Перевод: с английского на все языки

со всех языков на английский

for+armour

  • 41 Armstrong, Sir William George, Baron Armstrong of Cragside

    [br]
    b. 26 November 1810 Shieldfield, Newcastle upon Tyne, England
    d. 27 December 1900 Cragside, Northumbria, England
    [br]
    English inventor, engineer and entrepreneur in hydraulic engineering, shipbuilding and the production of artillery.
    [br]
    The only son of a corn merchant, Alderman William Armstrong, he was educated at private schools in Newcastle and at Bishop Auckland Grammar School. He then became an articled clerk in the office of Armorer Donkin, a solicitor and a friend of his father. During a fishing trip he saw a water-wheel driven by an open stream to work a marble-cutting machine. He felt that its efficiency would be improved by introducing the water to the wheel in a pipe. He developed an interest in hydraulics and in electricity, and became a popular lecturer on these subjects. From 1838 he became friendly with Henry Watson of the High Bridge Works, Newcastle, and for six years he visited the Works almost daily, studying turret clocks, telescopes, papermaking machinery, surveying instruments and other equipment being produced. There he had built his first hydraulic machine, which generated 5 hp when run off the Newcastle town water-mains. He then designed and made a working model of a hydraulic crane, but it created little interest. In 1845, after he had served this rather unconventional apprenticeship at High Bridge Works, he was appointed Secretary of the newly formed Whittle Dene Water Company. The same year he proposed to the town council of Newcastle the conversion of one of the quayside cranes to his hydraulic operation which, if successful, should also be applied to a further four cranes. This was done by the Newcastle Cranage Company at High Bridge Works. In 1847 he gave up law and formed W.G.Armstrong \& Co. to manufacture hydraulic machinery in a works at Elswick. Orders for cranes, hoists, dock gates and bridges were obtained from mines; docks and railways.
    Early in the Crimean War, the War Office asked him to design and make submarine mines to blow up ships that were sunk by the Russians to block the entrance to Sevastopol harbour. The mines were never used, but this set him thinking about military affairs and brought him many useful contacts at the War Office. Learning that two eighteen-pounder British guns had silenced a whole Russian battery but were too heavy to move over rough ground, he carried out a thorough investigation and proposed light field guns with rifled barrels to fire elongated lead projectiles rather than cast-iron balls. He delivered his first gun in 1855; it was built of a steel core and wound-iron wire jacket. The barrel was multi-grooved and the gun weighed a quarter of a ton and could fire a 3 lb (1.4 kg) projectile. This was considered too light and was sent back to the factory to be rebored to take a 5 lb (2.3 kg) shot. The gun was a complete success and Armstrong was then asked to design and produce an equally successful eighteen-pounder. In 1859 he was appointed Engineer of Rifled Ordnance and was knighted. However, there was considerable opposition from the notably conservative officers of the Army who resented the intrusion of this civilian engineer in their affairs. In 1862, contracts with the Elswick Ordnance Company were terminated, and the Government rejected breech-loading and went back to muzzle-loading. Armstrong resigned and concentrated on foreign sales, which were successful worldwide.
    The search for a suitable proving ground for a 12-ton gun led to an interest in shipbuilding at Elswick from 1868. This necessitated the replacement of an earlier stone bridge with the hydraulically operated Tyne Swing Bridge, which weighed some 1450 tons and allowed a clear passage for shipping. Hydraulic equipment on warships became more complex and increasing quantities of it were made at the Elswick works, which also flourished with the reintroduction of the breech-loader in 1878. In 1884 an open-hearth acid steelworks was added to the Elswick facilities. In 1897 the firm merged with Sir Joseph Whitworth \& Co. to become Sir W.G.Armstrong Whitworth \& Co. After Armstrong's death a further merger with Vickers Ltd formed Vickers Armstrong Ltd.
    In 1879 Armstrong took a great interest in Joseph Swan's invention of the incandescent electric light-bulb. He was one of those who formed the Swan Electric Light Company, opening a factory at South Benwell to make the bulbs. At Cragside, his mansion at Roth bury, he installed a water turbine and generator, making it one of the first houses in England to be lit by electricity.
    Armstrong was a noted philanthropist, building houses for his workforce, and endowing schools, hospitals and parks. His last act of charity was to purchase Bamburgh Castle, Northumbria, in 1894, intending to turn it into a hospital or a convalescent home, but he did not live long enough to complete the work.
    [br]
    Principal Honours and Distinctions
    Knighted 1859. FRS 1846. President, Institution of Mechanical Engineers; Institution of Civil Engineers; British Association for the Advancement of Science 1863. Baron Armstrong of Cragside 1887.
    Further Reading
    E.R.Jones, 1886, Heroes of Industry', London: Low.
    D.J.Scott, 1962, A History of Vickers, London: Weidenfeld \& Nicolson.
    IMcN

    Biographical history of technology > Armstrong, Sir William George, Baron Armstrong of Cragside

  • 42 Bodmer, Johann Georg

    [br]
    b. 9 December 1786 Zurich, Switzerland
    d. 30 May 1864 Zurich, Switzerland
    [br]
    Swiss mechanical engineer and inventor.
    [br]
    John George Bodmer (as he was known in England) showed signs of great inventive ability even as a child. Soon after completing his apprenticeship to a local millwright, he set up his own work-shop at Zussnacht. One of his first inventions, in 1805, was a shell which exploded on impact. Soon after this he went into partnership with Baron d'Eichthal to establish a cotton mill at St Blaise in the Black Forest. Bodmer designed the water-wheels and all the machinery. A few years later they established a factory for firearms and Bodmer designed special machine tools and developed a system of interchangeable manufacture comparable with American developments at that time. More inventions followed, including a detachable bayonet for breech-loading rifles and a rifled, breech-loading cannon for 12 lb (5.4 kg) shells.
    Bodmer was appointed by the Grand Duke of Baden to the posts of Director General of the Government Iron Works and Inspector of Artillery. He left St Blaise in 1816 and entered completely into the service of the Grand Duke, but before taking up his duties he visited Britain for the first time and made an intensive five-month tour of textile mills, iron works, workshops and similar establishments.
    In 1821 he returned to Switzerland and was engaged in setting up cotton mills and other engineering works. In 1824 he went back to England, where he obtained a patent for his improvements in cotton machinery and set up a mill near Bolton incorporating his ideas. His health failing, he was obliged to return to Switzerland in 1828, but he was soon busy with engineering works there and in France. In 1833 he went to England again, first to Bolton and four years later to Manchester in partnership with H.H.Birley. In the next ten years he patented many more inventions in the fields of textile machinery, steam engines and machine tools. These included a balanced steam engine, a mechanical stoker, steam engine valve gear, gear-cutting machines and a circular planer or vertical lathe, anticipating machines of this type later developed in America by E.P. Bullard. The metric system was used in his workshops and in gearing calculations he introduced the concept of diametral pitch, which then became known as "Manchester Pitch". The balanced engine was built in stationary form and in two locomotives, but although their running was remarkably smooth the additional complication prevented their wider use.
    After the death of H.H.Birley in 1846, Bodmer removed to London until 1848, when he went to Austria. About 1860 he returned to his native town of Zurich. He remained actively engaged in all kinds of inventions up to the end of his life. He obtained fourteen British patents, each of which describes many inventions; two of these patents were extended beyond the normal duration of fourteen years. Two others were obtained on his behalf, one by his brother James in 1813 for his cannon and one relating to railways by Charles Fox in 1847. Many of his inventions had little direct influence but anticipated much later developments. His ideas were sound and some of his engines and machine tools were in use for over sixty years. He was elected a Member of the Institution of Civil Engineers in 1835.
    [br]
    Bibliography
    1845, "The advantages of working stationary and marine engines with high-pressure steam, expansively and at great velocities; and of the compensating, or double crank system", Minutes of the Proceedings of the Institution of Civil Engineers 4:372–99.
    1846, "On the combustion of fuel in furnaces and steam-boilers, with a description of Bodmer's fire-grate", Minutes of the Proceedings of the Institution of Civil Engineers 5:362–8.
    Further Reading
    H.W.Dickinson, 1929–30, "Diary of John George Bodmer, 1816–17", Transactions of the Newcomen Society 10:102–14.
    D.Brownlie, 1925–6, John George Bodmer, his life and work, particularly in relation to the evolution of mechanical stoking', Transactions of the Newcomen Society 6:86–110.
    W.O.Henderson (ed.), 1968, Industrial Britain Under the Regency: The Diaries of Escher, Bodmer, May and de Gallois 1814–1818, London: Frank Cass (a more complete account of his visit to Britain).
    RTS

    Biographical history of technology > Bodmer, Johann Georg

  • 43 Maxim, Sir Hiram Stevens

    [br]
    b. 5 February 1840 Brockway's Mills, Maine, USA
    d. 24 November 1916 Streatham, London, England
    [br]
    American (naturalized British) inventor; designer of the first fully automatic machine gun and of an experimental steam-powered aircraft.
    [br]
    Maxim was born the son of a pioneer farmer who later became a wood turner. Young Maxim was first apprenticed to a carriage maker and then embarked on a succession of jobs before joining his uncle in his engineering firm in Massachusetts in 1864. As a young man he gained a reputation as a boxer, but it was his uncle who first identified and encouraged Hiram's latent talent for invention.
    It was not, however, until 1878, when Maxim joined the first electric-light company to be established in the USA, as its Chief Engineer, that he began to make a name for himself. He developed an improved light filament and his electric pressure regulator not only won a prize at the first International Electrical Exhibition, held in Paris in 1881, but also resulted in his being made a Chevalier de la Légion d'honneur. While in Europe he was advised that weapons development was a more lucrative field than electricity; consequently, he moved to England and established a small laboratory at Hatton Garden, London. He began by investigating improvements to the Gatling gun in order to produce a weapon with a faster rate of fire and which was more accurate. In 1883, by adapting a Winchester carbine, he successfully produced a semi-automatic weapon, which used the recoil to cock the gun automatically after firing. The following year he took this concept a stage further and produced a fully automatic belt-fed weapon. The recoil drove barrel and breechblock to the vent. The barrel then halted, while the breechblock, now unlocked from the former, continued rearwards, extracting the spent case and recocking the firing mechanism. The return spring, which it had been compressing, then drove the breechblock forward again, chambering the next round, which had been fed from the belt, as it did so. Keeping the trigger pressed enabled the gun to continue firing until the belt was expended. The Maxim gun, as it became known, was adopted by almost every army within the decade, and was to remain in service for nearly fifty years. Maxim himself joined forces with the large British armaments firm of Vickers, and the Vickers machine gun, which served the British Army during two world wars, was merely a refined version of the Maxim gun.
    Maxim's interests continued to occupy several fields of technology, including flight. In 1891 he took out a patent for a steam-powered aeroplane fitted with a pendulous gyroscopic stabilizer which would maintain the pitch of the aeroplane at any desired inclination (basically, a simple autopilot). Maxim decided to test the relationship between power, thrust and lift before moving on to stability and control. He designed a lightweight steam-engine which developed 180 hp (135 kW) and drove a propeller measuring 17 ft 10 in. (5.44 m) in diameter. He fitted two of these engines into his huge flying machine testrig, which needed a wing span of 104 ft (31.7 m) to generate enough lift to overcome a total weight of 4 tons. The machine was not designed for free flight, but ran on one set of rails with a second set to prevent it rising more than about 2 ft (61 cm). At Baldwyn's Park in Kent on 31 July 1894 the huge machine, carrying Maxim and his crew, reached a speed of 42 mph (67.6 km/h) and lifted off its rails. Unfortunately, one of the restraining axles broke and the machine was extensively damaged. Although it was subsequently repaired and further trials carried out, these experiments were very expensive. Maxim eventually abandoned the flying machine and did not develop his idea for a stabilizer, turning instead to other projects. At the age of almost 70 he returned to the problems of flight and designed a biplane with a petrol engine: it was built in 1910 but never left the ground.
    In all, Maxim registered 122 US and 149 British patents on objects ranging from mousetraps to automatic spindles. Included among them was a 1901 patent for a foot-operated suction cleaner. In 1900 he became a British subject and he was knighted the following year. He remained a larger-than-life figure, both physically and in character, until the end of his life.
    [br]
    Principal Honours and Distinctions
    Chevalier de la Légion d'Honneur 1881. Knighted 1901.
    Bibliography
    1908, Natural and Artificial Flight, London. 1915, My Life, London: Methuen (autobiography).
    Further Reading
    Obituary, 1916, Engineer (1 December).
    Obituary, 1916, Engineering (1 December).
    P.F.Mottelay, 1920, The Life and Work of Sir Hiram Maxim, London and New York: John Lane.
    Dictionary of National Biography, 1912–1921, 1927, Oxford: Oxford University Press.
    CM / JDS

    Biographical history of technology > Maxim, Sir Hiram Stevens

  • 44 North, Simeon

    SUBJECT AREA: Weapons and armour
    [br]
    b. 13 July 1765 Berlin, Connecticut, USA
    d. 25 August 1852 Middletown, Connecticut, USA
    [br]
    American manufacturer of small arms.
    [br]
    Like his father and grandfather, Simeon North began his working life as a farmer. In 1795 he started a business making scythes in an old mill adjoining his farm. He had apparently already been making some pistols for sale, and in March 1799 he secured his first government contract, for 500 horse-pistols to be delivered within one year. This was followed by further contracts for 1,500 in 1800, 2,000 in 1802, and others; by 1813 he had supplied at least 10,000 pistols and was employing forty or fifty men. In a contract for 20,000 pistols in 1813 there was a provision, which North himself recommended, that parts should be interchangeable. It is probable that he had employed the concept of interchangeability at least as early as his more famous contemporary Eli Whitney. To meet this contract he established a new factory at Middletown, Connecticut, but his original works at Berlin continued to be used until 1843. His last government order for pistols was in 1828, but from 1823 he obtained a series of contracts for rifles and carbines, with the last (1850) being completed in 1853, after his death. In developing machine tools to carry out these contracts, North was responsible for what was probably the earliest milling machine, albeit in a relatively primitive form, c. 1816 or even as early as 1808. In 1811 he was elected Lieutenant-Colonel of the 6th Connecticut Regiment; although he resigned after only two years, he was generally known thereafter as Colonel North.
    [br]
    Further Reading
    S.N.D.North and R.H.North, 1913, Simeon North: First Official Pistol Maker of the United States, Concord, NH (the fullest account).
    J.W.Roe, 1916, English and American Tool Builders, New Haven; reprinted 1926, New York, and 1987, Bradley, 111.
    Merrit Roe Smith, 1973, "John H.Hall, Simeon North, and the milling machine: the nature of innovation among antebellum arms makers", Technology and Culture 14:573–91.
    RTS

    Biographical history of technology > North, Simeon

  • 45 Pole, William

    SUBJECT AREA: Civil engineering
    [br]
    b. 22 April 1814 Birmingham, England
    d. 1900
    [br]
    English engineer and educator.
    [br]
    Although primarily an engineer, William Pole was a man of many and varied talents, being amongst other things an accomplished musician (his doctorate was in music) and an authority on whist. He served an apprenticeship at the Horsley Company in Birmingham, and moved to London in 1836, when he was employed first as Manager to a gasworks. In 1844 he published a study of the Cornish pumping engine, and he also accepted an appointment as the first Professor of Engineering in the Elphinstone College at Bombay. He spent three pioneering years in this post, and undertook the survey work for the Great Indian Peninsular Railway. Before returning to London in 1848 he married Matilda Gauntlett, the daughter of a clergyman.
    Back in Britain, Pole was employed by James Simpson, J.M.Rendel and Robert Stephenson, the latter engaging him to assist with calculations on the Britannia Bridge. In 1858 he set up his own practice. He kept a very small office, choosing not to delegate work to subordinates but taking on a bewildering variety of commissions for government and private companies. In the first category, he made calculations for government officials of the main drainage of the metropolis and for its water supply. He lectured on engineering to the Royal Engineers' institution at Chatham, and served on a Select Committee to enquire into the armour of warships and fortifications. He became a member of the Royal Commission on the Railways of Great Britain and Ireland (the Devonshire Commission, 1867) and reported to the War Office on the MartiniHenry rifle. He also advised the India Office about examinations for engineering students. The drafting and writing up of reports was frequently left to Pole, who also made distinguished contributions to the official Lives of Robert Stephenson (1864), I.K. Brunel (1870) and William Fairbairn (1877). For other bodies, he acted as Consulting Engineer in England to the Japanese government, and he assisted W.H.Barlow in calculations for a bridge at Queensferry on the Firth of Forth (1873). He was consulted about many urban water supplies.
    Pole joined the Institution of Civil Engineers as an Associate in 1840 and became a Member in 1856. He became a Member of Council, Honorary Secretary (succeeding Manby in 1885–96) and Honorary Member of the Institution. He was interested in astronomy and photography, he was fluent in several languages, was an expert on music, and became the world authority on whist. In 1859 he was appointed Professor of Civil Engineering at University College London, serving in this office until 1867. Pole, whose dates coincided closely with those of Queen Victoria, was one of the great Victorian engineers: he was a polymath, able to apply his great abilities to an amazing range of different tasks. In engineering history, he deserves to be remembered as an outstanding communicator and popularizer.
    [br]
    Bibliography
    1843, "Comparative loss by friction in beam and direct-action engines", Proceedings of the Institution of Civil Engineers 2:69.
    Further Reading
    Dictionary of National Biography, London.
    Proceedings of the Institution of Civil Engineers 143:301–9.
    AB

    Biographical history of technology > Pole, William

  • 46 Wallis, Sir Barnes Neville

    [br]
    b. 26 September 1887 Ripley, Derbyshire, England
    d. 30 October 1979 Leatherhead, Surrey, England
    [br]
    English aeronautical designer and inventor.
    [br]
    Wallis was apprenticed first at Thames Engineering Works, and then, in 1908, at John Samuel White's shipyard at Cowes. In 1913, the Government, spurred on by the accelerating development of the German Zeppelins (see Zeppelin, Ferdinand von), ordered an airship from Vickers; Wallis was invited to join the design team. Thus began his long association with aeronautical design and with Vickers. This airship, and the R80 that followed it, were successfully completed, but the military lost interest in them.
    In 1924 the Government initiated a programme for the construction of two airships to settle once and for all their viability for long-dis-tance air travel. The R101 was designed by a Government-sponsored team, but the R100 was designed by Wallis working for a subsidiary of Vickers. The R100 took off on 29 July 1930 for a successful round trip to Canada, but the R101 crashed on its first flight on 4 October, killing many of its distinguished passengers. The shock of this disaster brought airship development in Britain to an abrupt end and forced Wallis to direct his attention to aircraft.
    In aircraft design, Wallis is known for his use of geodesic construction, which combined lightness with strength. It was applied first to the single-engined "Wellesley" and then the twin-en-gined "Wellington" bomber, which first flew in 1936. With successive modifications, it became the workhorse of RAF Bomber Command during the Second World War until the autumn of 1943, when it was replaced by four-engined machines. In other areas, it remained in service until the end of the war and, in all, no fewer than 11,461 were built.
    Wallis is best known for his work on bomb design, first the bouncing bomb that was used to breach the Möhne and Eder dams in the Ruhr district of Germany in 1943, an exploit immortalized in the film Dambusters. Encouraged by this success, the authorities then allowed Wallis to realize an idea he had long urged, that of heavy, penetration bombs. In the closing stages of the war, Tallboy, of 12,000 lb (5,400 kg), and the 10-ton Grand Slam were used to devastating effect.
    After the Second World War, Wallis returned to aeronautical design and was given his own department at Vickers to promote his ideas, principally on variable-geometry or swing-wing aircraft. Over the next thirteen years he battled towards the prototype stage of this revolutionary concept. That never came, however; changing conditions and requirements and increasing costs led to the abandonment of the project. Bit-terly disappointed, Wallis continued his researches into high-speed aircraft until his retirement from Vickers (by then the British Aircraft Corporation), in 1971.
    [br]
    Principal Honours and Distinctions
    Knighted 1968. FRS 1945.
    Further Reading
    J.Morpurgo, 1972, Barnes Wallis: A Biography, London: Longman (a readable account, rather biased in Wallis's favour).
    C.J.Heap, 1987, The Papers of Sir Barnes Wallis (1887–1979) in the Science Museum Library, London: Science Museum; with a biographical introd. by L.R.Day.
    LRD

    Biographical history of technology > Wallis, Sir Barnes Neville

  • 47 ACM

    3) Авиация: турбохолодильник (air cycle machine), air cycle mashine, aircraft conversion manual, apu condition monitoring
    4) Американизм: Advanced Campaign Mode
    6) Техника: alterable control memory, alternate contact mode, artificial compression method, audio compression module, automatic clutter mapping, auxiliary cooling method, auxiliary core memory, (Adjusting Cable Machinery) ВМУС (Вспомогательный механизм управления спредером - механизм управляющий натяжением канатов спредера для выполнения его наклона/поворота/перекоса), polyacrilate elastomer
    9) Музыка: Academy Of Country Music
    10) Телекоммуникации: Address Complete Message (SS7), Adaptive Coding and Modulation
    12) Электроника: Aluminum Conductor Material
    13) Вычислительная техника: Association for Computing Machinery, Ассоциация по вычислительной технике США, Address Complete Message (ATM), Association for Computing Machinery (organization, USA), ассоциация по вычислительной технике
    15) Фирменный знак: American Computing Machinery
    16) Деловая лексика: Activities For Current Month
    17) Сетевые технологии: Asynchronous Communication Method
    18) Пластмассы: Poly (Acrylic Acid Ester Rubber)
    19) Расширение файла: Associative Communication Multiplexer, Graphics file (ACMB format), Audio Compression Manager (Microsoft), Association for Computing Machinery (US), Audio Compression Module add-on (Windows)

    Универсальный англо-русский словарь > ACM

  • 48 Acm

    3) Авиация: турбохолодильник (air cycle machine), air cycle mashine, aircraft conversion manual, apu condition monitoring
    4) Американизм: Advanced Campaign Mode
    6) Техника: alterable control memory, alternate contact mode, artificial compression method, audio compression module, automatic clutter mapping, auxiliary cooling method, auxiliary core memory, (Adjusting Cable Machinery) ВМУС (Вспомогательный механизм управления спредером - механизм управляющий натяжением канатов спредера для выполнения его наклона/поворота/перекоса), polyacrilate elastomer
    9) Музыка: Academy Of Country Music
    10) Телекоммуникации: Address Complete Message (SS7), Adaptive Coding and Modulation
    12) Электроника: Aluminum Conductor Material
    13) Вычислительная техника: Association for Computing Machinery, Ассоциация по вычислительной технике США, Address Complete Message (ATM), Association for Computing Machinery (organization, USA), ассоциация по вычислительной технике
    15) Фирменный знак: American Computing Machinery
    16) Деловая лексика: Activities For Current Month
    17) Сетевые технологии: Asynchronous Communication Method
    18) Пластмассы: Poly (Acrylic Acid Ester Rubber)
    19) Расширение файла: Associative Communication Multiplexer, Graphics file (ACMB format), Audio Compression Manager (Microsoft), Association for Computing Machinery (US), Audio Compression Module add-on (Windows)

    Универсальный англо-русский словарь > Acm

  • 49 joint

    1. noun
    1) (place of joining) Verbindung, die; (line) Nahtstelle, die; (Building) Fuge, die
    2) (Anat., Mech. Engin., etc.) Gelenk, das
    3)

    a joint [of meat] — ein Stück Fleisch; (for roasting, roast) ein Braten

    4) (sl.) (place) Laden, der; (pub) Kaschemme, die (abwertend)
    5) (sl.): (marijuana cigarette) Joint, der
    2. adjective
    1) (of two or more) gemeinsam [Anstrengung, Bericht, Besitz, Projekt, Ansicht, Konto]

    joint venture — Gemeinschaftsunternehmen, das; Joint-venture, das (Wirtsch.)

    2) Mit[autor, -erbe, -besitzer]
    * * *
    [‹oint] 1. noun
    1) (the place where two or more things join: The plumber tightened up all the joints in the pipes.) die Verbindungsstelle
    2) (a part of the body where two bones meet but are able to move in the manner of eg a hinge: The shoulders, elbows, wrists, hips, knees and ankles are joints.) das Gelenk
    3) (a piece of meat for cooking containing a bone: A leg of mutton is a fairly large joint.) das Bratenstück
    2. adjective
    1) (united; done together: the joint efforts of the whole team.) gemeinschaftlich
    2) (shared by, or belonging to, two or more: She and her husband have a joint bank account.) gemeinsam
    3. verb
    (to divide (an animal etc for cooking) at the, or into, joints: Joint the chicken before cooking it.) zerlegen
    - academic.ru/40048/jointed">jointed
    - jointly
    - out of joint
    See also:
    * * *
    [ʤɔɪnt]
    I. adj inv gemeinsam
    the research project is the work of a \joint French-Italian team das Forschungsprojekt ist die Gemeinschaftsarbeit eines französisch-italienischen Teams
    \joint undertaking Gemeinschaftsunternehmen nt
    \joint winners SPORT zwei Sieger/Siegerinnen
    to come \joint second mit jdm zusammen den zweiten Platz belegen
    II. n
    1. (connection) Verbindungsstelle f, Anschluss m, Fuge f
    [soldering] \joint Lötstelle f
    2. ANAT Gelenk nt
    to put sth out of \joint etw ausrenken [o verrenken]
    I've put my shoulder out of \joint ich habe mir die Schulter verrenkt
    3. (meat) Braten m
    \joint of beef/lamb Rinder- [o SCHWEIZ, ÖSTERR Rinds-] /Lammbraten m
    chicken \joints Hähnchenteile pl, Pouletteilchen pl SCHWEIZ
    4. ( fam: cheap bar, restaurant) Laden m fam, Bude f, SCHWEIZ, ÖSTERR a. Schuppen m fam, Spelunke f fam; (gambling den) Spielhölle f
    5. (cannabis cigarette) Joint m sl
    6.
    the \joint is jumpin' in dem Laden [o der Bude] ist schwer was los fam, hier tanzt der Bär fam
    to put sth out of \joint etw außer Betrieb setzen
    to be out of \joint aus den Fugen [o dem Gleichgewicht] sein
    * * *
    [dZɔɪnt]
    1. n
    1) (ANAT tool, in armour etc) Gelenk nt

    he's a bit stiff in the joints (inf)er ist ein bisschen steif (in den Knochen)

    See:
    nose
    2) (= join) (in woodwork) Fuge f; (in pipe etc) Verbindung(sstelle) f; (welded etc) Naht(stelle) f; (= junction piece) Verbindungsstück nt
    3) (Brit COOK) Braten m
    4) (inf) (= place) Laden m (inf); (for gambling) Spielhölle f
    5) (inf of marijuana) Joint m (inf)
    2. vt
    2) boards, pipes etc verbinden
    3. adj attr
    gemeinsam; (in connection with possessions also) gemeinschaftlich; (= total, combined) influence, strength vereint

    joint action — gemeinsame Aktion, Gemeinschaftsaktion f

    it was a joint effort —

    it took the joint efforts of six strong men to move ites waren die vereinten Anstrengungen or Kräfte von sechs starken Männern nötig, um es von der Stelle zu bewegen

    * * *
    joint [dʒɔınt]
    A s
    1. Verbindung(sstelle) f, besonders
    a) Tischlerei etc: Fuge f, Stoß m
    b) BAHN Schienenstoß m
    c) (Löt) Naht f, Nahtstelle f
    d) ANAT, BIOL, TECH Gelenk n:
    out of joint ausgerenkt; fig aus den Fugen;
    put out of joint sich etwas ausrenken; nose Bes Redew
    2. BOT
    a) (Spross) Glied n
    b) (Blatt) Gelenk n
    c) Gelenk(knoten) n(m)
    3. Verbindungsstück n, Bindeglied n
    4. GASTR Braten(stück) m(n)
    5. Buchbinderei: Falz m (der Buchdecke)
    6. sl Laden m, Bude f:
    a) Lokal n: clip joint
    b) Gebäude n: case1 B
    c) Firma f, Geschäft n
    7. sl Joint m (mit Haschisch oder Marihuana versetzte Zigarette):
    roll a joint sich einen Joint drehen
    B adj (adv jointly)
    1. gemeinsam, gemeinschaftlich ( auch JUR):
    joint action gemeinsames Vorgehen;
    take joint action gemeinsam vorgehen;
    a) JUR gesamtschuldnerisch,
    b) solidarisch, gemeinsam;
    joint and several liability gesamtschuldnerische Haftung;
    joint and several note US gesamtschuldnerisches Zahlungsversprechen;
    for their joint lives solange sie beide oder alle leben
    2. besonders JUR Mit…, Neben…:
    joint heir bes US Miterbe m;
    joint offender Mittäter(in);
    joint plaintiff Mitkläger(in); guilt 1
    3. vereint, zusammenhängend
    C v/t
    1. verbinden, zusammenfügen
    2. TECH
    a) fugen, stoßen, verbinden, -zapfen
    b) Fugen verstreichen
    3. Geflügel etc zerlegen
    jt abk joint
    * * *
    1. noun
    1) (place of joining) Verbindung, die; (line) Nahtstelle, die; (Building) Fuge, die
    2) (Anat., Mech. Engin., etc.) Gelenk, das
    3)

    a joint [of meat] — ein Stück Fleisch; (for roasting, roast) ein Braten

    4) (sl.) (place) Laden, der; (pub) Kaschemme, die (abwertend)
    5) (sl.): (marijuana cigarette) Joint, der
    2. adjective
    1) (of two or more) gemeinsam [Anstrengung, Bericht, Besitz, Projekt, Ansicht, Konto]

    joint venture — Gemeinschaftsunternehmen, das; Joint-venture, das (Wirtsch.)

    2) Mit[autor, -erbe, -besitzer]
    * * *
    (slang) n.
    Laden ¨-- m. adj.
    gemeinsam adj.
    gemeinschaftlich adj.
    verbunden adj. n.
    Bude -n f.
    Fuge -n f.
    Gelenk -e n.
    Verbindung f.
    Verbindungsstelle -n f.

    English-german dictionary > joint

  • 50 Heinkel, Ernst

    [br]
    b. 24 January 1888 Grünbach, Remstal, Germany
    d. 30 January 1958 Stuttgart, Germany
    [br]
    German aeroplane designer who was responsible for the first jet aeroplane to fly.
    [br]
    The son of a coppersmith, as a young man Ernst Heinkel was much affected by seeing the Zeppelin LZ 4 crash and burn out at Echterdringen, near Stuttgart. After studying engineering, in 1910 he designed his first aeroplane, but it crashed; he was more successful the following year when he made a flight in it, with an engine on hire from the Daimler company. After a period working for a firm near Munich and for LVG at Johannisthal, near Berlin, he moved to the Albatros Company of Berlin with a monthly salary of 425 marks. In May 1913 he moved to Lake Constance to work on the design of sea-planes and in May 1914 he moved again, this time to the Brandenburg Company, where he remained as a designer until 1922, when he founded his own company, Ernst Heinkel Flugzeugwerke. Following the First World War, German companies were not allowed to build military aircraft, which was frustrating for Heinkel whose main interest was high-speed aircraft. His sleek He 70 airliner, built for Lufthansa, was designed to carry four passengers at high speeds: indeed it broke many records in 1933. Lufthansa decided it needed a larger version capable of carrying ten passengers, so Heinkel produced his most famous aeroplane, the He 111. Although it was designed as a twin-engined airliner on the surface, secretly Heinkel was producing a bomber. The airliner version first flew on Lufthansa routes in 1936, and by 1939 almost 1,000 bombers were in service with the Luftwaffe. A larger four-engined bomber, the He 177, ran into development problems and it did not see service until late in the Second World War. Heinkel's quest for speed led to the He 176 rocket-powered research aeroplane which flew on 20 June 1939, but Hitler and Goering were not impressed. The He 178, with Dr Hans von Ohain's jet engine, made its historic first flight a few weeks later on 27 August 1939; this was almost two years before the maiden flight in Britain of the Gloster E 28/39, powered by Whittle's jet engine. This project was a private venture by Heinkel and was carried out in great secrecy, so the world's first jet aircraft went almost unnoticed. Heinkel's jet fighters, the He 280 and the He 162, were never fully operational. After the war, Heinkel in 1950 set up a new company which made bicycles, motor cycles and "bubble" cars.
    [br]
    Bibliography
    1956, He 1000, trans. M.Savill, London: Hutchinson (the English edition of his autobiography).
    Further Reading
    Jane's Fighting Aircraft of World War II, London: Jane's; reprinted 1989.
    P. St J.Turner, 1970, Heinkel: An Aircraft Album, London.
    H.J.Nowarra, 1975, Heinkel und seine Flugzeuge, Munich (a comprehensive record of his aircraft).
    JDS / IMcN

    Biographical history of technology > Heinkel, Ernst

  • 51 Lawrence, Richard Smith

    SUBJECT AREA: Weapons and armour
    [br]
    b. 22 November 1817 Chester, Vermont, USA
    d. 10 March 1892 Hartford, Connecticut, USA
    [br]
    American gunsmith and inventor.
    [br]
    Richard S.Lawrence received only an elementary education and as a young man worked on local farms and later in a woodworking shop. His work there included making carpenters' and joiners' tools and he spent some of his spare time in a local gunsmith's shop. After a brief period of service in the Army, he obtained employment in 1838 with N.Kendall \& Co. of Windsor, Vermont, making guns at the Windsor prison. Within six months he was put in charge of the work, continuing in this position until 1842 when the gun-making ceased; he remained at the prison for a time in charge of the carriage shop. In 1843 he opened a gun shop in Windsor in partnership with Kendall, and the next year S.E. Robbins, a businessman, helped them obtain a contract from the Federal Government for 10,000 rifles. A new company, Robbins, Kendall \& Lawrence, was formed and a factory was built at Windsor. Three years later Kendall's share of the business was purchased by his partners and the firm became Robbins \& Lawrence. Lawrence supervised the design and production and, to improve methods of manufacture, developed new machine tools with the aid of F.W. Howe. In 1850 Lawrence introduced the lubrication of bullets, which practice ensured the success of the breech-loading rifle. Also in 1850, the company undertook to manufacture railway cars, but this involved them in a considerable financial loss. The company took to the Great Exhibition of 1851 in London, England, a set of rifles built on the interchangeable system. The interest this created resulted in a visit of some members of the British Royal Small Arms Commission to America and subsequently an order for 150 machine tools, jigs and fixtures from Robbins \& Lawrence, to be installed at the small-arms factory at Enfield. In 1852 the company contracted to manufacture Sharps rifles and carbines at a new factory to be built at Hartford, Connecticut. Lawrence moved to Hartford in 1853 to superintend the building and equipment of the plant. Shortly afterwards, however, a promised order for a large number of rifles failed to materialize and, following its earlier financial difficulties, Robbins \& Lawrence was forced into bankruptcy. The Hartford plant was acquired by the Sharps Rifle Company in 1856 and Lawrence remained there as Superintendent until 1872. From then he was for many years Superintendent of Streets in the city of Hartford and he also served on the Water Board, the Board of Aldermen and as Chairman of the Fire Board.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; repub. 1926, New York; and 1987, Bradley, Ill. (provides biographical information and includes in an Appendix (pp. 281–94) autobiographical notes written by Richard S.Lawrence in 1890).
    Merritt Roe Smith, 1974, "The American Precision Museum", Technology and Culture 15 (3): 413–37 (for information on Robbins \& Lawrence and products).
    RTS

    Biographical history of technology > Lawrence, Richard Smith

  • 52 Whitney, Eli

    [br]
    b. 8 December 1765 Westborough, Massachusetts, USA
    d. 8 January 1825 New Haven, Connecticut, USA
    [br]
    American inventor of the cotton gin and manufacturer of firearms.
    [br]
    The son of a prosperous farmer, Eli Whitney as a teenager showed more interest in mechanics than school work. At the age of 15 he began an enterprise business manufacturing nails in his father's workshop, even having to hire help to fulfil his orders. He later determined to acquire a university education and, his father having declined to provide funds, he taught at local schools to obtain the means to attend Leicester Academy, Massachusetts, in preparation for his entry to Yale in 1789. He graduated in 1792 and then decided to study law. He accepted a position in Georgia as a tutor that would have given him time for study; this post did not materialize, but on his journey south he met General Nathanael Greene's widow and the manager of her plantations, Phineas Miller (1764–1803). A feature of agriculture in the southern states was that the land was unsuitable for long-staple cotton but could yield large crops of green-seed cotton. Green-seed cotton was difficult to separate from its seed, and when Whitney learned of the problem in 1793 he quickly devised a machine known as the cotton gin, which provided an effective solution. He formed a partnership with Miller to manufacture the gin and in 1794 obtained a patent. This invention made possible the extraordinary growth of the cotton industry in the United States, but the patent was widely infringed and it was not until 1807, after amendment of the patent laws, that Whitney was able to obtain a favourable decision in the courts and some financial return.
    In 1798 Whitney was in financial difficulties following the failure of the initial legal action against infringement of the cotton gin patent, but in that year he obtained a government contract to supply 10,000 muskets within two years with generous advance payments. He built a factory at New Haven, Connecticut, and proposed to use a new method of manufacture, perhaps the first application of the system of interchangeable parts. He failed to supply the firearms in the specified time, and in fact the first 500 guns were not delivered until 1801 and the full contract was not completed until 1809.
    In 1812 Whitney made application for a renewal of his cotton gin patent, but this was refused. In the same year, however, he obtained a second contract from the Government for 15,000 firearms and a similar one from New York State which ensured the success of his business.
    [br]
    Further Reading
    J.Mirsky and A.Nevins, 1952, The World of Eli Whitney, New York (a good biography). P.J.Federico, 1960, "Records of Eli Whitney's cotton gin patent", Technology and Culture 1: 168–76 (for details of the cotton gin patent).
    R.S.Woodbury, 1960, The legend of Eli Whitney and interchangeable parts', Technology and Culture 1:235–53 (challenges the traditional view of Eli Whitney as the sole originator of the "American" system of manufacture).
    See also Technology and Culture 14(1973):592–8; 18(1977):146–8; 19(1978):609–11.
    RTS

    Biographical history of technology > Whitney, Eli

  • 53 Whitworth, Sir Joseph

    [br]
    b. 21 December 1803 Stockport, Cheshire, England
    d. 22 January 1887 Monte Carlo, Monaco
    [br]
    English mechanical engineer and pioneer of precision measurement.
    [br]
    Joseph Whitworth received his early education in a school kept by his father, but from the age of 12 he attended a school near Leeds. At 14 he joined his uncle's mill near Ambergate, Derbyshire, to learn the business of cotton spinning. In the four years he spent there he realized that he was more interested in the machinery than in managing a cotton mill. In 1821 he obtained employment as a mechanic with Crighton \& Co., Manchester. In 1825 he moved to London and worked for Henry Maudslay and later for the Holtzapffels and Joseph Clement. After these years spent gaining experience, he returned to Manchester in 1833 and set up in a small workshop under a sign "Joseph Whitworth, Tool Maker, from London".
    The business expanded steadily and the firm made machine tools of all types and other engineering products including steam engines. From 1834 Whitworth obtained many patents in the fields of machine tools, textile and knitting machinery and road-sweeping machines. By 1851 the company was generally regarded as the leading manufacturer of machine tools in the country. Whitworth was a pioneer of precise measurement and demonstrated the fundamental mode of producing a true plane by making surface plates in sets of three. He advocated the use of the decimal system and made use of limit gauges, and he established a standard screw thread which was adopted as the national standard. In 1853 Whitworth visited America as a member of a Royal Commission and reported on American industry. At the time of the Crimean War in 1854 he was asked to provide machinery for manufacturing rifles and this led him to design an improved rifle of his own. Although tests in 1857 showed this to be much superior to all others, it was not adopted by the War Office. Whitworth's experiments with small arms led on to the construction of big guns and projectiles. To improve the quality of the steel used for these guns, he subjected the molten metal to pressure during its solidification, this fluid-compressed steel being then known as "Whitworth steel".
    In 1868 Whitworth established thirty annual scholarships for engineering students. After his death his executors permanently endowed the Whitworth Scholarships and distributed his estate of nearly half a million pounds to various educational and charitable institutions. Whitworth was elected an Associate of the Institution of Civil Engineers in 1841 and a Member in 1848 and served on its Council for many years. He was elected a Member of the Institution of Mechanical Engineers in 1847, the year of its foundation.
    [br]
    Principal Honours and Distinctions
    Baronet 1869. FRS 1857. President, Institution of Mechanical Engineers 1856, 1857 and 1866. Hon. LLD Trinity College, Dublin, 1863. Hon. DCL Oxford University 1868. Member of the Smeatonian Society of Civil Engineers 1864. Légion d'honneur 1868. Society of Arts Albert Medal 1868.
    Bibliography
    1858, Miscellaneous Papers on Mechanical Subjects, London; 1873, Miscellaneous Papers on Practical Subjects: Guns and Steel, London (both are collections of his papers to technical societies).
    1854, with G.Wallis, The Industry of the United States in Machinery, Manufactures, and
    Useful and Ornamental Arts, London.
    Further Reading
    F.C.Lea, 1946, A Pioneer of Mechanical Engineering: Sir Joseph Whitworth, London (a short biographical account).
    A.E.Musson, 1963, "Joseph Whitworth: toolmaker and manufacturer", Engineering Heritage, Vol. 1, London, 124–9 (a short biography).
    D.J.Jeremy (ed.), 1984–6, Dictionary of Business Biography, Vol. 5, London, 797–802 (a short biography).
    W.Steeds, 1969, A History of Machine Tools 1700–1910, Oxford (describes Whitworth's machine tools).
    RTS

    Biographical history of technology > Whitworth, Sir Joseph

  • 54 Bothe, Walter Wilhelm Georg Franz

    SUBJECT AREA: Weapons and armour
    [br]
    b. 8 January 1891 Oranienburg, Berlin, Germany
    d. 8 February 1957 Heidelberg, Germany
    [br]
    German nuclear scientist.
    [br]
    Bothe studied under Max Planck at the University of Berlin, gaining his doctorate in 1914. After military service during the First World War, he resumed his investigations into nuclear physics and achieved a breakthrough in 1929 when he developed a method of studying cosmic radiation by placing one Geiger counter on top of another. From this he evolved the means of high-speed counting known as "coincidence counting". The following year, in conjunction with Hans Becker, Bothe made a Further stride forward when they identified a very penetrative neutral particle by bombarding beryllium with alpha particles; this was a significant advance towards creating nuclear energy in that the neutral particle was what Chadwick later identified as the neutron.
    In 1934 Bothe's achievements were recognized by his appointment as Director of the Max Planck Institute for Medical Research, although this was after Planck himself had been deposed because of his Jewish sympathies. Bothe did, however, become primarily involved in Germany's pursuit of the atomic bomb and in 1944 constructed Germany's first cyclotron for accelerating nuclear particles. By that time Germany was faced with military defeat and Bothe was not able to develop his ideas further. Even so, for his work in the field of cosmic radiation Bothe shared the 1954 Nobel Prize for Physics with the naturalized Briton (formerly German) Max Born, whose subject was statistical mechanics.
    [br]
    Principal Honours and Distinctions
    Co-winner of the Nobel Prize for Physics 1954.
    CM

    Biographical history of technology > Bothe, Walter Wilhelm Georg Franz

  • 55 Braun, Wernher Manfred von

    [br]
    b. 23 March 1912 Wirsitz, Germany
    d. 16 June 1977 Alexandria, Virginia, USA
    [br]
    German pioneer in rocket development.
    [br]
    Von Braun's mother was an amateur astronomer who introduced him to the futuristic books of Jules Verne and H.G.Wells and gave him an astronomical telescope. He was a rather slack and undisciplined schoolboy until he came across Herman Oberth's book By Rocket to Interplanetary Space. He discovered that he required a good deal of mathematics to follow this exhilarating subject and immediately became an enthusiastic student.
    The Head of the Ballistics and Armaments branch of the German Army, Professor Karl Becker, had asked the engineer Walter Dornberger to develop a solid-fuel rocket system for short-range attack, and one using liquid-fuel rockets to carry bigger loads of explosives beyond the range of any known gun. Von Braun joined the Verein für Raumschiffsfahrt (the German Space Society) as a young man and soon became a leading member. He was asked by Rudolf Nebel, VfR's chief, to persuade the army of the value of rockets as weapons. Von Braun wisely avoided all mention of the possibility of space flight and some financial backing was assured. Dornberger in 1932 built a small test stand for liquid-fuel rockets and von Braun built a small rocket to test it; the success of this trial won over Dornberger to space rocketry.
    Initially research was carried out at Kummersdorf, a suburb of Berlin, but it was decided that this was not a suitable site. Von Braun recalled holidays as a boy at a resort on the Baltic, Peenemünde, which was ideally suited to rocket testing. Work started there but was not completed until August 1939, when the group of eighty engineers and scientists moved in. A great fillip to rocket research was received when Hitler was shown a film and was persuaded of the efficacy of rockets as weapons of war. A factory was set up in excavated tunnels at Mittelwerk in the Harz mountains. Around 6,000 "vengeance" weapons were built, some 3,000 of which were fired on targets in Britain and 2,000 of which were still in storage at the end of the Second World War.
    Peenemünde was taken by the Russians on 5 May 1945, but by then von Braun was lodging with many of his colleagues at an inn, Haus Ingeburg, near Oberjoch. They gave themselves up to the Americans, and von Braun presented a "prospectus" to the Americans, pointing out how useful the German rocket team could be. In "Operation Paperclip" some 100 of the team were moved to the United States, together with tons of drawings and a number of rocket missiles. Von Braun worked from 1946 at the White Sands Proving Ground, New Mexico, and in 1950 moved to Redstone Arsenal, Huntsville, Alabama. In 1953 he produced the Redstone missile, in effect a V2 adapted to carry a nuclear warhead a distance of 320 km (199 miles). The National Aeronautics and Space Administration (NASA) was formed in 1958 and recruited von Braun and his team. He was responsible for the design of the Redstone launch vehicles which launched the first US satellite, Explorer 1, in 1958, and the Mercury capsules of the US manned spaceflight programme which carried Alan Shepard briefly into space in 1961 and John Glenn into earth orbit in 1962. He was also responsible for the Saturn series of large, staged launch vehicles, which culminated in the Saturn V rocket which launched the Apollo missions taking US astronauts for the first human landing on the moon in 1969. Von Braun announced his resignation from NASA in 1972 and died five years later.
    [br]
    Bibliography
    Further Reading
    P.Marsh, 1985, The Space Business, Penguin. J.Trux, 1985, The Space Race, New English Library. T.Osman, 1983, Space History, Michael Joseph.
    IMcN

    Biographical history of technology > Braun, Wernher Manfred von

  • 56 Congreve, Sir William

    SUBJECT AREA: Weapons and armour
    [br]
    b. 20 May 1772 London, England
    d. 16 May 1828 Toulouse, France
    [br]
    English developer of military rockets.
    [br]
    He was the eldest son of Lieutenant-General Sir William Congreve, Colonel Commandant of the Royal Artillery, Superintendent of Military Machines and Superintendent Comptroller of the Royal Laboratory at Woolwich, and the daughter of a naval officer. Congreve passed through the Naval Academy at Woolwich and in 1791 was attached to the Royal Laboratory (formerly known as the Woolwich Arsenal), of which his father was then in command. In the 1790s, an Indian prince, Hyder Ali, had had some success against British troops with solid-fuelled rockets, and young Congreve set himself to develop the idea. By about 1806 he had made some 13,000 rockets, each with a range of about 2 km (1¼ miles). The War Office approved their use, and they were first tested in action at sea during the sieges of Boulogne and Copenhagen in 1806 and 1807 respectively. Congreve was commissioned to raise two companies of rocket artillery; in 1813 he commanded one of his rocket companies at the Battle of Leipzig, where although the rockets did little damage to the enemy, the noise and glare of the explosions had a considerable effect in frightening the French and caused great confusion; for this, the Tsar of Russia awarded Congreve a knighthood. The rockets were similarly effective in other battles, including the British attack on Fort McHenry, near Baltimore, in 1814; it is said that this was the inspiration for the lines "the rocket's red glare, the bombs bursting in air" in Francis Scott Key's poem The Star Spangled Banner, which became the United States' national anthem.
    Congreve's father died in 1814, and he succeeded him in the baronetcy and as Comptroller of the Royal Laboratory and Superintendent of Military Machines, holding this post until his death. For the last ten years of his life he was Member of Parliament for Plymouth, having previously represented Gatton when elected for that constituency in 1812.
    [br]
    Principal Honours and Distinctions
    FRS 1812.
    Further Reading
    F.H.Winter, 1990, The First Golden Age of Rocketry: Congreve and Hale Rockets of the Nine-teenth Century, Washington, DC: Smithsonian Institution Press.
    IMcN

    Biographical history of technology > Congreve, Sir William

  • 57 Fermi, Enrico

    [br]
    b. 29 September 1901 Rome, Italy
    d. 28 November 1954 Chicago, USA
    [br]
    Italian nuclear physicist.
    [br]
    Fermi was one of the most versatile of twentieth-century physicists, one of the few to excel in both theory and experiment. His greatest theoretical achievements lay in the field of statistics and his theory of beta decay. His statistics, parallel to but independent of Dirac, were the key to the modern theory of metals and the statistical modds of the atomic nucleus. On the experimental side, his most notable discoveries were artificial radioactivity produced by neutron bombardment and the realization of a controlled nuclear chain reaction, in the world's first nuclear reactor.
    Fermi received a conventional education with a chemical bias, but reached proficiency in mathematics and physics largely through his own reading. He studied at Pisa University, where he taught himself modern physics and then travelled to extend his knowledge, spending time with Max Born at Göttingen. On his return to Italy, he secured posts in Florence and, in 1927, in Rome, where he obtained the first Italian Chair in Theoretical Physics, a subject in which Italy had so far lagged behind. He helped to bring about a rebirth of physics in Italy and devoted himself to the application of statistics to his model of the atom. For this work, Fermi was awarded the Nobel Prize in Physics in 1938, but in December of that year, finding the Fascist regime uncongenial, he transferred to the USA and Columbia University. The news that nuclear fission had been achieved broke shortly before the Second World War erupted and it stimulated Fermi to consider this a way of generating secondary nuclear emission and the initiation of chain reactions. His experiments in this direction led first to the discovery of slow neutrons.
    Fermi's work assumed a more practical aspect when he was invited to join the Manhattan Project for the construction of the first atomic bomb. His small-scale work at Columbia became large-scale at Chicago University. This culminated on 2 December 1942 when the first controlled nuclear reaction took place at Stagg Field, Chicago, an historic event indeed. Later, Fermi spent most of the period from September 1944 to early 1945 at Los Alamos, New Mexico, taking part in the preparations for the first test explosion of the atomic bomb on 16 July 1945. President Truman invited Fermi to serve on his Committee to advise him on the use of the bomb. Then Chicago University established an Institute for Nuclear Studies and offered Fermi a professorship, which he took up early in 1946, spending the rest of his relatively short life there.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Physics 1938.
    Bibliography
    1962–5, Collected Papers, ed. E.Segrè et al., 2 vols, Chicago (includes a biographical introduction and bibliography).
    Further Reading
    L.Fermi, 1954, Atoms in the Family, Chicago (a personal account by his wife).
    E.Segrè, 1970, Enrico Fermi, Physicist, Chicago (deals with the more scientific aspects of his life).
    LRD

    Biographical history of technology > Fermi, Enrico

  • 58 Nobel, Alfred Bernhard

    [br]
    b. 21 October 1833 Stockholm, Sweden
    d. 10 December 1896 San Remo, Italy
    [br]
    Swedish industrialist, inventor of dynamite, founder of the Nobel Prizes.
    [br]
    Alfred's father, Immanuel Nobel, builder, industrialist and inventor, encouraged his sons to follow his example of inventiveness. Alfred's education was interrupted when the family moved to St Petersburg, but was continued privately and was followed by a period of travel. He thus acquired a good knowledge of chemistry and became an excellent linguist.
    During the Crimean War, Nobel worked for his father's firm in supplying war materials. The cancellation of agreements with the Russian Government at the end of the war bankrupted the firm, but Alfred and his brother Immanuel continued their interest in explosives, working on improved methods of making nitroglycerine. In 1863 Nobel patented his first major invention, a detonator that introduced the principle of detonation by shock, by using a small charge of nitroglycerine in a metal cap with detonating or fulminating mercury. Two years later Nobel set up the world's first nitroglycerine factory in an isolated area outside Stockholm. This led to several other plants and improved methods for making and handling the explosive. Yet Nobel remained aware of the dangers of liquid nitroglycerine, and after many experiments he was able in 1867 to take out a patent for dynamite, a safe, solid and pliable form of nitroglycerine, mixed with kieselguhr. At last, nitroglycerine, discovered by Sobrero in 1847, had been transformed into a useful explosive; Nobel began to promote a worldwide industry for its manufacture. Dynamite still had disadvantages, and Nobel continued his researches until, in 1875, he achieved blasting gelatin, a colloidal solution of nitrocellulose (gun cotton) in nitroglycerine. In many ways it proved to be the ideal explosive, more powerful than nitroglycerine alone, less sensitive to shock and resistant to moisture. It was variously called Nobel's Extra Dynamite, blasting gelatin and gelignite. It immediately went into production.
    Next, Nobel sought a smokeless powder for military purposes, and in 1887 he obtained a nearly smokeless blasting powder using nitroglycerine and nitrocellulose with 10 per cent camphor. Finally, a progressive, smokeless blasting powder was developed in 1896 at his San Remo laboratory.
    Nobel's interests went beyond explosives into other areas, such as electrochemistry, optics and biology; his patents amounted to 355 in various countries. However, it was the manufacture of explosives that made him a multimillionaire. At his death he left over £2 million, which he willed to funding awards "to those who during the preceding year, shall have conferred the greatest benefit on mankind".
    [br]
    Bibliography
    1875, On Modern Blasting Agents, Glasgow (his only book).
    Further Reading
    H.Schuck et al., 1962, Nobel, the Man and His Prizes, Amsterdam.
    E.Bergengren, 1962, Alfred Nobel, the Man and His Work, London and New York (includes a supplement on the prizes and the Nobel institution).
    LRD

    Biographical history of technology > Nobel, Alfred Bernhard

  • 59 Porta, Giovanni Battista (Giambattista) della

    [br]
    b. between 3 October and 15 November 1535 Vico Equense, near Naples, Italy
    d. 4 February 1615 Naples, Italy
    [br]
    Italian natural philosopher who published many scientific books, one of which covered ideas for the use of steam.
    [br]
    Giambattista della Porta spent most of his life in Naples, where some time before 1580 he established the Accademia dei Segreti, which met at his house. In 1611 he was enrolled among the Oziosi in Naples, then the most renowned literary academy. He was examined by the Inquisition, which, although he had become a lay brother of the Jesuits by 1585, banned all further publication of his books between 1592 and 1598.
    His first book, the Magiae Naturalis, which covered the secrets of nature, was published in 1558. He had been collecting material for it since the age of 15 and he saw that science should not merely represent theory and contemplation but must arrive at practical and experimental expression. In this work he described the hardening of files and pieces of armour on quite a large scale, and it included the best sixteenth-century description of heat treatment for hardening steel. In the 1589 edition of this work he covered ways of improving vision at a distance with concave and convex lenses; although he may have constructed a compound microscope, the history of this instrument effectively begins with Galileo. His theoretical and practical work on lenses paved the way for the telescope and he also explored the properties of parabolic mirrors.
    In 1563 he published a treatise on cryptography, De Furtivis Liter arum Notis, which he followed in 1566 with another on memory and mnemonic devices, Arte del Ricordare. In 1584 and 1585 he published treatises on horticulture and agriculture based on careful study and practice; in 1586 he published De Humana Physiognomonia, on human physiognomy, and in 1588 a treatise on the physiognomy of plants. In 1593 he published his De Refractione but, probably because of the ban by the Inquisition, no more were produced until the Spiritali in 1601 and his translation of Ptolemy's Almagest in 1605. In 1608 two new works appeared: a short treatise on military fortifications; and the De Distillatione. There was an important work on meteorology in 1610. In 1601 he described a device similar to Hero's mechanisms which opened temple doors, only Porta used steam pressure instead of air to force the water out of its box or container, up a pipe to where it emptied out into a higher container. Under the lower box there was a small steam boiler heated by a fire. He may also have been the first person to realize that condensed steam would form a vacuum, for there is a description of another piece of apparatus where water is drawn up into a container at the top of a long pipe. The container was first filled with steam so that, when cooled, a vacuum would be formed and water drawn up into it. These are the principles on which Thomas Savery's later steam-engine worked.
    [br]
    Further Reading
    Dictionary of Scientific Biography, 1975, Vol. XI, New York: C.Scribner's Sons (contains a full biography).
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press (contains an account of his contributions to the early development of the steam-engine).
    C.Singer (ed.), 1957, A History of Technology, Vol. III, Oxford University Press (contains accounts of some of his other discoveries).
    I.Asimov (ed.), 1982, Biographical Encyclopaedia of Science and Technology, 2nd edn., New York: Doubleday.
    G.Sarton, 1957, Six wings: Men of Science in the Renaissance, London: Bodley Head, pp. 85–8.
    RLH / IMcN

    Biographical history of technology > Porta, Giovanni Battista (Giambattista) della

  • 60 Twiss, William

    [br]
    b. 1745
    d. 14 March 1827 Hardon Grange, Bingley, Yorkshire, England.
    [br]
    English army officer and military engineer.
    [br]
    William Twiss entered the Ordnance Department at the age of 15, and in 1762, aged 17, he was appointed Overseer of Works at Gibraltar. At the end of the Seven Years War, in 1763, he was commissioned Ensign in the Engineers, and further promotion followed while he still remained in Gibraltar. In 1771, as a Lieutenant, he returned to England to be employed on Port-smouth's dockyard fortifications. In 1776 he was posted to Canada, where he was soon appointed Controller of Works for the building of a British fleet for Lake Champlain. He was involved in military operations in the American War of Independence and in 1777 was present at the capture of Fort Ticonderoga (New York State). He was taken prisoner shortly afterwards, but was soon exchanged, and a year later he was promoted Captain.
    In 1779 he was given the task of constructing a short canal at Coteau du Lac, Quebec, to bypass rough water at this point in the St Lawrence River between Montreal and Pointe Maligne. This was probably the first locked canal in North America. In 1781, following his appointment as Chief Engineer for all military works in Canada, he supervised further navigational improvements on the St Lawrence with canals at Les Cèdres and the Cascades. In parallel with these projects, he was responsible for an amazing variety of works in Canada, including hospitals, windmills, store-houses, barracks, fortifications, roads, bridges, prisons, ironworks and dams. He was also responsible for a temporary citadel in Quebec.
    In 1783 he returned to England, and from 1794–1810 he served as Lieutenant- Governor of the Royal Military Academy at Woolwich, although in 1799 he was sent to Holland as Commanding Engineer to the Duke of York. In 1802 he was promoted Colonel and was in Ireland reporting on the defences there. He became Colonel Commandant, Royal Engineers, in 1809, and retired two years later. In retirement he was promoted Lieu tenant-General in 1812 and General in 1825.
    [br]
    Further Reading
    W.Porter, 1889–1915, History of the Corps of Royal Engineers, London: Longmans.
    JHB

    Biographical history of technology > Twiss, William

См. также в других словарях:

  • Armour — (or armor) is protective covering, most commonly manufactured from metals, to prevent damage from being inflicted to an individual or a vehicle through use of direct contact weapons or projectiles, usually during combat. While early armour tended …   Wikipedia

  • Armour Transportation Systems — Infobox Company company name = Armour Transportation Systems company company type = Transportation and Warehousing company slogan = Our driving force is people foundation = 1930 location city = Moncton, New Brunswick location country = Canada… …   Wikipedia

  • Armour — 43° 19′ 10″ N 98° 20′ 50″ W / 43.319444, 98.347222 …   Wikipédia en Français

  • Armour and Company — was an American slaughterhouse and meatpacking company founded in Chicago, Illinois, in 1867 by the Armour brothers, led by Philip Danforth Armour. By 1880, the company was Chicago s most important business and helped make the city and its Union… …   Wikipedia

  • Armour of God II: Operation Condor — Hong Kong film poster Traditional 飛鷹計劃 …   Wikipedia

  • Armour (disambiguation) — Armour or armor (American spelling) is protective clothing for combat. Other meanings include:Military:* Armoured forces, heavy cavalry, or tank units * Vehicle armour, protecting armoured fighting vehicles or warships * Belt armor of battleships …   Wikipedia

  • Armour of God (film) — Armour of God Hong Kong film poster Traditional 龍兄虎弟 Simplified …   Wikipedia

  • Armour Thyroid — (thyroid tablets, USP) is a product derived from porcine thyroid glands. Each grain contains 38 micrograms of levothyroxine (T4) and 9 micrograms of liothyronine (t3). Inactive ingredients are calcium stearate, dextrose, microcrystalline… …   Wikipedia

  • Armour-Geddon — is a 3D computer game developed and published in 1991 by Psygnosis for the Amiga, DOS and Atari ST platforms. Overview The setting for the game is post nuclear holocaust Earth, where privileged group of humans have made it through the war in… …   Wikipedia

  • Armour — Armour, SD U.S. city in South Dakota Population (2000): 782 Housing Units (2000): 377 Land area (2000): 0.943380 sq. miles (2.443343 sq. km) Water area (2000): 0.008652 sq. miles (0.022408 sq. km) Total area (2000): 0.952032 sq. miles (2.465751… …   StarDict's U.S. Gazetteer Places

  • Armour, SD — U.S. city in South Dakota Population (2000): 782 Housing Units (2000): 377 Land area (2000): 0.943380 sq. miles (2.443343 sq. km) Water area (2000): 0.008652 sq. miles (0.022408 sq. km) Total area (2000): 0.952032 sq. miles (2.465751 sq. km) FIPS …   StarDict's U.S. Gazetteer Places

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»