Перевод: со всех языков на все языки

со всех языков на все языки

late+april

  • 101 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

  • 102 Elgar, Francis

    SUBJECT AREA: Ports and shipping
    [br]
    b. April 1845 Portsmouth, England
    d. 16 January 1909 Monte Carlo, Monaco
    [br]
    English naval architect and shipbuilder.
    [br]
    Elgar enjoyed a fascinating professional life, during which he achieved distinction in the military, merchant, academic and political aspects of his profession. At the age of 14 he was apprenticed as a shipwright to the Royal Dockyard at Portsmouth but when he was in his late teens he was selected as one of the Admiralty students to further his education at the Royal School of Naval Architecture at South Kensington, London. On completion of the course he was appointed to Birkenhead, where the ill-fated HMS Captain was being built, and then to Portsmouth Dockyard. In 1870 the Captain was lost at sea and Francis Elgar was called on to prepare much of the evidence for the Court Martial. This began his life-long interest in ship stability and in ways of presenting this information in an easily understood form to ship operators.
    In 1883 he accepted the John Elder Chair of Naval Architecture at Glasgow University, an appointment which formalized the already well-established teaching of this branch of engineering at Glasgow. However, after only three years he returned to public service in the newly created post of Director of Royal Dockyards, a post that he held for a mere six years but which brought about great advances in the speed of warship construction, with associated reductions in cost. In 1892 he was made Naval Architect and Director of the Fairfield Shipbuilding Company in Glasgow, remaining there until he retired in 1907. The following year he accepted the post of Chairman of the Birkenhead shipyard of Cammell Laird \& Co.; this was a recent amalgamation of two companies, and he retained this position until his death. Throughout his life, Elgar acted on many consultative bodies and committees, including the 1884 Ship Load Line Enquiry. His work enabled him to keep abreast of all current thinking in ship design and construction.
    [br]
    Principal Honours and Distinctions
    FRS. FRSE. Chevalier de la Légion d'honneur.
    Bibliography
    Elgar produced some remarkable papers, which were published by the Institutions of Naval Architects, Civil Engineers and Engineers and Shipbuilders in Scotland as well as by the Royal Society. He published several books on shipbuilding.
    FMW

    Biographical history of technology > Elgar, Francis

  • 103 Guinand, Pierre Louis

    [br]
    b. 20 April 1748 Brenets, Neuchâtel, Switzerland
    d. 13 February 1824 Brenets, Neuchâtel, Switzerland
    [br]
    Swiss optical glassmaker.
    [br]
    Guinand received little formal education and followed his father's trade of joiner. He specialized in making clock cases, but after learning how to cast metals he took up the more lucrative work of making watch cases. When he was about 20 years old, in a customer's house he caught sight of an English telescope, a rarity in a Swiss mountain village. Intrigued, he obtained permission to examine it. This aroused his interest in optical matters and he began making spectacles and small telescopes.
    Achromatic lenses were becoming known, their use being to remove the defect of chromatic aberration or coloured optical images, but there remained defects due to imperfections in the glass itself. Stimulated by offers of prizes by scientific bodies, including the Royal Society of London, for removing these defects, Guinand set out to remedy them. He embarked in 1784 on a long and arduous series of experiments, varying the materials and techniques for making glass. The even more lucrative trade of making bells for repeaters provided the funds for a furnace capable of holding 2 cwt (102 kg) of molten glass. By 1798 or so he had succeeded in making discs of homogeneous glass. He impressed the famous Parisian astronomer de Lalande with them and his glass became well enough known for scientists to visit him. In 1805 Fraunhofer persuaded Guinand to join his optical-instrument works at Benediktheurn, in Bavaria, to make lenses. After nine years, Guinand returned to Brenets with a pension, on condition he made no more glass and disclosed no details of his methods. After two years these conditions had become irksome and he relinquished the pension. On 19 February 1823 Guinand described his discoveries in his classic "Memoir on the making of optical glass, more particularly of glass of high refractive index for use in the production of achromatic lenses", presented to the Société de Physique et d'Histoire Naturelle de Genève. This gives details of his experiments and investigations and discusses a suitable pot-clay stirrer and stirring mechanism for the molten glass, with temperature control, to overcome optical-glass defects such as bubbles, seeds, cords and colours. Guinand was hailed as the man in Europe who had achieved this and has thus rightly been called the founder of the era of optical glassmaking.
    [br]
    Further Reading
    The fullest account in English of Guinand's life and work is 'Some account of the late M. Guinand and of the discovery made by him in the manufacture of flint glass for large telescopes by F.R., extracted from the Bibliothèque Universelle des Sciences, trans.
    C.F.de B.', Quart.J.Sci.Roy.Instn.Lond. (1825) 19: 244–58.
    M.von Rohr, 1924, "Pierre Louis Guinand", Zeitschrift für Instr., 46:121, 139, with an English summary in J.Glass. Tech., (1926) 10: abs. 150–1.
    LRD

    Biographical history of technology > Guinand, Pierre Louis

  • 104 Messerschmitt, Willi E.

    SUBJECT AREA: Aerospace
    [br]
    b. 26 June 1898 Frankfurt-am-Main, Germany
    d. 17 September 1978 Munich, Germany
    [br]
    German aircraft designer noted for successful fighters such as the Bf 109, one of the world's most widely produced aircraft.
    [br]
    Messerschmitt studied engineering at the Munich Institute of Tchnology and obtained his degree in 1923. By 1926 he was Chief Designer at the Bayerische Flugzeugwerke in Augsburg. Due to the ban on military aircraft in Germany following the First World War, his early designs included gliders, light aircraft, and a series of high-wing airliners. He began to make a major impact on German aircraft design once Hitler came to power and threw off the shackles of the Treaty of Versailles, which so restricted Germany's armed forces. In 1932 he bought out the now-bankrupt Bayerische Flugzeugwerke, but initially, because of enmity between himself and the German aviation minister, was not invited to compete for an air force contract for a single-engined fighter. However, in 1934 Messerschmitt designed the Bf 108 Taifun, a small civil aircraft with a fighter-like appearance. This displayed the quality of his design and the German air ministry was forced to recognize him. As a result, he unveiled the famous Bf 109 fighter which first flew in August 1935; it was used during the Spanish Civil War in 1936–9, and was to become one of the foremost combat aircraft of the Second World War. In 1938, after several name changes, the company became Messerschmitt Aktien-Gesellschaft (and hence a change of prefix from Bf to Me). During April 1939 a Messerschmitt aircraft broke the world air-speed record at 755.14 km/h (469.32 mph): it was entered in the FAI records as a Bf 109R, but was more accurately a new design designated Me 209V-1.
    During the Second World War, the 5/70P was progressively improved, and eventually almost 35,000 were built. Other successful fighters followed, such as the twin-engined Me 110 which also served as a bomber and night fighter. The Messerschmitt Me 262 twin-engined jet fighter, the first jet aircraft in the world to enter service, flew during the early years of the war, but it was never given a high priority by the High Command and only a small number were in service when the war ended. Another revolutionary Messerschmitt AG design was the Me 163 Komet, the concept of Professor Alexander Lippisch who had joined Messerschmitt's company in 1939; this was the first rocket-propelled fighter to enter service. It was a small tailless design capable of 880 km/hr (550 mph), but its duration under power was only about 10 minutes and it was very dangerous to fly. From late 1944 onwards it was used to intercept the United States Air Force bombers during their daylight raids. At the other end of the scale, Messerschmitt produced the Me 321 Gigant, a huge transport glider which was towed behind a flight of three Me 110s. Later it was equipped with six engines, but it was an easy target for allied fighters. This was a costly white elephant, as was his high-speed twin-engined Me 210 fighter-bomber project which nearly made his company bankrupt. Nevertheless, he was certainly an innovator and was much admired by Hitler, who declared that he had "the skull of a genius", because of the Me 163 Komet rocket-powered fighter and the Me 262.
    At the end of the war Messerschmitt was detained by the Americans for two years. In 1952 Messerschmitt became an aviation adviser to the Spanish government, and his Bf109 was produced in Spain as the Hispano Buchon for a number of years and was powered by Rolls-Royce Merlin engines. A factory was also constructed in Egypt to produce aircraft to Messerschmitt's designs. His German company, banned from building aircraft, produced prefabricated houses, sewing machines and, from 1953 to 1962, a series of bubble-cars: the KR 175 (1953–55) and the KR 200 (1955–62) were single-cylinder three-wheeled bubble-cars, and the Tiger (1958–62) was a twin-cylinder, 500cc four-wheeler. In 1958 Messerschmitt resumed aircraft construction in Germany and later became the Honorary Chairman of the merged Messerschmitt-Bölkow-Blohm company (now part of the Franco-German Eurocopter company).
    [br]
    Further Reading
    van Ishoven, 1975, Messerschmitt. Aircraft Designer, London. J.Richard Smith, 1971, Messerschmitt. An Air-craft Album, London.
    Anthony Pritchard, 1975, Messerschmitt, London (describes Messerschmitt aircraft).
    JDS / CM

    Biographical history of technology > Messerschmitt, Willi E.

  • 105 Nyquist, Harry

    [br]
    b. 7 February 1889 Nilsby, Sweden
    d. 4 April 1976 Texas, USA
    [br]
    Swedish-American engineer who established the formula for thermal noise in electrical circuits and the stability criterion for feedback amplifiers.
    [br]
    Nyquist (original family name Nykvist) emigrated from Sweden to the USA when he was 18 years old and settled in Minnesota. After teaching for a time, he studied electrical engineering at the University of North Dakota, gaining his first and Master's degrees in 1915 and 1916, and his PhD from Yale in 1917. He then joined the American Telegraph \& Telephone Company, moving to its Bell Laboratories in 1934 and remaining there until his retirement in 1954. A prolific inventor, he made many contributions to communication engineering, including the invention of vestigial-side band transmission. In the late 1920s he analysed the behaviour of analogue and digital signals in communication circuits, and in 1928 he showed that the thermal noise per unit bandwidth is given by 4 kT, where k is Boltzmann's constant and T the absolute temperature. However, he is best known for the Nyquist Criterion, which defines the conditions necessary for the stable, oscillation-free operation of amplifiers with a closed feedback loop. The problem of how to realize these conditions was investigated by his colleague Hendrik Bode.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Medal 1960. Institute of Electrical and Electronics Engineers Medal of Honour 1960; Mervin J.Kelly Award 1961.
    Bibliography
    1924, "Certain factors affecting telegraph speed", Bell System Technical Journal 3:324. 1928, "Certain topics in telegraph transmission theory", Transactions of the American
    Institute of Electrical Engineers 47:617.
    1928, "Thermal agitation of electric charge in conductors", Physical Review 32:110. 1932, "Regeneration theory", Bell System Technical Journal 11:126.
    1940, with K.Pfleger, "Effect of the quadrature component in single-sideband transmission", Bell System Technical Journal 19:63.
    Further Reading
    Bell Telephone Laboratories, 1975, Mission Communications.
    KF

    Biographical history of technology > Nyquist, Harry

  • 106 Saulnier, Raymond

    SUBJECT AREA: Aerospace
    [br]
    b. late eighteenth century France
    d. mid-twentieth century
    [br]
    French designer of aircraft, associated with Louis Blériot and later the Morane- Saulnier company.
    [br]
    When Louis Blériot made his historic flight across the English Channel in 1909, the credit for the success of the flight naturally went to the pilot. Few people thought about the designer of the successful aeroplane, and those who did assumed it was Blériot himself. Blériot did design several of the aeroplanes bearing his name, but the cross- Channel No. XI was mainly designed by his friend Raymond Saulnier, a fact not; broadcast at the time.
    In 1911 the Morane-Saulnier company was founded in Paris by Léon (1885–1918) and Robert (1886–1968) Morane and Raymond Saulnier, who became Chief Designer. Flying a Morane-Saulnier, Roland Garros made a recordbreaking flight to a height of 5,611 m (18,405 ft) in 1912, and the following year he made the first non-stop flight across the Mediterranean. Morane-Saulnier built a series of "parasol" monoplanes which were very widely used during the early years of the First World War. With the wing placed above the fuselage, the pilot had an excellent downward view for observation purposes, but the propeller ruled out a forward-firing machine gun. During 1913–4, Raymond Saulnier was working on an idea for a synchronized machine gun to fire between the blades of the propeller. He could not overcome certain technical problems, so he devised a simple alternative: metal deflector plates were fitted to the propeller, so if a bullet hit the blade it did no harm. Roland Garros, flying a Type L Parasol, tested the device in action during April 1915 and was immediately successful. This opened the era of the true fighter aircraft. Unfortunately, Garros was shot down and the Germans discovered his secret weapon: they improved on the idea with a fully synchronized machine gun fitted to the Fokker E 1 monoplane. The Morane-Saulnier company continued in business until 1963, when it was taken over by the Potez Group.
    [br]
    Further Reading
    Jane's Fighting Aircraft of World War I, 1990, London: Jane's (reprint) (provides plans and details of 1914–18 Morane-Saulnier aeroplanes).
    JDS

    Biographical history of technology > Saulnier, Raymond

  • 107 Stalkartt, Marmaduke

    SUBJECT AREA: Ports and shipping
    [br]
    b. 6 April 1750 London (?), England
    d. 24 September 1805 Calcutta, India
    [br]
    English naval architect and author of a noted book on shipbuilding.
    [br]
    For a man who contributed much to the history of shipbuilding in Britain, surprisingly little is known of his life and times. The family are reputedly descendants of Danish or Norwegian shipbuilders who emigrated to England around the late seventeenth century. It is known, however, that Marmaduke was the fourth child of his father, Hugh Stalkartt, but the second child of Hugh's second wife.
    Stalkartt is believed to have served an apprenticeship at the Naval Yard at Deptford on the Thames. He had advanced sufficiently by 1796 for the Admiralty to send him to India to establish shipyards dedicated to the construction of men-of-war in teak. The worsening supply of oak from England, and to a lesser extent Scotland, coupled with the war with France was making ship procurement one of the great concerns of the time. The ready supply of hardwoods from the subcontinent was a serious attempt to overcome this problem. For some years one of the shipyards in Calcutta was known as Stalkartt's Yard and this gives some credence to the belief that Stalkartt left the Navy while overseas and started his own shipbuilding organization.
    [br]
    Bibliography
    1781, Naval Architecture; or, the Rudiments and Rules of Shipbuilding; repub. 1787, 1803 (an illustrated textbook).
    FMW

    Biographical history of technology > Stalkartt, Marmaduke

  • 108 Stephenson, Robert

    [br]
    b. 16 October 1803 Willington Quay, Northumberland, England
    d. 12 October 1859 London, England
    [br]
    English engineer who built the locomotive Rocket and constructed many important early trunk railways.
    [br]
    Robert Stephenson's father was George Stephenson, who ensured that his son was educated to obtain the theoretical knowledge he lacked himself. In 1821 Robert Stephenson assisted his father in his survey of the Stockton \& Darlington Railway and in 1822 he assisted William James in the first survey of the Liverpool \& Manchester Railway. He then went to Edinburgh University for six months, and the following year Robert Stephenson \& Co. was named after him as Managing Partner when it was formed by himself, his father and others. The firm was to build stationary engines, locomotives and railway rolling stock; in its early years it also built paper-making machinery and did general engineering.
    In 1824, however, Robert Stephenson accepted, perhaps in reaction to an excess of parental control, an invitation by a group of London speculators called the Colombian Mining Association to lead an expedition to South America to use steam power to reopen gold and silver mines. He subsequently visited North America before returning to England in 1827 to rejoin his father as an equal and again take charge of Robert Stephenson \& Co. There he set about altering the design of steam locomotives to improve both their riding and their steam-generating capacity. Lancashire Witch, completed in July 1828, was the first locomotive mounted on steel springs and had twin furnace tubes through the boiler to produce a large heating surface. Later that year Robert Stephenson \& Co. supplied the Stockton \& Darlington Railway with a wagon, mounted for the first time on springs and with outside bearings. It was to be the prototype of the standard British railway wagon. Between April and September 1829 Robert Stephenson built, not without difficulty, a multi-tubular boiler, as suggested by Henry Booth to George Stephenson, and incorporated it into the locomotive Rocket which the three men entered in the Liverpool \& Manchester Railway's Rainhill Trials in October. Rocket, was outstandingly successful and demonstrated that the long-distance steam railway was practicable.
    Robert Stephenson continued to develop the locomotive. Northumbrian, built in 1830, had for the first time, a smokebox at the front of the boiler and also the firebox built integrally with the rear of the boiler. Then in Planet, built later the same year, he adopted a layout for the working parts used earlier by steam road-coach pioneer Goldsworthy Gurney, placing the cylinders, for the first time, in a nearly horizontal position beneath the smokebox, with the connecting rods driving a cranked axle. He had evolved the definitive form for the steam locomotive.
    Also in 1830, Robert Stephenson surveyed the London \& Birmingham Railway, which was authorized by Act of Parliament in 1833. Stephenson became Engineer for construction of the 112-mile (180 km) railway, probably at that date the greatest task ever undertaken in of civil engineering. In this he was greatly assisted by G.P.Bidder, who as a child prodigy had been known as "The Calculating Boy", and the two men were to be associated in many subsequent projects. On the London \& Birmingham Railway there were long and deep cuttings to be excavated and difficult tunnels to be bored, notoriously at Kilsby. The line was opened in 1838.
    In 1837 Stephenson provided facilities for W.F. Cooke to make an experimental electrictelegraph installation at London Euston. The directors of the London \& Birmingham Railway company, however, did not accept his recommendation that they should adopt the electric telegraph and it was left to I.K. Brunel to instigate the first permanent installation, alongside the Great Western Railway. After Cooke formed the Electric Telegraph Company, Stephenson became a shareholder and was Chairman during 1857–8.
    Earlier, in the 1830s, Robert Stephenson assisted his father in advising on railways in Belgium and came to be increasingly in demand as a consultant. In 1840, however, he was almost ruined financially as a result of the collapse of the Stanhope \& Tyne Rail Road; in return for acting as Engineer-in-Chief he had unwisely accepted shares, with unlimited liability, instead of a fee.
    During the late 1840s Stephenson's greatest achievements were the design and construction of four great bridges, as part of railways for which he was responsible. The High Level Bridge over the Tyne at Newcastle and the Royal Border Bridge over the Tweed at Berwick were the links needed to complete the East Coast Route from London to Scotland. For the Chester \& Holyhead Railway to cross the Menai Strait, a bridge with spans as long-as 460 ft (140 m) was needed: Stephenson designed them as wrought-iron tubes of rectangular cross-section, through which the trains would pass, and eventually joined the spans together into a tube 1,511 ft (460 m) long from shore to shore. Extensive testing was done beforehand by shipbuilder William Fairbairn to prove the method, and as a preliminary it was first used for a 400 ft (122 m) span bridge at Conway.
    In 1847 Robert Stephenson was elected MP for Whitby, a position he held until his death, and he was one of the exhibition commissioners for the Great Exhibition of 1851. In the early 1850s he was Engineer-in-Chief for the Norwegian Trunk Railway, the first railway in Norway, and he also built the Alexandria \& Cairo Railway, the first railway in Africa. This included two tubular bridges with the railway running on top of the tubes. The railway was extended to Suez in 1858 and for several years provided a link in the route from Britain to India, until superseded by the Suez Canal, which Stephenson had opposed in Parliament. The greatest of all his tubular bridges was the Victoria Bridge across the River St Lawrence at Montreal: after inspecting the site in 1852 he was appointed Engineer-in-Chief for the bridge, which was 1 1/2 miles (2 km) long and was designed in his London offices. Sadly he, like Brunel, died young from self-imposed overwork, before the bridge was completed in 1859.
    [br]
    Principal Honours and Distinctions
    FRS 1849. President, Institution of Mechanical Engineers 1849. President, Institution of Civil Engineers 1856. Order of St Olaf (Norway). Order of Leopold (Belgium). Like his father, Robert Stephenson refused a knighthood.
    Further Reading
    L.T.C.Rolt, 1960, George and Robert Stephenson, London: Longman (a good modern biography).
    J.C.Jeaffreson, 1864, The Life of Robert Stephenson, London: Longman (the standard nine-teenth-century biography).
    M.R.Bailey, 1979, "Robert Stephenson \& Co. 1823–1829", Transactions of the Newcomen Society 50 (provides details of the early products of that company).
    J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Stephenson, Robert

  • 109 Sullivan, Louis Henry

    [br]
    b. 3 September 1856 Boston, Massachusetts, USA
    d. 14 April 1924 Chicago, Illinois, USA
    [br]
    American architect whose work came to be known as the "Chicago School of Architecture" and who created a new style of architecture suited specifically to steel-frame, high-rise structures.
    [br]
    Sullivan, a Bostonian, studied at the Massachusetts Institute of Technology. Soon he joined his parents, who had moved to Chicago, and worked for a while in the office of William Le Baron Jenney, the pioneer of steel-frame construction. After spending some time studying at the Ecole des Beaux Arts in Paris, in 1875 Sullivan returned to Chicago, where he later met and worked for the Danish architect Dankmar Adler, who was practising there. In 1881 the two architects became partners, and during the succeeding fifteen years they produced their finest work and the buildings for which Sullivan is especially known.
    During the early 1880s in Chicago, load-bearing, metal-framework structures that made lofty skyscrapers possible had been developed (see Jenney and Holabird). Louis H.Sullivan initiated building design to stress and complement the metal structure rather than hide it. Moving onwards from H.H.Richardson's treatment of his Marshall Field Wholesale Store in Chicago, Sullivan took the concept several stages further. His first outstanding work, built with Adler in 1886–9, was the Auditorium Building in Chicago. The exterior, in particular, was derived largely from Richardson's Field Store, and the building—now restored—is of bold but simple design, massively built in granite and stone, its form stressing the structure beneath. The architects' reputation was established with this building.
    The firm of Sullivan \& Adler established itself during the early 1890s, when they built their most famous skyscrapers. Adler was largely responsible for the structure, the acoustics and function, while Sullivan was responsible for the architectural design, concerning himself particularly with the limitation and careful handling of ornament. In 1892 he published his ideas in Ornament in Architecture, where he preached restraint in its quality and disposition. He established himself as a master of design in the building itself, producing a rhythmic simplicity of form, closely related to the structural shape beneath. The two great examples of this successful approach were the Wainwright Building in St Louis, Missouri (1890–1) and the Guaranty Building in Buffalo, New York (1894–5). The Wainwright Building was a ten-storeyed structure built in stone and brick and decorated with terracotta. The vertical line was stressed throughout but especially at the corners, where pilasters were wider. These rose unbroken to an Art Nouveau type of decorative frieze and a deeply projecting cornice above. The thirteen-storeyed Guaranty Building is Sullivan's masterpiece, a simple, bold, finely proportioned and essentially modern structure. The pilaster verticals are even more boldly stressed and decoration is at a minimum. In the twentieth century the almost free-standing supporting pillars on the ground floor have come to be called pilotis. As late as the 1920s, particularly in New York, the architectural style and decoration of skyscrapers remained traditionally eclectic, based chiefly upon Gothic or classical forms; in view of this, Sullivan's Guaranty Building was far ahead of its time.
    [br]
    Bibliography
    Article by Louis H.Sullivan. Address delivered to architectural students June 1899, published in Canadian Architecture Vol. 18(7):52–3.
    Further Reading
    Hugh Morrison, 1962, Louis Sullivan: Prophet of Modern Architecture.
    Willard Connely, 1961, Louis Sullivan as He Lived, New York: Horizon Press.
    DY

    Biographical history of technology > Sullivan, Louis Henry

См. также в других словарях:

  • List of tornadoes from the Late-April 2007 tornado outbreak sequence — The Late April 2007 tornado outbreak sequence produced a total of from April 20 to April 27. Most of the tornadoes were produced by two major outbreaks including one that affected mostly areas from the Texas Panhandle to eastern South Dakota on… …   Wikipedia

  • Late-term abortion — Late term abortions are abortions which are performed during a later stage of pregnancy. Late term abortion is more controversial than abortion in general because the fetus is more developed and may even be viable. Definition of late term A late… …   Wikipedia

  • Late Show with David Letterman — Format Talk show Variety show Created by David Lette …   Wikipedia

  • April 2009 tornado outbreak — Damage from the EF4 Murfreesboro tornado Date of tornado outbreak: April 9–11, 2009 Duration1: 31 hours, 37 minutes Maximum rated torn …   Wikipedia

  • Late Registration — Studio album by Kanye West Released August 30, 2005 …   Wikipedia

  • Late-May 2008 tornado outbreak sequence — A tornado in Kansas on May 22, 2008 Date of tornado outbreak: May 22–31, 2008 Duration1: 9 days Maximum rated t …   Wikipedia

  • Late night anime — (深夜アニメ , shin ya anime?) is a term used in Japan to denote anime television series broadcast late at night and/or in the early morning, usually between 23.00 and 4.00. Sometimes the scheduled times of such broadcasts are advertised in a format… …   Wikipedia

  • Late Modernism — encompasses the overall production of most recent art made between the aftermath of World War II and the early years of the 21st century. The terminology often points to similarities between late modernism and post modernism although there are… …   Wikipedia

  • Late Night Line-Up — was a pioneering British television discussion programme broadcast on BBC2 between 1964 and 1972. Late Night Line Up returned for a special one off edition on BBC Parliament in 2008.BackgroundFrom its launch in April 1964, BBC2 began each evening …   Wikipedia

  • April 2003 — January February March April May June July August September October November DecemberEventsApril 1, 2003* Hong Kong movie and Cantopop star Leslie Cheung commits suicide at the age of 46. * In Japan, The Postal Services Agency becomes Japan Post …   Wikipedia

  • April 2010 Rio de Janeiro floods and mudslides — Duration: 5 April – mid April 2010 …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»