Перевод: с английского на все языки

со всех языков на английский

in+the+paris+area

  • 81 Perret, Auguste

    [br]
    b. 12 February 1874 Ixelles, near Brussels, Belgium
    d. 26 February 1954 Le Havre (?), France
    [br]
    French architect who pioneered and established building design in reinforced concrete in a style suited to the modern movement.
    [br]
    Auguste Perret belonged to the family contracting firm of A. \& G.Perret, which early specialized in the use of reinforced concrete. His eight-storey building at 25 bis Rue Franklin in Paris, built in 1902–3, was the first example of frame construction in this material and established its viability for structural design. Both ground plan and façade are uncompromisingly modern, the simplicity of the latter being relieved by unobtrusive faience decoration. The two upper floors, which are set back, and the open terrace roof garden set a pattern for future schemes. All of Perret's buildings had reinforced-concrete structures and this was clearly delineated on the façade designs. The concept was uncommon in Europe at the time, when eclecticism still largely ruled, but was derived from the late nineteenth-century skyscraper façades built by Louis Sullivan in America. In 1905–6 came Perret's Garage Ponthieu in Paris; a striking example of exposed concrete, it had a central façade window glazed in modern design in rich colours. By the 1920s ferroconcrete was in more common use, but Perret still led the field in France with his imaginative, bold use of the material. His most original structure is the Church of Notre Dame at Le Raincy on the outskirts of Paris (1922–3). The imposing exterior with its tall tower in diminishing stages is finely designed, but the interior has magnificence. It is a wide, light church, the segmented vaulted roof supported on slender columns. The whole structure is in concrete apart from the glass window panels, which extend the full height of the walls all around the church. They provide a symphony of colour culminating in deep blue behind the altar. Because of the slenderness of the columns and the richness of the glass, this church possesses a spiritual atmosphere and unimpeded sight and sound of and from the altar for everyone. It became the prototype for churches all over Europe for decades, from Moser in prewar Switzerland to Spence's postwar Coventry Cathedral.
    In a long working life Perret designed buildings for a wide range of purposes, adhering to his preference for ferroconcrete and adapting its use according to each building's needs. In the 1940s he was responsible for the railway station at Amiens, the Atomic Centre at Saclay and, one of his last important works, the redevelopment after wartime damage of the town centre of Le Havre. For the latter, he laid out large open squares enclosed by prefabricated units, which display a certain monotony, despite the imposing town hall and Church of St Joseph in the Place de L'Hôtel de Ville.
    [br]
    Principal Honours and Distinctions
    President des Réunions Internationales des Architectes. American Society of the French Legion of Honour Gold Medal 1950. Elected after the Second World War to the Institut de France. First President of the International Union of Architects on its creation in 1948. RIBA Royal Gold Medal 1948.
    Further Reading
    P.Blater, 1939, "Work of the architect A.Perret", Architektura SSSR (Moscow) 7:57 (illustrated article).
    1848 "Auguste Perret: a pioneer in reinforced concrete", Civil Engineers' Review, pp.
    296–300.
    Peter Collins, 1959, Concrete: The Vision of a New Architecture: A Study of Auguste Perret and his Precursors, Faber \& Faber.
    Marcel Zahar, 1959, D'Une Doctrine d'Architecture: Auguste Perret, Paris: Vincent Fréal.
    DY

    Biographical history of technology > Perret, Auguste

  • 82 Santos-Dumont, Alberto

    SUBJECT AREA: Aerospace
    [br]
    b. 20 July 1873 Cabangu, Rocha Dias, Brazil
    d. 23 July 1932 d. Santos, Sâo Paulo, Brazil
    [br]
    Brazilian pioneer in airship and aeroplane flights.
    [br]
    Alberto Santos-Dumont, the son of a wealthy Brazilian coffee planter, was sent to Paris to study engineering but developed a passion for flying. After several balloon flights he turned his attention to powered airships. His first small airship, powered by a motorcycle engine, flew in 1898. A series of airships followed and his flights over Paris—and his narrow escapes—generated much public interest. A large cash prize had been offered for the first person to fly from Saint-Cloud around the Eiffel Tower and back inside thirty minutes. Santos-Dumont made two attempts in his airship No. 5, but engine failures caused him to crash, once in a tree and once on a hotel roof. Undismayed, he prepared airship No. 6 and on 19 October 1901 he set out and rounded the Tower, only to suffer yet another engine failure. This time he managed to restart the engine and claim the prize. This flight created a sensation in Paris and beyond. Santos-Dumont continued to create news with a series of airship exploits, and by 1906 he had built a total of fourteen airships. In 1904 Santos-Dumont visited the United States and met Octave Chanute, who described to him the achievements of the Wright brothers. On his return to Paris he set about designing an aeroplane which was unlike any other aeroplane of the period. It had box-kite-like wings and tail, and flew tail-first (a canard) powered by an Antoinette engine at the rear. It was built for him by Gabriel Voisin and was known as the "14 bis" because it was air-tested suspended beneath airship No. 14. It made its first free take-off on 13 September 1906, and then a series of short hops, including one of 220 m (720 ft) which won Santos-Dumont an Aero-Club prize and recognition for the first aeroplane flight in Europe; indeed, it was the first officially witnessed aeroplane flight in the world. Santos-Dumont's most successful aeroplane was his No. 20 of 1909, known as the Demoiselle: a tiny machine popular with sporting pilots. About this time, however, Santos-Dumont became ill and had to abandon his aeronautical activities. Although he had not made any great technical breakthroughs, Santos-Dumont had played a major role in arousing public interest in flying.
    [br]
    Principal Honours and Distinctions
    Aéro Club de France Grand Prix de l'Aéronautique 1901. Chevalier de la Légion d'honneur 1904.
    Bibliography
    1904, Dans l'air, Paris; 1904, pub. as My Airships (repub. 1973, New York: Dover).
    Further Reading
    Peter Wykeham, 1962, Santos-Dumont, A Study in Obsession, London.
    F.H.da Costa, c. 1971, Alberto Santos-Dumont, O Pai da Aviaçāo; pub. in English as
    Alberto Santos Dumont, Father of Aviation, Rio de Janeiro.
    JDS

    Biographical history of technology > Santos-Dumont, Alberto

  • 83 Villard de Honnecourt

    [br]
    b. c. 1200 Honnecourt-sur-Escaut, near Cambrai, France
    d. mid-13th century (?) France
    [br]
    French architect-engineer.
    [br]
    Villard was one of the thirteenth-century architect-engineers who were responsible for the design and construction of the great Gothic cathedrals and other churches of the time. Their responsibilities covered all aspects of the work, including (in the spirit of the Roman architect Vitruvius) the invention and construction of mechanical devices. In their time, these men were highly esteemed and richly rewarded, although few of the inscriptions paying tribute to their achievements have survived. Villard stands out among them because a substantial part of his sketchbook has survived, in the form of thirty-three parchment sheets of drawings and notes, now kept in the Bibliothèque Nationale in Paris. Villard's professional career lasted roughly from 1225 to 1250. As a boy, he went to work on the building of the Cistercian monastery at Vaucelles, not far from Honnecourt, and afterwards he was apprenticed to the masons' lodge at Cambrai Cathedral, where he began copying the drawings and layouts on the tracing-house floor. All his drawings are, therefore, of the plans, elevations and sections of cathedrals. These buildings have long since been destroyed, but his drawings, perhaps among his earliest, bear witness to their architecture. He travelled widely in France and recorded features of the great works at Reims, Laon and Chartres. These include the complex system of passageways built into the fabric of a great cathedral; Villard comments that one of their purposes was "to allow circulation in case of fire".
    Villard was invited to Hungary and reached there c. 1235. He may have been responsible for the edifice dedicated to St Elizabeth of Hungary, canonized in 1235, at Kassa (now Košice, Slovakia). Villard probably returned to France c. 1240, at least before the Tartar invasion of Hungary in 1241.
    His sketchbook, which dates to c. 1235, stands as a memorial to Villard's skill as a draughtsman, a student of perspective and a mechanical engineer. He took his sketchbook with him on his travels, and used ideas from it in his work abroad. It contains architectural designs, geometrical constructions for use in building, surveying exercises and drawings for various kinds of mechanical devices, for civil or military use. He was transmitting details from the highly developed French Gothic masons to the relatively underdeveloped eastern countries. The notebooks were annotated for the use of pupils and other master masons, and the notes on geometry were obviously intended for pupils. The prize examples are the pages in the book, clearly Villard's own work, related to mechanical devices. Whilst he, like many others of the period and after, played with designs for perpetual-motion machines, he concentrated on useful devices. These included the first Western representation of a perpetualmotion machine, which at least displays a concern to derive a source of energy: this was a water-powered sawmill, with automatic feed of the timber into the mill. This has been described as the first industrial automatic power-machine to involve two motions, for it not only converts the rotary motion of the water-wheel to the reciprocating motion of the saw, but incorporates a means of keeping the log pressed against the saw. His other designs included water-wheels, watermills, the Archimedean screw and other curious devices.
    [br]
    Bibliography
    Of several facsimile reprints with notes there are Album de Villard de Honnecourt, 1858, ed. J.B.Lassus, Paris (repr. 1968, Paris: Laget), and The Sketchbook of Villard de Honnecourt, 1959, ed. T.Bowie, Bloomington: Indiana University Press.
    Further Reading
    J.Gimpel, 1977, "Villard de Honnecourt: architect and engineer", The Medieval Machine, London: Victor Gollancz, ch. 6, pp. 114–46.
    ——1988, The Medieval Machine, the Industrial Revolution of the Middle Ages, London.
    R.Pernord, J.Gimpel and R.Delatouche, 1986, Le Moyen age pour quoi fayre, Paris.
    KM / LRD

    Biographical history of technology > Villard de Honnecourt

  • 84 Ampère, André-Marie

    SUBJECT AREA: Electricity
    [br]
    b. 22 Jan 1775 Lyon, France
    d. 10 June 1836 Marseille, France
    [br]
    French physicist and mathematician who established laws and principles relating magnetism and electricity to each other.
    [br]
    Ampère was reputed to have mastered all the then-known mathematics by the age of 12. He became Professor of Physics and Chemistry at Bourg in 1801 and a professor of mathematics at the Ecole Polytechnique in Paris in 1809. Observing a demonstration in 1820 of Oersted's discovery that a magnetic needle was deflected when placed near a current-carrying wire, Ampère was inspired to investigate the subject of electricity, of which he had no previous experience. Within a week he had prepared the first of several important communications on his discoveries to the Academy of Sciences in Paris. Included was a new hypothesis formed on the basis of his experiments on the relation between electricity and magnetism. He investigated the forces exerted on each other by current-carrying conductors and the properties of a solenoid. His mathematical theory describing these phenomena provided the foundations for the development of electro-dynamics and his classic work Théorie mathématique des phénomènes électro-dynamiques was published in 1827.
    The name "ampere" was adopted to replace the name "weber" as a unit of current after Helmholtz proposed such a change in 1881.
    [br]
    Principal Honours and Distinctions
    Bibliography
    1827, Théorie mathématique des phénomènes électro-dynamiques, Paris; repub. 1958, Paris (his chief published work).
    Further Reading
    P.Lenard, 1933, Great Men of Science, London, pp. 223–30 (provides a short account). C.C.Gillispie (ed.), 1970, Dictionary of Scientific Biography, Vol. 1, New York, pp.
    139–46.
    GW

    Biographical history of technology > Ampère, André-Marie

  • 85 Berthollet, Claude-Louis

    SUBJECT AREA: Textiles
    [br]
    b. 9 November 1748 Talloise, near Lake Annecy, France
    d. 6 November 1822 Arceuil, France
    [br]
    French chemist who made important innovations in textile chemistry.
    [br]
    Berthollet qualified as a medical doctor and pursued chemical researches, notably into "muriatic acid" (chlorine), then recently discovered by Scheele. He was one of the first chemists to embrace the new system of chemistry advanced by Lavoisier. Berthollet held several official appointments, among them inspector of dye works (from 1784) and Director of the Manufacture Nationale des Gobelins. These appointments enabled him to continue his researches and embark on a series of publications on the practical applications of chlorine, prussic acid (hydrocyanic acid) and ammonia. He clearly demonstrated the benefits of the French practice of appointing scientists to the state manufactories.
    There were two practical results of Berthollet's studies of chlorine. First, he produced a powerful explosive by substituting potassium chlorate, formed by the action of chlorine on potash, in place of nitre (potassium nitrate) in gunpowder. Then, mainly from humanitarian motives, he followed up Scheele's observation of the bleaching properties of chlorine water, in order to release for cultivation the considerable areas of land that had hitherto been required by the old bleaching process. The chlorine method greatly speeded up bleaching; this was a vital factor in the revolution in the textile industries.
    After a visit to Egypt in 1799, Berthollet carried out many experiments on dyeing, seeking to place this ancient craft onto a scientific basis. His work is summed up in his Eléments de l'art de la teinture, Paris, 1791.
    [br]
    Bibliography
    1791, Eléments de Van de la teinture, Paris (covers his work on dyeing).
    Berthollet published two books of importance in the early history of physical chemistry: 1801, Recherches sur les lois de l'affinité, Paris.
    Annales de Chimie.
    Further Reading
    E.Farber, 1961, Great Chemists, New York: Interscience, pp. 32–4 (includes a short biographical account).
    LRD

    Biographical history of technology > Berthollet, Claude-Louis

  • 86 Breguet, Louis

    SUBJECT AREA: Aerospace
    [br]
    b. 2 January 1880 Paris, France
    d. 4 May 1955 Paris, France
    [br]
    French aviation pioneer who built a helicopter in 1907 and designed many successful aircraft.
    [br]
    The Breguet family had been manufacturing fine clocks since before the French Revolution, but Louis Breguet and his brother Jacques used their mechanical skills to produce a helicopter, or "gyroplane" as they named it. It was a complex machine with four biplane rotors (i.e. thirty-two lifting surfaces). Louis Breguet had carried out many tests to determine the most suitable rotor design. The Breguet brothers were assisted by Professor Charles Richet and the Breguet-Richet No. 1 was tested in September 1907 when it succeeded in lifting itself, and its pilot, to a height of 1.5 metres. Unfortunately, the gyroplane was rather unstable and four helpers had to steady it; consequently, the flight did not qualify as a "free" flight. This was achieved two months later, also in France, by Paul Cornu who made a 20-second free flight.
    Louis Breguet turned his attention to aeroplane design and produced a tractor biplane when most other biplanes followed the Wright brothers' layout with a forward elevator and pusher propeller. The Breguet I made quite an impression at the 1909 Reims meeting, but the Breguet IV created a world record the following year by carrying six people. During the First World War the Breguet Type 14 bomber was widely used by French and American squadrons. Between the First and Second World Wars a wide variety of designs were produced, including flying boats and another helicopter, the Breguet- Dorand Gyroplane which flew for over one hour in 1936. The Breguet company survived World War II and in the late 1940s developed a successful four-engined airliner/transport, the Deux-Ponts, which had a bulbous double-deck fuselage.
    Breguet was an innovative designer, although his designs were functional rather than elegant. He was an early advocate of metal construction and developed an oleo- (oil-spring) undercarriage leg.
    [br]
    Bibliography
    1925, Le Vol à voile dynamique des oiseaux. Analyse des effets des pulsations du vent sur la résultante aérodynamique moyenne d'un planeur, Paris.
    Further Reading
    P.Faure, 1938, Louis Breguet, Paris (biography).
    C.H.Gibbs-Smith, 1965, The Invention of the Aeroplane 1799–1909, London (provides a careful analysis of Breguet's early aircraft).
    JDS

    Biographical history of technology > Breguet, Louis

  • 87 Dassault (Bloch), Marcel

    SUBJECT AREA: Aerospace
    [br]
    b. 22 January 1892 Paris, France
    d. 18 April 1986 Paris, France
    [br]
    French aircraft designer and manufacturer, best known for his jet fighters the Mystère and Mirage.
    [br]
    During the First World War, Marcel Bloch (he later changed his name to Dassault) worked on French military aircraft and developed a very successful propeller. With his associate, Henri Potez, he set up a company to produce their Eclair wooden propeller in a furniture workshop in Paris. In 1917 they produced a two-seater aircraft which was ordered but then cancelled when the war ended. Potez continued to built aircraft under his own name, but Bloch turned to property speculation, at which he was very successful. In 1930 Bloch returned to the aviation business with an unsuccessful bomber followed by several moderately effective airliners, including the Bloch 220 of 1935, which was similar to the DC-3. He was involved in the design of a four-engined airliner, the SNCASE Languedoc, which flew in September 1939. During the Second World War, Bloch and his brothers became important figures in the French Resistance Movement. Marcel Bloch was eventually captured but survived; however, one of his brothers was executed, and after the war Bloch changed his name to Dassault, which had been his brother's code name in the Resistance. During the 1950s, Avions Marcel Dassault rapidly grew to become Europe's foremost producer of jet fighters. The Ouragon was followed by the Mystère, Etendard and then the outstanding Mirage series. The basic delta-winged Mirage III, with a speed of Mach 2, was soon serving in twenty countries around the world. From this evolved a variable geometry version, a vertical-take-off aircraft, an enlarged light bomber capable of carrying a nuclear bomb, and a swept-wing version for the 1970s. Dassault also produced a successful series of jet airliners starting with the Fan Jet Falcon of 1963. When the Dassault and Breguet companies merged in 1971, Marcel Dassault was still a force to be reckoned with.
    [br]
    Principal Honours and Distinctions
    Guggenheim Medal. Deputy, Assemblée nationale 1951–5 and 1958–86.
    Bibliography
    1971, Le Talisman, Paris: Editions J'ai lu (autobiography).
    Further Reading
    1976, "The Mirage Maker", Sunday Times Magazine (1 June).
    Jane's All the World's Aircraft, London: Jane's (details of Bloch and Dassault aircraft can be found in various years' editions).
    JDS

    Biographical history of technology > Dassault (Bloch), Marcel

  • 88 Laënnec, René Théophile Hyacinthe

    SUBJECT AREA: Medical technology
    [br]
    b. 16 February 1781 Quimper, France
    d. 13 August 1826 Paris, France
    [br]
    French physician, inventor of the stethoscope.
    [br]
    Laënnec commenced his medical career assisting his uncle, a physician of Nantes, Brittany. On moving to Paris he studied under Corvisart, Napoleon's friend and personal physician, and Dupuytren. Appointed Physician to the Necker Hospital in 1816, his difficulties in examining an obese patient led him to make a roll of paper and, placing one end on the patient's chest and his ear to the other, he found that he could hear the heart sounds much more clearly; although auscultation had been practised in medicine since the time of Hippocrates (fl. 400 BC), its inconvenience and distastefulness made the stethoscope an instrument which soon gained wide acceptance. As a consequence, a large number of new auditory phenomena were reported in the immediately ensuing years. In his book, published in 1819, he described the instrument as "a cylinder of wood an inch and a half in diameter and a foot long, perforated by a bore three lines wide and hollowed out into a funnel shape at one of its extremities".
    By now he had contracted tuberculosis and retired to Brittany to recover. In 1822 he accepted the Chair of Medicine in the College of France, but he suffered a relapse and died four years later, ironically of the same disease that his invention had done so much to facilitate the diagnosis of.
    [br]
    Bibliography
    Further Reading
    W.Hale-White, 1923, Laënnec: Translation of Selected Papers from "de l"Auscultation médiate', with a Biography, London.
    H.Saintignon, 1904, Laënnec, sa vie et son oeuvre, Paris. Z.Cope, 1957, Sidelights from the History of Medicine.
    MG

    Biographical history of technology > Laënnec, René Théophile Hyacinthe

  • 89 Scott de Martinville, Edouard-Léon

    SUBJECT AREA: Recording
    [br]
    b. 25 April 1817 Paris, France
    d. 29 April 1879 Paris, France
    [br]
    French amateur phonetician, who developed a recorder for sound waves.
    [br]
    He was the descendant of a Scottish family who emigrated to France in 1688. He trained as a printer and later became a proof corrector in printing houses catering predominantly for scientific publishers. He became interested in shorthand systems and eventually turned his interest to making a permanent record of sounds in air. At the time it was already known (Young, Duhamel, Wertheim) to record vibrations of bodies. He made a theoretical study and deposited under sealed wrapper a note in the Académie des Sciences on 26 January 1857. He approached the scientific instrument maker Froment and was able to pay for the manufacture of one instrument due to support from the Société d'Encouragement à l'Industrie Nationale. This funding body obtained a positive report from the physicist Lissajous on 6 January 1858. A new model phonautograph was constructed in collaboration with the leading scientific instrument maker in Paris at the time, Rudolph Koenig, and a contract was signed in 1859. The instrument was a success, and Koenig published a collection of traces in 1864.
    Although the membrane was parallel to the rotating surface, a primitive lever system generated lateral movements of a bristle which scratched curves in a thin layer of lampblack on the rotating surface. The curves were not necessarily representative of the vibrations in the air. Scott did not imagine the need for reproducing a recorded sound; rather, his intention was to obtain a trace that would lend itself to mathematical analysis and visual recognition of sounds. Obviously the latter did not require the same degree of linearity as the former. When Scott learned that similar apparatus had been built independently in the USA, he requested that his sealed wrapper be opened on 15 July 1861 in order to prove his scientific priority. The contract with Koenig left Scott without influence over his instrument, and eventually he became convinced that everyone else, including Edison in the end, had stolen his invention. Towards the end of his life he became interested mainly in the history of printing, and he was involved in the publishing of a series of books about books.
    [br]
    Bibliography
    25 March 1857, amended 29 July 1859, French patent no. 31,470.
    Further Reading
    P.Charbon, 1878, Scott de Martinville, Paris: Hifi Stereo, pp. 199–205 (a good biography produced at the time of the centenary of the Edison phonograph).
    V.J.Philips, 1987, Waveforms, Bristol: Adam Hilger, pp. 45–8 (provides a good account of the importance of his contributions to accurate measurements of temporal phenomena).
    GB-N

    Biographical history of technology > Scott de Martinville, Edouard-Léon

  • 90 Winsor, Frederick Albert

    SUBJECT AREA: Public utilities
    [br]
    b. 1763 Brunswick, Germany
    d. 11 May 1830 Paris, France
    [br]
    German pioneer of gas lighting,
    [br]
    He was born Frederic Albrecht Winzer but anglicized his name after settling in England. His interest in gas lighting was aroused by the experiments of Philippe Lebon in Paris in 1802. Winsor had little scientific knowledge or engineering ability, but was well endowed with confidence and enterprise. He alone among the early practitioners of gas-making envisaged a central plant supplying a number of users through gas mains. He managed to discover the essentials of Lebon's process and tried without success to exploit it on the European continent. So he moved to England in 1803 and settled first in Grosvenor Square and then in Pall Mall. He gave public demonstrations of gas lighting at the Lyceum Theatre in London and in 1804 took out his first patent. In December he lit Pall Mall, the first street to be illuminated by gas. Winsor then began to promote a grandiose scheme for the formation of a National Light and Heat Company. He struggled against bitter opposition both in and out of Parliament to obtain sanction for his company, and it was only after the third attempt that the Gas Light \& Coke Company received its charter in 1812. However, Winsor lacked the knowledge to devise successful gas-producing plant, even with the help of the German immigrant chemist F.C.Accum. Winsor was dismissed in 1812 and returned to Paris the following year, while the company recovered with the appointment of an able engineer, Samuel Clegg. Winsor formed a company in Paris to install gas lighting, but that failed in 1819.
    [br]
    Further Reading
    W.Matthew, 1827, An Historical Sketch of the Origin, Progress and Present State of Gaslighting, London.
    E.G.Stewart, 1958, Town Gas, Its Manufacture and Distribution, London: Science Museum.
    LRD

    Biographical history of technology > Winsor, Frederick Albert

  • 91 Leonardo da Vinci

    [br]
    b. 15 April 1452 Vinci, near Florence, Italy,
    d. 2 May 1519 St Cloux, near Amboise, France.
    [br]
    Italian scientist, engineer, inventor and artist.
    [br]
    Leonardo was the illegitimate son of a Florentine lawyer. His first sixteen years were spent with the lawyer's family in the rural surroundings of Vinci, which aroused in him a lifelong love of nature and an insatiable curiosity in it. He received little formal education but extended his knowledge through private reading. That gave him only a smattering of Latin, a deficiency that was to be a hindrance throughout his active life. At sixteen he was apprenticed in the studio of Andrea del Verrochio in Florence, where he received a training not only in art but in a wide variety of crafts and technical arts.
    In 1482 Leonardo went to Milan, where he sought and obtained employment with Ludovico Sforza, later Duke of Milan, partly to sculpt a massive equestrian statue of Ludovico but the work never progressed beyond the full-scale model stage. He did, however, complete the painting which became known as the Virgin of the Rocks and in 1497 his greatest artistic achievement, The Last Supper, commissioned jointly by Ludovico and the friars of Santa Maria della Grazie and painted on the wall of the monastery's refectory. Leonardo was responsible for the court pageants and also devised a system of irrigation to supply water to the plains of Lombardy. In 1499 the French army entered Milan and deposed Leonardo's employer. Leonardo departed and, after a brief visit to Mantua, returned to Florence, where for a time he was employed as architect and engineer to Cesare Borgia, Duke of Romagna. Around 1504 he completed another celebrated work, the Mona Lisa.
    In 1506 Leonardo began his second sojourn in Milan, this time in the service of King Louis XII of France, who appointed him "painter and engineer". In 1513 Leonardo left for Rome in the company of his pupil Francesco Melzi, but his time there was unproductive and he found himself out of touch with the younger artists active there, Michelangelo above all. In 1516 he accepted with relief an invitation from King François I of France to reside at the small château of St Cloux in the royal domain of Amboise. With the pension granted by François, Leonardo lived out his remaining years in tranquility at St Cloux.
    Leonardo's career can hardly be regarded as a success or worthy of such a towering genius. For centuries he was known only for the handful of artistic works that he managed to complete and have survived more or less intact. His main activity remained hidden until the nineteenth and twentieth centuries, during which the contents of his notebooks were gradually revealed. It became evident that Leonardo was one of the greatest scientific investigators and inventors in the history of civilization. Throughout his working life he extended a searching curiosity over an extraordinarily wide range of subjects. The notes show careful investigation of questions of mechanical and civil engineering, such as power transmission by means of pulleys and also a form of chain belting. The notebooks record many devices, such as machines for grinding and polishing lenses, a lathe operated by treadle-crank, a rolling mill with conical rollers and a spinning machine with pinion and yard divider. Leonardo made an exhaustive study of the flight of birds, with a view to designing a flying machine, which obsessed him for many years.
    Leonardo recorded his observations and conclusions, together with many ingenious inventions, on thousands of pages of manuscript notes, sketches and drawings. There are occasional indications that he had in mind the publication of portions of the notes in a coherent form, but he never diverted his energy into putting them in order; instead, he went on making notes. As a result, Leonardo's impact on the development of science and technology was virtually nil. Even if his notebooks had been copied and circulated, there were daunting impediments to their understanding. Leonardo was left-handed and wrote in mirror-writing: that is, in reverse from right to left. He also used his own abbreviations and no punctuation.
    At his death Leonardo bequeathed his entire output of notes to his friend and companion Francesco Melzi, who kept them safe until his own death in 1570. Melzi left the collection in turn to his son Orazio, whose lack of interest in the arts and sciences resulted in a sad period of dispersal which endangered their survival, but in 1636 the bulk of them, in thirteen volumes, were assembled and donated to the Ambrosian Library in Milan. These include a large volume of notes and drawings compiled from the various portions of the notebooks and is now known as the Codex Atlanticus. There they stayed, forgotten and ignored, until 1796, when Napoleon's marauding army overran Italy and art and literary works, including the thirteen volumes of Leonardo's notebooks, were pillaged and taken to Paris. After the war in 1815, the French government agreed to return them but only the Codex Atlanticus found its way back to Milan; the rest remained in Paris. The appendix to one notebook, dealing with the flight of birds, was later regarded as of sufficient importance to stand on its own. Four small collections reached Britain at various times during the seventeenth and eighteenth centuries; of these, the volume in the Royal Collection at Windsor Castle is notable for its magnificent series of anatomical drawings. Other collections include the Codex Leicester and Codex Arundel in the British Museum in London, and the Madrid Codices in Spain.
    Towards the end of the nineteenth century, Leonardo's true stature as scientist, engineer and inventor began to emerge, particularly with the publication of transcriptions and translations of his notebooks. The volumes in Paris appeared in 1881–97 and the Codex Atlanticus was published in Milan between 1894 and 1904.
    [br]
    Principal Honours and Distinctions
    "Premier peintre, architecte et mécanicien du Roi" to King François I of France, 1516.
    Further Reading
    E.MacCurdy, 1939, The Notebooks of Leonardo da Vinci, 2 vols, London; 2nd edn, 1956, London (the most extensive selection of the notes, with an English translation).
    G.Vasari (trans. G.Bull), 1965, Lives of the Artists, London: Penguin, pp. 255–271.
    C.Gibbs-Smith, 1978, The Inventions of Leonardo da Vinci, Oxford: Phaidon. L.H.Heydenreich, Dibner and L. Reti, 1981, Leonardo the Inventor, London: Hutchinson.
    I.B.Hart, 1961, The World of Leonardo da Vinci, London: Macdonald.
    LRD / IMcN

    Biographical history of technology > Leonardo da Vinci

  • 92 Ader, Clément

    SUBJECT AREA: Aerospace
    [br]
    b. 2 April 1841 Muret, France
    d. 3 May 1925 Toulouse, France
    [br]
    French engineer who made a short "hop" in a powered aeroplane in 1890.
    [br]
    Ader was a distinguished engineer and versatile inventor who was involved with electrical developments, including the telephone and air-cushion vehicles. In the field of aeronautics he became the centre of a long-lasting controversy: did he, or did he not, fly before the Wright brothers' flight of 1903? In 1882 Ader started work on his first aeroplane, the Eole (god of the winds), which was bat-like in appearance and powered by a very well-designed lightweight steam engine developing about 15 kW (20 hp). On 9 October 1890 the Eole was ready, and with Ader as pilot it increased speed over a level surface and lifted off the ground. It was airborne for about 5 seconds and covered some 50 m (164 ft), reaching a height of 20 cm (8 in.). Whether such a short hop constituted a flight has caused much discussion and argument over the years. An even greater controversy followed Ader's claim in 1906 that his third aeroplane (Avion III) had made a flight of 300 m (328 yd) in 1897. He repeated this claim in his book written in 1907, and many historians accepted his account of the "flight". C.H.Gibbs-Smith, an eminent aviation historian, investigated the Ader controversy and in his book published in 1966 came to the conclusion that the Avion III did not fly at all. Avion III was donated to the Museum of the Conservatoire des Arts et Métiers in Paris, and still survives. From 1906 onwards Ader concentrated his inventive efforts elsewhere, but he did mount a successful campaign to persuade the French War Ministry to create an air force.
    [br]
    Principal Honours and Distinctions
    In 1990 the French Government accepted him as the "Father of Aviation who gave wings to the world".
    Bibliography
    1890, patent no. 205, 155 (included a description of the Eole).
    1907, La Première étape de l'aviation militaire en France, Paris (the most significant of his published books and articles).
    Further Reading
    C.H.Gibbs-Smith, 1968, Clément Ader: His Flight Claims and His Place in History, London.
    The centenary of Ader's 1890 flight resulted in several French publications, including: C.Carlier, 1990, L'Affaire Clément Ader: la vérité rétablie, Paris; Pierre Lissarrague, 1990, Clément Ader: inventeur d'avions, Toulouse.
    JDS

    Biographical history of technology > Ader, Clément

  • 93 Argand, François-Pierre Amis

    [br]
    b. 5 July 1750 Geneva, Switzerland
    d. October 1803 London, England
    [br]
    Swiss inventor of the Argand lamp.
    [br]
    Son of a clockmaker, he studied physics and chemistry under H.-D. de Saussure (1740– 99). In 1775 he moved to Paris, where he taught chemistry and presented a paper on electrical phenomena to the Académie Royale des Sciences. He assisted the Montgolfier brothers in their Paris balloon ascents.
    From 1780 Argand spent some time in Montpellier, where he conceived the idea of the lamp that was to make him famous. It was an oil lamp with gravity oil feed, in which the flame was enlarged by burning it in a current of air induced by two concentric iron tubes. It produced ten times the illumination of the simple oil lamp. From the autumn of 1783 to summer 1785, Argand travelled to London and Birmingham to promote the manufacture and sale of his lamp. Upon his return to Paris, he found that his design had been plagiarized; with others, Argand sought to establish his priority, and Paul Abeille published a tract, Déscouverte des lampes à courant d'air et à cylindre (1785). As a result, the Académie granted Argand a licence to manufacture the lamp. However, during the Revolution, Argand's factories were destroyed and his licence annulled. He withdrew to Versoix, near Geneva. In 1793, the English persuaded him to take refuge in England and tried, apparently without success, to obtain recompense for his losses.
    Argand is also remembered for his work on distillation and on the water distributor or hydraulic ram, which was conceived with Joseph Montgolfier in 1797 and recognized by the grant of a patent in the same year.
    [br]
    Further Reading
    M.Schroder, 1969, The Armand Burner: Its Origin and Development in France and England, 1781–1800, Odense University Press.
    LRD

    Biographical history of technology > Argand, François-Pierre Amis

  • 94 Bouchon, Basile

    SUBJECT AREA: Textiles
    [br]
    fl. c.1725 Lyon, France
    [br]
    French pioneer in automatic pattern selection for weaving.
    [br]
    In the earliest draw looms, the pattern to be woven was selected by means of loops of string that were loosely tied round the appropriate leashes, which had to be lifted to make that pick of the pattern by raising the appropriate warp threads. In Isfahan, Persia, looms were seen in the 1970s where a boy sat in the top of the loom. Before the weaver could weave the next pick, the boy selected the appropriate loop of string, pulled out those leashes which were tied in it and lifted them up by means of a forked stick. The weaver below him held up these leashes by a pair of wooden sticks and sent the shuttle through that shed while the boy was sorting out the next loop of string with its leashes. When the pick had been completed, the first loop was dropped further down the leashes and, presumably, when the whole sequence of that pattern was finished, all the loops had be pushed up the leashes to the top of the loom again.
    Models in the Conservatoire National des Arts et Métiers, Paris, show that in 1725 Bouchon, a worker in Lyon, dispensed with the loops of string and selected the appropriate leashes by employing a band of pierced paper pressed against a row of horizontal wires by the drawboy using a hand-bar so as to push forward those which happened to lie opposite the blank spaces. These connected with loops at the lower extremity of vertical wires linked to the leashes at the top of the loom. The vertical wires could be pulled down by a comb-like rack beside the drawboy at the side of the loom in order to pull up the appropriate leashes to make the next shed. Bouchon seems to have had only one row of needles or wires, which must have limited the width of the patterns. This is an early form of mechanical memory, used in computers much later. The apparatus was improved subsequently by Falcon and Jacquard.
    [br]
    Further Reading
    A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London (a brief description of Bouchon's apparatus).
    M.Daumas (ed.), 1968, Histoire générale des techniques Vol. III: L'Expansion du
    machinisme, Paris (a description of this apparatus, with a diagram). Conservatoire National des Arts et Métiers, 1942, Catalogue du musée, section T, industries textiles, teintures et apprêts, Paris (another brief description; a model can be seen in this museum).
    C.Singer, (ed.), 1957, A History of Technology, Vol. III, Oxford: Clarendon Press (provides an illustration of Bouchon's apparatus).
    RLH

    Biographical history of technology > Bouchon, Basile

  • 95 Chanute, Octave Alexandre

    SUBJECT AREA: Aerospace
    [br]
    b. 18 February 1832 Paris, France
    d. 24 November 1910 Chicago, USA
    [br]
    American engineer, developer of successful hang-gliders in the 1890s and disseminator of aeronautical information.
    [br]
    Chanute was born in Paris, but from the age of 6 he lived in the United States, where he became a prominent railway engineer. He developed an interest in aviation relatively late in life, and in fact built his first glider at the age of 64. Before that, he had collected all the information he could find on aviation, especially on the work of Otto Lilienthal in Germany. In 1894 he published an account of these researches in a classic work, Progress in Flying Machines.
    By 1896 Chanute was ready to carry out practical experiments of his own and designed a series of hang-gliders. He started with a Lilienthal-type monoplane and progressed to his very successful biplane glider. He used a bridge-truss method of cross-bracing to give his wings the required strength, a system used by many of his successors, including the Wright brothers. Chanute's gliders were flown on the shore of Lake Michigan by his two young assistants A.M.Herring and W.Avery. The biplane glider made some seven hundred flights without mishap, covering up to 100 m (110 yds). In 1898 Herring fitted an engine into a modified glider and claimed to have made two short hops.
    In 1900 the Wright brothers made contact with Chanute and sought his advice, which he readily gave, indeed, he became one of their most trusted advisors. In 1903 Chanute travelled to Paris and gave an illustrated lecture describing his own and the Wrights' gliding successes, generating much interest amongst European aviators.
    [br]
    Principal Honours and Distinctions
    Royal Aeronautical Society Gold Medal 1910.
    Bibliography
    1894, Progress in Flying Machines, New York (Chanute's classic work).
    Further Reading
    C.H.Gibbs-Smith, 1986, Aviation, London.
    —1965, The Invention of the Aeroplane 1799–1909, London (both describe Chanute's place in the history of aviation).
    T.D.Crouch, A Dream of Wings, Americans and the Airplane 1875–1905 (includes several chapters on Chanute and a comprehensive bibliography).
    Chanute is also mentioned in most of the biographies of the Wright brothers.
    JDS

    Biographical history of technology > Chanute, Octave Alexandre

  • 96 Cugnot, Nicolas Joseph

    SUBJECT AREA: Land transport
    [br]
    b. 26 February 1725 Void, Meuse, France
    d. 2 October 1804 Paris, France
    [br]
    French military engineer.
    [br]
    Cugnot studied military engineering in Germany and returned to Paris by 1769, having left the service of Austria, where he taught military engineering. It was while serving in the army of Les Pays Bas that he invented a "fusil" or carbine, which was adopted by the Archduke Charles and put into service in the Uhlan regiments.
    In 1769 he invented a fardier à feu, also called a cabriolet, a steam-driven, heavy three-wheeled vehicle. This tractor, designed to pull artillery pieces, was driven through its single front wheel by two single-acting cylinders which rotated the wheel through ratchets. The ratchet pawls were carried on levers pivoted on the wheel axis, coupled to the piston rods by connecting rods. Links from pivots half-way along the levers connected upwards to a rocking cross-beam fixed on the end of the steam cock so as to pass steam alternately from the undersized boiler to the two cylinders. The tractor had to be stopped whenever it needed stoking, and its maximum speed was 4 mph (6.4 km/h). The difficulty of controlling it led to its early demolition of a wall, after which it was locked away and eventually preserved in the Conservatoire des Arts et Métiers in Paris. This was, in fact, Cugnot's second vehicle: the first model was presented to the due de Choiseul et Guiberuval, who asked for a more robust and powerful machine which was built at the Arsenal at the expense of the state and tested in 1771. Cugnot was granted a pension of 600 livres. After the revolution he tried in vain in 1798 and 1801 to interest Bonaparte in this invention.
    [br]
    Bibliography
    Cugnot published a number of military textbooks, including: 1766, Eléments de l'art militaire.
    Further Reading
    D.J.H.Day, 1980, Engines.
    IMcN

    Biographical history of technology > Cugnot, Nicolas Joseph

  • 97 Demenÿ, Georges

    [br]
    b. 1850 Douai, France d. 1917
    [br]
    French chronophotographer.
    [br]
    As a young man Georges Demenÿ was a pioneer of physical education in France, and this led him to contact the physiologist Professor Marey in 1880. Marey had made a special study of animal movement, and Demenÿ hoped to work with him on research into physiological problems related to gymnastics. He joined Marey the following year, and when in 1882 the Physiological Station was set up near Paris to develop sequence photography for the study of movement. Demenÿ was made Head of the laboratory. He worked with the multiple-image fixed-plate cameras, and was chiefly responsible for the analysis of the records, having considerable mathematical and graphical ability. He also appeared as the subject in a number of the sequences. When in 1888 Marey began the development of a film camera, Demenÿ was involved in its design and operation. He became interested in the possibility of using animated sequence photographs as an aid to teaching of the deaf. He made close-up records of himself speaking short phrases, "Je vous aime" and "Vive la France" for example, which were published in such journals as Paris Photographe and La Nature in 1891 and 1892. To present these in motion, he devised the Phonoscope, which he patented on 3 March 1892. The series of photographs were mounted around the circumference of a disc and viewed through a counter-rotating slotted disc. The moving images could be viewed directly, or projected onto a screen. La Nature reported tests he had made in which deaf lip readers could interpret accurately what was being said. On 20 December 1892 Demenÿ formed a company, Société Générale du Phonoscope, to exploit his invention, hoping that "speaking portraits" might replace family-album pictures. This commercial activity led to a rift between Marey and Demenÿ in July 1893. Deprived of access to the film cameras, Demenÿ developed designs of his own, patenting new camera models in France on 10 October 1893 and 27 July 1894. The design covered by the latter had been included in English and German patents filed in December 1893, and was to be of some significance in the early development of cinematography. It was for an intermittent movement of the film, which used an eccentrically mounted blade or roller that, as it rotated, bore on the film, pulling down the length of one frame. As the blade moved away, the film loop so formed was taken up by the rotation of the take-up reel. This "beater" movement was employed extensively in the early years of cinematography, being effective yet inexpensive. It was first employed in the Chronophotographe apparatus marketed by Gaumont, to whom Demenÿ had licensed the patent rights, from the autumn of 1896. Demenÿ's work provided a link between the scientific purposes of sequence photography— chronophotography—and the introduction of commercial cinematography.
    [br]
    Further Reading
    J.Deslandes, 1966, Histoire comparée du cinéma, Vol. I, Paris. B.Coe, 1992, Muybridge and the Chronophotographers, London.
    BC

    Biographical history of technology > Demenÿ, Georges

  • 98 Gramme, Zénobe Théophile

    [br]
    b. 4 April 1826 Jehay-Bodignée, Belgium
    d. 20 January 1901 Bois de Colombes, Paris, France
    [br]
    Belgian engineer whose improvements to the dynamo produced a machine ready for successful commercial exploitation.
    [br]
    Gramme trained as a carpenter and showed an early talent for working with machinery. Moving to Paris he found employment in the Alliance factory as a model maker. With a growing interest in electricity he left to become an instrument maker with Heinrich Daniel Rühmkorff. In 1870 he patented the uniformly wound ring-armature dynamo with which his name is associated. Together with Hippolyte Fontaine, in 1871 Gramme opened a factory to manufacture his dynamos. They rapidly became a commercial success for both arc lighting and electrochemical purposes, international publicity being achieved at exhibitions in Vienna, Paris and Philadelphia. It was the realization that a Gramme machine was capable of running as a motor, i.e. the reversibility of function, that illustrated the entire concept of power transmission by electricity. This was first publicly demonstrated in 1873. In 1874 Gramme reduced the size and increased the efficiency of his generators by relying completely on the principle of self-excitation. It was the first practical machine in which were combined the features of continuity of commutation, self-excitation, good lamination of the armature core and a reasonably good magnetic circuit. This dynamo, together with the self-regulating arc lamps then available, made possible the innumerable electric-lighting schemes that followed. These were of the greatest importance in demonstrating that electric lighting was a practical and economic means of illumination. Gramme also designed an alternator to operate Jablochkoff candles. For some years he took an active part in the operations of the Société Gramme and also experimented in his own workshop without collaboration, but made no further contribution to electrical technology.
    [br]
    Principal Honours and Distinctions
    Knight Commander, Order of Leopold of Belgium 1897. Chevalier de la Légion d'honneur. Chevalier, Order of the Iron Crown, Austria.
    Bibliography
    9 June 1870, British patent no. 1,668 (the ring armature machine).
    1871, Comptes rendus 73:175–8 (Gramme's first description of his invention).
    Further Reading
    W.J.King, 1962, The Development of Electrical Technology in the 19th Century, Washington, DC: Smithsonian Institution, Paper 30, pp. 377–90 (an extensive account of Gramme's machines).
    S.P.Thompson, 1901, obituary, Electrician 66: 509–10.
    C.C.Gillispie (ed.), 1972, Dictionary of Scientific Biography, Vol. V, New York, p. 496.
    GW

    Biographical history of technology > Gramme, Zénobe Théophile

  • 99 Jablochkoff, Paul

    [br]
    b. 14 September 1847 Serdobsk, Russia
    d. April 1894 St Petersburg, Russia
    [br]
    Russian military engineer and inventor of an electric "candle", the invention of which gave an immense impetus to electric lighting in the 1870s.
    [br]
    Jablochkoff studied at the Military Engineering College in St Petersburg. Having a scientific bent, he was sent to the Military Galvano Technical School. At the end of his military service in 1871 he was appointed Director General of the Moscow-Kursk telegraph lines for the Midi Railway Company. At this time he began to develop an interest in electric lighting, and in 1875 he left the Imperial Telegraph Service to devote his time exclusively to scientific pursuits. He found employment at the workshop of M Bréguet in Paris, where Gramme dynamos and Serrin arc lamps were being constructed. After some experimentation he found a means of producing a carbon arc that regulated itself without any mechanism. This lamp, the Jablochkoff candle, with two carbon rods placed parallel to each other and so close that an arc formed at the ends, could continue to burn until the rods were consumed. Plaster of Paris was used to separate the two electrodes and crumbled away as the carbon burned, thus exposing fresh carbon. These lamps were used in May 1878 in Paris to illuminate the avenue de l'Opéra, and later in Rome and London, and in essence were the first practical electric street lighting. Since there was no regulating mechanism, several candles could be placed in a single circuit. Despite inherent defects, such as the inability to restart the lamps after they were extinguished by wind or interruption of supply, they remained in use for some purposes for several years on account of their simplicity and cheapness. In 1877 Jablochkoff obtained the earliest patent to employ transformers to distribute current in an alternating-current circuit.
    [br]
    Bibliography
    11 September 1876, British patent no. 3,552 (Jablochkoff's candle).
    22 May 1877, British patent no. 1,996 (transformer or induction coil distribution).
    Further Reading
    W.J.King, 1962, The Development of Electrical Technology in the 19th Century, Washington, DC: Smithsonian Institution, Paper 30, pp. 393–407 (a detailed account). W.E.Langdon, 1877, "On a new form of electric light", Journal of the Society of
    Telegraph Engineers 6:303–19 (an early report on Jablochkoffs system).
    Engineering (1878) 26:125–7.
    GW

    Biographical history of technology > Jablochkoff, Paul

  • 100 Le Roy, Pierre

    SUBJECT AREA: Horology
    [br]
    b. 24 November 1717 Paris, France
    d. 25 August 1785 Viry-sur-Orge, France
    [br]
    French horologist who invented the detached détente escapement and the compensation balance.
    [br]
    Le Roy was born into a distinguished horological family: his father, Julien, was Clockmaker to the King. Pierre became Master in 1737 and continued to work with his father, taking over the business when his father died in 1759. However, he seems to have left the commercial side of the business to others so that he could concentrate on developing the marine chronometer. Unlike John Harrison, he believed that the solution lay in detaching the escapement from the balance, and in 1748 he submitted a proposal for the first detached escapement to the Académie des Sciences in Paris. He also differed from Harrison in his method of temperature compensation, which acted directly on the balance by altering its radius of gyration. This was achieved either by mounting thermometers on the balance or by using bimetallic strips which effectively reduced the diameter of the balance as the temperature rose (with refinements, this later became the standard method of temperature compensation in watches and chronometers). Le Roy had already discovered that for every spiral balance spring there was a particular length at which it would be isochronous, and this method of temperature compensation did not destroy that isochronism by altering the length, as other methods did. These innovations were incorporated in a chronometer with an improved detached escapement which he presented to Louis XV in 1766 and described in a memoir to the Académie des Sciences. This instrument contained the three essential elements of all subsequent chronometers: an isochronous balance spring, a detached escapement and a balance with temperature compensation. Its performance was similar to that of Harrison's fourth timepiece, and Le Roy was awarded prizes by the Académie des Sciences for the chronometer and for his memoir. However, his work was never fully appreciated in France, where he was over-shadowed by his rival Ferdinand Berthoud. When Berthoud was awarded the coveted title of Horloger de la Marine, Le Roy became disillusioned and shortly afterwards gave up chronometry and retired to the country.
    [br]
    Principal Honours and Distinctions
    Horloger du Roi 1760.
    Bibliography
    1748, "Echappement à détente", Histoire et mémoires de l'Académie Royale des Sciences.
    Further Reading
    R.T.Gould, 1923, The Marine Chronometer: Its History and Development, London; reprinted 1960, Holland Press (still the standard work on the subject).
    DV

    Biographical history of technology > Le Roy, Pierre

См. также в других словарях:

  • List of tallest buildings and structures in the Paris region — This page presents a list of the tallest skyscrapers buildings and structures in the Paris region, consisting of the inner Paris urban area (Paris and neighboring communes).The Paris urban area contains the most skyscrapers of any metropolitan… …   Wikipedia

  • Paris-Charles de Gaulle Airport — Aéroport Paris Charles de Gaulle Roissy Airport …   Wikipedia

  • List of stations of the Paris Métro — Stations of the Paris Métro Paris region public transport Métro lines Line 1 …   Wikipedia

  • PARIS — PARIS, capital of france . In 582, the date of the first documentary evidence of the presence of Jews in Paris, there was already a community owning at least a synagogue, situated in the neighborhood of the present church of St. Julien le Pauvre …   Encyclopedia of Judaism

  • History of the Yosemite area — [ Galen Clark was the first guardian of Yosemite Valley and the Mariposa Grove.] The known history of the Yosemite area started with Ahwahnechee and Paiute peoples who inhabited the central Sierra Nevada region of California that now includes… …   Wikipedia

  • Paris Air Show — The Paris Air Show ( Salon International de l Aéronautique et de l Espace, Paris Le Bourget ) is an international trade fair for the aerospace business. It is held at Le Bourget airport near Paris, France every odd year, alternating both with the …   Wikipedia

  • Chihuahuapalooza & The Paris Hilton Syndrome — An attempt by California’s animal shelters to encourage the adoption of unwanted (and increasingly unfashionable) lap dogs. Reporting from San Francisco for The Los Angeles Times, Maria L. La Gangarevealed: If every dog has its day, the… …   Dictionary of unconsidered lexicographical trifles

  • Paris — This article is about the capital of France. For other uses, see Paris (disambiguation). Paris Motto: Fluctuat nec mergitur (Latin: It is tossed by the waves, but does not sink ) …   Wikipedia

  • Paris aire urbaine — Petite Couronne redirects here. For the French municipality in Upper Normandy, see Petit Couronne. Grande Couronne redirects here. For the French municipality in Upper Normandy, see Grand Couronne. Satellite image of the Parisian metropolitan… …   Wikipedia

  • Paris, Texas — Infobox Settlement official name = Paris, Texas settlement type = City nickname = motto = imagesize = image caption = image imagesize = image caption = image mapsize = 250px map caption = Location of Lamar County mapsize1 = 250px map caption1 =… …   Wikipedia

  • Paris-Orly Airport — For the NATO military use of this facility, see Orly Air Base. For other uses, see Orly (disambiguation) Paris Orly Airport Aéroport de Paris Orly IATA: ORY – ICA …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»