Перевод: со всех языков на все языки

со всех языков на все языки

instruments+de+précision

  • 121 Graham, George

    SUBJECT AREA: Horology
    [br]
    b. c.1674 Cumberland, England
    d. 16 November 1751 London, England
    [br]
    English watch-and clockmaker who invented the cylinder escapement for watches, the first successful dead-beat escapement for clocks and the mercury compensation pendulum.
    [br]
    Graham's father died soon after his birth, so he was raised by his brother. In 1688 he was apprenticed to the London clockmaker Henry Aske, and in 1695 he gained his freedom. He was employed as a journeyman by Tompion in 1696 and later married his niece. In 1711 he formed a partnership with Tompion and effectively ran the business in Tompion's declining years; he took over the business after Tompion died in 1713. In addition to his horological interests he also made scientific instruments, specializing in those for astronomical use. As a person, he was well respected and appears to have lived up to the epithet "Honest George Graham". He befriended John Harrison when he first went to London and lent him money to further his researches at a time when they might have conflicted with his own interests.
    The two common forms of escapement in use in Graham's time, the anchor escapement for clocks and the verge escapement for watches, shared the same weakness: they interfered severely with the free oscillation of the pendulum and the balance, and thus adversely affected the timekeeping. Tompion's two frictional rest escapements, the dead-beat for clocks and the horizontal for watches, had provided a partial solution by eliminating recoil (the momentary reversal of the motion of the timepiece), but they had not been successful in practice. Around 1720 Graham produced his own much improved version of the dead-beat escapement which became a standard feature of regulator clocks, at least in Britain, until its supremacy was challenged at the end of the nineteenth century by the superior accuracy of the Riefler clock. Another feature of the regulator clock owed to Graham was the mercury compensation pendulum, which he invented in 1722 and published four years later. The bob of this pendulum contained mercury, the surface of which rose or fell with changes in temperature, compensating for the concomitant variation in the length of the pendulum rod. Graham devised his mercury pendulum after he had failed to achieve compensation by means of the difference in expansion between various metals. He then turned his attention to improving Tompion's horizontal escapement, and by 1725 the cylinder escapement existed in what was virtually its final form. From the following year he fitted this escapement to all his watches, and it was also used extensively by London makers for their precision watches. It proved to be somewhat lacking in durability, but this problem was overcome later in the century by using a ruby cylinder, notably by Abraham Louis Breguet. It was revived, in a cheaper form, by the Swiss and the French in the nineteenth century and was produced in vast quantities.
    [br]
    Principal Honours and Distinctions
    FRS 1720. Master of the Clockmakers' Company 1722.
    Bibliography
    Graham contributed many papers to the Philosophical Transactions of the Royal Society, in particular "A contrivance to avoid the irregularities in a clock's motion occasion'd by the action of heat and cold upon the rod of the pendulum" (1726) 34:40–4.
    Further Reading
    Britten's Watch \& Clock Maker's Handbook Dictionary and Guide, 1978, rev. Richard Good, 16th edn, London, pp. 81, 84, 232 (for a technical description of the dead-beat and cylinder escapements and the mercury compensation pendulum).
    A.J.Turner, 1972, "The introduction of the dead-beat escapement: a new document", Antiquarian Horology 8:71.
    E.A.Battison, 1972, biography, Biographical Dictionary of Science, ed. C.C.Gillespie, Vol. V, New York, 490–2 (contains a résumé of Graham's non-horological activities).
    DV

    Biographical history of technology > Graham, George

  • 122 Halske, Johann Georg

    [br]
    b. 30 July 1814 Hamburg, Germany
    d. 18 March 1890 Berlin, Germany
    [br]
    German engineer who introduced precision methods into the manufacture of electrical equipment; co-founder of Siemens \& Halske.
    [br]
    Halske moved to Berlin when he was a young man, and in 1844 was working for the university, at first independently and then jointly with F. Bötticher, developing and building electric medical appliances. In 1845 he met Werner von Siemens and together they became founder members of the Berlin Physics Society. It was in Halske's workshop that Siemens, assisted by the skill of the former, was able to work out his inventions in telegraphy. In 1847 the two men entered into partnership to manufacture telegraph equipment, laying the foundations of the successful firm of Siemens \& Halske. At the outset, before Werner von Siemens gave up his army career, Halske acted as the sole manager of the firm and was also involved in testing the products. Inventions they developed included electric measuring instruments and railway signalling equipment, and they installed many telegraph lines, notably those for the Russian Government. When gutta-percha became available on the market, the two men soon developed an extrusion process for applying this new material to copper conductors. To the disappointment of Halske, who was opposed to mass production, the firm introduced series production and piece wages in 1857. The expansion of the business, particularly into submarine cable laying, caused some anxiety to Halske, who left the firm on amicable terms in 1867. He then worked for a few years developing the Arts and Crafts Museum in Berlin and became a town councillor.
    [br]
    Further Reading
    S. von Weihr and H.Götzeler, 1983, The Siemens Company. Its Historical Role in the Progress of Electrical Engineering 1847–1983, Berlin (provides a full account).
    Neue Deutsche Biographie, 1966, Vol. 7, Berlin, pp. 572–3.
    S.von Weiher, 1972–3, "The Siemens brothers, pioneers of the electrical age in Europe", Transactions of the Newcomen Society 45:1–11.
    GW

    Biographical history of technology > Halske, Johann Georg

  • 123 Johansson, Carl Edvard

    [br]
    b. 15 March 1864 Orebro, Sweden
    d. 30 September 1943 Eskilstuna, Sweden
    [br]
    Swedish metrologist and inventor of measuring-gauge blocks.
    [br]
    Carl Edvard Johansson was first apprenticed to a shoemaker, but he soon abandoned that career. In 1882 he went to America to join his brother Arvid working at a sawmill in the summer; in winter the brothers obtained further general education at the Gustavus Adolphus College at St Peter, Minnesota. They returned to Sweden in November 1884 and in the following year Carl obtained employment with a small engineering firm which rented a workshop in the government small-arms factory at Eskilstuna. In his spare time he attended the Eskilstuna Technical College and in 1888 he was accepted as an apprentice armourer inspector. After completion of his apprenticeship he was appointed an armourer inspector, and it was in his work of inspection that he realized that the large number of gauges then required could be reduced if several accurate gauges could be used in combination. This was in 1896, and the first set of gauges was made for use in the rifle factory. With these, any dimension between 1 mm and 201 mm could be made up to the nearest 0.01 mm, the gauges having flat polished surfaces that would adhere together by "wringing". Johansson obtained patents for the system from 1901, but it was not until c.1907 that the sets of gauges were marketed generally. Gauges were made in inch units for Britain and America—slightly different as the standards were not then identical. Johansson formed his own company to manufacture the gauges in 1910, but he did not give up his post in the rifle factory until 1914. By the 1920s Johansson gauges were established as the engineering dimensional standards for the whole world; the company also made other precision measuring instruments such as micrometers and extensometers. A new company, C.E.Johansson Inc., was set up in America for manufacture and sales, and the gauges were extensively used in the American automobile industry. Henry Ford took a special interest and Johansson spent several years in a post with the Ford Motor Company in Detroit, Michigan, until he returned to Sweden in 1936.
    [br]
    Principal Honours and Distinctions
    Honorary Doctorates, Gustavus Adolphus College, St Peter and Wayne University, Detroit. Swedish Engineering Society John Ericsson Gold Medal. American Society of Mechanical Engineers Gold Medal.
    Further Reading
    K.J.Hume, 1980, A History of Engineering Metrology, London, pp. 54–66 (a short biography).
    RTS

    Biographical history of technology > Johansson, Carl Edvard

  • 124 Thomson, Sir William, Lord Kelvin

    [br]
    b. 26 June 1824 Belfast, Ireland (now Northern Ireland)
    d. 17 December 1907 Largs, Scotland
    [br]
    Irish physicist and inventor who contributed to submarine telegraphy and instrumentation.
    [br]
    After education at Glasgow University and Peterhouse, Cambridge, a period of study in France gave Thomson an interest in experimental work and instrumentation. He became Professor of Natural Philosophy at Glasgow in 1846 and retained the position for the rest of his career, establishing the first teaching laboratory in Britain.
    Among his many contributions to science and engineering was his concept, introduced in 1848, of an "absolute" zero of temperature. Following on from the work of Joule, his investigations into the nature of heat led to the first successful liquefaction of gases such as hydrogen and helium, and later to the science of low-temperature physics.
    Cable telegraphy gave an impetus to the scientific measurement of electrical quantities, and for many years Thomson was a member of the British Association Committee formed in 1861 to consider electrical standards and to develop units; these are still in use. Thomson first became Scientific Adviser to the Atlantic Telegraph Company in 1857, sailing on the Agamemnon and Great Eastern during the cable-laying expeditions. He invented a mirror galvanometer and more importantly the siphon recorder, which, used as a very sensitive telegraph receiver, provided a permanent record of signals. He also laid down the design parameters of long submarine cables and discovered that the conductivity of copper was greatly affected by its purity. A major part of the success of the Atlantic cable in 1866 was due to Thomson, who received a knighthood for his contribution.
    Other instruments he designed included a quadrant electrostatic voltmeter to measure high voltages, and his "multi-cellular" instrument for low voltages. They could be used on alternating or direct current and were free from temperature errors. His balances for precision current measurement were widely used in standardizing laboratories.
    Thomson was a prolific writer of scientific papers on subjects across the whole spectrum of physics; between 1855 and 1866 he published some 110 papers, with a total during his life of over 600. In 1892 he was raised to the peerage as Baron Kelvin of Largs. By the time of his death he was looked upon as the "father" of British physics, but despite his outstanding achievements his later years were spent resisting change and progress.
    [br]
    Principal Honours and Distinctions
    Knighted 1866. Created Lord Kelvin of Largs 1892. FRS 1851. President, Royal Society 1890–4. An original member of the Order of Merit 1902. President, Society of Telegraph Engineers 1874. President, Institution of Electrical Engineers 1889 and 1907. Royal Society Royal Medal 1856, Copley Medal 1883.
    Bibliography
    1872, Reprints of Papers on Electrostatics and Magnetism, London; 1911, Mathematical and Physical Papers, 6 vols, Cambridge (collections of Thomson's papers).
    Further Reading
    Silvanus P.Thompson, 1910, The Life of William Thomson, Baron Kelvin of Largs, 2 vols, London (an uncritical biography).
    D.B.Wilson, 1987, Kelvin and Stokes: A Comparative Study in Victorian Physics, Bristol (provides a present-day commentary on all aspects of Thomson's work).
    J.G.Crowther, 1962, British Scientists of the 19th Century, London, pp. 199–257 (a short critical biography).
    GW

    Biographical history of technology > Thomson, Sir William, Lord Kelvin

  • 125 Zeiss, Carl

    [br]
    b. 11 September 1816 Weimar, Thuringia, Germany
    d. 3 December 1888 Jena, Saxony, Germany
    [br]
    German lens manufacturer who introduced scientific method to the production of compound microscopes and made possible the production of the first anastigmatic photographic objectives.
    [br]
    After completing his early education in Weimar, Zeiss became an apprentice to the engineer Dr Frederick Koerner. As part of his training, Zeiss was required to travel widely and he visited Vienna, Berlin, Stuttgart and Darmstadt to study his trade. In 1846 he set up a business of his own, an optical workshop in Jena, where he began manufacturing magnifying glasses and microscopes. Much of his work was naturally for the university there and he had the co-operation of some of the University staff in the development of precision instruments. By 1858 he was seeking to make more expensive compound microscopes, but he found the current techniques primitive and laborious. He decided that it was necessary to introduce scientific method to the design of the optics, and in 1866 he sought the advice of a professor of physics at the University of Jena, Ernst Abbe (1840–1905). It took Zeiss until 1869 to persuade Abbe to join his company, and two difficult years were spent working on the calculations before success was achieved. Within a few more years the Zeiss microscope had earned a worldwide reputation for quality. Abbe became a full partner in the Zeiss business in 1875. In 1880 Abbe began an association with Friedrich Otte Schott that was to lead to the establishment of the famous Jena glass works in 1884. With the support of the German government, Jena was to become the centre of world production of new optical glasses for photographic objectives.
    In 1886 the distinguished mathematician and optician Paul Rudolph joined Zeiss at Jena. After Zeiss's death, Rudolph went on to use the characteristics of the new glass to calculate the first anastigmatic lenses. Immediately successful and widely imitated, the anastigmats were also the first of a long series of Zeiss photographic objectives that were to be at the forefront of lens design for years to come. Abbe took over the management of the company and developed it into an internationally famous organization.
    [br]
    Further Reading
    L.W.Sipley, 1965, Photography's Great Inventors, Philadelphia (a brief biography). J.M.Eder, 1945, History of Photography, trans. E.Epstean, New York.
    K.J.Hume, 1980, A History of Engineering Metrology, London, 122–32 (includes a short account of Carl Zeiss and his company).
    JW / RTS

    Biographical history of technology > Zeiss, Carl

  • 126 hassas

    1. sensitive, responsive. 2. touchy, oversensitive. 3. /a/ susceptible (to drugs). 4. mechanically exact. - aletler precision instruments.

    Saja Türkçe - İngilizce Sözlük > hassas

  • 127 принадлежности с ограниченной взаимозаменяемостью

    1. begrenzt austauschbares (Messgeräte-)Zubehör

     

    принадлежности (вспомогательная аппаратура) с ограниченной взаимозаменяемостью
    -
    [IEV number 313-09-02]

    EN

    accessory of limited interchangeability
    accessory, having its own properties and accuracy, which can only be associated with measuring instruments for which certain characteristics are within specified limits
    [IEV number 313-09-02]

    FR

    accessoire à interchangeabilité limitée
    accessoire, possédant ses qualités et sa précision propres, ne pouvant être associé qu'à des appareils de mesure dont certaines caractéristiques sont dans des limites spécifiées
    [IEV number 313-09-02]

    Тематики

    • измерение электр. величин в целом

    Синонимы

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > принадлежности с ограниченной взаимозаменяемостью

  • 128 сменные принадлежности

    1. austauschbares (Messgeräte-)Zubehör

     

    сменные принадлежности (вспомогательная аппаратура)
    -
    [IEV number 313-09-01]

    EN

    interchangeable accessory
    accessory having its own properties and accuracy, which are independent of those of the measuring instruments with which it can be associated
    [IEV number 313-09-01]

    FR

    accessoire interchangeable
    accessoire possédant ses qualités et sa précision propres, indépendantes de celles des appareils de mesure auxquels il peut être associé
    [IEV number 313-09-01]

    Тематики

    • измерение электр. величин в целом

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > сменные принадлежности

См. также в других словарях:

  • Association Des Ouvriers En Instruments De Précision — L’Association des ouvriers en instruments de précision (AOIP) est une coopérative ouvrière de production créée le 10 mars 1896 à Paris dans le XIVe arrondissement. Elle deviendra la plus grande coopérative d Europe (hors URSS) dans les années… …   Wikipédia en Français

  • Association des Ouvriers en Instruments de Précision — L’Association des ouvriers en instruments de précision (AOIP) est une coopérative ouvrière de production créée le 10 mars 1896 à Paris dans le XIVe arrondissement. Elle deviendra la plus grande coopérative d Europe (hors URSS) dans les années… …   Wikipédia en Français

  • Association des ouvriers en instruments de precision — Association des ouvriers en instruments de précision L’Association des ouvriers en instruments de précision (AOIP) est une coopérative ouvrière de production créée le 10 mars 1896 à Paris dans le XIVe arrondissement. Elle deviendra la plus grande …   Wikipédia en Français

  • Chambre Syndicale Des Ouvriers En Instruments De Précision De Paris — La chambre syndicale des ouvriers en instruments de précision et parties similaires est un syndicat parisien créé en 1892. Edmond Briat en fut l un des secrétaires généraux. Paul Delesalle (considéré comme un des fondateurs de l anarcho… …   Wikipédia en Français

  • Chambre syndicale des ouvriers en instruments de precision de Paris — Chambre syndicale des ouvriers en instruments de précision de Paris La chambre syndicale des ouvriers en instruments de précision et parties similaires est un syndicat parisien créé en 1892. Edmond Briat en fut l un des secrétaires généraux. Paul …   Wikipédia en Français

  • Chambre syndicale des ouvriers en instruments de précision de paris — La chambre syndicale des ouvriers en instruments de précision et parties similaires est un syndicat parisien créé en 1892. Edmond Briat en fut l un des secrétaires généraux. Paul Delesalle (considéré comme un des fondateurs de l anarcho… …   Wikipédia en Français

  • Syndicat des Ouvriers en Instruments de Précision — Chambre syndicale des ouvriers en instruments de précision de Paris La chambre syndicale des ouvriers en instruments de précision et parties similaires est un syndicat parisien créé en 1892. Edmond Briat en fut l un des secrétaires généraux. Paul …   Wikipédia en Français

  • Association des ouvriers en instruments de précision — L’Association des ouvriers en instruments de précision (AOIP) est une coopérative ouvrière de production créée le 10 mars 1896 dans le 14e arrondissement de Paris. Elle s installera ensuite 8 à 14 rue Charles Fourier, dans le 13e… …   Wikipédia en Français

  • Chambre syndicale des ouvriers en instruments de précision de Paris — La chambre syndicale des ouvriers en instruments de précision et parties similaires est un syndicat parisien créé en 1892. Edmond Briat en fut l un des secrétaires généraux. Paul Delesalle (considéré comme un des fondateurs de l anarcho… …   Wikipédia en Français

  • précision — [ presizjɔ̃ ] n. f. • 1520; « action de rogner » v. 1380; lat. præcisio→ 1. précis I ♦ La précision. 1 ♦ Caractère de ce qui est précis (1o). ⇒ clarté, rigueur. La précision de certains récits. « Concision dans le style, précision dans la pensée …   Encyclopédie Universelle

  • precision — noun ADJECTIVE ▪ absolute, deadly, perfect, pinpoint ▪ The captain struck again with deadly precision. ▪ The rebels launched missiles with pinpoint precision. ▪ …   Collocations dictionary

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»