Перевод: с английского на все языки

со всех языков на английский

information+technology+in+school

  • 21 Campbell-Swinton, Alan Archibald

    [br]
    b. 18 October 1863 Kimmerghame, Berwickshire, Scotland
    d. 19 February 1930 London, England
    [br]
    Scottish electrical engineer who correctly predicted the development of electronic television.
    [br]
    After a time at Cargilfield Trinity School, Campbell-Swinton went to Fettes College in Edinburgh from 1878 to 1881 and then spent a year abroad in France. From 1882 until 1887 he was employed at Sir W.G.Armstrong's works in Elswick, Newcastle, following which he set up his own electrical contracting business in London. This he gave up in 1904 to become a consultant. Subsequently he was an engineer with many industrial companies, including the W.T.Henley Telegraph Works Company, Parson Marine Steam Turbine Company and Crompton Parkinson Ltd, of which he became a director. During this time he was involved in electrical and scientific research, being particularly associated with the development of the Parson turbine.
    In 1903 he tried to realize distant electric vision by using a Braun oscilloscope tube for the. image display, a second tube being modified to form a synchronously scanned camera, by replacing the fluorescent display screen with a photoconductive target. Although this first attempt at what was, in fact, a vidicon camera proved unsuccessful, he was clearly on the right lines and in 1908 he wrote a letter to Nature with a fairly accurate description of the principles of an all-electronic television system using magnetically deflected cathode ray tubes at the camera and receiver, with the camera target consisting of a mosaic of photoconductive elements that were scanned and discharged line by line by an electron beam. He expanded on his ideas in a lecture to the Roentgen Society, London, in 1911, but it was over twenty years before the required technology had advanced sufficiently for Shoenberg's team at EMI to produce a working system.
    [br]
    Principal Honours and Distinctions
    FRS (Member of Council 1927 and 1929). Freeman of the City of London. Liveryman of Goldsmiths' Company. First President, Wireless Society 1920–1. Vice-President, Royal Society of Arts, and Chairman of Council 1917–19,1920–2. Chairman, British Scientific Research Association. Vice-President, British Photographic Research Association. Member of the Broadcasting Board 1924. Vice-President, Roentgen Society 1911–12. Vice-President, Institution of Electrical Engineers 1921–5. President, Radio Society of Great Britain 1913–21. Manager, Royal Institution 1912–15.
    Bibliography
    1908, Nature 78:151; 1912, Journal of the Roentgen Society 8:1 (both describe his original ideas for electronic television).
    1924, "The possibilities of television", Wireless World 14:51 (gives a detailed description of his proposals, including the use of a threestage valve video amplifier).
    1926, Nature 118:590 (describes his early experiments of 1903).
    Further Reading
    The Proceedings of the International Conference on the History of Television. From Early Days to the Present, November 1986, Institution of Electrical Engineers Publication No. 271 (a report of some of the early developments in television). A.A.Campbell-Swinton FRS 1863–1930, Royal Television Society Monograph, 1982, London (a biography).
    KF

    Biographical history of technology > Campbell-Swinton, Alan Archibald

  • 22 Kilby, Jack St Clair

    [br]
    b. 8 November 1923 Jefferson City, Missouri, USA
    [br]
    American engineer who filed the first patents for micro-electronic (integrated) circuits.
    [br]
    Kilby spent most of his childhood in Great Bend, Kansas, where he often accompanied his father, an electrical power engineer, on his maintenance rounds. Working in the blizzard of 1937, his father borrowed a "ham" radio, and this fired Jack to study for his amateur licence (W9GTY) and to construct his own equipment while still a student at Great Bend High School. In 1941 he entered the University of Illinois, but four months later, after the attack on Pearl Harbor, he was enlisted in the US Army and found himself working in a radio repair workshop in India. When the war ended he returned to his studies, obtaining his BSEE from Illinois in 1947 and his MSEE from the University of Wisconsin. He then joined Centralab, a small electronics firm in Milwaukee owned by Globe-Union. There he filed twelve patents, including some for reduced titanate capacitors and for Steatite-packing of transistors, and developed a transistorized hearing-aid. During this period he also attended a course on transistors at Bell Laboratories. In May 1958, concerned to gain experience in the field of number processing, he joined Texas Instruments in Dallas. Shortly afterwards, while working alone during the factory vacation, he conceived the idea of making monolithic, or integrated, circuits by diffusing impurities into a silicon substrate to create P-N junctions. Within less than a month he had produced a complete oscillator on a chip to prove that the technology was feasible, and the following year at the 1ERE Show he demonstrated a germanium integrated-circuit flip-flop. Initially he was granted a patent for the idea, but eventually, after protracted litigation, priority was awarded to Robert Noyce of Fairchild. In 1965 he was commissioned by Patrick Haggerty, the Chief Executive of Texas Instruments, to make a pocket calculator based on integrated circuits, and on 14 April 1971 the world's first such device, the Pocketronic, was launched onto the market. Costing $150 (and weighing some 2½ lb or 1.1 kg), it was an instant success and in 1972 some 5 million calculators were sold worldwide. He left Texas Instruments in November 1970 to become an independent consultant and inventor, working on, amongst other things, methods of deriving electricity from sunlight.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Stuart Ballantine Medal 1966. Institute of Electrical and Electronics Engineers David Sarnoff Award 1966; Cledo Brunetti Award (jointly with Noyce) 1978; Medal of Honour 1986. National Academy of Engineering 1967. National Science Medal 1969. National Inventors Hall of Fame 1982. Honorary DEng Miami 1982, Rochester 1986. Honorary DSc Wisconsin 1988. Distinguished Professor, Texas A \& M University.
    Bibliography
    6 February 1959, US patent no. 3,138,743 (the first integrated circuit (IC); initially granted June 1964).
    US patent no. 3,819,921 (the Pocketronic calculator).
    Further Reading
    T.R.Reid, 1984, Microchip. The Story of a Revolution and the Men Who Made It, London: Pan Books (for the background to the development of the integrated circuit). H.Queisser, 1988, Conquest of the Microchip, Cambridge, Mass.: Harvard University Press.
    KF

    Biographical history of technology > Kilby, Jack St Clair

  • 23 Scheutz, George

    [br]
    b. 23 September 1785 Jonkoping, Sweden
    d. 27 May 1873 Stockholm, Sweden
    [br]
    Swedish lawyer, journalist and self-taught engineer who, with his son Edvard Raphael Scheutz (b. 13 September 1821 Stockholm, Sweden; d. 28 January 1881 Stockholm, Sweden) constructed a version of the Babbage Difference Engine.
    [br]
    After early education at the Jonkoping elementary school and the Weixo Gymnasium, George Scheutz entered the University of Lund, gaining a degree in law in 1805. Following five years' legal work, he moved to Stockholm in 1811 to work at the Supreme Court and, in 1814, as a military auditor. In 1816, he resigned, bought a printing business and became editor of a succession of industrial and technical journals, during which time he made inventions relating to the press. It was in 1830 that he learned from the Edinburgh Review of Babbage's ideas for a difference engine and started to make one from wood, pasteboard and wire. In 1837 his 15-yearold student son, Edvard Raphael Scheutz, offered to make it in metal, and by 1840 they had a working machine with two five-digit registers, which they increased the following year and then added a printer. Obtaining a government grant in 1851, by 1853 they had a fully working machine, now known as Swedish Difference Engine No. 1, which with an experienced operator could generate 120 lines of tables per hour and was used to calculate the logarithms of the numbers 1 to 10,000 in under eighty hours. This was exhibited in London and then at the Paris Great Exhibition, where it won the Gold Medal. It was subsequently sold to the Dudley Observatory in Albany, New York, for US$5,000 and is now in a Chicago museum.
    In England, the British Registrar-General, wishing to produce new tables for insurance companies, and supported by the Astronomer Royal, arranged for government finance for construction of a second machine (Swedish Difference Engine No. 2). Comprising over 1,000 working parts and weighing 1,000 lb (450 kg), this machine was used to calculate over 600 tables. It is now in the Science Museum.
    [br]
    Principal Honours and Distinctions
    Member of the Swedish Academy of Sciences, Paris Exhibition Medal of Honour (jointly with Edvard) 1856. Annual pension of 1,200 marks per annum awarded by King Carl XV 1860.
    Bibliography
    1825, "Kranpunpar. George Scheutz's patent of 14 Nov 1825", Journal for Manufacturer och Hushallning 8.
    ellemême, Stockholm.
    Further Reading
    R.C.Archibald, 1947, "P.G.Scheutz, publicist, author, scientific mechanic and Edvard Scheutz, engineer. Biography and Bibliography", MTAC 238.
    U.C.Merzbach, 1977, "George Scheutz and the first printing calculator", Smithsonian
    Studies in History and Technology 36:73.
    M.Lindgren, 1990, Glory and Failure (the Difference Engines of Johan Muller, Charles Babbage and George \& Edvard Scheutz), Cambridge, Mass.: MIT Press.
    KF

    Biographical history of technology > Scheutz, George

  • 24 Schickhard(t), Wilhelm

    [br]
    b. 22 April 1592 Herrenberg, Stuttgart, Germany
    d. 24 October 1635 Tübingen, Germany
    [br]
    German polymath who described, and apparently built, a calculating "clock", possibly the first mechanical adding-machine.
    [br]
    At an early age Schickhard won a scholarship to the monastery school at Tübingen and then progressed to the university, where he obtained his BA and MA in theology in 1609 and 1611, respectively. He then specialized in oriental languages and eventually became Professor of Hebrew, Oriental Languages, Mathematics, Astronomy and Geography at Tübingen. Between 1613 and 1619 he was also deacon or pastor to a number of churches in the area. In 1617 he met Johannes Kepler, who, impressed by his ability, asked him to draw up tables of figures for his Harmonica Mundi (1619). As a result of this, Schickhard designed and constructed a mechanical adding-machine that he called a calculating clock. This he described in a letter of 20 September 1623 to Kepler, but a subsequent letter of 25 February 1624 reported its destruction by fire. After his death, probably from bubonic plague, his papers and the letter to Kepler were discovered in the regional library in Stuttgart in 1930 by Franz Hamme, who described them to the 1957 Mathematical Congress. As a result, a Dr Baron von Freytag Lovinghoff, who was present at that meeting, built a reconstruction of Schickard's machine in 1960.
    [br]
    Further Reading
    F.Hamme, 1958, "Nicht Pascal sondern der Tübingen Prof. Wilhelm Schickhard erfund die Rechenmaschin", Buromarkt 20:1,023 (describes the papers and letter to Kepler).
    B.von F.Lovinghoff, 1964, "Die erste Rechenmaschin: Tübingen 1623", Humanismus und
    Technik 9:45.
    ——1973, "Wilhelm Schickhard und seine Rechenmaschin von 1625", in M.Graef (ed.), 350 Jahre Rechenmaschin.
    M.R.Williams, 1985, History of Computing Technology, London: Prentice-Hall.
    See also: Pascal, Blaise
    KF

    Biographical history of technology > Schickhard(t), Wilhelm

  • 25 Williamson, David Theodore Nelson

    [br]
    b. 15 February 1923 Edinburgh, Scotland
    d. 1992 Italy
    [br]
    Scottish engineer, inventor of the Williamson Amplifier and computer-controlled machine tools.
    [br]
    D.T.N.Williamson was educated at George Heriot's School, Edinburgh, and studied mechanical engineering at the University of Edinburgh and electrical engineering at Heriot-Watt College (now Heriot-Watt University), Edinburgh. He joined the MO Valve Company in London in 1943 and worked in his spare time on improving the sound reproduction for gramophones, and in 1946 invented the "Williamson Amplifier".
    That same year Williamson returned to Edinburgh as a development engineer with Ferranti Ltd, where he was employed in developing computer-controlled machining systems. In 1961 he was appointed Director of Research and Development at Molins Ltd, where he continued work on computer-controlled machine tools. He invented the Molins System 24, which employed a number of machine tools, all under computer control, and is generally acknowledged as a significant step in the development of manufacturing systems. In 1974 he joined Rank Xerox and became Director of Research before taking early retirement to live in Italy. Between 1954 and 1979 he served on numerous committees relating to computer-aided design, manufacturing technology and mechanical engineering in general.
    [br]
    Principal Honours and Distinctions
    FRS 1968.
    Bibliography
    Williamson was author of several papers and articles, and contributed to the Electronic
    Engineers' Reference Book (1959), Progress in Automation (1960) and the Numerical Control Handbook (1968).
    RTS

    Biographical history of technology > Williamson, David Theodore Nelson

  • 26 Grant, George Barnard

    [br]
    b. 21 December 1849 Farmingdale, Gardiner, Maine, USA
    d. 16 August 1917 Pasadena, California, USA
    [br]
    American mechanical engineer and inventor of Grant's Difference Engine.
    [br]
    George B.Grant was descended from families who came from Britain in the seventeenth century and was educated at the Bridgton (Maine) Academy, the Chandler Scientific School of Dartmouth College and the Lawrence Scientific School of Harvard College, where he graduated with the degree of BS in 1873. As an undergraduate he became interested in calculating machines, and his paper "On a new difference engine" was published in the American Journal of Science in August 1871. He also took out his first patents relating to calculating machines in 1872 and 1873. A machine of his design known as "Grant's Difference Engine" was exhibited at the Centennial Exposition in Philadelphia in 1876. Similar machines were also manufactured for sale; being sturdy and reliable, they did much to break down the prejudice against the use of calculating machines in business. Grant's work on calculating machines led to a requirement for accurate gears, so he established a machine shop for gear cutting at Charlestown, Massachusetts. He later moved the business to Boston and incorporated it under the name of Grant's Gear Works Inc., and continued to control it until his death. He also established two other gear-cutting shops, the Philadelphia Gear Works Inc., which he disposed of in 1911, and the Cleveland Gear Works Inc., which he also disposed of after a few years. Grant's commercial success was in connection with gear cutting and in this field he obtained several patents and contributed articles to the American Machinist. However, he continued to take an interest in calculating machines and in his later years carried out experimental work on their development.
    [br]
    Bibliography
    1871, "On a new difference engine", American Journal of Science (August). 1885, Chart and Tables for Bevel Gears.
    1891, Odontics, or the Theory and Practice of the Teeth of Gears, Lexington, Mass.
    Further Reading
    R.S.Woodbury, 1958, History of the Gear-cutting Machine, Cambridge, Mass, (describes his gear-cutting machine).
    RTS

    Biographical history of technology > Grant, George Barnard

  • 27 Hertz, Heinrich Rudolph

    [br]
    b. 22 February 1857 Hamburg, Germany
    d. 1 January 1894 Bonn, Germany
    [br]
    German physicist who was reputedly the first person to transmit and receive radio waves.
    [br]
    At the age of 17 Hertz entered the Gelehrtenschule of the Johaneums in Hamburg, but he left the following year to obtain practical experience for a year with a firm of engineers in Frankfurt am Main. He then spent six months at the Dresden Technical High School, followed by year of military service in Berlin. At this point he decided to switch from engineering to physics, and after a year in Munich he studied physics under Helmholtz at the University of Berlin, gaining his PhD with high honours in 1880. From 1883 to 1885 he was a privat-dozent at Kiel, during which time he studied the electromagnetic theory of James Clerk Maxwell. In 1885 he succeeded to the Chair in Physics at Karlsruhe Technical High School. There, in 1887, he constructed a rudimentary transmitter consisting of two 30 cm (12 in.) rods with metal balls separated by a 7.5 mm (0.3 in.) gap at the inner ends and metallic plates at the outer ends, the whole assembly being mounted at the focus of a large parabolic metal mirror and the two rods being connected to an induction coil. At the other side of his laboratory he placed a 70 cm (27½ in.) diameter wire loop with a similar air gap at the focus of a second metal mirror. When the induction coil was made to create a spark across the transmitter air gap, he found that a spark also occurred at the "receiver". By a series of experiments he was not only able to show that the invisible waves travelled in straight lines and were reflected by the parabolic mirrors, but also that the vibrations could be refracted like visible light and had a similar wavelength. By this first transmission and reception of radio waves he thus confirmed the theoretical predictions made by Maxwell some twenty years earlier. It was probably in his experiments with this apparatus in 1887 that Hertz also observed that the voltage at which a spark was able to jump a gap was significantly reduced by the presence of ultraviolet light. This so-called photoelectric effect was subsequently placed on a theoretical basis by Albert Einstein in 1905. In 1889 he became Professor of Physics at the University of Bonn, where he continued to investigate the nature of electric discharges in gases at low pressure until his death after a long and painful illness. In recognition of his measurement of radio and other waves, the international unit of frequency of an oscillatory wave, the cycle per second, is now universally known as the Hertz.
    [br]
    Principal Honours and Distinctions
    Royal Society Rumford Medal 1890.
    Bibliography
    Much of Hertz's work, including his 1890 paper "On the fundamental equations of electrodynamics for bodies at rest", is recorded in three collections of his papers which are available in English translations by D.E.Jones et al., namely Electric Waves (1893), Miscellaneous Papers (1896) and Principles of Mechanics (1899).
    Further Reading
    J.G.O'Hara and W.Pricha, 1987, Hertz and the Maxwellians, London: Peter Peregrinus. J.Hertz, 1977, Heinrich Hertz, Memoirs, Letters and Diaries, San Francisco: San Francisco Press.
    KF

    Biographical history of technology > Hertz, Heinrich Rudolph

  • 28 Yagi, Hidetsugu

    [br]
    b. 28 January 1886 Osaka, Japan
    d. January 1976 Osaka, Japan
    [br]
    Japanese engineer who, with his student Shintaro Uda, developed the directional ultra-high frequency (UHF) aerial array that bears his name.
    [br]
    Yagi studied engineering at Tokyo Imperial University (now Tokyo University), graduating in 1910. For the next four years he taught at Engineering High School in Sendai, Honshu, then in 1914 he was sent to study resonance phenomena under Barkhausen at Dresden University. When the First World War broke out he was touring Europe, so he travelled to London to study under Ambrose Fleming at University College, London. Continuing his travels, he then visited the USA, studying at Harvard under G.W. Pierce, before returning to his teaching post at Sendai Engineering High School, which in 1919 was absorbed into Tohoku University. There, in 1921, he obtained his doctorate, and some years later he was appointed Professor of Electrical Engineering. Having heard of the invention of the magnetron, he worked with a student, Kinjiro Okabe; in 1927 they produced microwave energy at a wavelength of a few tens of centimetres. However, he is best known for his development with another student, Shintaro Uda, of a directional, multi-element ultrahigh frequency aerial, which he demonstrated during a tour of the USA in 1928. During the Second World War Yagi worked on radar systems. After his retirement he became Professor Emeritus at Tohoku and Osaka universities and formed the Yagi Antenna Company.
    [br]
    Principal Honours and Distinctions
    Yagi received various honours, including the Japanese Cultural Order of Merit 1976, and the Valdemar Poulsen Gold Medal.
    Bibliography
    1928, "Beam transmission of ultra-short waves", Proceedings of the Institute of Radio Engineers 6:715 (describes the Yagi-Uda aerial).
    Further Reading
    F.E.Terman, 1943, Radio Engineers' Handbook, New York: McGraw-Hill (provides a review of aerials, including the Yagi system).
    KF

    Biographical history of technology > Yagi, Hidetsugu

  • 29 MBA

    abbr. Gen Mgt
    Master of Business Administration: a postgraduate qualification awarded after a period of study of topics relating to the strategic management of businesses. A Master of Business Administration course can be followed at a business school or university, and covers areas such as finance, personnel, and resource management, as well as the wider business environment and skills such as information technology use. The course is mostly taken by people with experience of managerial work, and is offered by universities worldwide. Part-time or distance learning MBAs are available, so that students can study while still working. There are an increasing number of MBA graduates, as an MBA is seen as a passport to a better job and higher salary. For many positions at a higher level within organizations, an MBA is now a prerequisite.

    The ultimate business dictionary > MBA

  • 30 Baudot, Jean-Maurice-Emile

    [br]
    b. 11 September 1845 Magneux, France
    d. 28 March 1903 Sceaux, France
    [br]
    French engineer who developed the multiplexed telegraph and devised a 5-bit code for data communication and control.
    [br]
    Baudot had no formal education beyond his local primary school and began his working life as a farmer, as was his father. However, in September 1869 he joined the French telegraph service and was soon sent on a course on the recently developed Hughes printing telegraph. After service in the Franco-Prussian war as a lieutenant with the military telegraph, he returned to his civilian duties in Paris in 1872. He was there encouraged to develop (in his own time!) a multiple Hughes system for time-multiplexing of several telegraph messages. By using synchronized clockwork-driven rotating switches at the transmitter and receiver he was able to transmit five messages simultaneously; the system was officially adopted by the French Post \& Telegraph Administration five years later. In 1874 he patented the idea of a 5-bit (i.e. 32-permutation) code, with equal on and off intervals, for telegraph transmission of the Roman alphabet and punctuation signs and for control of the typewriter-like teleprinter used to display the message. This code, known as the Baudot code, was found to be more economical than the existing Morse code and was widely adopted for national and international telegraphy in the twentieth century. In the 1970s it was superseded by 7—and 8-bit codes.
    Further development of his ideas on multiplexing led in 1894 to methods suitable for high-speed telegraphy. To commemorate his contribution to efficient telegraphy, the unit of signalling speed (i.e. the number of elements transmitted per second) is known as the baud.
    [br]
    Bibliography
    17 June 1874, "Système de télégraphie rapide" (Baudot's first patent).
    Further Reading
    1965, From Semaphore to Satellite, Geneva: International Telecommunications Union.
    P.Lajarrige, 1982, "Chroniques téléphoniques et télégraphiques", Collection historique des télécommunications.
    KF

    Biographical history of technology > Baudot, Jean-Maurice-Emile

  • 31 Boole, George

    [br]
    b. 2 November 1815 Lincoln, England
    d. 8 December 1864 Ballintemple, Coounty Cork, Ireland
    [br]
    English mathematician whose development of symbolic logic laid the foundations for the operating principles of modern computers.
    [br]
    Boole was the son of a tradesman, from whom he learned the principles of mathematics and optical-component manufacturing. From the early age of 16 he taught in a number of schools in West Yorkshire, and when only 20 he opened his own school in Lincoln. There, at the Mechanical Institute, he avidly read mathematical journals and the works of great mathematicians such as Lagrange, Laplace and Newton and began to tackle a variety of algebraic problems. This led to the publication of a constant stream of original papers in the newly launched Cambridge Mathematical Journal on topics in the fields of algebra and calculus, for which in 1844 he received the Royal Society Medal.
    In 1847 he wrote The Mathematical Analysis of Logic, which applied algebraic symbolism to logical forms, whereby the presence or absence of properties could be represented by binary states and combined, just like normal algebraic equations, to derive logical statements about a series of operations. This laid the foundations for the binary logic used in modern computers, which, being based on binary on-off devices, greatly depend on the use of such operations as "and", "nand" ("not and"), "or" and "nor" ("not or"), etc. Although he lacked any formal degree, this revolutionary work led to his appointment in 1849 to the Chair of Mathematics at Queen's College, Cork, where he continued his work on logic and also produce treatises on differential equations and the calculus of finite differences.
    [br]
    Principal Honours and Distinctions
    Royal Society Medal 1844. FRS 1857.
    Bibliography
    Boole's major contributions to logic available in republished form include George Boole: Investigation of the Laws of Thought, Dover Publications; George Boole: Laws of Thought, Open Court, and George Boole: Studies in Logic \& Probability, Open Court.
    1872, A Treatise on Differential Equations.
    Further Reading
    W.Kneale, 1948, "Boole and the revival of logic", Mind 57:149.
    G.C.Smith (ed.), 1982, George Boole \& Augustus de Morgan. Correspondence 1842– 1864, Oxford University Press.
    —, 1985, George Boole: His Life and Work, McHale.
    E.T.Bell, 1937, Men of Mathematics, London: Victor Gollancz.
    KF

    Biographical history of technology > Boole, George

  • 32 Boot, Henry Albert Howard

    [br]
    b. 29 July 1917 Birmingham, England
    d. 8 February 1983 Cambridge, England
    [br]
    English physicist who, with John Randall, invented the cavity magnetron used in radar systems.
    [br]
    After secondary education at King Edward School, Birmingham, Boot studied physics at Birmingham University, obtaining his BSc in 1938 and PhD in 1941. With the outbreak of the Second World War, he became involved with Randall and others in the development of a source of microwave power suitable for use in radar transmitters. Following unsuccessful attempts to use klystrons, they turned to investigation of the magnetron, and by adding cavity resonators they obtained useful power on 21 February 1940 at a wavelength of 9.8 cm. By May a cavity magnetron radar system had been constructed at TRE, Swanage, and in September submarine periscopes were detected at a range of 7 miles (11 km).
    In 1943 the physics department at Birmingham resumed its research in atomic physics and Boot moved to BTH at Rugby to continue development of magnetrons, but in 1945 he returned to Birmingham as Nuffield Research Fellow and helped construct the cyclotron there. Three years later he took up a post as a Principal Scientific Officer (PSO) at the Services Electronic Research Laboratories at Baldock, Hertfordshire, becoming a Senior PSO in 1954. He remained there until his retirement in 1977, variously carrying out research on microwaves, magnetrons, plasma physics and lasers.
    [br]
    Principal Honours and Distinctions
    Royal Society of Arts Thomas Gray Memorial Prize 1943. Royal Commission Inventors Award 1946. Franklin Institute John Price Wetherill Medal 1958. City of Pennsylvania John Scott Award 1959. (All jointly with Randall.)
    Bibliography
    1976, with J.T.Randall, "Historical notes on the cavity magnetron", Transactions of the Institute of Electrical and Electronics Engineers ED-23: 724 (provides an account of their development of the cavity magnetron).
    Further Reading
    E.H.Dix and W.H.Aldous, 1966, Microwave Valves.
    KF

    Biographical history of technology > Boot, Henry Albert Howard

  • 33 Branly, Edouard Eugène

    [br]
    b. 23 October 1844 Amiens, France
    d. 24 March 1940 Paris, France
    [br]
    French electrical engineer, who c.1890 invented the coherer for detecting radio waves.
    [br]
    Branly received his education at the Lycée de Saint Quentin in the Département de l'Aisne and at the Henri IV College of Paris University, where he became a Fellow of the University, graduating as a Doctor of Physics in 1873. That year he was appointed a professor at the College of Bourges and Director of Physics Instruction at the Sorbonne. Three years later he moved to the Free School in Paris as Professor of Advanced Studies. In addition to these responsibilities, he qualified as an MD in 1882 and practised medicine from 1896 to 1916. Whilst carrying out experiments with Hertzian (radio) waves in 1890, Branly discovered that a tube of iron filings connected to a source of direct voltage only became conductive when the radio waves were present. This early form of rectifier, which he called a coherer and which needed regular tapping to maintain its response, was used to operate a relay when the waves were turned on and off by Morse signals, thus providing the first practical radio communication.
    [br]
    Principal Honours and Distinctions
    Papal Order of Commander of St George 1899. Légion d'honneur, Chevalier 1900, Commandeur 1925. Osiris Prize (jointly with Marie Curie) 1903. Argenteuil Prize and Associate of the Royal Belgian Academy 1910. Member of the Academy of Science 1911. State Funeral at Notre Dame Cathedral.
    Bibliography
    Amongst his publications in Comptes rendus were "Conductivity of mediocre conductors", "Conductivity of gases", "Telegraphic conduction without wires" and "Conductivity of imperfect conductors realised at a distance by wireless by spark discharge of a capacitor".
    Further Reading
    E.Hawkes, 1927, Pioneers of Wireless, London: Methuen. E.Larien, 1971, A History of Invention, London: Victor Gollancz.
    V.J.Phillips: 1980, Early Radio Wave Detectors, London: Peter Peregrinus.
    KF

    Biographical history of technology > Branly, Edouard Eugène

  • 34 Braun, Karl Ferdinand

    [br]
    b. 6 June 1850 Fulda, Hesse, Germany
    d. 20 April 1918 New York City, New York, USA
    [br]
    German physicist who shared with Marconi the 1909 Nobel Prize for Physics for developments in wireless telegraphy; inventor of the cathode ray oscilloscope.
    [br]
    After obtaining degrees from the universities of Marburg and Berlin (PhD) and spending a short time as Headmaster of the Thomas School in Berlin, Braun successively held professorships in theoretical physics at the universities of Marburg (1876), Strasbourg (1880) and Karlsruhe (1883) before becoming Professor of Experimental Physics at Tübingen in 1885 and Director and Professor of Physics at Strasbourg in 1895.
    During this time he devised experimental apparatus to determine the dielectric constant of rock salt and developed the Braun high-tension electrometer. He also discovered that certain mineral sulphide crystals would only conduct electricity in one direction, a rectification effect that made it possible to detect and demodulate radio signals in a more reliable manner than was possible with the coherer. Primarily, however, he was concerned with improving Marconi's radio transmitter to increase its broadcasting range. By using a transmitter circuit comprising a capacitor and a spark-gap, coupled to an aerial without a spark-gap, he was able to obtain much greater oscillatory currents in the latter, and by tuning the transmitter so that the oscillations occupied only a narrow frequency band he reduced the interference with other transmitters. Other achievements include the development of a directional aerial and the first practical wavemeter, and the measurement in Strasbourg of the strength of radio waves received from the Eiffel Tower transmitter in Paris. For all this work he subsequently shared with Marconi the 1909 Nobel Prize for Physics.
    Around 1895 he carried out experiments using a torsion balance in order to measure the universal gravitational constant, g, but the work for which he is probably best known is the addition of deflecting plates and a fluorescent screen to the Crooke's tube in 1897 in order to study the characteristics of high-frequency currents. The oscilloscope, as it was called, was not only the basis of a now widely used and highly versatile test instrument but was the forerunner of the cathode ray tube, or CRT, used for the display of radar and television images.
    At the beginning of the First World War, while in New York to testify in a patent suit, he was trapped by the entry of the USA into the war and remained in Brooklyn with his son until his death.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Physics (jointly with Marconi) 1909.
    Bibliography
    1874, "Assymetrical conduction of certain metal sulphides", Pogg. Annal. 153:556 (provides an account of the discovery of the crystal rectifier).
    1897, "On a method for the demonstration and study of currents varying with time", Wiedemann's Annalen 60:552 (his description of the cathode ray oscilloscope as a measuring tool).
    Further Reading
    K.Schlesinger \& E.G.Ramberg, 1962, "Beamdeflection and photo-devices", Proceedings of the Institute of Radio Engineers 50, 991.
    KF

    Biographical history of technology > Braun, Karl Ferdinand

  • 35 Briggs, Henry

    [br]
    b. February 1561 Warley Wood, Yorkshire, England
    d. 26 January 1630 Oxford, England
    [br]
    English mathematician who invented common, or Briggsian, logarithms and whose writings led to their general acceptance throughout Europe.
    [br]
    After education at Warley Grammar School, Briggs entered St John's College, Cambridge, in 1577 and became a fellow in 1588. Having been Reader of the Linacre Lecture in 1592, he was appointed to the new Chair in Geometry at Gresham House (subsequently Gresham College), London, in 1596. Shortly after, he concluded that the logarithms developed by John Napier would be much more useful if they were calculated to the decimal base 10, rather than to the base e (the "natural" number 2.71828…), a suggestion with which Napier concurred. Until the advent of modern computing these decimal logarithms were invaluable for the accurate calculations involved in surveying, navigation and astronomy. In 1619 he accepted the Savilian Chair in Geometry at Oxford University, having two years previously published the base 10 logarithms of 1,000 numbers. The year 1624 saw the completion of his monumental Arithmetica Logarithmica, which contained fourteen-figure logarithms of 30,000 numbers, together with their trigonometric sines to fifteen decimal places and their tangents and secants to ten places!
    [br]
    Bibliography
    1617, Logarithmorum Chilias Primi (the first published reference to base 10 logarithms). 1622, A Treatise of the North West Passage to the South Sea: Through the Continent of
    Virginia and by Fretum Hudson.
    1633, Arithmetica Logarithmica, Gouda, the Netherlands; pub. in 1633 as Trigonmetria Britannica, London.
    Further Reading
    E.T.Bell, 1937, Men of Mathematics, London: Victor Gollancz. See also Burgi, Jost.
    KF

    Biographical history of technology > Briggs, Henry

  • 36 Eccles, William Henry

    [br]
    b. 23 August 1875 Ulverston, Cumbria, England
    d. 27 April 1966 Oxford, England
    [br]
    English physicist who made important contributions to the development of radio communications.
    [br]
    After early education at home and at private school, Eccles won a scholarship to the Royal College of Science (now Imperial College), London, where he gained a First Class BSc in physics in 1898. He then worked as a demonstrator at the college and studied coherers, for which he obtained a DSc in 1901. Increasingly interested in electrical engineering, he joined the Marconi Company in 1899 to work on oscillators at the Poole experimental radio station, but in 1904 he returned to academic life as Professor of Mathematics and Physics and Department Head at South West Polytechnic, Chelsea. There he discovered ways of using the negative resistance of galena-crystal detectors to generate oscillations and gave a mathematical description of the operation of the triode valve. In 1910 he became Reader in Engineering at University College, London, where he published a paper explaining the reflection of radio waves by the ionosphere and designed a 60 MHz short-wave transmitter. From 1916 to 1926 he was Professor of Applied Physics and Electrical Engineering at the Finsbury City \& Guilds College and a private consulting engineer. During the First World War he was a military scientific adviser and Secretary to the Joint Board of Scientific Societies. After the war he made many contributions to electronic-circuit development, many of them (including the Eccles-Jordan "flip-flop" patented in 1918 and used in binary counters) in conjunction with F.W.Jordan, about whom little seems to be known. Illness forced Eccles's premature academic retirement in 1926, but he remained active as a consultant for many years.
    [br]
    Principal Honours and Distinctions
    FRS 1921. President, Institution of Electrical Engineers, 1926–7. President, Physical Society 1929. President, Radio Society of Great Britain.
    Bibliography
    1912, "On the diurnal variation of the electric waves occurring in nature and on the propagation of electric waves round the bend of the earth", Proceedings of the Royal Society 87:79. 1919, with F.W.Jordan, "Method of using two triode valves in parallel for generating oscillations", Electrician 299:3.
    1915, Handbook of Wireless Telegraphy.
    1921, Continuous Wave Wireless Telegraphy.
    Further Reading
    1971, "William Henry Eccles, 1875–1966", Biographical Memoirs of the Royal Society, London, 17.
    KF

    Biographical history of technology > Eccles, William Henry

  • 37 Farnsworth, Philo Taylor

    [br]
    b. 19 August 1906 Beaver, Utah, USA
    d. 11 March 1971 Salt Lake City, Utah, USA
    [br]
    American engineer and independent inventor who was a pioneer in the development of television.
    [br]
    Whilst still in high school, Farnsworth became interested in the possibility of television and conceived many of the basic features of a practicable system of TV broadcast and reception. Following two years of study at the Brigham Young University in Provo, Utah, in 1926 he cofounded the Crocker Research Laboratories in San Francisco, subsequently Farnsworth Television Inc. (1929) and Farnsworth Radio \& Television Corporation, Fort Wayne, Indiana (1938). There he began a lifetime of research, primarily in the field of television. In 1927, with the backing of the Radio Corporation of America (RCA) and the collaboration of Vladimir Zworykin, he demonstrated the first all-electronic television system, based on his early ideas for an image dissector tube, the first electronic equivalent of the Nipkow disc. With this rudimentary sixty-line system he was able to transmit a recognizable dollar sign and file the first of many TV patents. From then on he contributed to a variety of developments in the fields of vacuum tubes, radar and atomic-power generation, with patents on cathode ray tubes, amplifying and pick-up tubes, electron multipliers and photoelectric materials.
    [br]
    Principal Honours and Distinctions
    Institute of Radio Engineers Morris Leibmann Memorial Prize 1941.
    Bibliography
    1930, British patent nos. 368,309 and 368,721 (for his image dissector).
    1934, "Television by electron image scanning", Journal of the Franklin Institute 218:411 (describes the complete image-dissector system).
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: A History of the American Television Industry 1925–1941, University of Alabama Press.
    O.E.Dunlop Jr, 1944, Radio's 100 Men of Science.
    G.R.M.Garratt \& A.H.Mumford, 1952, "The history of television", Proceedings of the Institution of Electrical Engineers III A Television 99.
    KF

    Biographical history of technology > Farnsworth, Philo Taylor

  • 38 Fessenden, Reginald Aubrey

    [br]
    b. 6 October 1866 East Bolton, Quebec, Canada
    d. 22 July 1932 Bermuda
    [br]
    Canadian radio pioneer who made the first known broadcast of speech and music.
    [br]
    After initial education at Trinity College School, Port Hope, Ontario, Fessenden studied at Bishops University, Lennoxville, Quebec. When he graduated in 1885, he became Principal of the Whitney Institute in Bermuda, but he left the following year to go to New York in pursuit of his scientific interests. There he met Edison and eventually became Chief Chemist at the latter's Laboratory in Orange, New Jersey. In 1890 he moved to the Westinghouse Electric and Manufacturing Company, and two years later he returned to an academic career as Professor of Electrical Engineering, initially at Purdue University, Lafayette, Indiana, and then at the Western University of Pennsylvania, where he worked on wireless communication. From 1900 to 1902 he carried out experiments in wireless telegraphy at the US Weather Bureau, filing several patents relating to wire and liquid thermal detectors, or barretters. Following this he set up the National Electric Signalling Company; under his direction, Alexanderson and other engineers at the General Electric Company developed a high-frequency alternator that enabled him to build the first radiotelephony transmitter at Brant Rock, Massachusetts. This made its initial broadcast of speech and music on 24 December 1906, received by ship's wireless operators several hundred miles away. Soon after this the transmitter was successfully used for two-way wireless telegraphy communication with Scotland. Following this landmark event, Fessenden produced numerous inventions, including a radio compass, an acoustic depth-finder and several submarine signalling devices, a turboelectric drive for battleships and, notably, in 1912 the heterodyne principle used in radio receivers to convert signals to a lower (intermediate) frequency.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Medal of Honour 1921.
    Bibliography
    US patents relating to barretters include nos. 706,740, 706,742 and 706,744 (wire, 1902) and 731,029 (liquid, 1903). His invention of the heterodyne was filed as US patent no. 1,050,441 (1913).
    Further Reading
    Helen M.Fessenden, 1940, Fessenden. Builder of Tomorrow. E.Hawkes, 1927, Pioneers of Wireless, London: Methuen. O.E.Dunlop, 1944, Radio's 100 Men of Science.
    KF

    Biographical history of technology > Fessenden, Reginald Aubrey

  • 39 Langmuir, Irving

    [br]
    b. 31 January 1881 Brooklyn, New York, USA
    d. 16 August 1957 Falmouth, Massachusetts, USA
    [br]
    American Nobel Prize winner in chemistry in 1932 who was responsible for a number of important scientific developments ranging from electric lamps, through a high-vacuum transmitting tube (for broadcasting) to a high-vacuum mercury pump for studies in atomic structure, in radar and the stimulation of artificial rainfall.
    [br]
    Langmuir took a degree in metallurgical engineering at Columbia University School of Mines, and then a PhD in chemistry at Göttingen University in Germany. For much of his life he carried out research in physical chemistry at the General Electric Research Laboratory at Schenechtady, New York, where he remained until his retirement in 1950. One important result of his work there led to a great improvement in artificial illumination of homes. This was his development in 1913 of a much more efficient electric light bulb, which was filled with argon gas and had a coiled filament. The idea of using an inert gas was an old one, but it was not a viable proposition until a filament that could be coiled became available. Overall, Langmuir's lamp was more reliable than previous designs and gave a brighter light.
    [br]
    Further Reading
    Arthur A.Bright, 1949, The Electric Lamp Industry, New York: Macmillan. Floyd A.Lewis, 1961, The Incandescent Light, New York: Shorewood.
    DY

    Biographical history of technology > Langmuir, Irving

  • 40 Lodge, Sir Oliver Joseph

    [br]
    b. 12 June 1851 Penkhull, Staffordshire, England
    d. 22 August 1940 Lake, near Salisbury, Wiltshire, England
    [br]
    English physicist who perfected Branly's coherer; said to have given the first public demonstration of wireless telegraphy.
    [br]
    At the age of 8 Lodge entered Newport Grammar School, and in 1863–5 received private education at Coombs in Suffolk. He then returned to Staffordshire, where he assisted his father in the potteries by working as a book-keeper. Whilst staying with an aunt in London in 1866–7, he attended scientific lectures and became interested in physics. As a result of this and of reading copies of English Mechanic magazine, when he was back home in Hanley he began to do experiments and attended the Wedgewood Institute. Returning to London c. 1870, he studied initially at the Royal College of Science and then, from 1874, at University College, London (UCL), at the same time attending lectures at the Royal Institution.
    In 1875 he obtained his BSc, read a paper to the British Association on "Nodes and loops in chemical formulae" and became a physics demonstrator at UCL. The following year he was appointed a physics lecturer at Bedford College, completing his DSc in 1877. Three years later he became Assistant Professor of Mathematics at UCL, but in 1881, after only two years, he accepted the Chair of Experimental Physics at the new University College of Liverpool. There began a period of fruitful studies of electricity and radio transmission and reception, including development of the lightning conductor, discovery of the "coherent" effect of sparks and improvement of Branly's coherer, and, in 1894, what is said to be the first public demonstration of the transmission and reception (using a coherer) of wireless telegraphy, from Lewis's department store to the clock tower of Liverpool University's Victoria Building. On 10 May 1897 he filed a patent for selective tuning by self-in-ductance; this was before Marconi's first patent was actually published and its priority was subsequently upheld.
    In 1900 he became the first Principal of the new University of Birmingham, where he remained until his retirement in 1919. In his later years he was increasingly interested in psychical research.
    [br]
    Principal Honours and Distinctions
    Knighted 1902. FRS 1887. Royal Society Council Member 1893. President, Society for Psychical Research 1901–4, 1932. President, British Association 1913. Royal Society Rumford Medal 1898. Royal Society of Arts Albert Medal 1919. Institution of Electrical Engineers Faraday Medal 1932. Fourteen honorary degrees from British and other universities.
    Bibliography
    1875, "The flow of electricity in a plane", Philosophical Magazine (May, June and December).
    1876, "Thermo-electric phenomena", Philosophical Magazine (December). 1888, "Lightning conductors", Philosophical Magazine (August).
    1889, Modern Views of Electricity (lectures at the Royal Institution).
    10 May 1897, "Improvements in syntonized telegraphy without line wires", British patent no. 11,575, US patent no. 609,154.
    1898, "Radio waves", Philosophical Magazine (August): 227.
    1931, Past Years, An Autobiography, London: Hodder \& Stoughton.
    Further Reading
    W.P.Jolly, 1974, Sir Oliver Lodge, Psychical Resear cher and Scientist, London: Constable.
    E.Hawks, 1927, Pioneers of Wireless, London: Methuen.
    KF

    Biographical history of technology > Lodge, Sir Oliver Joseph

См. также в других словарях:

  • Information Technology High School — Infobox School name = Information Technology High School imagesize = logo = caption = location = streetaddress = 21 16 44th Road city = Long Island City state = New York district = New York City Department of Education Community School District… …   Wikipedia

  • Technology High School — Several high schools use the name Technology High School:*Technology High School, Rohnert Park, California *New Technology High School, Napa, California *Technology High School (New Jersey) *Technology High School (Omaha, Nebraska) *Information… …   Wikipedia

  • Information technology law — (or IT Law) is a set of recent legal enactments, currently in existence in several countries, which governs the process and dissemination of information digitally. These legal enactments cover a broad gambit of different aspects relating to… …   Wikipedia

  • Information technology governance — Information Technology Governance, IT Governance or ICT (Information Communications Technology) Governance, is a subset discipline of Corporate Governance focused on information technology (IT) systems and their performance and risk management.… …   Wikipedia

  • School of Information Technology — Infobox University name = School of Information Technology, Kolkata established = 2000 type = College, Education and Research city = Kolkata state = West Bengal country = India motto = Liberating talent, enthusiasm and commitment. director =… …   Wikipedia

  • School of Information Technology, Nanyang Polytechnic — The Nanyang Polytechnic School of Information Technology (NYP SIT) in Singapore is one of the founding schools since 1998 in Nanyang Polytechnic. The current director of the school is Mr John Tan. SIT utilizes an innovation oriented program to… …   Wikipedia

  • Technology High School (New Jersey) — Infobox School name = Technology High School imagesize = district = Newark Public Schools principal = Ms. Mona Dana enrollment = 556 (as of 2005 06) faculty = 54.0 (on FTE basis) ratio = 10.3 motto= grades = 9 12 established = 1996 type = Magnet… …   Wikipedia

  • Cherrybrook Technology High School — Achieving Together Location Cherrybrook, New South Wales, Australia …   Wikipedia

  • High Technology High School — Infobox School | name = High Technology High School imagesize = thumb established = 1991 type = Magnet public high school district = Monmouth County Vocational School District grades = 9 12 principal = Daniel Simon enrollment = 267 (as of 2005… …   Wikipedia

  • Gymea Technology High School — Infobox Aust school name = Gymea Technology High School motto = Educating For The Future established = 1963 type = Public, Comprehensive, Secondary, Co educational, Day school principal = Mr Bedwell city = Gymea state = New South Wales country =… …   Wikipedia

  • Corporate governance of information technology — Information Technology Governance, IT Governance is a subset discipline of Corporate Governance focused on information technology (IT) systems and their performance and risk management. The rising interest in IT governance is partly due to… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»