Перевод: со всех языков на все языки

со всех языков на все языки

extended-area+service

  • 81 SEA

    1) Общая лексика: ЮВА (South-East Asia)
    6) Химия: Safe Emulsion Agar
    7) Биржевой термин: Securities and Exchange Act
    8) Оптика: surface-emitting array
    9) Сокращение: Sachse Engineering Associates Inc. (USA), Senior Enlisted Advisor, Sience and Education Administration, Society for Education Through Art, South-East Asia, state economic area, statistical energy analysis
    10) Университет: Students For Environmental Action
    14) Банковское дело: Закон о ценных бумагах и биржах (США, 1934 г.; Securities Exchange Act)
    16) Фирменный знак: Superior Engineering Associates
    21) Инвестиции: Securities Exchange Act
    22) Сетевые технологии: SoftSolutions Enterprise Administrator, self-extracting archive
    24) Макаров: static-exchange approximation
    26) Военно-политический термин: Single European Act
    27) Подводное плавание: Scubapro Educational Association
    28) Общественная организация: Science and Engineering Alliance
    29) Должность: Special Education Assistant
    31) Правительство: Senate Enrolled Act, Shetland Environmental Agency
    32) Аэропорты: SEATAC International Airport, Seattle/ Tacoma, Washington USA
    33) Программное обеспечение: Self Expanding Application, Self Expanding Archive
    34) AMEX. Bio- Aqua Systems, Inc.

    Универсальный англо-русский словарь > SEA

  • 82 sea

    1) Общая лексика: ЮВА (South-East Asia)
    6) Химия: Safe Emulsion Agar
    7) Биржевой термин: Securities and Exchange Act
    8) Оптика: surface-emitting array
    9) Сокращение: Sachse Engineering Associates Inc. (USA), Senior Enlisted Advisor, Sience and Education Administration, Society for Education Through Art, South-East Asia, state economic area, statistical energy analysis
    10) Университет: Students For Environmental Action
    14) Банковское дело: Закон о ценных бумагах и биржах (США, 1934 г.; Securities Exchange Act)
    16) Фирменный знак: Superior Engineering Associates
    21) Инвестиции: Securities Exchange Act
    22) Сетевые технологии: SoftSolutions Enterprise Administrator, self-extracting archive
    24) Макаров: static-exchange approximation
    26) Военно-политический термин: Single European Act
    27) Подводное плавание: Scubapro Educational Association
    28) Общественная организация: Science and Engineering Alliance
    29) Должность: Special Education Assistant
    31) Правительство: Senate Enrolled Act, Shetland Environmental Agency
    32) Аэропорты: SEATAC International Airport, Seattle/ Tacoma, Washington USA
    33) Программное обеспечение: Self Expanding Application, Self Expanding Archive
    34) AMEX. Bio- Aqua Systems, Inc.

    Универсальный англо-русский словарь > sea

  • 83 Morse, Samuel Finley Breeze

    SUBJECT AREA: Telecommunications
    [br]
    b. 27 April 1791 Charlestown, Massachusetts, USA
    d. 2 April 1872 New York City, New York, USA
    [br]
    American portrait painter and inventor, b est known for his invention of the telegraph and so-called Morse code.
    [br]
    Following early education at Phillips Academy, Andover, at the age of 14 years Morse went to Yale College, where he developed interests in painting and electricity. Upon graduating in 1810 he became a clerk to a Washington publisher and a pupil of Washington Allston, a well-known American painter. The following year he travelled to Europe and entered the London studio of another American artist, Benjamin West, successfully exhibiting at the Royal Academy as well as winning a prize and medal for his sculpture. Returning to Boston and finding little success as a "historical-style" painter, he built up a thriving portrait business, moving in 1818 to Charleston, South Carolina, where three years later he established the (now defunct) South Carolina Academy of Fine Arts. In 1825 he was back in New York, but following the death of his wife and both of his parents that year, he embarked on an extended tour of European art galleries. In 1832, on the boat back to America, he met Charles T.Jackson, who told him of the discovery of the electromagnet and fired his interest in telegraphy to the extent that Morse immediately began to make suggestions for electrical communications and, apparently, devised a form of printing telegraph. Although he returned to his painting and in 1835 was appointed the first Professor of the Literature of Art and Design at the University of New York City, he began to spend more and more time experimenting in telegraphy. In 1836 he invented a relay as a means of extending the cable distance over which telegraph signals could be sent. At this time he became acquainted with Alfred Vail, and the following year, when the US government published the requirements for a national telegraph service, they set out to produce a workable system, with finance provided by Vail's father (who, usefully, owned an ironworks). A patent was filed on 6 October 1837 and a successful demonstration using the so-called Morse code was given on 6 January 1838; the work was, in fact, almost certainly largely that of Vail. As a result of the demonstration a Bill was put forward to Congress for $30,000 for an experimental line between Washington and Baltimore. This was eventually passed and the line was completed, and on 24 May 1844 the first message, "What hath God wrought", was sent between the two cities. In the meantime Morse also worked on the insulation of submarine cables by means of pitch tar and indiarubber.
    With success achieved, Morse offered his invention to the Government for $100,000, but this was declined, so the invention remained in private hands. To exploit it, Morse founded the Magnetic Telephone Company in 1845, amalgamating the following year with the telegraph company of a Henry O'Reilly to form Western Union. Having failed to obtain patents in Europe, he now found himself in litigation with others in the USA, but eventually, in 1854, the US Supreme Court decided in his favour and he soon became very wealthy. In 1857 a proposal was made for a telegraph service across the whole of the USA; this was completed in just over four months in 1861. Four years later work began on a link to Europe via Canada, Alaska, the Aleutian Islands and Russia, but it was abandoned with the completion of the transatlantic cable, a venture in which he also had some involvement. Showered with honours, Morse became a generous philanthropist in his later years. By 1883 the company he had created was worth $80 million and had a virtual monopoly in the USA.
    [br]
    Principal Honours and Distinctions
    LLD, Yale 1846. Fellow of the Academy of Arts and Sciences 1849. Celebratory Banquet, New York, 1869. Statue in New York Central Park 1871. Austrian Gold Medal of Scientific Merit. Danish Knight of the Danneborg. French Légion d'honneur. Italian Knight of St Lazaro and Mauritio. Portuguese Knight of the Tower and Sword. Turkish Order of Glory.
    Bibliography
    E.L.Morse (ed.), 1975, Letters and Journals, New York: Da Capo Press (facsimile of a 1914 edition).
    Further Reading
    J.Munro, 1891, Heroes of the Telegraph (discusses his telegraphic work and its context).
    C.Mabee, 1943, The American Leonardo: A Life of Samuel Morse; reprinted 1969 (a detailed biography).
    KF

    Biographical history of technology > Morse, Samuel Finley Breeze

  • 84 Stanier, Sir William Arthur

    [br]
    b. 27 May 1876 Swindon, England
    d. 27 September 1965 London, England
    [br]
    English Chief Mechanical Engineer of the London Midland \& Scottish Railway, the locomotive stock of which he modernized most effectively.
    [br]
    Stanier's career started when he was Office Boy at the Great Western Railway's Swindon works. He was taken on as a pupil in 1892 and steady promotion elevated him to Works Manager in 1920, under Chief Mechanical Engineer George Churchward. In 1923 he became Principal Assistant to Churchward's successor, C.B.Collett. In 1932, at the age of 56 and after some forty years' service with the Great Western Railway (GWR), W.A.Stanier was appointed Chief Mechanical Engineer of the London Midland \& Scottish Railway (LMS). This, the largest British railway, had been formed by the amalgamation in 1923 of several long-established railways, including the London \& North Western and the Midland, that had strong and disparate traditions in locomotive design. A coherent and comprehensive policy had still to emerge; Stanier did, however, inherit a policy of reducing the number of types of locomotives, in the interest of economy, by the withdrawal and replacement of small classes, which had originated with constituent companies.
    Initially as replacements, Stanier brought in to the LMS a series of highly successful standard locomotives; this practice may be considered a development of that of G.J.Churchward on the GWR. Notably, these new locomotives included: the class 5, mixed-traffic 4–6–0; the 8F heavy-freight 2–8–0; and the "Duchess" 4–6–2 for express passenger trains. Stanier also built, in 1935, a steam-turbine-driven 4–6–2, which became the only steam-turbine locomotive in Britain to have an extended career in regular service, although the economies it provided were insufficient for more of the type to be built. From 1932–3 onwards, and initially as part of a programme to economize on shunting costs by producing a single-manned locomotive, the LMS started to develop diesel shunting locomotives. Stanier delegated much of the responsibility for these to C.E.Fairburn. From 1939 diesel-electric shunting locomotives were being built in quantity for the LMS: this was the first instance of adoption of diesel power on a large scale by a British main-line railway. In a remarkably short time, Stanier transformed LMS locomotive stock, formerly the most backward of the principal British railways, to the point at which it was second to none. He was seconded to the Government as Scientific Advisor to the Ministry of Production in 1942, and retired two years later.
    [br]
    Principal Honours and Distinctions
    Knighted 1943. FRS 1944. President, Institution of Mechanical Engineers 1941.
    Bibliography
    1955, "George Jackson Churchward", Transactions of the Newcomen Society 30 (Stanier provides a unique view of the life and work of his former chief).
    Further Reading
    O.S.Nock, 1964, Sir William Stanier, An Engineering Biography, Shepperton: Ian Allan (a full-length biography).
    John Bellwood and David Jenkinson, 1976, Oresley and Stanier. A Centenary Tribute, London: HMSO (a comparative account).
    C.Hamilton Ellis, 1970, London Midland \& Scottish, Shepperton: Ian Allan.
    PJGR

    Biographical history of technology > Stanier, Sir William Arthur

  • 85 police

    police [pə'li:s]
    (a) (police force) police f;
    the police are on their way la police arrive, les gendarmes arrivent;
    he's in the police il est dans la police, c'est un policier;
    a man is helping police with their enquiries un homme est entendu par les policiers dans le cadre de leur enquête
    (b) (police officers) policiers mpl;
    18 police were injured 18 policiers ont été blessés
    (vehicle, patrol, spy) de police; (protection, work) de la police, policier; (harassment) policier;
    he was taken into police custody il a été emmené en garde à vue;
    all police leave was cancelled les permissions des policiers ont été annulées;
    police powers were extended les pouvoirs de la police ont été étendus;
    there was a heavy police presence d'importantes forces de police se trouvaient sur place
    (a) (of policemen) surveiller, maintenir l'ordre dans;
    the streets are being policed 24 hours a day les rues sont surveillées par la police 24 heures sur 24;
    the match was heavily policed d'importantes forces de police étaient présentes lors du match
    (b) (of guards, vigilantes) surveiller, maintenir l'ordre dans;
    the factory is policed by security guards l'usine est surveillée par des vigiles;
    vigilante groups police the neighbourhood des groupes d'autodéfense maintiennent l'ordre dans le quartier
    (c) (of army, international organization) surveiller, contrôler;
    the area is policed by army patrols des patrouilles militaires veillent au maintien de l'ordre dans la région
    (d) (regulate → prices) contrôler; (→ agreement) veiller à l'application ou au respect de;
    prices are policed by consumer associations les associations de consommateurs contrôlent les prix
    (e) American (clean → military camp) nettoyer
    ►► American police academy école f de police;
    American police captain commissaire m de police;
    police car voiture f de police;
    police cell cellule f d'un poste de police;
    police chief préfet m de police;
    American police commissioner commissaire m de police;
    British Police Complaints Board Inspection f générale des services;
    police complaints procedure procédure f pour porter plainte contre la police;
    British police constable gardien m de la paix, agent m (de police);
    police court tribunal m de police;
    American police department service m de police;
    police dog chien m policier;
    a police escort une escorte policière;
    British the Police Federation = le syndicat de la police britannique;
    police force police f;
    the local police force la police locale;
    to join the police force entrer dans la police;
    police informer indicateur(trice) m,f;
    police inspector inspecteur(trice) m,f de police; British (in the CID) commissaire m de police;
    American police line cordon m de police (sur le lieu du crime);
    police officer policier m, agent m de police;
    police record casier m judiciaire;
    she has no police record elle n'a pas de casier judiciaire, son casier judiciaire est vierge;
    police sergeant brigadier m (de police);
    police state État m ou régime m policier;
    police station (urban) poste m de police, commissariat m (de police); (rural) gendarmerie f;
    American police wagon fourgon m cellulaire

    Un panorama unique de l'anglais et du français > police

  • 86 Bodmer, Johann Georg

    [br]
    b. 9 December 1786 Zurich, Switzerland
    d. 30 May 1864 Zurich, Switzerland
    [br]
    Swiss mechanical engineer and inventor.
    [br]
    John George Bodmer (as he was known in England) showed signs of great inventive ability even as a child. Soon after completing his apprenticeship to a local millwright, he set up his own work-shop at Zussnacht. One of his first inventions, in 1805, was a shell which exploded on impact. Soon after this he went into partnership with Baron d'Eichthal to establish a cotton mill at St Blaise in the Black Forest. Bodmer designed the water-wheels and all the machinery. A few years later they established a factory for firearms and Bodmer designed special machine tools and developed a system of interchangeable manufacture comparable with American developments at that time. More inventions followed, including a detachable bayonet for breech-loading rifles and a rifled, breech-loading cannon for 12 lb (5.4 kg) shells.
    Bodmer was appointed by the Grand Duke of Baden to the posts of Director General of the Government Iron Works and Inspector of Artillery. He left St Blaise in 1816 and entered completely into the service of the Grand Duke, but before taking up his duties he visited Britain for the first time and made an intensive five-month tour of textile mills, iron works, workshops and similar establishments.
    In 1821 he returned to Switzerland and was engaged in setting up cotton mills and other engineering works. In 1824 he went back to England, where he obtained a patent for his improvements in cotton machinery and set up a mill near Bolton incorporating his ideas. His health failing, he was obliged to return to Switzerland in 1828, but he was soon busy with engineering works there and in France. In 1833 he went to England again, first to Bolton and four years later to Manchester in partnership with H.H.Birley. In the next ten years he patented many more inventions in the fields of textile machinery, steam engines and machine tools. These included a balanced steam engine, a mechanical stoker, steam engine valve gear, gear-cutting machines and a circular planer or vertical lathe, anticipating machines of this type later developed in America by E.P. Bullard. The metric system was used in his workshops and in gearing calculations he introduced the concept of diametral pitch, which then became known as "Manchester Pitch". The balanced engine was built in stationary form and in two locomotives, but although their running was remarkably smooth the additional complication prevented their wider use.
    After the death of H.H.Birley in 1846, Bodmer removed to London until 1848, when he went to Austria. About 1860 he returned to his native town of Zurich. He remained actively engaged in all kinds of inventions up to the end of his life. He obtained fourteen British patents, each of which describes many inventions; two of these patents were extended beyond the normal duration of fourteen years. Two others were obtained on his behalf, one by his brother James in 1813 for his cannon and one relating to railways by Charles Fox in 1847. Many of his inventions had little direct influence but anticipated much later developments. His ideas were sound and some of his engines and machine tools were in use for over sixty years. He was elected a Member of the Institution of Civil Engineers in 1835.
    [br]
    Bibliography
    1845, "The advantages of working stationary and marine engines with high-pressure steam, expansively and at great velocities; and of the compensating, or double crank system", Minutes of the Proceedings of the Institution of Civil Engineers 4:372–99.
    1846, "On the combustion of fuel in furnaces and steam-boilers, with a description of Bodmer's fire-grate", Minutes of the Proceedings of the Institution of Civil Engineers 5:362–8.
    Further Reading
    H.W.Dickinson, 1929–30, "Diary of John George Bodmer, 1816–17", Transactions of the Newcomen Society 10:102–14.
    D.Brownlie, 1925–6, John George Bodmer, his life and work, particularly in relation to the evolution of mechanical stoking', Transactions of the Newcomen Society 6:86–110.
    W.O.Henderson (ed.), 1968, Industrial Britain Under the Regency: The Diaries of Escher, Bodmer, May and de Gallois 1814–1818, London: Frank Cass (a more complete account of his visit to Britain).
    RTS

    Biographical history of technology > Bodmer, Johann Georg

  • 87 Evans, Oliver

    [br]
    b. 13 September 1755 Newport, Delaware, USA
    d. 15 April 1819 New York, USA
    [br]
    American millwright and inventor of the first automatic corn mill.
    [br]
    He was the fifth child of Charles and Ann Stalcrop Evans, and by the age of 15 he had four sisters and seven brothers. Nothing is known of his schooling, but at the age of 17 he was apprenticed to a Newport wheelwright and wagon-maker. At 19 he was enrolled in a Delaware Militia Company in the Revolutionary War but did not see active service. About this time he invented a machine for bending and cutting off the wires in textile carding combs. In July 1782, with his younger brother, Joseph, he moved to Tuckahoe on the eastern shore of the Delaware River, where he had the basic idea of the automatic flour mill. In July 1782, with his elder brothers John and Theophilus, he bought part of his father's Newport farm, on Red Clay Creek, and planned to build a mill there. In 1793 he married Sarah Tomlinson, daughter of a Delaware farmer, and joined his brothers at Red Clay Creek. He worked there for some seven years on his automatic mill, from about 1783 to 1790.
    His system for the automatic flour mill consisted of bucket elevators to raise the grain, a horizontal screw conveyor, other conveying devices and a "hopper boy" to cool and dry the meal before gathering it into a hopper feeding the bolting cylinder. Together these components formed the automatic process, from incoming wheat to outgoing flour packed in barrels. At that time the idea of such automation had not been applied to any manufacturing process in America. The mill opened, on a non-automatic cycle, in 1785. In January 1786 Evans applied to the Delaware legislature for a twenty-five-year patent, which was granted on 30 January 1787 although there was much opposition from the Quaker millers of Wilmington and elsewhere. He also applied for patents in Pennsylvania, Maryland and New Hampshire. In May 1789 he went to see the mill of the four Ellicot brothers, near Baltimore, where he was impressed by the design of a horizontal screw conveyor by Jonathan Ellicot and exchanged the rights to his own elevator for those of this machine. After six years' work on his automatic mill, it was completed in 1790. In the autumn of that year a miller in Brandywine ordered a set of Evans's machinery, which set the trend toward its general adoption. A model of it was shown in the Market Street shop window of Robert Leslie, a watch-and clockmaker in Philadelphia, who also took it to England but was unsuccessful in selling the idea there.
    In 1790 the Federal Plant Laws were passed; Evans's patent was the third to come within the new legislation. A detailed description with a plate was published in a Philadelphia newspaper in January 1791, the first of a proposed series, but the paper closed and the series came to nothing. His brother Joseph went on a series of sales trips, with the result that some machinery of Evans's design was adopted. By 1792 over one hundred mills had been equipped with Evans's machinery, the millers paying a royalty of $40 for each pair of millstones in use. The series of articles that had been cut short formed the basis of Evans's The Young Millwright and Miller's Guide, published first in 1795 after Evans had moved to Philadelphia to set up a store selling milling supplies; it was 440 pages long and ran to fifteen editions between 1795 and 1860.
    Evans was fairly successful as a merchant. He patented a method of making millstones as well as a means of packing flour in barrels, the latter having a disc pressed down by a toggle-joint arrangement. In 1801 he started to build a steam carriage. He rejected the idea of a steam wheel and of a low-pressure or atmospheric engine. By 1803 his first engine was running at his store, driving a screw-mill working on plaster of Paris for making millstones. The engine had a 6 in. (15 cm) diameter cylinder with a stroke of 18 in. (45 cm) and also drove twelve saws mounted in a frame and cutting marble slabs at a rate of 100 ft (30 m) in twelve hours. He was granted a patent in the spring of 1804. He became involved in a number of lawsuits following the extension of his patent, particularly as he increased the licence fee, sometimes as much as sixfold. The case of Evans v. Samuel Robinson, which Evans won, became famous and was one of these. Patent Right Oppression Exposed, or Knavery Detected, a 200-page book with poems and prose included, was published soon after this case and was probably written by Oliver Evans. The steam engine patent was also extended for a further seven years, but in this case the licence fee was to remain at a fixed level. Evans anticipated Edison in his proposal for an "Experimental Company" or "Mechanical Bureau" with a capital of thirty shares of $100 each. It came to nothing, however, as there were no takers. His first wife, Sarah, died in 1816 and he remarried, to Hetty Ward, the daughter of a New York innkeeper. He was buried in the Bowery, on Lower Manhattan; the church was sold in 1854 and again in 1890, and when no relative claimed his body he was reburied in an unmarked grave in Trinity Cemetery, 57th Street, Broadway.
    [br]
    Further Reading
    E.S.Ferguson, 1980, Oliver Evans: Inventive Genius of the American Industrial Revolution, Hagley Museum.
    G.Bathe and D.Bathe, 1935, Oliver Evans: Chronicle of Early American Engineering, Philadelphia, Pa.
    IMcN

    Biographical history of technology > Evans, Oliver

  • 88 Renold, Hans

    [br]
    b. 31 July 1852 Aarau, Switzerland
    d. 2 May 1943 Grange-over-Sands, Lancashire, England
    [br]
    Swiss (naturalized British 1881) mechanical engineer, inventor and pioneer of the precision chain industry.
    [br]
    Hans Renold was educated at the cantonal school of his native town and at the Polytechnic in Zurich. He worked in two or three small workshops during the polytechnic vacations and served an apprenticeship of eighteen months in an engineering works at Neuchâtel, Switzerland. After a short period of military service he found employment as a draughtsman in an engineering firm at Saint-Denis, near Paris, from 1871 to 1873. In 1873 Renold moved first to London and then to Manchester as a draughtsman and inspector with a firm of machinery exporters. From 1877 to 1879 he was a partner in his own firm of machine exporters. In 1879 he purchased a small firm in Salford making chain for the textile industry. At about this time J.K.Starley introduced the "safety" bicycle, which, however, lacked a satisfactory drive chain. Renold met this need with the invention of the bush roller chain, which he patented in 1880. The new chain formed the basis of the precision chain industry: the business expanded and new premises were acquired in Brook Street, Manchester, in 1881. In the same year Renold became a naturalized British subject.
    Continued expansion of the business necessitated the opening of a new factory in Brook Street in 1889. The factory was extended in 1895, but by 1906 more accommodation was needed and a site of 11 ½ acres was acquired in the Manchester suburb of Burnage: the move to the new building was finally completed in 1914. Over the years, further developments in the techniques of chain manufacture were made, including the invention in 1895 of the inverted tooth or silent chain. Renold made his first visit to America in 1891 to study machine-tool developments and designed for his own works special machine tools, including centreless grinding machines for dealing with wire rods up to 10 ft (3 m) in length.
    The business was established as a private limited company in 1903 and merged with the Coventry Chain Company Ltd in 1930. Good industrial relations were always of concern to Renold and he established a 48-hour week as early as 1896, in which year a works canteen was opened. Joint consultation with shop stewards date2 from 1917. Renold was elected a Member of the Institution of Mechanical Engineers in 1902 and in 1917 he was made a magistrate of the City of Manchester.
    [br]
    Principal Honours and Distinctions
    Honorary DSc University of Manchester 1940.
    Further Reading
    Basil H.Tripp, 1956, Renold Chains: A History of the Company and the Rise of the Precision Chain Industry 1879–1955, London.
    J.J.Guest, 1915, Grinding Machinery, London, pp. 289, 380 (describes grinding machines developed by Renold).
    RTS

    Biographical history of technology > Renold, Hans

  • 89 Sturgeon, William

    SUBJECT AREA: Electricity
    [br]
    b. 22 May 1783 Whittington, Lancashire, England
    d. 4 December 1850 Prestwich, Manchester, England
    [br]
    English inventor and lecturer, discoverer of the electromagnet, and inventor of the first electric motor put to practical use.
    [br]
    After leaving an apprenticeship as a shoemaker, Sturgeon enlisted in the militia. Self-educated during service as a private in the Royal Artillery, he began to construct scientific apparatus. When he left the army in 1820 Sturgeon became an industrious writer, contributing papers to the Philosophical Magazine. In 1823 he was appointed Lecturer in Natural Science at the East India Company's Military College in Addiscombe. His invention in 1823 of an electromagnet with a horseshoe-shaped, soft iron core provided a much more concentrated magnetic field than previously obtained. An electric motor he designed in 1832 embodied his invention of the first metallic commutator. This was used to rotate a meat-roasting jack. Over an extended period he conducted researches into atmospheric electricity and also introduced the practice of amalgamating zinc in primary cells to prevent local action.
    Sturgeon became Lecturer at the Adelaide Gallery, London, in 1832, an appointment of short duration, terminating when the gallery closed. In 1836 he established a monthly publication, The Annals of Electricity, Magnetism and Chemistry; and Guardian of Experimental Science, the first journal in England to be devoted to the subject. It was to this journal that James Prescot Joule contributed the results of his own researches in electromagnetism. Due to lack of financial support the publication ceased in 1843 after ten volumes had been issued. At the age of 57 Sturgeon became Superintendent of the Victoria Gallery of Practical Science in Manchester; after this gallery closed, the last five years of his life were spent in considerable poverty.
    [br]
    Principal Honours and Distinctions
    Society of Arts Silver Medal 1825.
    Bibliography
    1836, Annals of Electricity 1:75–8 (describes his motor).
    All his published papers were collected in Scientific Researches, Experimental and Theoretical in Electricity, Magnetism and Electro-Chemistry, 1850, Bury; 1852, London.
    Further Reading
    J.P.Joule, 1857, biography, in Memoirs of the Literary and Philosophical Society 14, Manchester: 53–8.
    Biography, 1895, Electrician 35:632–5 (includes a list of Sturgeon's published work). P.Dunsheath, 1957, A History of Electrical Engineering, London: Faber \& Faber.
    GW

    Biographical history of technology > Sturgeon, William

  • 90 Vignoles, Charles Blacker

    [br]
    b. 31 May 1793 Woodbrook, Co. Wexford, Ireland
    d. 17 November 1875 Hythe, Hampshire, England
    [br]
    English surveyor and civil engineer, pioneer of railways.
    [br]
    Vignoles, who was of Huguenot descent, was orphaned in infancy and brought up in the family of his grandfather, Dr Charles Hutton FRS, Professor of Mathematics at the Royal Military Academy, Woolwich. After service in the Army he travelled to America, arriving in South Carolina in 1817. He was appointed Assistant to the state's Civil Engineer and surveyed much of South Carolina and subsequently Florida. After his return to England in 1823 he established himself as a civil engineer in London, and obtained work from the brothers George and John Rennie.
    In 1825 the promoters of the Liverpool \& Manchester Railway (L \& MR) lost their application for an Act of Parliament, discharged their engineer George Stephenson and appointed the Rennie brothers in his place. They in turn employed Vignoles to resurvey the railway, taking a route that would minimize objections. With Vignoles's route, the company obtained its Act in 1826 and appointed Vignoles to supervise the start of construction. After Stephenson was reappointed Chief Engineer, however, he and Vignoles proved incompatible, with the result that Vignoles left the L \& MR early in 1827.
    Nevertheless, Vignoles did not sever all connection with the L \& MR. He supported John Braithwaite and John Ericsson in the construction of the locomotive Novelty and was present when it competed in the Rainhill Trials in 1829. He attended the opening of the L \& MR in 1830 and was appointed Engineer to two railways which connected with it, the St Helens \& Runcorn Gap and the Wigan Branch (later extended to Preston as the North Union); he supervised the construction of these.
    After the death of the Engineer to the Dublin \& Kingstown Railway, Vignoles supervised construction: the railway, the first in Ireland, was opened in 1834. He was subsequently employed in surveying and constructing many railways in the British Isles and on the European continent; these included the Eastern Counties, the Midland Counties, the Sheffield, Ashton-under-Lyme \& Manchester (which proved for him a financial disaster from which he took many years to recover), and the Waterford \& Limerick. He probably discussed rail of flat-bottom section with R.L. Stevens during the winter of 1830–1 and brought it into use in the UK for the first time in 1836 on the London \& Croydon Railway: subsequently rail of this section became known as "Vignoles rail". He considered that a broader gauge than 4 ft 8½ in. (1.44 m) was desirable for railways, although most of those he built were to this gauge so that they might connect with others. He supported the atmospheric system of propulsion during the 1840s and was instrumental in its early installation on the Dublin \& Kingstown Railway's Dalkey extension. Between 1847 and 1853 he designed and built the noted multi-span suspension bridge at Kiev, Russia, over the River Dnieper, which is more than half a mile (800 m) wide at that point.
    Between 1857 and 1863 he surveyed and then supervised the construction of the 155- mile (250 km) Tudela \& Bilbao Railway, which crosses the Cantabrian Pyrenees at an altitude of 2,163 ft (659 m) above sea level. Vignoles outlived his most famous contemporaries to become the grand old man of his profession.
    [br]
    Principal Honours and Distinctions
    Fellow of the Royal Astronomical Society 1829. FRS 1855. President, Institution of Civil Engineers 1869–70.
    Bibliography
    1830, jointly with John Ericsson, British patent no. 5,995 (a device to increase the capability of steam locomotives on grades, in which rollers gripped a third rail).
    1823, Observations upon the Floridas, New York: Bliss \& White.
    1870, Address on His Election as President of the Institution of Civil Engineers.
    Further Reading
    K.H.Vignoles, 1982, Charles Blacker Vignoles: Romantic Engineer, Cambridge: Cambridge University Press (good modern biography by his great-grandson).
    PJGR

    Biographical history of technology > Vignoles, Charles Blacker

  • 91 Volk, Magnus

    [br]
    b. 19 October 1851 Brighton, England
    d. 20 May 1937 Brighton, England
    [br]
    English pioneer in the use of electric power; built the first electric railway in the British Isles to operate a regular service.
    [br]
    Volk was the son of a German immigrant clockmaker and continued the business with his mother after his father died in 1869, although when he married in 1879 his profession was described as "electrician". He installed Brighton's first telephone the same year and in 1880 he installed electric lighting in his own house, using a Siemens Brothers dynamo (see Siemens, Dr Ernst Werner von) driven by a Crossley gas engine. This was probably one of the first half-dozen such installations in Britain. Magnus Volk \& Co. became noted electrical manufacturers and contractors, and, inter alia, installed electric light in Brighton Pavilion in place of gas.
    By 1883 Volk had moved house. He had kept the dynamo and gas engine used to light his previous house, and he also had available an electric motor from a cancelled order. After approaching the town clerk of Brighton, he was given permission for a limited period to build and operate a 2 ft (61 cm) gauge electric railway along the foreshore. Using the electrical equipment he already had, Volk built the line, a quarter of a mile (400 m) long, in eight weeks. The car was built by a local coachbuilder, with the motor under the seat; electric current at 50 volts was drawn from one running rail and returned through the other.
    The railway was opened on 4 August 1883. It operated regularly for several months and then, permission to run it having been renewed, it was rebuilt for the 1884 season to 2 ft 9 in. (84 cm) gauge, with improved equipment. Despite storm damage from time to time, Volk's Electric Railway, extended in length, has become an enduring feature of Brighton's sea front. In 1887 Volk made an electric dogcart, and an electric van which he built for the Sultan of Turkey was probably the first motor vehicle built in Britain for export. In 1896 he opened the Brighton \& Rottingdean Seashore Electric Tramroad, with very wide-gauge track laid between the high-and low-tide lines, and a long-legged, multi-wheel car to run upon it, through the water if necessary. This lasted only until 1901, however. Volk subsequently became an early enthusiast for aircraft.
    [br]
    Further Reading
    C.Volk, 1971, Magnus Volk of Brighton, Chichester: Phillimore (his life and career as described by his son).
    C.E.Lee, 1979, "The birth of electric traction", Railway Magazine (May).
    PJGR

    Biographical history of technology > Volk, Magnus

См. также в других словарях:

  • Extended area service — is a telephony term that deals with calling a wider area beyond the exchange without long distance or toll charges. It can be a flat rate, message or measured and also it can be zoned as well. Finally it can be optional or mandated by government… …   Wikipedia

  • extended area service —    (EAS)    A service that allows subscribers, in return for an extra monthly premium, to originate calls within a fixed area outside their normal local area without toll charges …   IT glossary of terms, acronyms and abbreviations

  • Service-oriented architecture — (SOA) is a method for systems development and integration where functionality is grouped around business processes and packaged as interoperable services . SOA also describes IT infrastructure which allows different applications to exchange data… …   Wikipedia

  • Extended Stay America - Durham - RTP - Miami Blvd. - North — (Durham,США) Категория отеля: 3 звездочный отель А …   Каталог отелей

  • Area code 612 — is the telephone numbering plan code for the city of Minneapolis, Minnesota and a few surrounding areas such as Fort Snelling and Richfield, Minnesota, currently the smallest area code in the state by land area. However, the region used to be… …   Wikipedia

  • Extended Service Set — is the definition set forth in the IEEE 802.11 1999 standard. An ESS is a set of one or more interconnected BSSs and integrated local area networks (LANs) that appear as a single BSS to the logical link control layer at any station associated… …   Wikipedia

  • Extended Suites Ciudad del Carmen — (Ciudad del Carmen,Мексика) Категория отеля: Адрес: Av. Isla de T …   Каталог отелей

  • Extended Memory Specification — Die Extended Memory Specification (kurz: XMS) ist eine Norm, die festlegt, wie Programme unter dem Betriebssystem MS DOS (und kompatible) auf den Hauptspeicher jenseits der 1 Megabyte Grenze (den so genannten extended memory, auch als… …   Deutsch Wikipedia

  • Service structure — A service structure (supply tower or launch tower) is a structure constructed on a launch pad to facilitate fueling, loading cargo and crew into the spacecraft. A supply tower also usually includes an elevator which allows maintenance and crew… …   Wikipedia

  • Capital Area Transit (Raleigh) — Infobox Bus transit name = logo size = 160 image size = image caption = company slogan = parent = founded = headquarters = 1430 South Blount St. locale = Raleigh, NC service area = service type = bus service alliance = routes = 37 destinations =… …   Wikipedia

  • United Parcel Service — Ups redirects here. For other meanings of UPS , see UPS. United Parcel Service, Inc. Type Public company Traded as …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»