Перевод: со всех языков на английский

с английского на все языки

in+the+time+of+henry+iv

  • 1 Henry, Joseph

    [br]
    b. 17 December 1797 Albany, New York, USA
    d. 13 May 1878 Washington, DC, USA
    [br]
    American scientist after whom the unit of inductance is named.
    [br]
    Sent to stay with relatives at the age of 6 because of the illness of his father, when the latter died in 1811 Henry was apprenticed to a silversmith and then turned to the stage. Whilst he was ill himself, a book on science fired his interest and he began studying at Albany Academy, working as a tutor to finance his studies. Initially intending to pursue medicine, he then spent some time as a surveyor before becoming Professor of Mathematics and Natural Philosophy at Albany Academy in 1826. There he became interested in the improvement of electromagnets and discovered that the use of an increased number of turns of wire round the core greatly increased their power; by 1831 he was able to supply to Yale a magnet capable of lifting almost a ton weight. During this time he also discovered the principles of magnetic induction and self-inductance. In the same year he made, but did not patent, a cable telegraph system capable of working over a distance of 1 mile (1.6 km). It was at this time, too, that he found that adiabatic expansion of gases led to their sudden cooling, thus paving the way for the development of refrigerators. For this he was recommended for, but never received, the Copley Medal of the Royal Society. Five years later he became Professor of Natural Philosophy at New Jersey College (later Princeton University), where he deduced the laws governing the operation of transformers and observed that changes in magnetic flux induced electric currents in conductors. Later he also observed that spark discharges caused electrical effects at a distance. He therefore came close to the discovery of radio waves. In 1836 he was granted a year's leave of absence and travelled to Europe, where he was able to meet Michael Faraday. It was with his help that in 1844 Samuel Morse set up the first patented electric telegraph, but, sadly, the latter seems to have reaped all the credit and financial rewards. In 1846 he became the first secretary of the Washington Smithsonian Institute and did much to develop government support for scientific research. As a result of his efforts some 500 telegraph stations across the country were equipped with meteorological equipment to supply weather information by telegraph to a central location, a facility that eventually became the US National Weather Bureau. From 1852 he was a member of the Lighthouse Board, contributing to improvements in lighting and sound warning systems and becoming its chairman in 1871. During the Civil War he was a technical advisor to President Lincoln. He was a founder of the National Academy of Science and served as its President for eleven years.
    [br]
    Principal Honours and Distinctions
    President, American Association for the Advancement of Science 1849. President, National Academy of Science 1893–1904. In 1893, to honour his work on induction, the International Congress of Electricians adopted the henry as the unit of inductance.
    Bibliography
    1824. "On the chemical and mechanical effects of steam". 1825. "The production of cold by the rarefaction of air".
    1832, "On the production of currents \& sparks of electricity \& magnetism", American
    Journal of Science 22:403.
    "Theory of the so-called imponderables", Proceedings of the American Association for the Advancement of Science 6:84.
    Further Reading
    Smithsonian Institution, 1886, Joseph Henry, Scientific Writings, Washington DC.
    KF

    Biographical history of technology > Henry, Joseph

  • 2 Henry of Aviz, Prince

    (1394-1460)
       Known to the Portuguese as "O Infante Dom Henrique," as an heir to his father's throne, Prince Henry the Navigator was born in Oporto. His Father was King João I (r. 1357-1433) and his mother was Philippa of Lancaster, daughter of John of Gaunt. As a young prince, Henry won his knighthood as a member of the Portuguese expedition that captured the Moroccan city of Ceuta in 1415, the beginning of Portugal's overseas expansion and the onset of the European age of exploration and discovery.
       The life and work of Prince Henry are steeped in centuries of myth and legend. Reliable historical research suggests that the prince played a key role in the early phases of the Portuguese discoveries due to his patronage of expeditions, sailors, and navigators and his use of the important funds of the knightly Order of Christ, of which he was in control. Prince Henry, nevertheless, was not solely responsible for more than one-third of the exploration ventures during his time, possessed strongly medieval ways, did not create the so-called "School of Sagres" for navigators, and certainly was ignorant of much Renaissance science. Although he did participate nobly in the Ceuta adventure, as far as the voyages down the coast of Africa and into the Atlantic until his death in 1460 are concerned, Prince Henry was an armchair navigator who did not visit Africa beyond Morocco.

    Historical dictionary of Portugal > Henry of Aviz, Prince

  • 3 Ford, Henry

    [br]
    b. 30 July 1863 Dearborn, Michigan, USA
    d. 7 April 1947 Dearborn, Michigan, USA
    [br]
    American pioneer motor-car maker and developer of mass-production methods.
    [br]
    He was the son of an Irish immigrant farmer, William Ford, and the oldest son to survive of Mary Litogot; his mother died in 1876 with the birth of her sixth child. He went to the village school, and at the age of 16 he was apprenticed to Flower brothers' machine shop and then at the Drydock \& Engineering Works in Detroit. In 1882 he left to return to the family farm and spent some time working with a 1 1/2 hp steam engine doing odd jobs for the farming community at $3 per day. He was then employed as a demonstrator for Westinghouse steam engines. He met Clara Jane Bryant at New Year 1885 and they were married on 11 April 1888. Their only child, Edsel Bryant Ford, was born on 6 November 1893.
    At that time Henry worked on steam engine repairs for the Edison Illuminating Company, where he became Chief Engineer. He became one of a group working to develop a "horseless carriage" in 1896 and in June completed his first vehicle, a "quadri cycle" with a two-cylinder engine. It was built in a brick shed, which had to be partially demolished to get the carriage out.
    Ford became involved in motor racing, at which he was more successful than he was in starting a car-manufacturing company. Several early ventures failed, until the Ford Motor Company of 1903. By October 1908 they had started with production of the Model T. The first, of which over 15 million were built up to the end of its production in May 1927, came out with bought-out steel stampings and a planetary gearbox, and had a one-piece four-cylinder block with a bolt-on head. This was one of the most successful models built by Ford or any other motor manufacturer in the life of the motor car.
    Interchangeability of components was an important element in Ford's philosophy. Ford was a pioneer in the use of vanadium steel for engine components. He adopted the principles of Frederick Taylor, the pioneer of time-and-motion study, and installed the world's first moving assembly line for the production of magnetos, started in 1913. He installed blast furnaces at the factory to make his own steel, and he also promoted research and the cultivation of the soya bean, from which a plastic was derived.
    In October 1913 he introduced the "Five Dollar Day", almost doubling the normal rate of pay. This was a profit-sharing scheme for his employees and contained an element of a reward for good behaviour. About this time he initiated work on an agricultural tractor, the "Fordson" made by a separate company, the directors of which were Henry and his son Edsel.
    In 1915 he chartered the Oscar II, a "peace ship", and with fifty-five delegates sailed for Europe a week before Christmas, docking at Oslo. Their objective was to appeal to all European Heads of State to stop the war. He had hoped to persuade manufacturers to replace armaments with tractors in their production programmes. In the event, Ford took to his bed in the hotel with a chill, stayed there for five days and then sailed for New York and home. He did, however, continue to finance the peace activists who remained in Europe. Back in America, he stood for election to the US Senate but was defeated. He was probably the father of John Dahlinger, illegitimate son of Evangeline Dahlinger, a stenographer employed by the firm and on whom he lavished gifts of cars, clothes and properties. He became the owner of a weekly newspaper, the Dearborn Independent, which became the medium for the expression of many of his more unorthodox ideas. He was involved in a lawsuit with the Chicago Tribune in 1919, during which he was cross-examined on his knowledge of American history: he is reputed to have said "History is bunk". What he actually said was, "History is bunk as it is taught in schools", a very different comment. The lawyers who thus made a fool of him would have been surprised if they could have foreseen the force and energy that their actions were to release. For years Ford employed a team of specialists to scour America and Europe for furniture, artefacts and relics of all kinds, illustrating various aspects of history. Starting with the Wayside Inn from South Sudbury, Massachusetts, buildings were bought, dismantled and moved, to be reconstructed in Greenfield Village, near Dearborn. The courthouse where Abraham Lincoln had practised law and the Ohio bicycle shop where the Wright brothers built their first primitive aeroplane were added to the farmhouse where the proprietor, Henry Ford, had been born. Replicas were made of Independence Hall, Congress Hall and the old City Hall in Philadelphia, and even a reconstruction of Edison's Menlo Park laboratory was installed. The Henry Ford museum was officially opened on 21 October 1929, on the fiftieth anniversary of Edison's invention of the incandescent bulb, but it continued to be a primary preoccupation of the great American car maker until his death.
    Henry Ford was also responsible for a number of aeronautical developments at the Ford Airport at Dearborn. He introduced the first use of radio to guide a commercial aircraft, the first regular airmail service in the United States. He also manufactured the country's first all-metal multi-engined plane, the Ford Tri-Motor.
    Edsel became President of the Ford Motor Company on his father's resignation from that position on 30 December 1918. Following the end of production in May 1927 of the Model T, the replacement Model A was not in production for another six months. During this period Henry Ford, though officially retired from the presidency of the company, repeatedly interfered and countermanded the orders of his son, ostensibly the man in charge. Edsel, who died of stomach cancer at his home at Grosse Point, Detroit, on 26 May 1943, was the father of Henry Ford II. Henry Ford died at his home, "Fair Lane", four years after his son's death.
    [br]
    Bibliography
    1922, with S.Crowther, My Life and Work, London: Heinemann.
    Further Reading
    R.Lacey, 1986, Ford, the Men and the Machine, London: Heinemann. W.C.Richards, 1948, The Last Billionaire, Henry Ford, New York: Charles Scribner.
    IMcN

    Biographical history of technology > Ford, Henry

  • 4 Warren, Henry Ellis

    SUBJECT AREA: Horology
    [br]
    b. 21 May 1872 Boston, Massachusetts, USA
    d. 21 September 1957 Ashland, Massachusetts, USA
    [br]
    American electrical engineer who invented the mains electric synchronous clock.
    [br]
    Warren studied electrical engineering at the Boston Institute of Technology (later to become the Massachusetts Institute of Technology) and graduated in 1894. In 1912 he formed the Warren Electric Clock Company to make a battery-powered clock that he had patented a few years earlier. The name was changed to the Warren Telechron (time at a distance) Company after he had started to produce synchronous clocks.
    In 1840 Charles Wheatstone had produced an electric master clock that produced an alternating current with a frequency of one cycle per second and which was used to drive slave dials. This system was not successful, but when Ferranti introduced the first alternating current power generator at Deptford in 1895 Hope-Jones saw in it a means of distributing time. This did not materialize immediately because the power generators did not control the frequency of the current with sufficient accuracy, and a reliable motor whose speed was related to this frequency was not available. In 1916 Warren solved both problems: he produced a reliable self-starting synchronous electric motor and he also made a master clock which could be used at the power station to control accurately the frequency of the supply. Initially the power-generating companies were reluctant to support the synchronous clock because it imposed a liability to control the frequency of the supply and the gain was likely to be small because it was very frugal in its use of power. However, with the advent of the grid system, when several generators were connected together, it became imperative to control the frequency; it was realized that although the power consumption of individual clocks was small, collectively it could be significant as they ran continuously. By the end of the 1930s more than half the clocks sold in the USA were of the synchronous type. The Warren synchronous clock was introduced into Great Britain in 1927, following the setting up of a grid system by the Electricity Commission.
    [br]
    Principal Honours and Distinctions
    Franklin Institute John Price Wetherill Medal. American Institute of Electrical Engineers Lamme Medal.
    Bibliography
    The patents for the synchronous motor are US patent nos. 1,283,432, 1,283,433 and 1,283,435, and those for the master clock are 1,283,431, 1,409,502 and 1,502,493 of 29 October 1918 onwards.
    1919, "Utilising the time characteristics of alternating current", Transactions of the American Institute of Electrical Engineers 38:767–81 (Warren's first description of his system).
    Further Reading
    J.M.Anderson, 1991, "Henry Ellis Warren and his master clocks", National Association of Watch and Clock Collectors Bulletin 33:375–95 (provides biographical and technical details).
    DV

    Biographical history of technology > Warren, Henry Ellis

  • 5 Discoveries, Monument of the

       Located on the Tagus shore in Belém, not far from the Tower of Belém and the Jerónimos Monastery, the Monument of the Discoveries is a stone tribute of relatively recent origin. Built originally in 1940, as part of the Estado Novo's Double Centenary Exposition of the Portuguese World, the Monument of the Discoveries was constructed of temporary, lightweight materials. Unlike most of the exposition's constructions, however, the monument was not torn down after the exposition closed in December 1940. It remained in place and was reconstructed out of permanent materials and stone in time for the 1960 celebrations of the 500th anniversary of the death of Henry of Aviz (Prince Henry the Navigator).
       The monument is the work of sculptor Leopoldo de Almeida. It is complemented by an enormous mosaic wind rose showing the points of the compass, which was contributed by the Union of South Africa and is set in the open square just inland from the monument. This modern construction forms an imposing caravel in full sail, with Prince Henry the Navigator at the prow and a group of the country's chief navigators and sailors behind him. Notably, Columbus, who sailed for Spain, is not among them.

    Historical dictionary of Portugal > Discoveries, Monument of the

  • 6 Corliss, George Henry

    [br]
    b. 2 June 1817 Easton, Washington City, New York, USA
    d. 21 February 1888 USA
    [br]
    American inventor of a cut-off mechanism linked to the governor which revolutionized the operation of steam engines.
    [br]
    Corliss's father was a physician and surgeon. The son was educated at Greenwich, New York, but while he showed an aptitude for mathematics and mechanics he first of all became a storekeeper and then clerk, bookkeeper, salesperson and official measurer and inspector of the cloth produced at W.Mowbray \& Son. He went to the Castleton Academy, Vermont, for three years and at the age of 21 returned to a store of his own in Greenwich. Complaints about stitching in the boots he sold led him to patent a sewing machine. He approached Fairbanks, Bancroft \& Co., Providence, Rhode Island, machine and steam engine builders, about producing his machine, but they agreed to take him on as a draughtsman providing he abandoned it. Corliss moved to Providence with his family and soon revolutionized the design and construction of steam engines. Although he started working out ideas for his engine in 1846 and completed one in 1848 for the Providence Dyeing, Bleaching and Calendering Company, it was not until March 1849 that he obtained a patent. By that time he had joined John Barstow and E.J.Nightingale to form a new company, Corliss Nightingale \& Co., to build his design of steam-engines. He used paired valves, two inlet and two exhaust, placed on opposite sides of the cylinder, which gave good thermal properties in the flow of steam. His wrist-plate operating mechanism gave quick opening and his trip mechanism allowed the governor to regulate the closure of the inlet valve, giving maximum expansion for any load. It has been claimed that Corliss should rank equally with James Watt in the development of the steam-engine. The new company bought land in Providence for a factory which was completed in 1856 when the Corliss Engine Company was incorporated. Corliss directed the business activities as well as technical improvements. He took out further patents modifying his valve gear in 1851, 1852, 1859, 1867, 1875, 1880. The business grew until well over 1,000 workers were employed. The cylindrical oscillating valve normally associated with the Corliss engine did not make its appearance until 1850 and was included in the 1859 patent. The impressive beam engine designed for the 1876 Centennial Exhibition by E. Reynolds was the product of Corliss's works. Corliss also patented gear-cutting machines, boilers, condensing apparatus and a pumping engine for waterworks. While having little interest in politics, he represented North Providence in the General Assembly of Rhode Island between 1868 and 1870.
    [br]
    Further Reading
    Many obituaries appeared in engineering journals at the time of his death. Dictionary of American Biography, 1930, Vol. IV, New York: C.Scribner's Sons. R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (explains Corliss's development of his valve gear).
    J.L.Wood, 1980–1, "The introduction of the Corliss engine to Britain", Transactions of the Newcomen Society 52 (provides an account of the introduction of his valve gear to Britain).
    W.H.Uhland, 1879, Corliss Engines and Allied Steam-motors, London: E. \& F.N.Spon.
    RLH

    Biographical history of technology > Corliss, George Henry

  • 7 Gilbert, Joseph Henry

    [br]
    b. 1 August 1817 Hull, England
    d. 23 December 1901 England
    [br]
    English chemist who co-established the reputation of Rothampsted Experimental Station as at the forefront of agricultural research.
    [br]
    Joseph Gilbert was the son of a congregational minister. His schooling was interrupted by the loss of an eye as the result of a shooting accident, but despite this setback he entered Glasgow University to study analytical chemistry, and then went to University College, London, where he was a fellow student of John Bennet Lawes. During his studies he visited Giessen, Germany, and worked in the laboratory of Justus von Liebig. In 1843, at the age of 26, he was hired as an assistant by Lawes, who was 29 at that time; an unbroken friendship and collaboration existed between the two until Lawes died in 1900. They began a series of experiments on grain production and grew plots under different applications of nitrogen, with control plots that received none at all. Much of the work at Rothampsted was on the nitrogen requirements of plants and how this element became available to them. The grain grown in these experiments was analyzed to determine whether nitrogen input affected grain quality. Gilbert was a methodical worker who by the time of his death had collected together some 50,000 carefully stored and recorded samples.
    [br]
    Principal Honours and Distinctions
    Knighted 1893. FRS 1860. Fellow of the Chemistry Society 1841, President 1882–3. President, Chemical Section of the British Association 1880. Sibthorpian Professor of Rural Economy, Oxford University, 1884. Honorary Professor of the Royal Agricultural College, Cirencester. Honorary member of the Royal Agricultural Society of England 1883. Royal Society Royal Medal 1867 (jointly with Lawes). Society of Arts Albert Gold Medal 1894 (jointly with Lawes). Liebig Foundation of the Royal Bavarian Academy of Science Silver Medal 1893 (jointly with Lawes).
    AP

    Biographical history of technology > Gilbert, Joseph Henry

  • 8 Booth, Henry

    [br]
    b. 4 April 1789 Liverpool, England
    d. 28 March 1869 Liverpool, England
    [br]
    English railway administrator and inventor.
    [br]
    Booth followed his father as a Liverpool corn merchant but had great mechanical aptitude. In 1824 he joined the committee for the proposed Liverpool \& Manchester Railway (L \& MR) and after the company obtained its Act of Parliament in 1826 he was appointed Treasurer.
    In 1829 the L \& MR announced a prize competition, the Rainhill Trials, for an improved steam locomotive: Booth, realizing that the power of a locomotive depended largely upon its capacity to raise steam, had the idea that this could be maximized by passing burning gases from the fire through the boiler in many small tubes to increase the heating surface, rather than in one large one, as was then the practice. He was apparently unaware of work on this type of boiler even then being done by Marc Seguin, and the 1791 American patent by John Stevens. Booth discussed his idea with George Stephenson, and a boiler of this type was incorporated into the locomotive Rocket, which was built by Robert Stephenson and entered in the Trials by Booth and the two Stephensons in partnership. The boiler enabled Rocket to do all that was required in the trials, and far more: it became the prototype for all subsequent conventional locomotive boilers.
    After the L \& MR opened in 1830, Booth as Treasurer became in effect the general superintendent and was later General Manager. He invented screw couplings for use with sprung buffers. When the L \& MR was absorbed by the Grand Junction Railway in 1845 he became Secretary of the latter, and when, later the same year, that in turn amalgamated with the London \& Birmingham Railway (L \& BR) to form the London \& North Western Railway (L \& NWR), he became joint Secretary with Richard Creed from the L \& BR.
    Earlier, completion in 1838 of the railway from London to Liverpool had brought problems with regard to local times. Towns then kept their own time according to their longitude: Birmingham time, for instance, was 7¼ minutes later than London time. This caused difficulties in railway operation, so Booth prepared a petition to Parliament on behalf of the L \& MR that London time should be used throughout the country, and in 1847 the L \& NWR, with other principal railways and the Post Office, adopted Greenwich time. It was only in 1880, however, that the arrangement was made law by Act of Parliament.
    [br]
    Bibliography
    1835. British patent no. 6,814 (grease lubricants for axleboxes). 1836. British patent no. 6,989 (screw couplings).
    Booth also wrote several pamphlets on railways, uniformity of time, and political matters.
    Further Reading
    H.Booth, 1980, Henry Booth, Ilfracombe: Arthur H.Stockwell (a good full-length biography, the author being the great-great-nephew of his subject; with bibliography).
    R.E.Carlson, 1969, The Liverpool \& Manchester Railway Project 1821–1831, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Booth, Henry

  • 9 Fourdrinier, Henry

    SUBJECT AREA: Paper and printing
    [br]
    b. 11 February 1766 London, England
    d. 3 September 1854 Mavesyn Ridware, near Rugeley, Staffordshire, England
    [br]
    English pioneer of the papermaking machine.
    [br]
    Fourdrinier's father was a paper manufacturer and stationer of London, from a family of French Protestant origin. Henry took up the same trade and, with his brother Sealy (d. 1847), devoted many years to developing the papermaking machine. Their first patent was taken out in 1801, but success was still far off. A machine for making paper had been invented a few years previously by Nicolas Robert at the Didot's mill at Essonnes, south of Paris. Robert quarrelled with the Didots, who then contacted their brother-in-law in England, John Gamble, in an attempt to raise capital for a larger machine. Gamble and the Fourdriniers called in the engineer Bryan Donkin, and between them they patented a much improved machine in 1807. In the new machine, the paper pulp flowed on to a moving continuous woven wire screen and was then squeezed between rollers to remove much of the water. The paper thus formed was transferred to a felt blanket and passed through a second press to remove more water, before being wound while still wet on to a drum. For the first time, a continuous sheet of paper could be made. Other inventors soon made further improvements: in 1817 John Dickinson obtained a patent for sizing baths to improve the surface of the paper; while in 1820 Thomas Crompton patented a steam-heated drum round which the paper was passed to speed up the drying process. The development cost of £60,000 bankrupted the brothers. Although Parliament extended the patent for fourteen years, and the machine was widely adopted, they never reaped much profit from it. Tsar Alexander of Russia became interested in the papermaking machine while on a visit to England in 1814 and promised Henry Fourdrinier £700 per year for ten years for super-intending the erection of two machines in Russia; Henry carried out the work, but he received no payment. At the age of 72 he travelled to St Petersburg to seek recompense from the Tsar's successor Nicholas I, but to no avail. Eventually, on a motion in the House of Commons, the British Government awarded Fourdrinier a payment of £7,000. The paper trade, sensing the inadequacy of this sum, augmented it with a further sum which they subscribed so that an annuity could be purchased for Henry, then the only surviving brother, and his two daughters, to enable them to live in modest comfort. From its invention in ancient China (see Cai Lun), its appearance in the Middle Ages in Europe and through the first three and a half centuries of printing, every sheet of paper had to made by hand. The daily output of a hand-made paper mill was only 60–100 lb (27–45 kg), whereas the new machine increased that tenfold. Even higher speeds were achieved, with corresponding reductions in cost; the old mills could not possibly have kept pace with the new mechanical printing presses. The Fourdrinier machine was thus an essential element in the technological developments that brought about the revolution in the production of reading matter of all kinds during the nineteenth century. The high-speed, giant paper-making machines of the late twentieth century work on the same principle as the Fourdrinier of 1807.
    [br]
    Further Reading
    R.H.Clapperton, 1967, The Paper-making Machine, Oxford: Pergamon Press. D.Hunter, 1947, Papermaking. The History and Technique of an Ancient Craft, London.
    LRD

    Biographical history of technology > Fourdrinier, Henry

  • 10 Ford, Henry

    (1863–1947) Gen Mgt
    U.S. industrialist. Founder of the Ford Motor Company, who organized the assembly line along the scientific management principles of Frederick Winslow Taylor and recorded his philosophy in My Life and Work (1922)
         After spending time as a machinist’s apprentice, a watch repairer, and a mechanic, Ford built his first car in 1896. He quickly became convinced of the vehicle’s commercial potential and started his own company in 1903. His first car was the Model A. After a year in business he was selling 600 a month.
         In 1907 Ford professed that his aim was to build a motor car for the masses. In 1908 his Model T was born. Through innovative use of new mass-production techniques, 15 million Model Ts were produced between 1908 and 1927.
         At that time, Ford’s factory at Highland Park, Michigan, was the biggest in the world. Over 14,000 people worked on the 57-acre site. He was quick to establish international operations as well. Ford’s first overseas sales branch was opened in France in 1908 and, in 1911, Ford began making cars in the United Kingdom.
         In 1919 Henry Ford resigned as the company’s president, letting his son, Edsel, take over. By then the Ford company was making a car a minute and Ford’s market share was in excess of 57%.

    The ultimate business dictionary > Ford, Henry

  • 11 Cort, Henry

    SUBJECT AREA: Metallurgy
    [br]
    b. 1740 Lancaster, England
    d. 1800 Hampstead, near London, England
    [br]
    English ironmaster, inventor of the puddling process and grooved rollers for forming iron into bars.
    [br]
    His father was a mason and brickmaker but, anxious to improve himself, Cort set up in London in 1765 as a navy agent, said to have been a profitable business. He recognized that, at that time, the conversion of pig iron to malleable or wrought iron, which was needed in increasing quantities as developments in industry and mechanical engineering gathered pace, presented a bottleneck in the ironmaking process. The finery hearth was still in use, slow and inefficient and requiring the scarce charcoal as fuel. To tackle this problem, Cort gave up his business and acquired a furnace and slitting mill at Fontley, near Fareham in Hampshire. In 1784 he patented his puddling process, by which molten pig iron on the bed of a reverberatory furnace was stirred with an iron bar and, by the action of the flame and the oxygen in the air, the carbon in the pig iron was oxidized, leaving nearly pure iron, which could be forged to remove slag. In this type of furnace, the fuel and the molten iron were separated, so that the cheaper coal could be used as fuel. It was the stirring action with the iron bar that gave the name "puddling" to the process. Others had realized the problem and reached a similar solution, notably the brothers Thomas and George Cranage, but only Cort succeeded in developing a commercially viable process. The laborious hammering of the ball of iron thus produced was much reduced by an invention of the previous year, 1783. This too was patented. The iron was passed between grooved rollers to form it into bars. Cort entered into an agreement with Samuel Jellico to set up an ironworks at Gosport to exploit his inventions. Samuel's father Adam, Deputy Paymaster of the Navy, advanced capital for this venture, Cort having expended much of his own resources in the experimental work that preceded his inventions. However, it transpired that Jellico senior had, unknown to Cort, used public money to advance the capital; the Admiralty acted to recover the money and Cort lost heavily, including the benefits from his patents. Rival ironmasters were quick to pillage the patents. In 1790, and again the following year, Cort offered unsuccessfully to work for the military. Finally, in 1794, at the instigation of the Prime Minister, William Pitt the Younger, Cort was paid a pension of £200 per year in recognition of the value of his improvements in the technology of ironmaking, although this was reduced by deductions to £160. After his death, the pension to his widow was halved, while some of his children received a pittance. Without the advances made by Cort, however, the iron trade could not have met the rapidly increasing demand for iron during the industrial revolution.
    [br]
    Bibliography
    1787, A Brief State of Facts Relative to the New Method of Making Bar Iron with Raw Pit Coal and Grooved Rollers (held in the Science Museum Library archive collection).
    Further Reading
    H.W.Dickinson, 1941, "Henry Cort's bicentary", Transactions of the Newcomen Society 21: 31–47 (there are further references to grooved rollers and the puddling process in Vol. 49 of the same periodical (1978), on pp. 153–8).
    R.A.Mott, 1983, Henry Con, the Great Finery Creator of Puddled Iron, Sheffield: Historical Metallurgy Society.
    LRD

    Biographical history of technology > Cort, Henry

  • 12 Hoover, William Henry

    [br]
    b. 1849 New Berlin (now North Canton), Ohio, USA
    d. 25 February 1932 North Canton, Ohio, USA
    [br]
    American founder of the Electric Suction Company, which manufactured and successfully marketed the first practical and portable suction vacuum cleaner.
    [br]
    Hoover was descended from a Swiss farming family called Hofer who emigrated from Basle and settled in Lancaster County, Pennsylvania, in the early eighteenth century. By 1832 the family had become tanners and lived near North Berlin in Ohio. In 1870 William Henry Hoover, who had studied at Mount Union College, bought the tannery with his brothers and soon expanded the business to make horse collars and saddlery. The firm expanded to become W.H.Hoover \& Co. In the early years of the first decade of the twentieth century, horses were beginning to be replaced by the internal combustion engine, so Hoover needed a new direction for his firm. This he found in the suction vacuum cleaner devised in 1907 by J.Murray Spangler, a cousin of Hoover's wife. The first successful cleaner of this type had been operating in England since 1901 (see Booth), but was not a portable model. Attracted by the development of the small electric motor, Spangler produced a vertical cleaner with such a motor that sucked the dust through the machine and blew it into a bag attached to the handle. Spangler applied for a patent for his invention on 14 September in the same year; it was granted for a carpet sweeper and cleaner on 2 June 1908, but Spangler was unable to market it himself and sold the rights to Hoover. The Model O machine, which ran on small wheels, was immediately manufactured and marketed. Hoover's model was the first electric, one-person-operated, domestic vacuum cleaner and was instantly successful, although the main expansion of the business was delayed for some time until the greater proportion of houses were wired for electricity. The Hoover slogan, "it beats as it sweeps as it cleans", came to be true in 1926 with the introduction of the Model 700, which was the first cleaner to offer triple-action cleaning, a process which beat, swept and sucked at the carpet. Further advances in the 1930s included the use of magnesium and the early plastics.
    [br]
    Further Reading
    G.Adamson, 1969, Machines at Home, Lutterworth Press.
    How it Works: The Universal Encyclopaedia of Machines, Paladin. D.Yarwood, 1981, The British Kitchen, Batsford, Ch. 6.
    DY

    Biographical history of technology > Hoover, William Henry

  • 13 Royce, Sir Frederick Henry

    [br]
    b. 27 March 1863 Alwalton, Huntingdonshire, England
    d. 22 April 1933 West Wittering, Sussex, England.
    [br]
    English engineer and industrialist.
    [br]
    Royce was the younger son of a flour miller. His father's death forced him to earn his own living from the age of 10 selling newspapers, as a post office messenger boy, and in other jobs. At the age of 14, he became an apprentice at the Great Northern Railway's locomotive works, but was unable to complete his apprenticeship due to a shortage of money. He moved to a tool company in Leeds, then in 1882 he became a tester for the London Electric Light \& Power Company and attended classes at the City \& Guilds Technical College. In the same year, the company made him Chief Electrical Engineer for the lighting of the streets of Liverpool.
    In 1884, at the age of 21, he founded F.H. Royce \& Co (later called Royce Ltd, from 1894 to 1933) with a capital of £70, manufacturing arc lamps, dynamos and electric cranes. In 1903, he bought a 10 hp Deauville car which proved noisy and unreliable; he therefore designed his own car. By the end of 1903 he had produced a twocylinder engine which ran for many hundreds of hours driving dynamos; on 31 March 1904, a 10 hp Royce car was driven smoothly and silently from the works in Cooke Street, Manchester. This car so impressed Charles S. Rolls, whose London firm were agents for high-class continental cars, that he agreed to take the entire output from the Manchester works. In 1906 they jointly formed Rolls-Royce Ltd and at the end of that year Royce produced the first 40/50 hp Silver Ghost, which remained in production until 1925 when it was replaced by the Phantom and Wraith. The demand for the cars grew so great that in 1908 manufacture was transferred to a new factory in Derby.
    In 1911 Royce had a breakdown due to overwork and his lack of attention to taking regular meals. From that time he never returned to the works but continued in charge of design from a drawing office in his home in the south of France and later at West Wittering, Sussex, England. During the First World War he designed the Falcon, Hawk and Condor engines as well as the VI2 Eagle, all of which were liquid-cooled. Later he designed the 36.7-litre Rolls-Royce R engines for the Vickers Supermarine S.6 and S.6B seaplanes which were entered for the Schneider Trophy (which they won in 1929 and 1931, the 5.5 having won in 1927 with a Napier Lion engine) and set a world speed record of 408 mph (657 km/h) in 1931; the 1941 Griffon engine was derived from the R.
    Royce was an improver rather than an innovator, though he did invent a silent form of valve gear, a friction-damped slipper flywheel, the Royce carburettor and a spring drive for timing gears. He was a modest man with a remarkable memory who concentrated on perfecting the detail of every component. He married Minnie Punt, but they had no children. A bust of him at the Derby factory is captioned simply "Henry Royce, Mechanic".
    [br]
    Further Reading
    R.Bird, 1995, Rolls Royce Heritage, London: Osprey.
    IMcN

    Biographical history of technology > Royce, Sir Frederick Henry

  • 14 Sullivan, Louis Henry

    [br]
    b. 3 September 1856 Boston, Massachusetts, USA
    d. 14 April 1924 Chicago, Illinois, USA
    [br]
    American architect whose work came to be known as the "Chicago School of Architecture" and who created a new style of architecture suited specifically to steel-frame, high-rise structures.
    [br]
    Sullivan, a Bostonian, studied at the Massachusetts Institute of Technology. Soon he joined his parents, who had moved to Chicago, and worked for a while in the office of William Le Baron Jenney, the pioneer of steel-frame construction. After spending some time studying at the Ecole des Beaux Arts in Paris, in 1875 Sullivan returned to Chicago, where he later met and worked for the Danish architect Dankmar Adler, who was practising there. In 1881 the two architects became partners, and during the succeeding fifteen years they produced their finest work and the buildings for which Sullivan is especially known.
    During the early 1880s in Chicago, load-bearing, metal-framework structures that made lofty skyscrapers possible had been developed (see Jenney and Holabird). Louis H.Sullivan initiated building design to stress and complement the metal structure rather than hide it. Moving onwards from H.H.Richardson's treatment of his Marshall Field Wholesale Store in Chicago, Sullivan took the concept several stages further. His first outstanding work, built with Adler in 1886–9, was the Auditorium Building in Chicago. The exterior, in particular, was derived largely from Richardson's Field Store, and the building—now restored—is of bold but simple design, massively built in granite and stone, its form stressing the structure beneath. The architects' reputation was established with this building.
    The firm of Sullivan \& Adler established itself during the early 1890s, when they built their most famous skyscrapers. Adler was largely responsible for the structure, the acoustics and function, while Sullivan was responsible for the architectural design, concerning himself particularly with the limitation and careful handling of ornament. In 1892 he published his ideas in Ornament in Architecture, where he preached restraint in its quality and disposition. He established himself as a master of design in the building itself, producing a rhythmic simplicity of form, closely related to the structural shape beneath. The two great examples of this successful approach were the Wainwright Building in St Louis, Missouri (1890–1) and the Guaranty Building in Buffalo, New York (1894–5). The Wainwright Building was a ten-storeyed structure built in stone and brick and decorated with terracotta. The vertical line was stressed throughout but especially at the corners, where pilasters were wider. These rose unbroken to an Art Nouveau type of decorative frieze and a deeply projecting cornice above. The thirteen-storeyed Guaranty Building is Sullivan's masterpiece, a simple, bold, finely proportioned and essentially modern structure. The pilaster verticals are even more boldly stressed and decoration is at a minimum. In the twentieth century the almost free-standing supporting pillars on the ground floor have come to be called pilotis. As late as the 1920s, particularly in New York, the architectural style and decoration of skyscrapers remained traditionally eclectic, based chiefly upon Gothic or classical forms; in view of this, Sullivan's Guaranty Building was far ahead of its time.
    [br]
    Bibliography
    Article by Louis H.Sullivan. Address delivered to architectural students June 1899, published in Canadian Architecture Vol. 18(7):52–3.
    Further Reading
    Hugh Morrison, 1962, Louis Sullivan: Prophet of Modern Architecture.
    Willard Connely, 1961, Louis Sullivan as He Lived, New York: Horizon Press.
    DY

    Biographical history of technology > Sullivan, Louis Henry

  • 15 Wood, Henry Alexander Wise

    SUBJECT AREA: Paper and printing
    [br]
    b. 1 March 1866 New York, USA
    d. 9 April 1939 USA
    [br]
    American manufacturer and inventor of printing machinery, including a stereotype casting machine.
    [br]
    The son of a Congressman and mayor of New York, Wood was educated at Media Academy in Pennsylvania, specializing in scientific subjects. The death of his father in 1881 prevented his going on to college and he went to work at the Campbell Printing and Manufacturing Company, of which he became President in 1896. In the meantime, he had married the daughter of J.L.Brower, the previous head of the company. Later business consolidations brought into being the Wood Newspaper Machine Corporation.
    Wood was responsible for a series of inventions that brought great benefit to the newspaperprinting processes. Most notable was the Autoplate, patented first in 1900 and finally in 1903. This enabled a whole page of newspaper type to be cast in metal at once, saving much time and effort in the forming of stereotypes; this invention earned him the Elliott Cresson gold medal of the Franklin Institute in 1909. Other inventions were the Autoreel, a high-speed press-feeder device, and the Autopaster, which automatically replaced a spent paper roll with a new one in a newspaper press, without the need to stop the press. Wood's improved presses and inventions increased the speed of newspaper production from 24,000 to 60,000 copies per hour, printed and folded.
    He was also much interested in aviation and was an early member of the Aero Club of America, becoming its Vice-President for six years. He helped to found the magazine Flying and was its Editor from 1911 to 1919. He had predicted the part played by aircraft and submarines during the Second World War and was invited to join a panel of consulting inventors and engineers to assist the development of the US Navy. He was soon at odds with the authorities, however, and he resigned in 1915. After the war, he spent time in vigorous campaigning against immigration, America's entry into the League of Nations and on many other issues, in all of which he was highly controversial. Nevertheless, he retained his interest in the newspaper-machinery business, remaining President of his company until 1935 and Chairman of the Board thereafter. In 1934 he became Chairman of the NRA Code Authority of the newspaper-machine industry.
    [br]
    Further Reading
    Obituary, 1939, New York Times (10 April). Obituary, 1939, New York Herald Tribune (10 April).
    LRD

    Biographical history of technology > Wood, Henry Alexander Wise

  • 16 Berry, Henry

    SUBJECT AREA: Canals, Ports and shipping
    [br]
    b. 1720 Parr (?), near St Helens, Lancashire, England
    d. 30 July 1812 Liverpool, England
    [br]
    English canal and dock engineer who was responsible for the first true canal, as distinct from a canalized river, in England.
    [br]
    Little is known of Berry's early life, but it is certain that he knew the district around St Helens intimately, which was of assistance to him in his later canal works. He became Clerk and Assistant to Thomas Steers and proved his natural engineering ability in helping Steers in both the construction of the Newry navigation in Ireland and his supervision of the construction of Salthouse Dock in Liverpool. On Steers's death in 1750 Berry was appointed, at the age of 30, Dock Engineer for Liverpool Docks, and completed the Salthouse Dock three years later. In 1755 he was allowed by the Liverpool Authority—presumably because his full-time service was not required at the docks at that time—to survey and construct the Sankey Brook Navigation (otherwise known as the St Helens Canal), which was completed in 1757. Berry was instructed to make the brook navigable, but with the secret consent and connivance of one of the proprietors he built a lateral canal, the work commencing on 5 September 1755. This was the first dead-water canal in the country, as distinct from an improved river navigation, and preceded Brindley's Bridgewater Canal by some five or six years. On the canal he also constructed at Blackbrook the first pair of staircase locks to be built in England.
    Berry later advised on improvements to the Weaver Navigation, and his design for the new locks was accepted. He also carried out in 1769 a survey for a Leeds and Liverpool Canal, but this was not proceeded with and it was left to others to construct this canal. He advised turnpike trustees on bridge construction, but his main work was in Liverpool dock construction and between 1767 and 1771 he built the George's Dock. His final dock work was King's Dock, which was opened on 3 October 1788; he resigned at the age of 68 when the dock was completed. He lived for another 24 years, during which he was described in the local directories as "gentleman" instead of "engineer" or "surveyor" as he had been previously.
    [br]
    Further Reading
    S.A.Harris, 1937, "Liverpool's second dock engineer", Transactions of the Historic Society of Lancashire and Cheshire 89.
    JHB

    Biographical history of technology > Berry, Henry

  • 17 Colpitts, Edwin Henry

    [br]
    b. 9 January 1872 Pointe de Bute, Canada
    d. 6 March 1949 Orange, New Jersey, USA
    [br]
    Canadian physicist and electrical engineer responsible for important developments in electronic-circuit technology.
    [br]
    Colpitts obtained Bachelor's degrees at Mount Allison University, Sackville, New Brunswick, and Harvard in 1894 and 1896, respectively, followed by a Master's degree at Harvard in 1897. After two years as assistant to the professor of physics there, he joined the American Bell Telephone Company. When the Bell Company was reorganized in 1907, he moved to the Western Electric branch of the company in New York as Head of the Physical Laboratories. In 1911 he became a director of the Research Laboratories, and in 1917 he became Assistant Chief Engineer of the company. During this time he invented both the push-pull amplifier and the Colpitts oscillator, both major developments in communications. In 1917, during the First World War, he spent some time in France helping to set up the US Signal Corps Research Laboratories. Afterwards he continued to do much, both technically and as a manager, to place telephone communications on a firm scientific basis, retiring as Vice-President of the Bell Telephone Laboratories in 1937. With the outbreak of the Second World War in 1941 he was recalled from retirement and appointed Director of the Engineering Foundation to work on submarine warfare techniques, particularly echo-ranging.
    [br]
    Principal Honours and Distinctions
    Order of the Rising Sun, Japan, 1938. US Medal of Merit 1948.
    Bibliography
    1919, with E.B.Craft, "Radio telephony", Proceedings of the American Institution of Electrical Engineers 38:337.
    1921, with O.B.Blackwell, "Carrier current telephony and telegraphy", American Institute of Electrical Engineers Transactions 40:205.
    11 September 1915, US reissue patent no. 15,538 (control device for radio signalling).
    28 August 1922, US patent no. 1,479,638 (multiple signal reception).
    Further Reading
    M.D.Fagen, 1975, A History of Engineering \& Science in the Bell System, Vol. 1, Bell Laboratories.
    KF

    Biographical history of technology > Colpitts, Edwin Henry

  • 18 Tizard, Sir Henry Thoms

    SUBJECT AREA: Weapons and armour
    [br]
    b. 23 August 1885 Gillingham, Kent, England
    d. 9 October 1959 Fareham, Hampshire, England
    [br]
    English scientist and administrator who made many contributions to military technology.
    [br]
    Educated at Westminster College, in 1904 Tizard went to Magdalen College, Oxford, gaining Firsts in mathematics and chemistry. After a period of time in Berlin with Nernst, he joined the Royal Institution in 1909 to study the colour changes of indicators. From 1911 until 1914 he was a tutorial Fellow of Oriel College, Oxford, but with the outbreak of the First World War he joined first the Royal Garrison Artillery, then, in 1915, the newly formed Royal Flying Corps, to work on the development of bomb-sights. Successively in charge of testing aircraft, a lieutenant-colonel in the Ministry of Munitions and Assistant Controller of Research and Experiments for the Royal Air Force, he returned to Oxford in 1919 and the following year became Reader in Chemical Thermodynamics; at this stage he developed the use of toluene as an air-craft-fuel additive.
    In 1922 he was appointed an assistant secretary at the government Department of Industrial and Scientific Research, becoming Principal Assistant Secretary in 1922 and its Permanent Director in 1927; during this time he was also a member of the Aeronautical Research Committee, being Chairman of the latter in 1933–43. From 1929 to 1942 he was Rector of Imperial College. In 1932 he was also appointed Chairman of a committee set up to investigate possible national air-defence systems, and it was largely due to his efforts that the radar proposals of Watson-Watt were taken up and an effective system made operational before the outbreak of the Second World War. He was also involved in various other government activities aimed at applying technology to the war effort, including the dam-buster and atomic bombs.
    President of Magdalen College in 1942–7, he then returned again to Whitehall, serving as Chairman of the Advisory Council on Scientific Policy and of the Defence Research Policy Committee. Finally, in 1952, he became Pro-Chan-cellor of Southampton University.
    [br]
    Principal Honours and Distinctions
    Air Force Cross 1918. CB 1927. KCB 1937. GCB 1949. American Medal of Merit 1947. FRS 1926. Ten British and Commonwealth University honorary doctorates. Hon. Fellowship of the Royal Aeronautical Society. Royal Society of Arts Gold Medal. Franklin Institute Gold Medal. President, British Association 1948. Trustee of the British Museum 1937–59.
    Bibliography
    1911, The sensitiveness of indicators', British Association Report (describes Tizard's work on colour changes in indicators).
    Further Reading
    KF

    Biographical history of technology > Tizard, Sir Henry Thoms

  • 19 Dow, Herbert Henry

    SUBJECT AREA: Metallurgy
    [br]
    b. 26 February 1866 Belleville, Ontario, Canada
    d. 15 October 1930 Rochester, Minnesota, USA
    [br]
    American industrial chemist, pioneer manufacturer of magnesium alloys.
    [br]
    Of New England ancestry, his family returned there soon after his birth and later moved to Cleveland, Ohio. In 1884, Dow entered the Case School of Applied Science, graduating in science four years later. His thesis dealt partly with the brines of Ohio, and he was persuaded to present a paper on brine to the meeting of the American Association for he Advancement of Science being held in Cleveland the same year. That entailed visits to collect samples of brines from various localities, and led to the observation that their composition varied, one having a higher lithium content while another was richer in bromine. This study of brines proved to be the basis for his career in industrial chemistry. In 1888 Dow was appointed Professor of Chemistry at the Homeopathic Hospital College in Cleveland, but he continued to work on brine, obtaining a patent in the same year for extracting bromine by blowing air through slightly electrolysed brine. He set up a small company to exploit the process, but it failed; the process was taken up and successfully worked by the Midland Chemical Company in Midland, Michigan. The electrolysis required a direct-current generator which, when it was installed in 1892, was probably the first of its kind in America. Dow next set up a company to produce chlorine by the electrolysis of brine. It moved to Midland in 1896, and the Dow Central Company purchased the Midland Chemical Company in 1900. Its main concern was the manufacture of bleaching powder, but the company continued to grow, based on Dow's steady development of chemical compounds that could be derived from brines. His search for further applications of chlorine led to the making of insecticides and an interest in horticulture. Meanwhile, his experience at the Homeopathic Hospital doubtless fired an interest in pharmaceuticals. One of the substances found in brine was magnesium chloride, and by 1918 magnesium metal was being produced on a small scale by electrolysis. An intensive study of its alloys followed, leading to the large-scale production of these important light-metal alloys, under the name of Dowmetals. Two other "firsts" achieved by the company were the synthetic indigo process and the production of the element iodine in the USA. The Dow company became one of the leading chemical manufacturers in the USA, and at the same time Dow played an active part in public life, serving on many public and education boards.
    [br]
    Principal Honours and Distinctions
    Society of Chemical Industry Perkin Medal 1930.
    Bibliography
    Dow was granted 65 patents for a wide range of chemical processes.
    Further Reading
    Obituary, 1930, Ind. Eng. Chem. (October).
    "The Dow Chemical Company", 1925, Ind. Eng. Chem. (September)
    LRD

    Biographical history of technology > Dow, Herbert Henry

  • 20 Preece, Sir William Henry

    [br]
    b. 15 February 1834 Bryn Helen, Gwynedd, Wales
    d. 6 November 1913 Penrhos, Gwynedd, Wales
    [br]
    Welsh electrical engineer who greatly furthered the development and use of wireless telegraphy and the telephone in Britain, dominating British Post Office engineering during the last two decades of the nineteenth century.
    [br]
    After education at King's College, London, in 1852 Preece entered the office of Edwin Clark with the intention of becoming a civil engineer, but graduate studies at the Royal Institution under Faraday fired his enthusiasm for things electrical. His earliest work, as connected with telegraphy and in particular its application for securing the safe working of railways; in 1853 he obtained an appointment with the Electric and National Telegraph Company. In 1856 he became Superintendent of that company's southern district, but four years later he moved to telegraph work with the London and South West Railway. From 1858 to 1862 he was also Engineer to the Channel Islands Telegraph Company. When the various telegraph companies in Britain were transferred to the State in 1870, Preece became a Divisional Engineer in the General Post Office (GPO). Promotion followed in 1877, when he was appointed Chief Electrician to the Post Office. One of the first specimens of Bell's telephone was brought to England by Preece and exhibited at the British Association meeting in 1877. From 1892 to 1899 he served as Engineer-in-Chief to the Post Office. During this time he made a number of important contributions to telegraphy, including the use of water as part of telegraph circuits across the Solent (1882) and the Bristol Channel (1888). He also discovered the existence of inductive effects between parallel wires, and with Fleming showed that a current (thermionic) flowed between the hot filament and a cold conductor in an incandescent lamp.
    Preece was distinguished by his administrative ability, some scientific insight, considerable engineering intuition and immense energy. He held erroneous views about telephone transmission and, not accepting the work of Oliver Heaviside, made many errors when planning trunk circuits. Prior to the successful use of Hertzian waves for wireless communication Preece carried out experiments, often on a large scale, in attempts at wireless communication by inductive methods. These became of historic interest only when the work of Maxwell and Hertz was developed by Guglielmo Marconi. It is to Preece that credit should be given for encouraging Marconi in 1896 and collaborating with him in his early experimental work on radio telegraphy.
    While still employed by the Post Office, Preece contributed to the development of numerous early public electricity schemes, acting as Consultant and often supervising their construction. At Worcester he was responsible for Britain's largest nineteenth-century public hydro-electric station. He received a knighthood on his retirement in 1899, after which he continued his consulting practice in association with his two sons and Major Philip Cardew. Preece contributed some 136 papers and printed lectures to scientific journals, ninety-nine during the period 1877 to 1894.
    [br]
    Principal Honours and Distinctions
    CB 1894. Knighted (KCB) 1899. FRS 1881. President, Society of Telegraph Engineers, 1880. President, Institution of Electrical Engineers 1880, 1893. President, Institution of Civil Engineers 1898–9. Chairman, Royal Society of Arts 1901–2.
    Bibliography
    Preece produced numerous papers on telegraphy and telephony that were presented as Royal Institution Lectures (see Royal Institution Library of Science, 1974) or as British Association reports.
    1862–3, "Railway telegraphs and the application of electricity to the signaling and working of trains", Proceedings of the ICE 22:167–93.
    Eleven editions of Telegraphy (with J.Sivewright), London, 1870, were published by 1895.
    1883, "Molecular radiation in incandescent lamps", Proceedings of the Physical Society 5: 283.
    1885. "Molecular shadows in incandescent lamps". Proceedings of the Physical Society 7: 178.
    1886. "Electric induction between wires and wires", British Association Report. 1889, with J.Maier, The Telephone.
    1894, "Electric signalling without wires", RSA Journal.
    Further Reading
    J.J.Fahie, 1899, History of Wireless Telegraphy 1838–1899, Edinburgh: Blackwood. E.Hawkes, 1927, Pioneers of Wireless, London: Methuen.
    E.C.Baker, 1976, Sir William Preece, F.R.S. Victorian Engineer Extraordinary, London (a detailed biography with an appended list of his patents, principal lectures and publications).
    D.G.Tucker, 1981–2, "Sir William Preece (1834–1913)", Transactions of the Newcomen Society 53:119–36 (a critical review with a summary of his consultancies).
    GW / KF

    Biographical history of technology > Preece, Sir William Henry

См. также в других словарях:

  • The Time Twister — Infobox Book | name = The Time Twister image caption = First edition, 2002 author = Jenny Nimmo cover artist = country = United Kingdom language = English series = Children of the Red King genre = Children s Fantasy novel publisher = Egmont Books …   Wikipedia

  • The Time Traveler's Wife — Título Te amaré por siempre (Latinoamérica) Más allá del tiempo (España) Ficha técnica Dirección Robert Schwentke Producción Brad Pitt …   Wikipedia Español

  • The Education of Henry Adams — records the struggle of Bostonian Henry Adams (1838 1918), in early old age, to come to terms with the dawning 20th century, so different from the world of his youth. It is also a sharp critique of 19th century educational theory and practice. In …   Wikipedia

  • The Writings of Henry D. Thoreau — is a project that aims to, for the first time, provide accurate texts of the works of Henry David Thoreau, the American author, including his journal, his personal letters, and his writings for publications. Since the project was founded in 1966 …   Wikipedia

  • The Time Traveler's Wife — This article is about the novel. For the film adaptation, see The Time Traveler s Wife (film). The Time Traveler s Wife   …   Wikipedia

  • The World of Henry Orient — Infobox Film name = The World of Henry Orient image size = 215px caption = theatrical poster director = George Roy Hill producer = Jerome Hellman writer = Nora Johnson (novel screenplay) Nunnally Johnson (screenplay) starring = Peter Sellers… …   Wikipedia

  • The Time Traveler's Wife (film) — Infobox Film name = The Time Traveler s Wife caption = director = Robert Schwentke producer = Brad Pitt Nick Wechsler Dede Gardner writer = Jeremy Leven Bruce Joel Rubin narrator = starring = Eric Bana Rachel McAdams music = cinematography =… …   Wikipedia

  • The Time Machine — This article is about the novel by H.G. Wells. For other uses, see The Time Machine (disambiguation). The Time Machine   …   Wikipedia

  • The Time is Near — Infobox Album | Name = The Time Is Near Type = Album Artist = Keef Hartley Band Released = 1970 Recorded = 1969, 1970 Genre = Blues rock Length = 34:55 Label = Deram Producer = Neil Slaven and Keef Hartley Reviews = * Allmusic rating|4|4… …   Wikipedia

  • The Time — TIME Ширли Бут на обложке «Тайм» (1952 г.) Специализация: новости Периодичность выхода: еженедельник Язык: английский Издатель (страна): Time Inc. (часть Time Warner) ( …   Википедия

  • Fix the time to which to adjourn — The motion to fix the time to which to adjourn, in parliamentary procedure, is used to set the time (and possibly the place) for another meeting to continue business of the session. [cite book | title=Robert s Rules of Order Newly… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»