Перевод: со всех языков на все языки

со всех языков на все языки

experiments+made+by+him

  • 21 Swan, Sir Joseph Wilson

    [br]
    b. 31 October 1828 Sunderland, England
    d. 27 May 1914 Warlingham, Surrey, England
    [br]
    English chemist, inventor in Britain of the incandescent electric lamp and of photographic processes.
    [br]
    At the age of 14 Swan was apprenticed to a Sunderland firm of druggists, later joining John Mawson who had opened a pharmacy in Newcastle. While in Sunderland Swan attended lectures at the Athenaeum, at one of which W.E. Staite exhibited electric-arc and incandescent lighting. The impression made on Swan prompted him to conduct experiments that led to his demonstration of a practical working lamp in 1879. As early as 1848 he was experimenting with carbon as a lamp filament, and by 1869 he had mounted a strip of carbon in a vessel exhausted of air as completely as was then possible; however, because of residual air, the filament quickly failed.
    Discouraged by the cost of current from primary batteries and the difficulty of achieving a good vacuum, Swan began to devote much of his attention to photography. With Mawson's support the pharmacy was expanded to include a photographic business. Swan's interest in making permanent photographic records led him to patent the carbon process in 1864 and he discovered how to make a sensitive dry plate in place of the inconvenient wet collodian process hitherto in use. He followed this success with the invention of bromide paper, the subject of a British patent in 1879.
    Swan resumed his interest in electric lighting. Sprengel's invention of the mercury pump in 1865 provided Swan with the means of obtaining the high vacuum he needed to produce a satisfactory lamp. Swan adopted a technique which was to become an essential feature in vacuum physics: continuing to heat the filament during the exhaustion process allowed the removal of absorbed gases. The inventions of Gramme, Siemens and Brush provided the source of electrical power at reasonable cost needed to make the incandescent lamp of practical service. Swan exhibited his lamp at a meeting in December 1878 of the Newcastle Chemical Society and again the following year before an audience of 700 at the Newcastle Literary and Philosophical Society. Swan's failure to patent his invention immediately was a tactical error as in November 1879 Edison was granted a British patent for his original lamp, which, however, did not go into production. Parchmentized thread was used in Swan's first commercial lamps, a material soon superseded by the regenerated cellulose filament that he developed. The cellulose filament was made by extruding a solution of nitro-cellulose in acetic acid through a die under pressure into a coagulating fluid, and was used until the ultimate obsolescence of the carbon-filament lamp. Regenerated cellulose became the first synthetic fibre, the further development and exploitation of which he left to others, the patent rights for the process being sold to Courtaulds.
    Swan also devised a modification of Planté's secondary battery in which the active material was compressed into a cellular lead plate. This has remained the central principle of all improvements in secondary cells, greatly increasing the storage capacity for a given weight.
    [br]
    Principal Honours and Distinctions
    Knighted 1904. FRS 1894. President, Institution of Electrical Engineers 1898. First President, Faraday Society 1904. Royal Society Hughes Medal 1904. Chevalier de la Légion d'Honneur 1881.
    Bibliography
    2 January 1880, British patent no. 18 (incandescent electric lamp).
    24 May 1881, British patent no. 2,272 (improved plates for the Planté cell).
    1898, "The rise and progress of the electrochemical industries", Journal of the Institution of Electrical Engineers 27:8–33 (Swan's Presidential Address to the Institution of Electrical Engineers).
    Further Reading
    M.E.Swan and K.R.Swan, 1968, Sir Joseph Wilson Swan F.R.S., Newcastle upon Tyne (a detailed account).
    R.C.Chirnside, 1979, "Sir Joseph Swan and the invention of the electric lamp", IEE
    Electronics and Power 25:96–100 (a short, authoritative biography).
    GW

    Biographical history of technology > Swan, Sir Joseph Wilson

  • 22 Jacquard, Joseph-Marie

    SUBJECT AREA: Textiles
    [br]
    b. 7 July 1752 Lyons, France
    d. 7 August 1834 Oullines, France
    [br]
    French developer of the apparatus named after him and used for selecting complicated patterns in weaving.
    [br]
    Jacquard was apprenticed at the age of 12 to bookbinding, and later to type-founding and cutlery. His parents, who had some connection with weaving, left him a small property upon their death. He made some experiments with pattern weaving, but lost all his inheritance; after marrying, he returned to type-founding and cutlery. In 1790 he formed the idea for his machine, but it was forgotten amidst the excitement of the French Revolution, in which he fought for the Revolutionists at the defence of Lyons. The machine he completed in 1801 combined earlier inventions and was for weaving net. He was sent to Paris to demonstrate it at the National Exposition and received a bronze medal. In 1804 Napoleon granted him a patent, a pension of 1,500 francs and a premium on each machine sold. This enabled him to study and work at the Conservatoire des Arts et Métiers to perfect his mechanism for pattern weaving. A method of selecting any combination of leashes at each shoot of the weft had to be developed, and Jacquard's mechanism was the outcome of various previous inventions. By taking the cards invented by Falcon in 1728 that were punched with holes like the paper of Bouchon in 1725, to select the needles for each pick, and by placing the apparatus above the loom where Vaucanson had put his mechanism, Jacquard combined the best features of earlier inventions. He was not entirely successful because his invention failed in the way it pressed the card against the needles; later modifications by Breton in 1815 and Skola in 1819 were needed before it functioned reliably. However, the advantage of Jacquard's machine was that each pick could be selected much more quickly than on the earlier draw looms, which meant that John Kay's flying shuttle could be introduced on fine pattern looms because the weaver no longer had to wait for the drawboy to sort out the leashes for the next pick. Robert Kay's drop box could also be used with different coloured wefts. The drawboy could be dispensed with because the foot-pedal operating the Jacquard mechanism could be worked by the weaver. Patterns could be changed quickly by replacing one set of cards with another, but the scope of the pattern was more limited than with the draw loom. Some machines that were brought into use aroused bitter hostility. Jacquard suffered physical violence, barely escaping with his life, and his machines were burnt by weavers at Lyons. However, by 1812 his mechanism began to be generally accepted and had been applied to 11,000 draw-looms in France. In 1819 Jacquard received a gold medal and a Cross of Honour for his invention. His machines reached England c.1816 and still remain the basic way of weaving complicated patterns.
    [br]
    Principal Honours and Distinctions
    French Cross of Honour 1819. National Exposition Bronze Medal 1801.
    Further Reading
    C.Singer (ed.), 1958, A History of Technology, Vol. IV, Oxford: Clarendon Press.
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (covers the introduction of pattern weaving and the power loom).
    RLH

    Biographical history of technology > Jacquard, Joseph-Marie

  • 23 Giffard, Baptiste Henry Jacques (Henri)

    [br]
    b. 8 February 1825 Paris, France
    d. 14 April 1882 Paris, France
    [br]
    French pioneer of airships and balloons, inventor of an injector for steam-boiler feedwater.
    [br]
    Giffard entered the works of the Western Railway of France at the age of 16 but became absorbed by the problem of steam-powered aerial navigation. He proposed a steam-powered helicopter in 1847, but he then turned his attention to an airship. He designed a lightweight coke-burning, single-cylinder steam engine and boiler which produced just over 3 hp (2.2 kW) and mounted it below a cigar-shaped gas bag 44 m (144 ft) in length. A triangular rudder was fitted at the rear to control the direction of flight. On 24 September 1852 Giffard took off from Paris and, at a steady 8 km/h (5 mph), he travelled 28 km (17 miles) to Trappes. This can be claimed to be the first steerable lighter-than-air craft, but with a top speed of only 8 km/h (5 mph) even a modest headwind would have reduced the forward speed to nil (or even negative). Giffard built a second airship, which crashed in 1855, slightly injuring Giffard and his companion; a third airship was planned with a very large gas bag in order to lift the inherently heavy steam engine and boiler, but this was never built. His airships were inflated by coal gas and refusal by the gas company to provide further supplies brought these promising experiments to a premature end.
    As a draughtsman Giffard had the opportunity to travel on locomotives and he observed the inadequacies of the feed pumps then used to supply boiler feedwater. To overcome these problems he invented the injector with its series of three cones: in the first cone (convergent), steam at or below boiler pressure becomes a high-velocity jet; in the second (also convergent), it combines with feedwater to condense and impart high velocity to it; and in the third (divergent), that velocity is converted into pressure sufficient to overcome the pressure of steam in the boiler. The injector, patented by Giffard, was quickly adopted by railways everywhere, and the royalties provided him with funds to finance further experiments in aviation. These took the form of tethered hydrogen-inflated balloons of successively larger size. At the Paris Exposition of 1878 one of these balloons carried fifty-two passengers on each tethered "flight". The height of the balloon was controlled by a cable attached to a huge steam-powered winch, and by the end of the fair 1,033 ascents had been made and 35,000 passengers had seen Paris from the air. This, and similar balloons, greatly widened the public's interest in aeronautics. Sadly, after becoming blind, Giffard committed suicide; however, he died a rich man and bequeathed large sums of money to the State for humanitarian an scientific purposes.
    [br]
    Principal Honours and Distinctions
    Croix de la Légion d'honneur 1863.
    Bibliography
    1860, Notice théorique et pratique sur l'injecteur automoteur.
    1870, Description du premier aérostat à vapeur.
    Further Reading
    Dictionnaire de biographie française.
    Gaston Tissandier, 1872, Les Ballons dirigeables, Paris.
    —1878, Le Grand ballon captif à vapeur de M. Henri Giffard, Paris.
    W.de Fonvielle, 1882, Les Ballons dirigeables à vapeur de H.Giffard, Paris. Giffard is covered in most books on balloons or airships, e.g.: Basil Clarke, 1961, The History of Airships, London. L.T.C.Rolt, 1966, The Aeronauts, London.
    Ian McNeill (ed.), 1990, An Encyclopaedia of the History of Technology, London: Routledge, pp. 575 and 614.
    J.T.Hodgson and C.S.Lake, 1954, Locomotive Management, Tothill Press, p. 100.
    PJGR / JDS

    Biographical history of technology > Giffard, Baptiste Henry Jacques (Henri)

  • 24 Goodyear, Charles

    [br]
    b. 29 December 1800 New Haven, Connecticut, USA
    d. 1 July 1860 New York, USA
    [br]
    American inventor of the vulcanization of rubber.
    [br]
    Goodyear entered his father's country hardware business before setting up his own concern in Philadelphia. While visiting New York, he noticed in the window of the Roxburgh India Rubber Company a rubber life-preserver. Goodyear offered to improve its inflating valve, but the manager, impressed with Goodyear's inventiveness, persuaded him to tackle a more urgent problem, that of seeking a means of preventing rubber from becoming tacky and from melting or decomposing when heated. Goodyear tried treatments with one substance after another, without success. In 1838 he started using Nathaniel M.Hayward's process of spreading sulphur on rubber. He accidentally dropped a mass of rubber and sulphur on to a hot stove and noted that the mixture did not melt: Goodyear had discovered the vulcanization of rubber. More experiments were needed to establish the correct proportions for a uniform mix, and eventually he was granted his celebrated patent no. 3633 of 15 June 1844. Goodyear's researches had been conducted against a background of crippling financial difficulties and he was forced to dispose of licences to vulcanize rubber at less than their real value, in order to pay off his most pressing debts.
    Goodyear travelled to Europe in 1851 to extend his patents. To promote his process, he designed a spectacular exhibit for London, consisting of furniture, floor covering, jewellery and other items made of rubber. A similar exhibit in Paris in 1855 won him the Grande Médaille d'honneur and the Croix de la Légion d'honneur from Napoleon III. Patents were granted to him in all countries except England. The improved properties of vulcanized rubber and its stability over a much wider range of temperatures greatly increased its applications; output rose from a meagre 31.5 tonnes a year in 1827 to over 28,000 tonnes by 1900. Even so, Goodyear profited little from his invention, and he bequeathed to his family debts amounting to over $200,000.
    [br]
    Principal Honours and Distinctions
    Grande Médaille d'honneur 1855. Croix de la Légion d'honneur 1855.
    Bibliography
    15 June 1844, US patent no. 3633 (vulcanization of rubber).
    1853, Gum Elastic and Its Varieties (includes some biographical material).
    Further Reading
    B.K.Pierce, 1866, Trials of an Inventor: Life and Discoveries of Charles Goodyear.
    H.Allen, 1989, Charles Goodyear: An Intimate Biographical Sketch, Akron, Ohio: Goodyear Tire \& Rubber Company.
    LRD

    Biographical history of technology > Goodyear, Charles

  • 25 Roebuck, John

    SUBJECT AREA: Chemical technology
    [br]
    b. 1718 Sheffield, England
    d. 17 July 1794
    [br]
    English chemist and manufacturer, inventor of the lead-chamber process for sulphuric acid.
    [br]
    The son of a prosperous Sheffield manufacturer, Roebuck forsook the family business to pursue studies in medicine at Edinburgh University. There he met Dr Joseph Black (1727–99), celebrated Professor of Chemistry, who aroused in Roebuck a lasting interest in chemistry. Roebuck continued his studies at Leyden, where he took his medical degree in 1742. He set up in practice in Birmingham, but in his spare time he continued chemical experiments that might help local industries.
    Among his early achievements was his new method of refining gold and silver. Success led to the setting up of a large laboratory and a reputation as a chemical consultant. It was at this time that Roebuck devised an improved way of making sulphuric acid. This vital substance was then made by burning sulphur and nitre (potassium nitrate) over water in a glass globe. The scale of the process was limited by the fragility of the glass. Roebuck substituted "lead chambers", or vessels consisting of sheets of lead, a metal both cheap and resistant to acids, set in wooden frames. After the first plant was set up in 1746, productivity rose and the price of sulphuric acid fell sharply. Success encouraged Roebuck to establish a second, larger plant at Prestonpans, near Edinburgh. He preferred to rely on secrecy rather than patents to preserve his monopoly, but a departing employee took the secret with him and the process spread rapidly in England and on the European continent. It remained the standard process until it was superseded by the contact process towards the end of the nineteenth century. Roebuck next turned his attention to ironmaking and finally selected a site on the Carron river, near Falkirk in Scotland, where the raw materials and water power and transport lay close at hand. The Carron ironworks began producing iron in 1760 and became one of the great names in the history of ironmaking. Roebuck was an early proponent of the smelting of iron with coke, pioneered by Abraham Darby at Coalbrookdale. To supply the stronger blast required, Roebuck consulted John Smeaton, who c. 1760 installed the first blowing cylinders of any size.
    All had so far gone well for Roebuck, but he now leased coal-mines and salt-works from the Duke of Hamilton's lands at Borrowstonness in Linlithgow. The coal workings were plagued with flooding which the existing Newcomen engines were unable to overcome. Through his friendship with Joseph Black, patron of James Watt, Roebuck persuaded Watt to join him to apply his improved steam-engine to the flooded mine. He took over Black's loan to Watt of £1,200, helped him to obtain the first steam-engine patent of 1769 and took a two-thirds interest in the project. However, the new engine was not yet equal to the task and the debts mounted. To satisfy his creditors, Roebuck had to dispose of his capital in his various ventures. One creditor was Matthew Boulton, who accepted Roebuck's two-thirds share in Watt's steam-engine, rather than claim payment from his depleted estate, thus initiating a famous partnership. Roebuck was retained to manage Borrowstonness and allowed an annuity for his continued support until his death in 1794.
    [br]
    Further Reading
    Memoir of John Roebuck in J.Roy. Soc. Edin., vol. 4 (1798), pp. 65–87.
    S.Gregory, 1987, "John Roebuck, 18th century entrepreneur", Chem. Engr. 443:28–31.
    LRD

    Biographical history of technology > Roebuck, John

  • 26 Sperry, Elmer Ambrose

    [br]
    b. 21 October 1860 Cincinnatus, Cortland County, New York, USA
    d. 16 June 1930 Brooklyn, New York, USA
    [br]
    American entrepreneur who invented the gyrocompass.
    [br]
    Sperry was born into a farming community in Cortland County. He received a rudimentary education at the local school, but an interest in mechanical devices was aroused by the agricultural machinery he saw around him. His attendance at the Normal School in Cortland provided a useful theoretical background to his practical knowledge. He emerged in 1880 with an urge to pursue invention in electrical engineering, then a new and growing branch of technology. Within two years he was able to patent and demonstrate his arc lighting system, complete with its own generator, incorporating new methods of regulating its output. The Sperry Electric Light, Motor and Car Brake Company was set up to make and market the system, but it was difficult to keep pace with electric-lighting developments such as the incandescent lamp and alternating current, and the company ceased in 1887 and was replaced by the Sperry Electric Company, which itself was taken over by the General Electric Company.
    In the 1890s Sperry made useful inventions in electric mining machinery and then in electric street-or tramcars, with his patent electric brake and control system. The patents for the brake were important enough to be bought by General Electric. From 1894 to 1900 he was manufacturing electric motor cars of his own design, and in 1900 he set up a laboratory in Washington, where he pursued various electrochemical processes.
    In 1896 he began to work on the practical application of the principle of the gyroscope, where Sperry achieved his most notable inventions, the first of which was the gyrostabilizer for ships. The relatively narrow-hulled steamship rolled badly in heavy seas and in 1904 Ernst Otto Schuck, a German naval engineer, and Louis Brennan in England began experiments to correct this; their work stimulated Sperry to develop his own device. In 1908 he patented the active gyrostabilizer, which acted to correct a ship's roll as soon as it started. Three years later the US Navy agreed to try it on a destroyer, the USS Worden. The successful trials of the following year led to widespread adoption. Meanwhile, in 1910, Sperry set up the Sperry Gyroscope Company to extend the application to commercial shipping.
    At the same time, Sperry was working to apply the gyroscope principle to the ship's compass. The magnetic compass had worked well in wooden ships, but iron hulls and electrical machinery confused it. The great powers' race to build up their navies instigated an urgent search for a solution. In Germany, Anschütz-Kämpfe (1872–1931) in 1903 tested a form of gyrocompass and was encouraged by the authorities to demonstrate the device on the German flagship, the Deutschland. Its success led Sperry to develop his own version: fortunately for him, the US Navy preferred a home-grown product to a German one and gave Sperry all the backing he needed. A successful trial on a destroyer led to widespread acceptance in the US Navy, and Sperry was soon receiving orders from the British Admiralty and the Russian Navy.
    In the rapidly developing field of aeronautics, automatic stabilization was becoming an urgent need. In 1912 Sperry began work on a gyrostabilizer for aircraft. Two years later he was able to stage a spectacular demonstration of such a device at an air show near Paris.
    Sperry continued research, development and promotion in military and aviation technology almost to the last. In 1926 he sold the Sperry Gyroscope Company to enable him to devote more time to invention.
    [br]
    Principal Honours and Distinctions
    John Fritz Medal 1927. President, American Society of Mechanical Engineers 1928.
    Bibliography
    Sperry filed over 400 patents, of which two can be singled out: 1908. US patent no. 434,048 (ship gyroscope); 1909. US patent no. 519,533 (ship gyrocompass set).
    Further Reading
    T.P.Hughes, 1971, Elmer Sperry, Inventor and Engineer, Baltimore: Johns Hopkins University Press (a full and well-documented biography, with lists of his patents and published writings).
    LRD

    Biographical history of technology > Sperry, Elmer Ambrose

  • 27 Junghans, Siegfried

    SUBJECT AREA: Metallurgy
    [br]
    b. 1887
    d. 1954
    [br]
    German pioneer of the continuous casting of metals.
    [br]
    Junghans was of the family that owned Gebrüder Junghans, one of the largest firms in the German watch-and clockmaking industry. From 1906 to 1918 he served in the German Army, after which he took a course in metallurgy and analytical chemistry at the Technical High School in Stuttgart. Junghans was then given control of the brassworks owned by his family. He wanted to make castings simply and cheaply, but he found that he lacked the normal foundry equipment. By 1927, formulating his ideas on continuous casting, he had conceived a way of overcoming this deficiency and began experiments. By the time the firm was taken over by Wieland-Werke AG in 1931, Junghans had achieved positive results. A test plant was erected in 1932, and commercial production of continuously cast metal followed the year after. Wieland told Junghans that a brassfounder who had come up through the trade would never have hit on the idea: it took an outsider like Junghans to do it. He was made Technical Director of Wielands but left in 1935 to work privately on the development of continuous casting for all metals. He was able to license the process for non-ferrous metals during 1936–9 in Germany and other countries, but the Second World War interrupted his work; however, the German government supported him and a production plant was built. In 1948 he was able to resume work on the continuous casting of steel, which he had been considering since 1936. He pushed on in spite of financial difficulties and produced the first steel by this process at Schorndorf in March 1949. From 1950 he made agreements with four firms to work towards the pilot plant stage, and this was achieved in 1954 at Mannesmann's Huckingen works. The aim of continuous casting is to bypass the conventional processes of casting molten steel into ingots, reheating the ingots and shaping them by rolling them in a large mill. Essentially, in continuous casting, molten steel is drawn through the bottom of a ladle and down through a water-cooled copper mould. The unique feature of Junghans's process was the vertically reciprocating mould, which prevented the molten metal sticking as it passed through. A continuous length of steel is taken off and cooled until it is completely solidified into the required shape. The idea of continuous casting can be traced back to Bessemer, and although others tried to apply it later, they did not have any success. It was Junghans who, more than anybody, made the process a reality.
    [br]
    Further Reading
    K.Sperth and A.Bungeroth, 1953, "The Junghans method of continuous casting of steel", Metal Treatment and Drop Forging, Mayn.
    J.Jewkes et al., 1969, The Sources of Invention, 2nd edn, London: Macmillan, pp. 287 ff.
    LRD

    Biographical history of technology > Junghans, Siegfried

  • 28 Chappe, Claude

    SUBJECT AREA: Telecommunications
    [br]
    b. 25 December 1763 Brulon, France
    d. 23 January 1805 Paris, France
    [br]
    French engineer who invented the semaphore visual telegraph.
    [br]
    Chappe began his studies at the Collège de Joyeuse, Rouen, and completed them at La Flèche. He was educated for the church with the intention of becoming an Abbé Commendataire, but this title did not in fact require him to perform any religious duties. He became interested in natural science and amongst other activities he carried out experiments with electrically charged soap bubbles.
    When the bénéfice was suppressed in 1781 he returned home and began to devise a system of telegraphic communication. With the help of his three brothers, particularly Abraham, and using an old idea, in 1790 he made a visual telegraph with suspended pendulums to relay coded messages over a distance of half a kilometre. Despite public suspicion and opposition, he presented the idea to the Assemblée Nationale on 22 May 1792. No doubt due to the influence of his brother, Ignace, a member of the Assemblée Nationale, the idea was favourably received, and on 1 April 1793 it was referred to the National Convention as being of military importance. As a result, Chappe was given the title of Telegraphy Engineer and commissioned to construct a semaphore (Gk. bearing a sign) link between Paris and Lille, a distance of some 240 km (150 miles), using twenty-two towers. Each station contained two telescopes for observing the adjacent towers, and each semaphore consisted of a central beam supporting two arms, whose positions gave nearly two hundred possible arrangements. Hence, by using a code book as a form of lookup table, Chappe was able to devise a code of over 8,000 words. The success of the system for communication during subsequent military conflicts resulted in him being commissioned to extend it with further links, a work that was continued by his brothers after his suicide during a period of illness and depression. Providing as it did an effective message speed of several thousand kilometres per hour, the system remained in use until the mid-nineteenth century, by which time the electric telegraph had become well established.
    [br]
    Further Reading
    R.Appleyard, 1930, Pioneers of Electrical Communication.
    International Telecommunications Union, 1965, From Semaphore to Satellite, Geneva.
    KF

    Biographical history of technology > Chappe, Claude

  • 29 Clegg, Samuel

    [br]
    b. 2 March 1781 Manchester, England
    d. 8 January 1861 Haverstock Hill, Hampstead, London, England
    [br]
    English inventor and gas engineer.
    [br]
    Clegg received scientific instruction from John Dalton, the founder of the atomic theory, and was apprenticed to Boulton \& Watt. While at their Soho factory in Birmingham, he assisted William Murdock with his experiments on coal gas. He left the firm in 1804 and set up as a gas engineer on his own account. He designed and installed gas plant and lighting in a number of factories, including Henry Lodge's cotton mill at Sowerby Bridge and in 1811 the Jesuit College at Stoneyhurst in Lancashire, the first non-industrial establishment to be equipped with gas lighting.
    Clegg moved to London in 1813 and successfully installed gas lighting at the premises of Rudolf Ackermann in the Strand. His success in the manufacture of gas had earned him the Royal Society of Arts Silver Medal in 1808 for furthering "the art of gas production", and in 1813 it brought him the appointment of Chief Engineer to the first gas company, the Chartered Gas, Light \& Coke Company. He left in 1817, but remained in demand to set up gas works and advise on the formation of gas companies. Throughout this time there flowed from Clegg a series of inventions of fundamental importance in the gas industry. While at Lodge's mill he had begun purifying gas by adding lime to the gas holder, and at Stoneyhurst this had become a separate lime purifier. In 1815, and again in 1818, Clegg patented the wet-meter which proved to be the basis for future devices for measuring gas. He invented the gas governor and, favouring the horizontal retort, developed the form which was to become standard for the next forty years. But after all this, Clegg joined a concern in Liverpool which failed, taking all his possessions with it. He made a fresh start in Lisbon, where he undertook various engineering works for the Portuguese government. He returned to England to find railway construction gathering pace, but he again backed a loser by engaging in the ill-fated atmospheric-rail way project. He was finally discouraged from taking part in further enterprises, but he received a government appointment as Surveying Officer to conduct enquiries in connection with the various Bills on gas that were presented to Parliament. Clegg also contributed to his son's massive treatise on the manufacture of coal gas.
    [br]
    Principal Honours and Distinctions
    Royal Society of Arts Silver Medal 1808.
    Further Reading
    Minutes of Proceedings of the Institution of Civil Engineers (1862) 21:552–4.
    S.Everard, 1949, The History of the Gas light and Coke Company, London: Ernest Benn.
    LRD

    Biographical history of technology > Clegg, Samuel

  • 30 Cobbett, William

    [br]
    b. 9 March 1762 Farnham, Surrey, England
    d. 17 June 1835 Guildford, Surrey, England
    [br]
    English political writer and activist; writer on rural affairs, with a particular concern for the conditions of the agricultural worker; a keen experimental farmer who claimed responsibility for the import of Indian maize to Britain.
    [br]
    The son of a smallholder farmer and self-taught surveyor, William Cobbett was brought up to farm work from an early age. In 1783 he took employment as an attorney's clerk in London, but not finding this to his liking he travelled to Chatham with the intention of joining the Navy. A mistake in "taking the King's shilling" found him in an infantry regiment. After a year's training he was sent out to Nova Scotia and quickly gained the rank of sergeant major. On leaving the Army he brought corruption charges against three officers in his regiment, but did not press with the prosecution. England was not to his taste, and he returned to North America with his wife.
    In America Cobbett taught English to the growing French community displaced by the French Revolution. He found American criticism of Britain ill-balanced and in 1796 began to publish a daily newspaper under the title Porcupine's Gazetteer, in which he wrote editorials in defence of Britain. His writings won him little support from the Americans. However, on returning to London in 1800 he was offered, but turned down, the management of a Government newspaper. Instead he began to produce a daily paper called the Porcupine, which was superseded in 1802 by Cobbett's Political Register, this publication continued on a weekly basis until after his death. In 1803 he also began the Parliamentary Debates, which later merged into Hansard, the official report of parliamentary proceedings.
    In 1805 Cobbett took a house and 300-acre (120-hectare) farm in Hampshire, from which he continued to write, but at the same time followed the pursuits he most enjoyed. In 1809 his criticism of the punishment given to mutineers in the militia at Ely resulted in his own imprisonment. On his release in 1812 he decided that the only way to remain an independent publisher was to move back to the USA. He bought a farm at Hampstead, Long Island, New York, and published A Year's Residence in America, which contains, amongst other things, an interesting account of a farmer's year.
    Returning to Britain in the easier political climate of the 1820s, Cobbett bought a small seed farm in Kensington, then outside London. From there he made a number of journeys around the country, publishing accounts of them in his famous Rural Rides. His experiments and advice on the sowing and cultivation of crops, particularly turnips and swedes, and on forestry, were an important mechanism for the spread of ideas within the UK. He also claimed that he was the first to introduce the acacia and Indian maize to Britain. Much of his writing expresses a concern for the rural poor and he was firmly convinced that only parliamentary reform would achieve the changes needed. His political work and writing led to his election as Member of Parlaiment for Oldham in the 1835 election, which followed the Reform Act of 1832. However, by this time his energy was failing rapidly and he died peacefully at Normandy Farm, near Guildford, at the age of 73.
    [br]
    Bibliography
    Cobbett's Observations on Priestley's Emigration, published in 1794, was the first of his pro-British tracts written in America. On the basis of his stay in that country he wrote A Year's Residence in America. His books on agricultural practice included Woodlands (1825) and Treatise on Cobbett's Corn (1828). Dealing with more social problems he wrote an English Grammar for the use of Apprentices, Plough Boys, Soldiers and Sailors in 1818, and Cottage Economy in 1821.
    Further Reading
    Albert Pell, 1902, article in Journal of the Royal Agricultural Society of England 63:1–26 (describes the life and writings of William Cobbett).
    James Sambrook, 1973, William Cobbett, London: Routledge (a more detailed study).
    AP

    Biographical history of technology > Cobbett, William

  • 31 Darby, Abraham

    SUBJECT AREA: Metallurgy
    [br]
    b. 1678 near Dudley, Worcestershire, England
    d. 5 May 1717 Madely Court, Coalbrookdale, Shropshire, England
    [br]
    English ironmaster, inventor of the coke smelting of iron ore.
    [br]
    Darby's father, John, was a farmer who also worked a small forge to produce nails and other ironware needed on the farm. He was brought up in the Society of Friends, or Quakers, and this community remained important throughout his personal and working life. Darby was apprenticed to Jonathan Freeth, a malt-mill maker in Birmingham, and on completion of his apprenticeship in 1699 he took up the trade himself in Bristol. Probably in 1704, he visited Holland to study the casting of brass pots and returned to Bristol with some Dutch workers, setting up a brassworks at Baptist Mills in partnership with others. He tried substituting cast iron for brass in his castings, without success at first, but in 1707 he was granted a patent, "A new way of casting iron pots and other pot-bellied ware in sand without loam or clay". However, his business associates were unwilling to risk further funds in the experiments, so he withdrew his share of the capital and moved to Coalbrookdale in Shropshire. There, iron ore, coal, water-power and transport lay close at hand. He took a lease on an old furnace and began experimenting. The shortage and expense of charcoal, and his knowledge of the use of coke in malting, may well have led him to try using coke to smelt iron ore. The furnace was brought into blast in 1709 and records show that in the same year it was regularly producing iron, using coke instead of charcoal. The process seems to have been operating successfully by 1711 in the production of cast-iron pots and kettles, with some pig-iron destined for Bristol. Darby prospered at Coalbrookdale, employing coke smelting with consistent success, and he sought to extend his activities in the neighbourhood and in other parts of the country. However, ill health prevented him from pursuing these ventures with his previous energy. Coke smelting spread slowly in England and the continent of Europe, but without Darby's technological breakthrough the ever-increasing demand for iron for structures and machines during the Industrial Revolution simply could not have been met; it was thus an essential component of the technological progress that was to come.
    Darby's eldest son, Abraham II (1711–63), entered the Coalbrookdale Company partnership in 1734 and largely assumed control of the technical side of managing the furnaces and foundry. He made a number of improvements, notably the installation of a steam engine in 1742 to pump water to an upper level in order to achieve a steady source of water-power to operate the bellows supplying the blast furnaces. When he built the Ketley and Horsehay furnaces in 1755 and 1756, these too were provided with steam engines. Abraham II's son, Abraham III (1750–89), in turn, took over the management of the Coalbrookdale works in 1768 and devoted himself to improving and extending the business. His most notable achievement was the design and construction of the famous Iron Bridge over the river Severn, the world's first iron bridge. The bridge members were cast at Coalbrookdale and the structure was erected during 1779, with a span of 100 ft (30 m) and height above the river of 40 ft (12 m). The bridge still stands, and remains a tribute to the skill and judgement of Darby and his workers.
    [br]
    Further Reading
    A.Raistrick, 1989, Dynasty of Iron Founders, 2nd edn, Ironbridge Gorge Museum Trust (the best source for the lives of the Darbys and the work of the company).
    H.R.Schubert, 1957, History of the British Iron and Steel Industry AD 430 to AD 1775, London: Routledge \& Kegan Paul.
    LRD

    Biographical history of technology > Darby, Abraham

  • 32 Marcus, Siegfried

    [br]
    b. 18 September 1831 Malchin, Mecklenburg
    d. 30 June 1898 Vienna, Austria
    [br]
    German inventor, builder of the world's first self-propelled vehicle driven by an internal combustion engine.
    [br]
    Marcus was apprenticed as a mechanic and was employed in the newly founded enterprise of Siemens \& Halske in Berlin. He then went to Vienna and, from 1853, was employed in the workshop of the Imperial Court Mechanic, Kraft, and in the same year he was a mechanic in the Royal and Imperial Institute of Physics of the University of Vienna. In 1860 he became independent of the Imperial Court, but he installed an electrical bell system for the Empress Elizabeth and instructed the Crown Prince Rudolf in natural science.
    Marcus was granted thirty-eight patents in Austria, as well as many foreign patents. The magnetic electric ignition engine, for which he was granted a patent in 1864, brought him the biggest financial reward; it was introduced as the "Viennese Ignition" engine by the Austrian Navy and the pioneers of the Prussian and Russian armies. The engine was exhibited at the World Fair in Paris in 1867 together with the "Thermoscale" which was also constructed by Marcus; this was a magnetic/electric rotative engine for electric lighting and field telegraphy.
    Marcus's reputation is due mainly to his attempts to build a new internal combustion engine. By 1870 he had assembled a simple, direct-working internal combustion engine on a primitive chassis. This was, in fact, the first petrol-engined vehicle with electric ignition, and tradition records that when Marcus drove the vehicle in the streets of Vienna it made so much noise that the police asked him to remove it; this he did and did not persist with his experiments. Thus ended the trials of the world's first petrol-engined vehicle; it was running in 1875, ten years before Daimler and Benz were carrying out their early trials in Stuttgart.
    [br]
    Further Reading
    Austrian Dictionary of National Biography.
    IMcN

    Biographical history of technology > Marcus, Siegfried

  • 33 Fessenden, Reginald Aubrey

    [br]
    b. 6 October 1866 East Bolton, Quebec, Canada
    d. 22 July 1932 Bermuda
    [br]
    Canadian radio pioneer who made the first known broadcast of speech and music.
    [br]
    After initial education at Trinity College School, Port Hope, Ontario, Fessenden studied at Bishops University, Lennoxville, Quebec. When he graduated in 1885, he became Principal of the Whitney Institute in Bermuda, but he left the following year to go to New York in pursuit of his scientific interests. There he met Edison and eventually became Chief Chemist at the latter's Laboratory in Orange, New Jersey. In 1890 he moved to the Westinghouse Electric and Manufacturing Company, and two years later he returned to an academic career as Professor of Electrical Engineering, initially at Purdue University, Lafayette, Indiana, and then at the Western University of Pennsylvania, where he worked on wireless communication. From 1900 to 1902 he carried out experiments in wireless telegraphy at the US Weather Bureau, filing several patents relating to wire and liquid thermal detectors, or barretters. Following this he set up the National Electric Signalling Company; under his direction, Alexanderson and other engineers at the General Electric Company developed a high-frequency alternator that enabled him to build the first radiotelephony transmitter at Brant Rock, Massachusetts. This made its initial broadcast of speech and music on 24 December 1906, received by ship's wireless operators several hundred miles away. Soon after this the transmitter was successfully used for two-way wireless telegraphy communication with Scotland. Following this landmark event, Fessenden produced numerous inventions, including a radio compass, an acoustic depth-finder and several submarine signalling devices, a turboelectric drive for battleships and, notably, in 1912 the heterodyne principle used in radio receivers to convert signals to a lower (intermediate) frequency.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Medal of Honour 1921.
    Bibliography
    US patents relating to barretters include nos. 706,740, 706,742 and 706,744 (wire, 1902) and 731,029 (liquid, 1903). His invention of the heterodyne was filed as US patent no. 1,050,441 (1913).
    Further Reading
    Helen M.Fessenden, 1940, Fessenden. Builder of Tomorrow. E.Hawkes, 1927, Pioneers of Wireless, London: Methuen. O.E.Dunlop, 1944, Radio's 100 Men of Science.
    KF

    Biographical history of technology > Fessenden, Reginald Aubrey

  • 34 Macintosh, Charles

    [br]
    b. 29 December 1766 Glasgow, Scotland
    d. 25 July 1843 Dunchattan, near Glasgow, Scotland
    [br]
    Scottish inventor of rubberized waterproof clothing.
    [br]
    As the son of the well-known and inventive dyer George Macintosh, Charles had an early interest in chemistry. At the age of 19 he gave up his work as a clerk with a Glasgow merchant to manufacture sal ammoniac (ammonium chloride) and developed new processes in dyeing. In 1797 he started the first Scottish alum works, finding the alum in waste shale from coal mines. His first works was at Hurlet, Renfrewshire, and was followed later by others. He then formed a partnership with Charles Tennant, the proprietor of a chemical works at St Rollox, near Glasgow, and sold "lime bleaching liquor" made with chlorine and milk of lime from their bleach works at Darnley. A year later the use of dry lime to make bleaching powder, a process worked out by Macintosh, was patented. Macintosh remained associated with Tennant's St Rollox chemical works until 1814. During this time, in 1809, he had set up a yeast factory, but it failed because of opposition from the London brewers.
    There was a steady demand for the ammonia that gas works produced, but the tar was often looked upon as an inconvenient waste product. Macintosh bought all the ammonia and tar that the Glasgow works produced, using the ammonia in his establishment to produce cudbear, a dyestuff extracted from various lichens. Cudbear could be used with appropriate mordants to make shades from pink to blue. The tar could be distilled to produce naphtha, which was used as a flare. Macintosh also became interested in ironmaking. In 1825 he took out a patent for converting malleable iron into steel by taking it to white heat in a current of gas with a carbon content, such as coal gas. However, the process was not commercially successful because of the difficulty keeping the furnace gas-tight. In 1828 he assisted J.B. Neilson in bringing hot blast into use in blast furnaces; Neilson assigned Macintosh a share in the patent, which was of dubious benefit as it involved him in the tortuous litigation that surrounded the patent until 1843.
    In June 1823, as a result of experiments into the possible uses of naphtha obtained as a by-product of the distillation of coal tar, Macintosh patented his process for waterproofing fabric. This comprised dissolving rubber in naphtha and applying the solution to two pieces of cloth which were afterwards pressed together to form an impermeable compound fabric. After an experimental period in Glasgow, Macintosh commenced manufacture in Manchester, where he formed a partnership with H.H.Birley, B.Kirk and R.W.Barton. Birley was a cotton spinner and weaver and was looking for ways to extend the output of his cloth. He was amongst the first to light his mills with gas, so he shared a common interest with Macintosh.
    New buildings were erected for the production of waterproof cloth in 1824–5, but there were considerable teething troubles with the process, particularly in the spreading of the rubber solution onto the cloth. Peter Ewart helped to install the machinery, including a steam engine supplied by Boulton \& Watt, and the naphtha was supplied from Macintosh's works in Glasgow. It seems that the process was still giving difficulties when Thomas Hancock, the foremost rubber technologist of that time, became involved in 1830 and was made a partner in 1834. By 1836 the waterproof coat was being called a "mackintosh" [sic] and was gaining such popularity that the Manchester business was expanded with additional premises. Macintosh's business was gradually enlarged to include many other kinds of indiarubber products, such as rubber shoes and cushions.
    [br]
    Principal Honours and Distinctions
    FRS 1823.
    Further Reading
    G.Macintosh, 1847, Memoir of Charles Macintosh, London (the fullest account of Charles Macintosh's life).
    H.Schurer, 1953, "The macintosh: the paternity of an invention", Transactions of the Newcomen Society 28:77–87 (an account of the invention of the mackintosh).
    RLH / LRD

    Biographical history of technology > Macintosh, Charles

  • 35 McAdam, John Loudon

    [br]
    b. 21 September 1756 Ayr, Ayrshire, Scotland
    d. 26 November 1836 Moffat, Dumfriesshire, Scotland
    [br]
    Scottish road builder, inventor of the macadam road surface.
    [br]
    McAdam was the son of one of the founder of the first bank in Ayr. As an infant, he nearly died in a fire which destroyed the family's house of Laywyne, in Carsphairn parish; the family then moved to Blairquhan, near Straiton. Thence he went to the parish school in Maybole, where he is said to have made a model section of a local road. In 1770, when his father died, he was sent to America where he was brought up by an uncle who was a merchant in New York. He stayed in America until the close of the revolution, becoming an agent for the sale of prizes and managing to amass a considerable fortune. He returned to Scotland where he settled at Sauchrie in Ayrshire. There he was a magistrate, Deputy-Lieutenant of the county and a road trustee, spending thirteen years there. In 1798 he moved to Falmouth in Devon, England, on his appointment as agent for revictualling of the Royal Navy in western ports.
    He continued the series of experiments started in Ayrshire on the construction of roads. From these he concluded that a road should be built on a raised foundation with drains formed on either side, and should be composed of a number of layers of hard stone broken into angular fragments of roughly cubical shape; the bottom layer would be larger rocks, with layers of progressively smaller rocks above, all bound together with fine gravel. This would become compacted and almost impermeable to water by the action of the traffic passing over it. In 1815 he was appointed Surveyor-General of Bristol's roads and put his theories to the test.
    In 1823 a Committee of the House of Commons was appointed to consider the use of "macadamized" roads in larger towns; McAdam gave evidence to this committee, and it voted to give him £10,000 for his past work. In 1827 he was appointed Surveyor-General of Roads and moved to Hoddesdon, Hertfordshire. From there he made yearly visits to Scotland and it was while returning from one of these that he died, at Moffat in the Scottish Borders. He had married twice, both times to American women; his first wife was the mother of all seven of his children.
    McAdam's method of road construction was much cheaper than that of Thomas Telford, and did much to ease travel and communications; it was therefore adopted by the majority of Turnpike Trusts in Britain, and the macadamization process quickly spread to other countries.
    [br]
    Bibliography
    1819. A Practical Essay on the Scientific Repair and Preservation of Roads.
    1820. Present State of Road-Making.
    Further Reading
    R.Devereux, 1936, John Loudon McAdam: A Chapter from the History of Highways, London: Oxford University Press.
    IMcN

    Biographical history of technology > McAdam, John Loudon

  • 36 Preece, Sir William Henry

    [br]
    b. 15 February 1834 Bryn Helen, Gwynedd, Wales
    d. 6 November 1913 Penrhos, Gwynedd, Wales
    [br]
    Welsh electrical engineer who greatly furthered the development and use of wireless telegraphy and the telephone in Britain, dominating British Post Office engineering during the last two decades of the nineteenth century.
    [br]
    After education at King's College, London, in 1852 Preece entered the office of Edwin Clark with the intention of becoming a civil engineer, but graduate studies at the Royal Institution under Faraday fired his enthusiasm for things electrical. His earliest work, as connected with telegraphy and in particular its application for securing the safe working of railways; in 1853 he obtained an appointment with the Electric and National Telegraph Company. In 1856 he became Superintendent of that company's southern district, but four years later he moved to telegraph work with the London and South West Railway. From 1858 to 1862 he was also Engineer to the Channel Islands Telegraph Company. When the various telegraph companies in Britain were transferred to the State in 1870, Preece became a Divisional Engineer in the General Post Office (GPO). Promotion followed in 1877, when he was appointed Chief Electrician to the Post Office. One of the first specimens of Bell's telephone was brought to England by Preece and exhibited at the British Association meeting in 1877. From 1892 to 1899 he served as Engineer-in-Chief to the Post Office. During this time he made a number of important contributions to telegraphy, including the use of water as part of telegraph circuits across the Solent (1882) and the Bristol Channel (1888). He also discovered the existence of inductive effects between parallel wires, and with Fleming showed that a current (thermionic) flowed between the hot filament and a cold conductor in an incandescent lamp.
    Preece was distinguished by his administrative ability, some scientific insight, considerable engineering intuition and immense energy. He held erroneous views about telephone transmission and, not accepting the work of Oliver Heaviside, made many errors when planning trunk circuits. Prior to the successful use of Hertzian waves for wireless communication Preece carried out experiments, often on a large scale, in attempts at wireless communication by inductive methods. These became of historic interest only when the work of Maxwell and Hertz was developed by Guglielmo Marconi. It is to Preece that credit should be given for encouraging Marconi in 1896 and collaborating with him in his early experimental work on radio telegraphy.
    While still employed by the Post Office, Preece contributed to the development of numerous early public electricity schemes, acting as Consultant and often supervising their construction. At Worcester he was responsible for Britain's largest nineteenth-century public hydro-electric station. He received a knighthood on his retirement in 1899, after which he continued his consulting practice in association with his two sons and Major Philip Cardew. Preece contributed some 136 papers and printed lectures to scientific journals, ninety-nine during the period 1877 to 1894.
    [br]
    Principal Honours and Distinctions
    CB 1894. Knighted (KCB) 1899. FRS 1881. President, Society of Telegraph Engineers, 1880. President, Institution of Electrical Engineers 1880, 1893. President, Institution of Civil Engineers 1898–9. Chairman, Royal Society of Arts 1901–2.
    Bibliography
    Preece produced numerous papers on telegraphy and telephony that were presented as Royal Institution Lectures (see Royal Institution Library of Science, 1974) or as British Association reports.
    1862–3, "Railway telegraphs and the application of electricity to the signaling and working of trains", Proceedings of the ICE 22:167–93.
    Eleven editions of Telegraphy (with J.Sivewright), London, 1870, were published by 1895.
    1883, "Molecular radiation in incandescent lamps", Proceedings of the Physical Society 5: 283.
    1885. "Molecular shadows in incandescent lamps". Proceedings of the Physical Society 7: 178.
    1886. "Electric induction between wires and wires", British Association Report. 1889, with J.Maier, The Telephone.
    1894, "Electric signalling without wires", RSA Journal.
    Further Reading
    J.J.Fahie, 1899, History of Wireless Telegraphy 1838–1899, Edinburgh: Blackwood. E.Hawkes, 1927, Pioneers of Wireless, London: Methuen.
    E.C.Baker, 1976, Sir William Preece, F.R.S. Victorian Engineer Extraordinary, London (a detailed biography with an appended list of his patents, principal lectures and publications).
    D.G.Tucker, 1981–2, "Sir William Preece (1834–1913)", Transactions of the Newcomen Society 53:119–36 (a critical review with a summary of his consultancies).
    GW / KF

    Biographical history of technology > Preece, Sir William Henry

  • 37 Whitworth, Sir Joseph

    [br]
    b. 21 December 1803 Stockport, Cheshire, England
    d. 22 January 1887 Monte Carlo, Monaco
    [br]
    English mechanical engineer and pioneer of precision measurement.
    [br]
    Joseph Whitworth received his early education in a school kept by his father, but from the age of 12 he attended a school near Leeds. At 14 he joined his uncle's mill near Ambergate, Derbyshire, to learn the business of cotton spinning. In the four years he spent there he realized that he was more interested in the machinery than in managing a cotton mill. In 1821 he obtained employment as a mechanic with Crighton \& Co., Manchester. In 1825 he moved to London and worked for Henry Maudslay and later for the Holtzapffels and Joseph Clement. After these years spent gaining experience, he returned to Manchester in 1833 and set up in a small workshop under a sign "Joseph Whitworth, Tool Maker, from London".
    The business expanded steadily and the firm made machine tools of all types and other engineering products including steam engines. From 1834 Whitworth obtained many patents in the fields of machine tools, textile and knitting machinery and road-sweeping machines. By 1851 the company was generally regarded as the leading manufacturer of machine tools in the country. Whitworth was a pioneer of precise measurement and demonstrated the fundamental mode of producing a true plane by making surface plates in sets of three. He advocated the use of the decimal system and made use of limit gauges, and he established a standard screw thread which was adopted as the national standard. In 1853 Whitworth visited America as a member of a Royal Commission and reported on American industry. At the time of the Crimean War in 1854 he was asked to provide machinery for manufacturing rifles and this led him to design an improved rifle of his own. Although tests in 1857 showed this to be much superior to all others, it was not adopted by the War Office. Whitworth's experiments with small arms led on to the construction of big guns and projectiles. To improve the quality of the steel used for these guns, he subjected the molten metal to pressure during its solidification, this fluid-compressed steel being then known as "Whitworth steel".
    In 1868 Whitworth established thirty annual scholarships for engineering students. After his death his executors permanently endowed the Whitworth Scholarships and distributed his estate of nearly half a million pounds to various educational and charitable institutions. Whitworth was elected an Associate of the Institution of Civil Engineers in 1841 and a Member in 1848 and served on its Council for many years. He was elected a Member of the Institution of Mechanical Engineers in 1847, the year of its foundation.
    [br]
    Principal Honours and Distinctions
    Baronet 1869. FRS 1857. President, Institution of Mechanical Engineers 1856, 1857 and 1866. Hon. LLD Trinity College, Dublin, 1863. Hon. DCL Oxford University 1868. Member of the Smeatonian Society of Civil Engineers 1864. Légion d'honneur 1868. Society of Arts Albert Medal 1868.
    Bibliography
    1858, Miscellaneous Papers on Mechanical Subjects, London; 1873, Miscellaneous Papers on Practical Subjects: Guns and Steel, London (both are collections of his papers to technical societies).
    1854, with G.Wallis, The Industry of the United States in Machinery, Manufactures, and
    Useful and Ornamental Arts, London.
    Further Reading
    F.C.Lea, 1946, A Pioneer of Mechanical Engineering: Sir Joseph Whitworth, London (a short biographical account).
    A.E.Musson, 1963, "Joseph Whitworth: toolmaker and manufacturer", Engineering Heritage, Vol. 1, London, 124–9 (a short biography).
    D.J.Jeremy (ed.), 1984–6, Dictionary of Business Biography, Vol. 5, London, 797–802 (a short biography).
    W.Steeds, 1969, A History of Machine Tools 1700–1910, Oxford (describes Whitworth's machine tools).
    RTS

    Biographical history of technology > Whitworth, Sir Joseph

  • 38 Berthollet, Claude-Louis

    SUBJECT AREA: Textiles
    [br]
    b. 9 November 1748 Talloise, near Lake Annecy, France
    d. 6 November 1822 Arceuil, France
    [br]
    French chemist who made important innovations in textile chemistry.
    [br]
    Berthollet qualified as a medical doctor and pursued chemical researches, notably into "muriatic acid" (chlorine), then recently discovered by Scheele. He was one of the first chemists to embrace the new system of chemistry advanced by Lavoisier. Berthollet held several official appointments, among them inspector of dye works (from 1784) and Director of the Manufacture Nationale des Gobelins. These appointments enabled him to continue his researches and embark on a series of publications on the practical applications of chlorine, prussic acid (hydrocyanic acid) and ammonia. He clearly demonstrated the benefits of the French practice of appointing scientists to the state manufactories.
    There were two practical results of Berthollet's studies of chlorine. First, he produced a powerful explosive by substituting potassium chlorate, formed by the action of chlorine on potash, in place of nitre (potassium nitrate) in gunpowder. Then, mainly from humanitarian motives, he followed up Scheele's observation of the bleaching properties of chlorine water, in order to release for cultivation the considerable areas of land that had hitherto been required by the old bleaching process. The chlorine method greatly speeded up bleaching; this was a vital factor in the revolution in the textile industries.
    After a visit to Egypt in 1799, Berthollet carried out many experiments on dyeing, seeking to place this ancient craft onto a scientific basis. His work is summed up in his Eléments de l'art de la teinture, Paris, 1791.
    [br]
    Bibliography
    1791, Eléments de Van de la teinture, Paris (covers his work on dyeing).
    Berthollet published two books of importance in the early history of physical chemistry: 1801, Recherches sur les lois de l'affinité, Paris.
    Annales de Chimie.
    Further Reading
    E.Farber, 1961, Great Chemists, New York: Interscience, pp. 32–4 (includes a short biographical account).
    LRD

    Biographical history of technology > Berthollet, Claude-Louis

  • 39 Biles, Sir John Harvard

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1854 Portsmouth, England
    d. 27 October 1933 Scotland (?)
    [br]
    English naval architect, academic and successful consultant in the years when British shipbuilding was at its peak.
    [br]
    At the conclusion of his apprenticeship at the Royal Dockyard, Portsmouth, Biles entered the Royal School of Naval Architecture, South Kensington, London; as it was absorbed by the Royal Naval College, he graduated from Greenwich to the Naval Construction Branch, first at Pembroke and later at the Admiralty. From the outset of his professional career it was apparent that he had the intellectual qualities that would enable him to oversee the greatest changes in ship design of all time. He was one of the earliest proponents of the revolutionary work of the hydrodynamicist William Froude.
    In 1880 Biles turned to the merchant sector, taking the post of Naval Architect to J. \& G. Thomson (later John Brown \& Co.). Using Froude's Law of Comparisons he was able to design the record-breaking City of Paris of 1887, the ship that started the fabled succession of fast and safe Clyde bank-built North Atlantic liners. For a short spell, before returning to Scotland, Biles worked in Southampton. In 1891 Biles accepted the Chair of Naval Architecture at the University of Glasgow. Working from the campus at Gilmorehill, he was to make the University (the oldest school of engineering in the English-speaking world) renowned in naval architecture. His workload was legendary, but despite this he was admired as an excellent lecturer with cheerful ways which inspired devotion to the Department and the University. During the thirty years of his incumbency of the Chair, he served on most of the important government and international shipping committees, including those that recommended the design of HMS Dreadnought, the ordering of the Cunarders Lusitania and Mauretania and the lifesaving improvements following the Titanic disaster. An enquiry into the strength of destroyer hulls followed the loss of HMS Cobra and Viper, and he published the report on advanced experimental work carried out on HMS Wolf by his undergraduates.
    In 1906 he became Consultant Naval Architect to the India Office, having already set up his own consultancy organization, which exists today as Sir J.H.Biles and Partners. His writing was prolific, with over twenty-five papers to professional institutions, sundry articles and a two-volume textbook.
    [br]
    Principal Honours and Distinctions
    Knighted 1913. Knight Commander of the Indian Empire 1922. Master of the Worshipful Company of Shipwrights 1904.
    Bibliography
    1905, "The strength of ships with special reference to experiments and calculations made upon HMS Wolf", Transactions of the Institution of Naval Architects.
    1911, The Design and Construction of Ships, London: Griffin.
    Further Reading
    C.A.Oakley, 1973, History of a Facuity, Glasgow University.
    FMW

    Biographical history of technology > Biles, Sir John Harvard

  • 40 Jenkins, Charles Francis

    [br]
    b. 1867 USA
    d. 1934 USA
    [br]
    American pioneer of motion pictures and television.
    [br]
    During the early years of the motion picture industry, Jenkins made many innovations, including the development in 1894 of his own projector, the "Phantoscope", which was widely used for a number of years. In the same year he also suggested the possibility of electrically transmitting pictures over a distance, an interest that led to a lifetime of experimentation. As a result of his engineering contributions to the practical realization of moving pictures, in 1915 the National Motion Picture Board of Trade asked him to chair a committee charged with establishing technical standards for the industry. This in turn led to his proposing the creation of a professional society for those engineers in the industry, and the following year the Society of Motion Picture Engineers (later to become the Society of Motion Picture and Television Engineers) was formed, with Jenkins as its first President. Soon after this he began experiments with mechanical television, using both the Nipkow hole-spiral disc and a low-definition system of his own, based on rotating bevelled glass discs (his so-called "prismatic rings") and alkali-metal photocells. In the 1920s he gave many demonstrations of mechanical television, including a cable transmission of a crude silhouette of President Harding from Washington, DC, to Philadelphia in 1923 and a radio broadcast from Washington in 1928. The following year he formed the Jenkins Television Company to make television transmitters and receivers, but it soon went into debt and was acquired by the de Forest Company, from whom RCA later purchased the patents.
    [br]
    Principal Honours and Distinctions
    First President, Society of Motion Picture Engineers 1916.
    Bibliography
    1923, "Radio photographs, radio movies and radio vision", Transactions of the Society of Motion Picture Engineers 16:78.
    1923, "Recent progress in the transmission of motion pictures by radio", Transactions of
    the Society of Motion Picture Engineers 17:81.
    1925, "Radio movies", Transactions of the Society of Motion Picture Engineers 21:7. 1930, "Television systems", Journal of the Society of Motion Picture Engineers 15:445. 1925. Vision by Radio.
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: A History of the American Television Industry, 1925–41: University of Alabama Press.
    R.W.Hubbell, 1946, 4,000 Years of Television, London: G.Harrap \& Sons.
    1926. "The Jenkins system", Wireless World 18: 642 (contains a specific account of Jenkins's work).
    KF

    Biographical history of technology > Jenkins, Charles Francis

См. также в других словарях:

  • Experiments and Observations on Different Kinds of Air — (1774–86) is a six volume work published by eighteenth century British polymath Joseph Priestley which reports a series of his experiments on airs or gases, most notably his discovery of oxygen gas (which he called dephlogisticated air ).… …   Wikipedia

  • Made in the Dark — Infobox Album | Name = Made in the Dark Type = Album Artist = Hot Chip Released = 4 February 2008 (UK) 5 February 2008 (U.S.) Recorded = Genre = Electronic indie, pop Length = 53:57 Label = EMI (UK), DFA Records, Astralwerks Records (US) Producer …   Wikipedia

  • List of experiments from Lilo & Stitch — Kixx redirects here. For the soccer team, see Philadelphia Kixx. Image of experiment 626, also known as Stitch. The most popular of the experiments. This is a list of experiments from the Disney animated Lilo Stitch franchise, a series of… …   Wikipedia

  • Serial Experiments Lain — DVD box set of Serial Experiments Lain Genre …   Wikipedia

  • NAZI MEDICAL EXPERIMENTS — During the Nazi regime a series of medical experiments were carried out, some even before the war, to advance German medicine without the consent of the patients upon whom the experiments were conducted and with total disregard for their… …   Encyclopedia of Judaism

  • List of experiments — See also: timeline of scientific experiments and list of famous discoveries The following is a list of historically important scientific experiments. A historic scientific experiment is one which demonstrates something of great scientific… …   Wikipedia

  • List of Serial Experiments Lain episodes — Boxed Set, All four volumes Serial Experiments Lain was created as a multimedia production, including an anime, a video game, a manga, and several artbooks and soundtracks. This is the complete episode listing of the anime produced for Serial… …   Wikipedia

  • Bill Frist medical school experiments controversy — While he was a medical school student in the 1970s, Bill Frist (formerly a Republican U.S. Senator from Tennessee) performed medical experiments on shelter cats while researching the use of drugs on the mitral valve. By his own account, Frist… …   Wikipedia

  • Copley Medal — The Copley Medal awarded to Mendeleev in 1905 …   Wikipedia

  • United States — a republic in the N Western Hemisphere comprising 48 conterminous states, the District of Columbia, and Alaska in North America, and Hawaii in the N Pacific. 267,954,767; conterminous United States, 3,022,387 sq. mi. (7,827,982 sq. km); with… …   Universalium

  • performing arts — arts or skills that require public performance, as acting, singing, or dancing. [1945 50] * * * ▪ 2009 Introduction Music Classical.       The last vestiges of the Cold War seemed to thaw for a moment on Feb. 26, 2008, when the unfamiliar strains …   Universalium

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»