 класса - большие ASIC, способные обслуживать множество коммутируемых портов (один контроллер на устройство) и небольшие ASIC, обслуживающие по несколько портов и объединяемые в матрицы коммутации.

    Существует 3 варианта архитектуры коммутаторов:
     

    На рисунке 3 показана блок-схема коммутатора с архитектурой, используемой для поочередного соединения пар портов. В любой момент такой коммутатор может обеспечить организацию только одного соединения (пара портов). При невысоком уровне трафика не требуется хранение данных в памяти перед отправкой в порт назначения - такой вариант называется коммутацией на лету cut-through. Однако, коммутаторы cross-bar требуют буферизации на входе от каждого порта, поскольку в случае использования единственно возможного соединения коммутатор блокируется (рисунок 4). Несмотря на малую стоимость и высокую скорость продвижения на рынок, коммутаторы класса cross-bar слишком примитивны для эффективной трансляции между низкоскоростными интерфейсами Ethernet или token ring и высокоскоростными портами ATM и FDDI.

    5003

    5004

    Коммутаторы с разделяемой памятью имеют общий входной буфер для всех портов, используемый как внутренняя магистраль устройства (backplane). Буферизагия данных перед их рассылкой (store-and-forward - сохранить и переслать) приводит к возникновению задержки. Однако, коммутаторы с разделяемой памятью, как показано на рисунке 5 не требуют организации специальной внутренней магистрали для передачи данных между портами, что обеспечивает им более низкую цену по сравнению с коммутаторами на базе высокоскоростной внутренней шины.

    5005

    На рисунке 6 показана блок-схема коммутатора с высокоскоростной шиной, связывающей контроллеры ASIC. После того, как данные преобразуются в приемлемый для передачи по шине формат, они помещаются на шину и далее передаются в порт назначения. Поскольку шина может обеспечивать одновременную (паралельную) передачу потока данных от всех портов, такие коммутаторы часто называют "неблокируемыми" (non-blocking) - они не создают пробок на пути передачи данных.

    5006

    Применение аналогичной параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня модели OSI.

    Коммутация третьего уровня

    В продолжении темы о технологиях коммутации рассмотренных в предыдущем номера повторим, что применение параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня. Это позволило существенно, в 10-100 раз повысить скорость маршрутизации по сравнению с традиционными маршрутизаторами, в которых один центральный универсальный процессор выполняет программное обеспечение маршрутизации.

    По определению Сетевой уровень (третий) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" это, по сути, независимый сетевой кабель (иногда называемый сегментом).

    Коммутация на третьем уровне - это аппаратная маршрутизация. Традиционные маршрутизаторы реализуют свои функции с помощью программно-управляемых процессоров, что будем называть программной маршрутизацией. Традиционные маршрутизаторы обычно продвигают пакеты со скоростью около 500000 пакетов в секунду. Коммутаторы третьего уровня сегодня работают со скоростью до 50 миллионов пакетов в секунду. Возможно и дальнейшее ее повышение, так как каждый интерфейсный модуль, как и в коммутаторе второго уровня, оснащен собственным процессором продвижения пакетов на основе ASIC. Так что наращивание количества модулей ведет к наращиванию производительности маршрутизации. Использование высокоскоростной технологии больших заказных интегральных схем (ASIC) является главной характеристикой, отличающей коммутаторы третьего уровня от традиционных маршрутизаторов. Коммутаторы 3-го уровня делятся на две категории: пакетные (Packet-by-Packet Layer 3 Switches, PPL3) и сквозные (Cut-Through Layer 3 Switches, CTL3). PPL3 - означает просто быструю маршрутизацию (Рисунок_7). CTL3 – маршрутизацию первого пакета и коммутацию всех остальных (Рисунок 8).

    5007

    5008

    У коммутатора третьего уровня, кроме реализации функций маршрутизации в специализированных интегральных схемах, имеется несколько особенностей, отличающих их от традиционных маршрутизаторов. Эти особенности отражают ориентацию коммутаторов 3-го уровня на работу, в основном, в локальных сетях, а также последствия совмещения в одном устройстве коммутации на 2-м и 3-м уровнях:
     

    • поддержка интерфейсов и протоколов, применяемых в локальных сетях,
    • усеченные функции маршрутизации,
    • обязательная поддержка механизма виртуальных сетей,
    • тесная интеграция функций коммутации и маршрутизации, наличие удобных для администратора операций по заданию маршрутизации между виртуальными сетями.

    Наиболее "коммутаторная" версия высокоскоростной маршрутизации выглядит следующим образом (рисунок 9). Пусть коммутатор третьего уровня построен так, что в нем имеется информация о соответствии сетевых адресов (например, IP-адресов) адресам физического уровня (например, MAC-адресам) Все эти МАС-адреса обычным образом отображены в коммутационной таблице, независимо от того, принадлежат ли они данной сети или другим сетям.

    5009

    Первый коммутатор, на который поступает пакет, частично выполняет функции маршрутизатора, а именно, функции фильтрации, обеспечивающие безопасность. Он решает, пропускать или нет данный пакет в другую сеть Если пакет пропускать нужно, то коммутатор по IP-адресу назначения определяет МАС-адрес узла назначения и формирует новый заголовок второго уровня с найденным МАС-адресом. Затем выполняется обычная процедура коммутации по данному МАС-адресу с просмотром адресной таблицы коммутатора. Все последующие коммутаторы, построенные по этому же принципу, обрабатывают данный кадр как обычные коммутаторы второго уровня, не привлекая функций маршрутизации, что значительно ускоряет его обработку. Однако функции маршрутизации не являются для них избыточными, поскольку и на эти коммутаторы могут поступать первичные пакеты (непосредственно от рабочих станций), для которых необходимо выполнять фильтрацию и подстановку МАС-адресов.

    Это описание носит схематический характер и не раскрывает способов решения возникающих при этом многочисленных проблем, например, проблемы построения таблицы соответствия IP-адресов и МАС-адресов

    Примерами коммутаторов третьего уровня, работающих по этой схеме, являются коммутаторы SmartSwitch компании Cabletron. Компания Cabletron реализовала в них свой протокол ускоренной маршрутизации SecureFast Virtual Network, SFVN.

    Для организации непосредственного взаимодействия рабочих станций без промежуточного маршрутизатора необходимо сконфигурировать каждую из них так, чтобы она считала собственный интерфейс маршрутизатором по умолчанию. При такой конфигурации станция пытается самостоятельно отправить любой пакет конечному узлу, даже если этот узел находится в другой сети. Так как в общем случае (см. рисунок 10) станции неизвестен МАС-адрес узла назначения, то она генерирует соответствующий ARP-запрос, который перехватывает коммутатор, поддерживающий протокол SFVN. В сети предполагается наличие сервера SFVN Server, являющегося полноценным маршрутизатором и поддерживающего общую ARP-таблицу всех узлов SFVN-сети. Сервер возвращает коммутатору МАС-адрес узла назначения, а коммутатор, в свою очередь, передает его исходной станции. Одновременно сервер SFVN передает коммутаторам сети инструкции о разрешении прохождения пакета с МАС-адресом узла назначения через границы виртуальных сетей. Затем исходная станция передает пакет в кадре, содержащем МАС-адрес узла назначения. Этот кадр проходит через коммутаторы, не вызывая обращения к их блокам маршрутизации. Отличие протокола SFVN компании Cabletron от - описанной выше общей схемы в том, что для нахождения МАС-адреса по IP-адресу в сети используется выделенный сервер.

    5010

    Протокол Fast IP компании 3Com является еще одним примером реализации подхода с отображением IP-адреса на МАС-адрес. В этом протоколе основными действующими лицами являются сетевые адаптеры (что не удивительно, так как компания 3Com является признанным лидером в производстве сетевых адаптеров Ethernet) С одной стороны, такой подход требует изменения программного обеспечения драйверов сетевых адаптеров, и это минус Но зато не требуется изменять все остальное сетевое оборудование.

    При необходимости передать пакет узлу назначения другой сети, исходный узел в соответствии с технологией Fast IP должен передать запрос по протоколу NHRP (Next Hop Routing Protocol) маршрутизатору сети. Маршрутизатор переправляет этот запрос узлу назначения, как обычный пакет Узел назначения, который также поддерживает Fast IP и NHRP, получив запрос, отвечает кадром, отсылаемым уже не маршрутизатору, а непосредственно узлу-источнику (по его МАС-адресу, содержащемуся в NHRP-запросе). После этого обмен идет на канальном уровне на основе известных МАС-адресов. Таким образом, снова маршрутизировался только первый пакет потока (как на рисунке 9 кратковременный поток), а все остальные коммутировались (как на рисунке 9 долговременный поток).

    Еще один тип коммутаторов третьего уровня — это коммутаторы, работающие с протоколами локальных сетей типа Ethernet и FDDI. Эти коммутаторы выполняют функции маршрутизации не так, как классические маршрутизаторы. Они маршрутизируют не отдельные пакеты, а потоки пакетов.

    Поток — это последовательность пакетов, имеющих некоторые общие свойства. По меньшей мере, у них должны совпадать адрес отправителя и адрес получателя, и тогда их можно отправлять по одному и тому же маршруту. Если классический способ маршрутизации использовать только для первого пакета потока, а все остальные обрабатывать на основании опыта первого (или нескольких первых) пакетов, то можно значительно ускорить маршрутизацию всего потока.

    Рассмотрим этот подход на примере технологии NetFlow компании Cisco, реализованной в ее маршрутизаторах и коммутаторах. Для каждого пакета, поступающего на порт маршрутизатора, вычисляется хэш-функция от IP-адресов источника, назначения, портов UDP или TCP и поля TOS, характеризующего требуемое качество обслуживания. Во всех маршрутизаторах, поддерживающих данную технологию, через которые проходит данный пакет, в кэш-памяти портов запоминается соответствие значения хэш-функции и адресной информации, необходимой для быстрой передачи пакета следующему маршрутизатору. Таким образом, образуется квазивиртуальный канал (см. Рисунок 11), который позволяет быстро передавать по сети маршрутизаторов все последующие пакеты этого потока. При этом ускорение достигается за счет упрощения процедуры обработки пакета маршрутизатором - не просматриваются таблицы маршрутизации, не выполняются ARP-запросы.

    5011

    Этот прием может использоваться в маршрутизаторах, вообще не поддерживающих коммутацию, а может быть перенесен в коммутаторы. В этом случае такие коммутаторы тоже называют коммутаторами третьего уровня. Примеров маршрутизаторов, использующих данный подход, являются маршрутизаторы Cisco 7500, а коммутаторов третьего уровня — коммутаторы Catalyst 5000 и 5500. Коммутаторы Catalyst выполняют усеченные функции описанной схемы, они не могут обрабатывать первые пакеты потоков и создавать новые записи о хэш-функциях и адресной информации потоков. Они просто получают данную информацию от маршрутизаторов 7500 и обрабатывают пакеты уже распознанных маршрутизаторами потоков.

    Выше был рассмотрен способ ускоренной маршрутизации, основанный на концепции потока. Его сущность заключается в создании квазивиртуальных каналов в сетях, которые не поддерживают виртуальные каналы в обычном понимании этого термина, то есть сетях Ethernet, FDDI, Token Ring и т п. Следует отличать этот способ от способа ускоренной работы маршрутизаторов в сетях, поддерживающих технологию виртуальных каналов — АТМ, frame relay, X 25. В таких сетях создание виртуального канала является штатным режимом работы сетевых устройств. Виртуальные каналы создаются между двумя конечными точками, причем для потоков данных, требующих разного качества обслуживания (например, для данных разных приложений) может создаваться отдельный виртуальный канал. Хотя время создания виртуального канала существенно превышает время маршрутизации одного пакета, выигрыш достигается за счет последующей быстрой передачи потока данных по виртуальному каналу. Но в таких сетях возникает другая проблема — неэффективная передача коротких потоков, то есть потоков, состоящих из небольшого количества пакетов (классический пример — пакеты протокола DNS).

    Накладные расходы, связанные с созданием виртуального канала, приходящиеся на один пакет, снижаются при передаче объемных потоков данных. Однако они становятся неприемлемо высокими при передаче коротких потоков. Для того чтобы эффективно передавать короткие потоки, предлагается следующий вариант, при передаче нескольких первых пакетов выполняется обычная маршрутизация. Затем, после того как распознается устойчивый поток, для него строится виртуальный канал, и дальнейшая передача данных происходит с высокой скоростью по этому виртуальному каналу. Таким образом, для коротких потоков виртуальный канал вообще не создается, что и повышает эффективность передачи.

    По такой схеме работает ставшая уже классической технология IP Switching компании Ipsilon. Для того чтобы сети коммутаторов АТМ передавали бы пакеты коротких потоков без установления виртуального канала, компания Ipsilon предложила встроить во все коммутаторы АТМ блоки IP-маршрутизации (рисунок 12), строящие обычные таблицы маршрутизации по обычным протоколам RIP и OSPF.

    5012

    Компания Cisco Systems выдвинула в качестве альтернативы технологии IP Switching свою собственную технологию Tag Switching, но она не стала стандартной. В настоящее время IETF работает над стандартным протоколом обмена метками MPLS (Multi-Protocol Label Switching), который обобщает предложение компаний Ipsilon и Cisco, а также вносит некоторые новые детали и механизмы. Этот протокол ориентирован на поддержку качества обслуживания для виртуальных каналов, образованных метками.

    Коммутация четвертого уровня

    Свойства четвертого или транспортного уровня модели OSI следующие: транспортный уровень обеспечивает услуги по транспортировке данных. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения данными из другой системы).

    Некоторые производители заявляют, что их системы могут работать на втором, третьем и даже четвертом уровнях. Однако рассмотрение описания стека TCP/IP (рисунок 1), а также структуры пакетов IP и TCP (рисунки 2, 3), показывает, что коммутация четвертого уровня является фикцией, так как все относящиеся к коммутации функции осуществляются на уровне не выше третьего. А именно, термин коммутация четвертого уровня с точки зрения описания стека TCP/IP противоречий не имеет, за исключением того, что при коммутации должны указываться адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя. Пакеты TCP имеют поля локальный порт отправителя и локальный порт получателя (рисунок 3), несущие смысл точек входа в приложение (в программу), например Telnet с одной стороны, и точки входа (в данном контексте инкапсуляции) в уровень IP. Кроме того, в стеке TCP/IP именно уровень TCP занимается формированием пакетов из потока данных идущих от приложения. Пакеты IP (рисунок 2) имеют поля адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя и следовательно могут наряду с MAC адресами использоваться для коммутации. Тем не менее, название прижилось, к тому же практика показывает, что способность системы анализировать информацию прикладного уровня может оказаться полезной — в частности для управления трафиком. Таким образом, термин "зависимый от приложения" более точно отражает функции так называемых коммутаторов четвертого уровня.

    5013

    5014

    5015

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > switching technology

  • 47 ARP

    1. процедура реагирования на сигналы аварийного оповещателя
    2. процедура реагирования на аварийную сигнализацию
    3. протокол распознавания адреса
    4. протокол разрешения адресов
    5. протокол преобразования адресов
    6. программа ускоренной переквалификации персонала
    7. привилегированные акции с плавающей процентной ставкой

     

    привилегированные акции с плавающей процентной ставкой
    Акции или кумулятивные привилегированные акции в США, размеры дивидендов по которым привязаны к процентным ставкам казначейских векселей. Минимальные и максимальные ставки дивидендов устанавливаются с помощью “ошейника” (collar). Конвертируемые привилегированные акции с плавающей процентной ставкой (convertible adjusted-rate preferred stock) могут по истечении указанного срока быть конвертированы в обыкновенные акции по фиксированной цене.
    [ http://www.vocable.ru/dictionary/533/symbol/97]

    Тематики

    EN

     

    программа ускоренной переквалификации персонала
    (напр. на ТЭС при внедрении новой техники)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    протокол преобразования адресов
    Процедуры и сообщения в коммуникационном протоколе, которые определяют физический адрес (MAC) по адресу сетевого уровня. В общем случае ARP требует передачи широковещательных сообщений всем узлам сети. Узел с соответствующим запросу адресом сетевого уровня посылает ответ на такое сообщение. 
    [ http://www.lexikon.ru/dict/net/index.html]

    Тематики

    EN

     

    протокол разрешения адресов
    Протокол, используемый для динамического преобразования IP-адресов в аппаратные (MAC) адреса. Хост отправляет широковещательный запрос по локальной сети с целью определения MAC-адреса соответствующего IP-адреса.
    [ http://www.alltso.ru/publ/glossarij_setevoe_videonabljudenie_terminy/1-1-0-34]

    протокол разрешения адресов

    Сетевой протокол (L3) для поиска машинного адреса компьютера в локальной сети (MAC-адреса) по известному сетевому адресу (IP-адресу) с использованием широковещательных кадров особого типа.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

     

    протокол распознавания адреса
    Протокол преобразования сетевых адресов в 48 битовые адреса сети Ethernet (МСЭ-Т Y.1310, МСЭ-T G.8010/ Y.1306).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    процедура реагирования на аварийную сигнализацию

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    процедура реагирования на сигналы аварийного оповещателя

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > ARP

  • 48 address resolution protocol

    1. протокол распознавания адреса
    2. протокол разрешения адресов
    3. протокол преобразования адресов

     

    протокол преобразования адресов
    Процедуры и сообщения в коммуникационном протоколе, которые определяют физический адрес (MAC) по адресу сетевого уровня. В общем случае ARP требует передачи широковещательных сообщений всем узлам сети. Узел с соответствующим запросу адресом сетевого уровня посылает ответ на такое сообщение. 
    [ http://www.lexikon.ru/dict/net/index.html]

    Тематики

    EN

     

    протокол разрешения адресов
    Протокол, используемый для динамического преобразования IP-адресов в аппаратные (MAC) адреса. Хост отправляет широковещательный запрос по локальной сети с целью определения MAC-адреса соответствующего IP-адреса.
    [ http://www.alltso.ru/publ/glossarij_setevoe_videonabljudenie_terminy/1-1-0-34]

    протокол разрешения адресов

    Сетевой протокол (L3) для поиска машинного адреса компьютера в локальной сети (MAC-адреса) по известному сетевому адресу (IP-адресу) с использованием широковещательных кадров особого типа.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

     

    протокол распознавания адреса
    Протокол преобразования сетевых адресов в 48 битовые адреса сети Ethernet (МСЭ-Т Y.1310, МСЭ-T G.8010/ Y.1306).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > address resolution protocol

  • 49 RARP

    1. протокол обратного преобразования адресов
    2. программа научно-исследовательских работ по оценке надёжности
    3. обратное преобразование адресов

     

    обратное преобразование адресов
    Протокол из набора TCP/IP, служащий для определения IP-адреса узла ЛВС, присоединенного к Интернету, когда известен только физический адрес (MAC address).
    Выполняет задачу, обратную ARP — позволяет найти сетевой адрес компьютера в локальной сети по известному адресу канального уровня. Альтернативное применение состоит в получении компьютером собственного сетевого адреса при загрузке (DHCP).
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

     

    программа научно-исследовательских работ по оценке надёжности

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    протокол обратного преобразования адресов
    Протокол Internet для бездисковых хостов, используемый для поиска адреса Internet при старте хоста. RARP преобразует физические (аппаратные) адреса в адреса Internet. Хост передает широковещательный запрос, содержащий аппаратный адрес данного хоста, и сервер выдает хосту IP-адрес. См. также ARP. 
    [ http://www.lexikon.ru/dict/net/index.html]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > RARP

  • 50 Reverse Address Resolution Protocol

    1. протокол обратного преобразования адресов
    2. обратное преобразование адресов

     

    обратное преобразование адресов
    Протокол из набора TCP/IP, служащий для определения IP-адреса узла ЛВС, присоединенного к Интернету, когда известен только физический адрес (MAC address).
    Выполняет задачу, обратную ARP — позволяет найти сетевой адрес компьютера в локальной сети по известному адресу канального уровня. Альтернативное применение состоит в получении компьютером собственного сетевого адреса при загрузке (DHCP).
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

     

    протокол обратного преобразования адресов
    Протокол Internet для бездисковых хостов, используемый для поиска адреса Internet при старте хоста. RARP преобразует физические (аппаратные) адреса в адреса Internet. Хост передает широковещательный запрос, содержащий аппаратный адрес данного хоста, и сервер выдает хосту IP-адрес. См. также ARP. 
    [ http://www.lexikon.ru/dict/net/index.html]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > Reverse Address Resolution Protocol

  • 51 DA

    1) Авиация: drift angle
    2) Разговорное выражение: The
    4) Спорт: Distance Accuracy
    7) Метеорология: Density Altitude, Dry Air
    8) Железнодорожный термин: Canadian Pacific Railway
    10) Бухгалтерия: Duration Of Asset
    11) Биржевой термин: depreciation and amortization
    12) Грубое выражение: Duck's Arse, Duck's Ass, Dumb Arse, Dumb Ass
    13) Политика: Denmark
    14) Телекоммуникации: Destination Address (LAN), Device Address (SNA)
    15) Сокращение: Dalnyaya Aviatsiya (Russian Long-Range Aviation Command), Data Administrator, Decision Analysis, Defence Attache, Denmark (NATO country code), Department of Agriculture, Department of the Army (US Army), Design Automation, Destination MAC Address, Development Authorisation, Diphenylchloroarsine (Chemical warfare vomiting agent), Diploma in Aesthetics, Diploma in Anesthetics, Direct Action, Direct Analog (e.g., synthesis), Distributing Authority, Doctor of Arts, Double-Action, delta amplitude, Directory Assistance (/C = computerized, /M = Microfilm), Don't Answer (may be more general), допамин, Desk Accessory, Digital-to-Analog, discretionary account
    16) Физиология: Degenerative arthritis
    17) Электроника: Dielectric Absorption, Distributed Amplifier
    18) Вычислительная техника: decimal addition, destination address, display adapter, имеющиеся данные, Directory Assistance (/C = computerized, /M = Microfilm, Telephony), Data Area (CD-MRW, SA), Digital-to-Analog (D/A), Destination (MAC) Address (SNA, Token Ring, ATM, FDDI), Don't Answer (Telephony, may be more general), доступные данные
    20) Биохимия: Dopamine
    21) Банковское дело: депозитный счёт (deposit account), срочный вклад (deposit account), документы против акцепта (documents against acceptance)
    24) Деловая лексика: Distribution Area, окружной прокурор (США, district attorney)
    25) Бурение: двойного действия (double-acting), прямого действия (direct-acting)
    26) Американский английский: причёска а-ля Элвис Пресли
    28) Сетевые технологии: data available, disk array, адрес получателя
    30) Программирование: Delete Attribute
    31) Химическое оружие: Defense Acquisition, Directed Action
    32) Расширение файла: Discrete Address
    33) Нефть и газ: derivative time calculation value
    34) Электротехника: delay amplifier, double amplitude
    35) Имена и фамилии: Don Albert
    36) Общественная организация: Disabled and Alone
    37) Должность: Dining Assistant, Disciplines Associated
    38) Чат: Don't Ask
    39) Программное обеспечение: Decision Assistant, Desktop Assistant, Dos Apps
    40) Единицы измерений: Days Ago

    Универсальный англо-русский словарь > DA

  • 52 Da

    1) Авиация: drift angle
    2) Разговорное выражение: The
    4) Спорт: Distance Accuracy
    7) Метеорология: Density Altitude, Dry Air
    8) Железнодорожный термин: Canadian Pacific Railway
    10) Бухгалтерия: Duration Of Asset
    11) Биржевой термин: depreciation and amortization
    12) Грубое выражение: Duck's Arse, Duck's Ass, Dumb Arse, Dumb Ass
    13) Политика: Denmark
    14) Телекоммуникации: Destination Address (LAN), Device Address (SNA)
    15) Сокращение: Dalnyaya Aviatsiya (Russian Long-Range Aviation Command), Data Administrator, Decision Analysis, Defence Attache, Denmark (NATO country code), Department of Agriculture, Department of the Army (US Army), Design Automation, Destination MAC Address, Development Authorisation, Diphenylchloroarsine (Chemical warfare vomiting agent), Diploma in Aesthetics, Diploma in Anesthetics, Direct Action, Direct Analog (e.g., synthesis), Distributing Authority, Doctor of Arts, Double-Action, delta amplitude, Directory Assistance (/C = computerized, /M = Microfilm), Don't Answer (may be more general), допамин, Desk Accessory, Digital-to-Analog, discretionary account
    16) Физиология: Degenerative arthritis
    17) Электроника: Dielectric Absorption, Distributed Amplifier
    18) Вычислительная техника: decimal addition, destination address, display adapter, имеющиеся данные, Directory Assistance (/C = computerized, /M = Microfilm, Telephony), Data Area (CD-MRW, SA), Digital-to-Analog (D/A), Destination (MAC) Address (SNA, Token Ring, ATM, FDDI), Don't Answer (Telephony, may be more general), доступные данные
    20) Биохимия: Dopamine
    21) Банковское дело: депозитный счёт (deposit account), срочный вклад (deposit account), документы против акцепта (documents against acceptance)
    24) Деловая лексика: Distribution Area, окружной прокурор (США, district attorney)
    25) Бурение: двойного действия (double-acting), прямого действия (direct-acting)
    26) Американский английский: причёска а-ля Элвис Пресли
    28) Сетевые технологии: data available, disk array, адрес получателя
    30) Программирование: Delete Attribute
    31) Химическое оружие: Defense Acquisition, Directed Action
    32) Расширение файла: Discrete Address
    33) Нефть и газ: derivative time calculation value
    34) Электротехника: delay amplifier, double amplitude
    35) Имена и фамилии: Don Albert
    36) Общественная организация: Disabled and Alone
    37) Должность: Dining Assistant, Disciplines Associated
    38) Чат: Don't Ask
    39) Программное обеспечение: Decision Assistant, Desktop Assistant, Dos Apps
    40) Единицы измерений: Days Ago

    Универсальный англо-русский словарь > Da

  • 53 da

    1) Авиация: drift angle
    2) Разговорное выражение: The
    4) Спорт: Distance Accuracy
    7) Метеорология: Density Altitude, Dry Air
    8) Железнодорожный термин: Canadian Pacific Railway
    10) Бухгалтерия: Duration Of Asset
    11) Биржевой термин: depreciation and amortization
    12) Грубое выражение: Duck's Arse, Duck's Ass, Dumb Arse, Dumb Ass
    13) Политика: Denmark
    14) Телекоммуникации: Destination Address (LAN), Device Address (SNA)
    15) Сокращение: Dalnyaya Aviatsiya (Russian Long-Range Aviation Command), Data Administrator, Decision Analysis, Defence Attache, Denmark (NATO country code), Department of Agriculture, Department of the Army (US Army), Design Automation, Destination MAC Address, Development Authorisation, Diphenylchloroarsine (Chemical warfare vomiting agent), Diploma in Aesthetics, Diploma in Anesthetics, Direct Action, Direct Analog (e.g., synthesis), Distributing Authority, Doctor of Arts, Double-Action, delta amplitude, Directory Assistance (/C = computerized, /M = Microfilm), Don't Answer (may be more general), допамин, Desk Accessory, Digital-to-Analog, discretionary account
    16) Физиология: Degenerative arthritis
    17) Электроника: Dielectric Absorption, Distributed Amplifier
    18) Вычислительная техника: decimal addition, destination address, display adapter, имеющиеся данные, Directory Assistance (/C = computerized, /M = Microfilm, Telephony), Data Area (CD-MRW, SA), Digital-to-Analog (D/A), Destination (MAC) Address (SNA, Token Ring, ATM, FDDI), Don't Answer (Telephony, may be more general), доступные данные
    20) Биохимия: Dopamine
    21) Банковское дело: депозитный счёт (deposit account), срочный вклад (deposit account), документы против акцепта (documents against acceptance)
    24) Деловая лексика: Distribution Area, окружной прокурор (США, district attorney)
    25) Бурение: двойного действия (double-acting), прямого действия (direct-acting)
    26) Американский английский: причёска а-ля Элвис Пресли
    28) Сетевые технологии: data available, disk array, адрес получателя
    30) Программирование: Delete Attribute
    31) Химическое оружие: Defense Acquisition, Directed Action
    32) Расширение файла: Discrete Address
    33) Нефть и газ: derivative time calculation value
    34) Электротехника: delay amplifier, double amplitude
    35) Имена и фамилии: Don Albert
    36) Общественная организация: Disabled and Alone
    37) Должность: Dining Assistant, Disciplines Associated
    38) Чат: Don't Ask
    39) Программное обеспечение: Decision Assistant, Desktop Assistant, Dos Apps
    40) Единицы измерений: Days Ago

    Универсальный англо-русский словарь > da

  • 54 address

    = addr, = adrs
    1) вчт адрес || адресовать || адресный
    - absolute address
    - actual address
    - anycast address
    - base address
    - default address
    - deferred address
    - destination address
    - direct address
    - domain address
    - dot address
    - dotted quad address
    - dummy address
    - effective address
    - electronic address
    - e-mail address
    - Ethernet address
    - executive address
    - explicit address
    - extended address
    - extensible address
    - external address
    - floating address
    - general call address
    - host address
    - ill-formed address
    - immediate address
    - implicit address
    - indexed address
    - indirect address
    - Internet address
    - internet address
    - Internet Protocol address
    - invalid memory address
    - invalid storage address
    - IP address
    - local loopback address
    - long address
    - MAC address
    - medium access control address
    - memory address
    - multicast address
    - network address
    - network user address
    - node address
    - non-registered address
    - OSI network address
    - OSI presentation address
    - page fault linear address
    - page frame address
    - paged address
    - port address
    - presentation address
    - presumptive address
    - private address
    - protected memory address
    - protected storage address
    - public address
    - relative address
    - relocatable address
    - reserved memory address
    - reverse address
    - sender address
    - short address
    - socket address
    - specific address
    - storage address
    - subnet address
    - symbolic address
    - TCP/IP address
    - transfer address
    - unicast address
    - virtual address
    - zero-level address

    English-Russian electronics dictionary > address

  • 55 address

    1) вчт. адрес || адресовать || адресный
    - actual address
    - address of the operand
    - anycast address
    - base address
    - default address
    - deferred address
    - destination address
    - direct address
    - domain address
    - dot address
    - dotted quad address
    - dummy address
    - effective address
    - electronic address
    - e-mail address
    - Ethernet address
    - executive address
    - explicit address
    - extended address
    - extensible address
    - external address
    - floating address
    - general call address
    - host address
    - ill-formed address
    - immediate address
    - implicit address
    - indexed address
    - indirect address
    - Internet address
    - internet address
    - Internet Protocol address
    - invalid memory address
    - invalid storage address
    - IP address
    - local loopback address
    - long address
    - MAC address
    - medium access control address
    - memory address
    - multicast address
    - network address
    - network user address
    - node address
    - non-registered address
    - OSI network address
    - OSI presentation address
    - page fault linear address
    - page frame address
    - paged address
    - port address
    - presentation address
    - presumptive address
    - private address
    - protected memory address
    - protected storage address
    - public address
    - relative address
    - relocatable address
    - reserved memory address
    - reverse address
    - sender address
    - short address
    - socket address
    - specific address
    - storage address
    - subnet address
    - symbolic address
    - TCP/IP address
    - transfer address
    - unicast address
    - virtual address
    - zero-level address

    The New English-Russian Dictionary of Radio-electronics > address

  • 56 transparent bridge

    = TB
    простейшее сетевое соединительное устройство ( interconnect device) для связи сетевых сегментов, работающее на канальном уровне (см. data link layer). Прозрачным называется потому, что его работа невидима для хост-компьютеров (end node transparent). Мосты проверяют контрольную сумму (checksum) поступившего пакета и отбрасывают пакеты с неверными контрольными суммами, но не изменяют пересылаемые пакеты или кадры. Используют для пересылки пакетов МАС-адрес или адрес сети Ethernet и являются протоколонезависимым (protocol independent)

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > transparent bridge

  • 57 обратное преобразование адресов

    1. Reverse Address Resolution Protocol
    2. RARP

     

    обратное преобразование адресов
    Протокол из набора TCP/IP, служащий для определения IP-адреса узла ЛВС, присоединенного к Интернету, когда известен только физический адрес (MAC address).
    Выполняет задачу, обратную ARP — позволяет найти сетевой адрес компьютера в локальной сети по известному адресу канального уровня. Альтернативное применение состоит в получении компьютером собственного сетевого адреса при загрузке (DHCP).
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > обратное преобразование адресов

  • 58 routing

    1. трасса (трубопроводов)
    2. прокладка трассы (трубопровода)
    3. маршрутизация данных
    4. маршрутизация
    5. маршрут обработки

     

    маршрут обработки
    В планировании производства — перечень технологических операций, необходимых для изготовления изделия.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    маршрутизация
    Выбор пути передачи данных между сетями (L3). В отличие от коммутации (L2), где требуется сопоставление каждого конкретного адреса устройства (MAC-адреса) порту получателя, маршрутизация оперирует преимущественно групповыми маршрутами для целых сетей. Причём, если несколько маршрутов допускают объединение, маршрутизатор старается заменить эти отдельные записи одной общей.
    По способу изучения новых маршрутов различают статический и динамический методы. При статической маршрутизации новые записи добавляются администратором вручную. Сюда же относятся и те записи, которые возникают автоматически — при подключении сетевых интерфейсов операционная система сама добавляет соответствующие маршруты. Динамическая маршрутизация предполагает обмен таблицами маршрутов между маршрутизаторами с помощью специальных протоколов динамической маршрутизации.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

     

    маршрутизация данных
    Функция уровня взаимосвязи открытых систем, преобразующая наименование или адрес логического объекта уровня в маршрут для достижения этого объекта уровня.
    [ ГОСТ 24402-88]

    Тематики

    EN

     

    трасса (трубопроводов)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    44. Маршрутизация данных

    Routing

    Функция уровня взаимосвязи открытых систем, преобразующая наименование или адрес логического объекта уровня в маршрут для достижения этого объекта уровня

    Источник: ГОСТ 24402-88: Телеобработка данных и вычислительные сети. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > routing

  • 59 ARP request packet

    Большой англо-русский и русско-английский словарь > ARP request packet

  • 60 Address Resolution Protocol

    1) Общая лексика: протокол разрешения адресов (Процедуры и сообщения в коммуникационном протоколе, которые определяют физический адрес (MAC) по IP-адресу. В общем случае ARP требует передачи широковещательных сообщений всем узлам, на которо)

    Универсальный англо-русский словарь > Address Resolution Protocol

См. также в других словарях:

  • MAC-адрес — У этого термина существуют и другие значения, см. MAC. MAC адрес (от англ. Media Access Control  управление доступом к среде, также Hardware Address)  это уникальный идентификатор, присваиваемый каждой единице оборудования… …   Википедия

  • MAC адрес — …   Википедия

  • групповой MAC-адрес — [Интент] Тематики релейная защита EN multicast MAC address …   Справочник технического переводчика

  • MAC-адрес (media access control) — Уникальный идентификатор любого устройства в сети …   Глоссарий терминов бытовой и компьютерной техники Samsung

  • MAC-адрес (media access control) — Уникальный идентификатор любого устройства в сети …   Глоссарий терминов бытовой и компьютерной техники Samsung

  • MAC-спуфинг — (от англ. spoof  мистификация)  метод изменения MAC адреса сетевого устройства, позволяющий обойти список контроля доступа к серверам, маршрутизаторам, либо скрыть компьютер, что может нарушить работоспособность сети. Содержание 1… …   Википедия

  • MAC спуфинг — (от англ. spoof  мистификация)  это метод изменения MAC адреса сетевого устройства. Это метод позволяет обойти список контроля доступа к серверам, маршрутизаторам, скрыть компьютер, что может нарушить работоспособность сети. Содержание… …   Википедия

  • Mac — Mac: Macintosh линейка персональных компьютеров, спроектированных, разработанных, производимых и продаваемых фирмой «Apple Computer». Mac OS X операционная система для компьютеров фирмы Apple. Mac OS устаревшая операционная система для… …   Википедия

  • MAC (латиница) — MAC: MAC (англ. Media Access Control, рус. управление доступом к среде)  подуровень канального уровня модели OSI MAC адрес   уникальный идентификатор, присваиваемый каждой единице сетевого оборудования. Mandatory Access Control… …   Википедия

  • Mac (значения) — Mac: Macintosh линейка персональных компьютеров, спроектированных, разработанных, производимых и продаваемых фирмой «Apple Computer». Mac OS X операционная система для компьютеров фирмы Apple. Mac OS устаревшая операционная система для… …   Википедия

  • MAC — MAC: MAC адрес Mandatory Access Control Message authentication code Merchant aircraft carriers MAC французский пистолет пулемёт времён Второй мировой войны Mac OS операционная система от Apple …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»