Перевод: со всех языков на английский

с английского на все языки

experimental+knowledge

  • 1 experientia

    expĕrĭentĭa, ae, f. [experior], a trial, proof, experiment (class.).
    I.
    Prop.:

    experientiā tentare quaedam,

    Varr. R. R. 1, 18, 8; Planc. ap. Cic. Fam. 10, 18, 3:

    patrimonii amplificandi,

    Cic. Rab. Post. 16, 43:

    belli,

    Vell. 2, 78, 2:

    veri,

    Ov. M. 1, 225:

    fide (i. e. fidei),

    id. ib. 7, 737.—
    B.
    Effort, endeavor:

    quis id approbare possit, aegritudinem suscipere pro experientia, si quid habere velis?

    i. e. instead of trying to acquire it, Cic. Tusc. 4, 26, 56:

    experientia patrimonii amplificandi labi,

    id. Rab. Post. 16, 43.—
    II.
    Transf., the knowledge gained by repeated trials, experimental knowledge, practice, experience (post-Aug.): ad curandi rationem nihil plus confert quam experientia, Cels. praef. med.:

    Agrippa non aetate neque rerum experientia tantae moli par,

    Tac. A. 1, 4:

    vir longā experientiā,

    id. ib. 1, 46; 13, 6; 14, 36; id. H. 2, 76; Col. 10, 338: qui cultus habendo Sit pecori;

    apibus quanta experientia parcis,

    Verg. G. 1, 4; cf.:

    nova hominum,

    id. ib. 4, 316.

    Lewis & Short latin dictionary > experientia

  • 2 experientia

        experientia ae, f    [experiens], a trial, proof, experiment: veri, O.— Effort, endeavor: aegritudinem suscipere pro experientiā, instead of effort: nova hominum, device, V. — Experimental knowledge, practice, experience: apibus quanta experientia, V.
    * * *
    trial, experiment; experience

    Latin-English dictionary > experientia

  • 3 Erfahrungswissen

    nt KI experimental knowledge

    Deutsch-Englisch Wörterbuch für Informatik > Erfahrungswissen

  • 4 полученный при помощи

    Knowledge of the size, etc. of molecules deduced from experimental methods...

    Русско-английский научно-технический словарь переводчика > полученный при помощи

  • 5 Bibliography

     ■ Aitchison, J. (1987). Noam Chomsky: Consensus and controversy. New York: Falmer Press.
     ■ Anderson, J. R. (1980). Cognitive psychology and its implications. San Francisco: W. H. Freeman.
     ■ Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.
     ■ Anderson, J. R. (1995). Cognitive psychology and its implications (4th ed.). New York: W. H. Freeman.
     ■ Archilochus (1971). In M. L. West (Ed.), Iambi et elegi graeci (Vol. 1). Oxford: Oxford University Press.
     ■ Armstrong, D. M. (1990). The causal theory of the mind. In W. G. Lycan (Ed.), Mind and cognition: A reader (pp. 37-47). Cambridge, MA: Basil Blackwell. (Originally published in 1981 in The nature of mind and other essays, Ithaca, NY: University Press).
     ■ Atkins, P. W. (1992). Creation revisited. Oxford: W. H. Freeman & Company.
     ■ Austin, J. L. (1962). How to do things with words. Cambridge, MA: Harvard University Press.
     ■ Bacon, F. (1878). Of the proficience and advancement of learning divine and human. In The works of Francis Bacon (Vol. 1). Cambridge, MA: Hurd & Houghton.
     ■ Bacon, R. (1928). Opus majus (Vol. 2). R. B. Burke (Trans.). Philadelphia, PA: University of Pennsylvania Press.
     ■ Bar-Hillel, Y. (1960). The present status of automatic translation of languages. In F. L. Alt (Ed.), Advances in computers (Vol. 1). New York: Academic Press.
     ■ Barr, A., & E. A. Feigenbaum (Eds.) (1981). The handbook of artificial intelligence (Vol. 1). Reading, MA: Addison-Wesley.
     ■ Barr, A., & E. A. Feigenbaum (Eds.) (1982). The handbook of artificial intelligence (Vol. 2). Los Altos, CA: William Kaufman.
     ■ Barron, F. X. (1963). The needs for order and for disorder as motives in creative activity. In C. W. Taylor & F. X. Barron (Eds.), Scientific creativity: Its rec ognition and development (pp. 153-160). New York: Wiley.
     ■ Bartlett, F. C. (1932). Remembering: A study in experimental and social psychology. Cambridge: Cambridge University Press.
     ■ Bartley, S. H. (1969). Principles of perception. London: Harper & Row.
     ■ Barzun, J. (1959). The house of intellect. New York: Harper & Row.
     ■ Beach, F. A., D. O. Hebb, C. T. Morgan & H. W. Nissen (Eds.) (1960). The neu ropsychology of Lashley. New York: McGraw-Hill.
     ■ Berkeley, G. (1996). Principles of human knowledge: Three Dialogues. Oxford: Oxford University Press. (Originally published in 1710.)
     ■ Berlin, I. (1953). The hedgehog and the fox: An essay on Tolstoy's view of history. NY: Simon & Schuster.
     ■ Bierwisch, J. (1970). Semantics. In J. Lyons (Ed.), New horizons in linguistics. Baltimore: Penguin Books.
     ■ Black, H. C. (1951). Black's law dictionary. St. Paul, MN: West Publishing.
     ■ Bobrow, D. G., & D. A. Norman (1975). Some principles of memory schemata. In D. G. Bobrow & A. Collins (Eds.), Representation and understanding: Stud ies in Cognitive Science (pp. 131-149). New York: Academic Press.
     ■ Boden, M. A. (1977). Artificial intelligence and natural man. New York: Basic Books.
     ■ Boden, M. A. (1981). Minds and mechanisms. Ithaca, NY: Cornell University Press.
     ■ Boden, M. A. (1990a). The creative mind: Myths and mechanisms. London: Cardinal.
     ■ Boden, M. A. (1990b). The philosophy of artificial intelligence. Oxford: Oxford University Press.
     ■ Boden, M. A. (1994). Precis of The creative mind: Myths and mechanisms. Behavioral and brain sciences 17, 519-570.
     ■ Boden, M. (1996). Creativity. In M. Boden (Ed.), Artificial Intelligence (2nd ed.). San Diego: Academic Press.
     ■ Bolter, J. D. (1984). Turing's man: Western culture in the computer age. Chapel Hill, NC: University of North Carolina Press.
     ■ Bolton, N. (1972). The psychology of thinking. London: Methuen.
     ■ Bourne, L. E. (1973). Some forms of cognition: A critical analysis of several papers. In R. Solso (Ed.), Contemporary issues in cognitive psychology (pp. 313324). Loyola Symposium on Cognitive Psychology (Chicago 1972). Washington, DC: Winston.
     ■ Bransford, J. D., N. S. McCarrell, J. J. Franks & K. E. Nitsch (1977). Toward unexplaining memory. In R. Shaw & J. D. Bransford (Eds.), Perceiving, acting, and knowing (pp. 431-466). Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Breger, L. (1981). Freud's unfinished journey. London: Routledge & Kegan Paul.
     ■ Brehmer, B. (1986). In one word: Not from experience. In H. R. Arkes & K. Hammond (Eds.), Judgment and decision making: An interdisciplinary reader (pp. 705-719). Cambridge: Cambridge University Press.
     ■ Bresnan, J. (1978). A realistic transformational grammar. In M. Halle, J. Bresnan & G. A. Miller (Eds.), Linguistic theory and psychological reality (pp. 1-59). Cambridge, MA: MIT Press.
     ■ Brislin, R. W., W. J. Lonner & R. M. Thorndike (Eds.) (1973). Cross- cultural research methods. New York: Wiley.
     ■ Bronowski, J. (1977). A sense of the future: Essays in natural philosophy. P. E. Ariotti with R. Bronowski (Eds.). Cambridge, MA: MIT Press.
     ■ Bronowski, J. (1978). The origins of knowledge and imagination. New Haven, CT: Yale University Press.
     ■ Brown, R. O. (1973). A first language: The early stages. Cambridge, MA: Harvard University Press.
     ■ Brown, T. (1970). Lectures on the philosophy of the human mind. In R. Brown (Ed.), Between Hume and Mill: An anthology of British philosophy- 1749- 1843 (pp. 330-387). New York: Random House/Modern Library.
     ■ Bruner, J. S., J. Goodnow & G. Austin (1956). A study of thinking. New York: Wiley.
     ■ Campbell, J. (1982). Grammatical man: Information, entropy, language, and life. New York: Simon & Schuster.
     ■ Campbell, J. (1989). The improbable machine. New York: Simon & Schuster.
     ■ Carlyle, T. (1966). On heroes, hero- worship and the heroic in history. Lincoln: University of Nebraska Press. (Originally published in 1841.)
     ■ Carnap, R. (1959). The elimination of metaphysics through logical analysis of language [Ueberwindung der Metaphysik durch logische Analyse der Sprache]. In A. J. Ayer (Ed.), Logical positivism (pp. 60-81) A. Pap (Trans). New York: Free Press. (Originally published in 1932.)
     ■ Cassirer, E. (1946). Language and myth. New York: Harper and Brothers. Reprinted. New York: Dover Publications, 1953.
     ■ Cattell, R. B., & H. J. Butcher (1970). Creativity and personality. In P. E. Vernon (Ed.), Creativity. Harmondsworth, England: Penguin Books.
     ■ Caudill, M., & C. Butler (1990). Naturally intelligent systems. Cambridge, MA: MIT Press/Bradford Books.
     ■ Chandrasekaran, B. (1990). What kind of information processing is intelligence? A perspective on AI paradigms and a proposal. In D. Partridge & R. Wilks (Eds.), The foundations of artificial intelligence: A sourcebook (pp. 14-46). Cambridge: Cambridge University Press.
     ■ Charniak, E., & McDermott, D. (1985). Introduction to artificial intelligence. Reading, MA: Addison-Wesley.
     ■ Chase, W. G., & H. A. Simon (1988). The mind's eye in chess. In A. Collins & E. E. Smith (Eds.), Readings in cognitive science: A perspective from psychology and artificial intelligence (pp. 461-493). San Mateo, CA: Kaufmann.
     ■ Cheney, D. L., & R. M. Seyfarth (1990). How monkeys see the world: Inside the mind of another species. Chicago: University of Chicago Press.
     ■ Chi, M.T.H., R. Glaser & E. Rees (1982). Expertise in problem solving. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (pp. 7-73). Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Chomsky, N. (1957). Syntactic structures. The Hague: Mouton. Janua Linguarum.
     ■ Chomsky, N. (1964). A transformational approach to syntax. In J. A. Fodor & J. J. Katz (Eds.), The structure of language: Readings in the philosophy of lan guage (pp. 211-245). Englewood Cliffs, NJ: Prentice-Hall.
     ■ Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.
     ■ Chomsky, N. (1972). Language and mind (enlarged ed.). New York: Harcourt Brace Jovanovich.
     ■ Chomsky, N. (1979). Language and responsibility. New York: Pantheon.
     ■ Chomsky, N. (1986). Knowledge of language: Its nature, origin and use. New York: Praeger Special Studies.
     ■ Churchland, P. (1979). Scientific realism and the plasticity of mind. New York: Cambridge University Press.
     ■ Churchland, P. M. (1989). A neurocomputational perspective: The nature of mind and the structure of science. Cambridge, MA: MIT Press.
     ■ Churchland, P. S. (1986). Neurophilosophy. Cambridge, MA: MIT Press/Bradford Books.
     ■ Clark, A. (1996). Philosophical Foundations. In M. A. Boden (Ed.), Artificial in telligence (2nd ed.). San Diego: Academic Press.
     ■ Clark, H. H., & T. B. Carlson (1981). Context for comprehension. In J. Long & A. Baddeley (Eds.), Attention and performance (Vol. 9, pp. 313-330). Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Clarke, A. C. (1984). Profiles of the future: An inquiry into the limits of the possible. New York: Holt, Rinehart & Winston.
     ■ Claxton, G. (1980). Cognitive psychology: A suitable case for what sort of treatment? In G. Claxton (Ed.), Cognitive psychology: New directions (pp. 1-25). London: Routledge & Kegan Paul.
     ■ Code, M. (1985). Order and organism. Albany, NY: State University of New York Press.
     ■ Collingwood, R. G. (1972). The idea of history. New York: Oxford University Press.
     ■ Coopersmith, S. (1967). The antecedents of self- esteem. San Francisco: W. H. Freeman.
     ■ Copland, A. (1952). Music and imagination. London: Oxford University Press.
     ■ Coren, S. (1994). The intelligence of dogs. New York: Bantam Books.
     ■ Cottingham, J. (Ed.) (1996). Western philosophy: An anthology. Oxford: Blackwell Publishers.
     ■ Cox, C. (1926). The early mental traits of three hundred geniuses. Stanford, CA: Stanford University Press.
     ■ Craik, K.J.W. (1943). The nature of explanation. Cambridge: Cambridge University Press.
     ■ Cronbach, L. J. (1990). Essentials of psychological testing (5th ed.). New York: HarperCollins.
     ■ Cronbach, L. J., & R. E. Snow (1977). Aptitudes and instructional methods. New York: Irvington. Paperback edition, 1981.
     ■ Csikszentmihalyi, M. (1993). The evolving self. New York: Harper Perennial.
     ■ Culler, J. (1976). Ferdinand de Saussure. New York: Penguin Books.
     ■ Curtius, E. R. (1973). European literature and the Latin Middle Ages. W. R. Trask (Trans.). Princeton, NJ: Princeton University Press.
     ■ D'Alembert, J.L.R. (1963). Preliminary discourse to the encyclopedia of Diderot. R. N. Schwab (Trans.). Indianapolis: Bobbs-Merrill.
     ■ Damasio, A. (1994). Descartes' error: Emotion, reason, and the human brain. New York: Avon.
     ■ Dampier, W. C. (1966). A history of modern science. Cambridge: Cambridge University Press.
     ■ Darwin, C. (1911). The life and letters of Charles Darwin (Vol. 1). Francis Darwin (Ed.). New York: Appleton.
     ■ Davidson, D. (1970) Mental events. In L. Foster & J. W. Swanson (Eds.), Experience and theory (pp. 79-101). Amherst: University of Massachussetts Press.
     ■ Davies, P. (1995). About time: Einstein's unfinished revolution. New York: Simon & Schuster/Touchstone.
     ■ Davis, R., & J. J. King (1977). An overview of production systems. In E. Elcock & D. Michie (Eds.), Machine intelligence 8. Chichester, England: Ellis Horwood.
     ■ Davis, R., & D. B. Lenat (1982). Knowledge- based systems in artificial intelligence. New York: McGraw-Hill.
     ■ Dawkins, R. (1982). The extended phenotype: The gene as the unit of selection. Oxford: W. H. Freeman.
     ■ deKleer, J., & J. S. Brown (1983). Assumptions and ambiguities in mechanistic mental models (1983). In D. Gentner & A. L. Stevens (Eds.), Mental modes (pp. 155-190). Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Dennett, D. C. (1978a). Brainstorms: Philosophical essays on mind and psychology. Montgomery, VT: Bradford Books.
     ■ Dennett, D. C. (1978b). Toward a cognitive theory of consciousness. In D. C. Dennett, Brainstorms: Philosophical Essays on Mind and Psychology. Montgomery, VT: Bradford Books.
     ■ Dennett, D. C. (1995). Darwin's dangerous idea: Evolution and the meanings of life. New York: Simon & Schuster/Touchstone.
     ■ Descartes, R. (1897-1910). Traite de l'homme. In Oeuvres de Descartes (Vol. 11, pp. 119-215). Paris: Charles Adam & Paul Tannery. (Originally published in 1634.)
     ■ Descartes, R. (1950). Discourse on method. L. J. Lafleur (Trans.). New York: Liberal Arts Press. (Originally published in 1637.)
     ■ Descartes, R. (1951). Meditation on first philosophy. L. J. Lafleur (Trans.). New York: Liberal Arts Press. (Originally published in 1641.)
     ■ Descartes, R. (1955). The philosophical works of Descartes. E. S. Haldane and G.R.T. Ross (Trans.). New York: Dover. (Originally published in 1911 by Cambridge University Press.)
     ■ Descartes, R. (1967). Discourse on method (Pt. V). In E. S. Haldane and G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 1, pp. 106-118). Cambridge: Cambridge University Press. (Originally published in 1637.)
     ■ Descartes, R. (1970a). Discourse on method. In E. S. Haldane & G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 1, pp. 181-200). Cambridge: Cambridge University Press. (Originally published in 1637.)
     ■ Descartes, R. (1970b). Principles of philosophy. In E. S. Haldane & G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 1, pp. 178-291). Cambridge: Cambridge University Press. (Originally published in 1644.)
     ■ Descartes, R. (1984). Meditations on first philosophy. In J. Cottingham, R. Stoothoff & D. Murduch (Trans.), The philosophical works of Descartes (Vol. 2). Cambridge: Cambridge University Press. (Originally published in 1641.)
     ■ Descartes, R. (1986). Meditations on first philosophy. J. Cottingham (Trans.). Cambridge: Cambridge University Press. (Originally published in 1641 as Med itationes de prima philosophia.)
     ■ deWulf, M. (1956). An introduction to scholastic philosophy. Mineola, NY: Dover Books.
     ■ Dixon, N. F. (1981). Preconscious processing. London: Wiley.
     ■ Doyle, A. C. (1986). The Boscombe Valley mystery. In Sherlock Holmes: The com plete novels and stories (Vol. 1). New York: Bantam.
     ■ Dreyfus, H., & S. Dreyfus (1986). Mind over machine. New York: Free Press.
     ■ Dreyfus, H. L. (1972). What computers can't do: The limits of artificial intelligence (revised ed.). New York: Harper & Row.
     ■ Dreyfus, H. L., & S. E. Dreyfus (1986). Mind over machine: The power of human intuition and expertise in the era of the computer. New York: Free Press.
     ■ Edelman, G. M. (1992). Bright air, brilliant fire: On the matter of the mind. New York: Basic Books.
     ■ Ehrenzweig, A. (1967). The hidden order of art. London: Weidenfeld & Nicolson.
     ■ Einstein, A., & L. Infeld (1938). The evolution of physics. New York: Simon & Schuster.
     ■ Eisenstein, S. (1947). Film sense. New York: Harcourt, Brace & World.
     ■ Everdell, W. R. (1997). The first moderns. Chicago: University of Chicago Press.
     ■ Eysenck, M. W. (1977). Human memory: Theory, research and individual difference. Oxford: Pergamon.
     ■ Eysenck, M. W. (1982). Attention and arousal: Cognition and performance. Berlin: Springer.
     ■ Eysenck, M. W. (1984). A handbook of cognitive psychology. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Fancher, R. E. (1979). Pioneers of psychology. New York: W. W. Norton.
     ■ Farrell, B. A. (1981). The standing of psychoanalysis. New York: Oxford University Press.
     ■ Feldman, D. H. (1980). Beyond universals in cognitive development. Norwood, NJ: Ablex.
     ■ Fetzer, J. H. (1996). Philosophy and cognitive science (2nd ed.). New York: Paragon House.
     ■ Finke, R. A. (1990). Creative imagery: Discoveries and inventions in visualization. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Flanagan, O. (1991). The science of the mind. Cambridge MA: MIT Press/Bradford Books.
     ■ Fodor, J. (1983). The modularity of mind. Cambridge, MA: MIT Press/Bradford Books.
     ■ Frege, G. (1972). Conceptual notation. T. W. Bynum (Trans.). Oxford: Clarendon Press. (Originally published in 1879.)
     ■ Frege, G. (1979). Logic. In H. Hermes, F. Kambartel & F. Kaulbach (Eds.), Gottlob Frege: Posthumous writings. Chicago: University of Chicago Press. (Originally published in 1879-1891.)
     ■ Freud, S. (1959). Creative writers and day-dreaming. In J. Strachey (Ed.), The standard edition of the complete psychological works of Sigmund Freud (Vol. 9, pp. 143-153). London: Hogarth Press.
     ■ Freud, S. (1966). Project for a scientific psychology. In J. Strachey (Ed.), The stan dard edition of the complete psychological works of Sigmund Freud (Vol. 1, pp. 295-398). London: Hogarth Press. (Originally published in 1950 as Aus den AnfaЁngen der Psychoanalyse, in London by Imago Publishing.)
     ■ Freud, S. (1976). Lecture 18-Fixation to traumas-the unconscious. In J. Strachey (Ed.), The standard edition of the complete psychological works of Sigmund Freud (Vol. 16, p. 285). London: Hogarth Press.
     ■ Galileo, G. (1990). Il saggiatore [The assayer]. In S. Drake (Ed.), Discoveries and opinions of Galileo. New York: Anchor Books. (Originally published in 1623.)
     ■ Gassendi, P. (1970). Letter to Descartes. In "Objections and replies." In E. S. Haldane & G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 2, pp. 179-240). Cambridge: Cambridge University Press. (Originally published in 1641.)
     ■ Gazzaniga, M. S. (1988). Mind matters: How mind and brain interact to create our conscious lives. Boston: Houghton Mifflin in association with MIT Press/Bradford Books.
     ■ Genesereth, M. R., & N. J. Nilsson (1987). Logical foundations of artificial intelligence. Palo Alto, CA: Morgan Kaufmann.
     ■ Ghiselin, B. (1952). The creative process. New York: Mentor.
     ■ Ghiselin, B. (1985). The creative process. Berkeley, CA: University of California Press. (Originally published in 1952.)
     ■ Gilhooly, K. J. (1996). Thinking: Directed, undirected and creative (3rd ed.). London: Academic Press.
     ■ Glass, A. L., K. J. Holyoak & J. L. Santa (1979). Cognition. Reading, MA: AddisonWesley.
     ■ Goody, J. (1977). The domestication of the savage mind. Cambridge: Cambridge University Press.
     ■ Gruber, H. E. (1980). Darwin on man: A psychological study of scientific creativity (2nd ed.). Chicago: University of Chicago Press.
     ■ Gruber, H. E., & S. Davis (1988). Inching our way up Mount Olympus: The evolving systems approach to creative thinking. In R. J. Sternberg (Ed.), The nature of creativity: Contemporary psychological perspectives. Cambridge: Cambridge University Press.
     ■ Guthrie, E. R. (1972). The psychology of learning. New York: Harper. (Originally published in 1935.)
     ■ Habermas, J. (1972). Knowledge and human interests. Boston: Beacon Press.
     ■ Hadamard, J. (1945). The psychology of invention in the mathematical field. Princeton, NJ: Princeton University Press.
     ■ Hand, D. J. (1985). Artificial intelligence and psychiatry. Cambridge: Cambridge University Press.
     ■ Harris, M. (1981). The language myth. London: Duckworth.
     ■ Haugeland, J. (Ed.) (1981). Mind design: Philosophy, psychology, artificial intelligence. Cambridge, MA: MIT Press/Bradford Books.
     ■ Haugeland, J. (1981a). The nature and plausibility of cognitivism. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, artificial intelligence (pp. 243-281). Cambridge, MA: MIT Press.
     ■ Haugeland, J. (1981b). Semantic engines: An introduction to mind design. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, artificial intelligence (pp. 1-34). Cambridge, MA: MIT Press/Bradford Books.
     ■ Haugeland, J. (1985). Artificial intelligence: The very idea. Cambridge, MA: MIT Press.
     ■ Hawkes, T. (1977). Structuralism and semiotics. Berkeley: University of California Press.
     ■ Hebb, D. O. (1949). The organisation of behaviour. New York: Wiley.
     ■ Hebb, D. O. (1958). A textbook of psychology. Philadelphia: Saunders.
     ■ Hegel, G.W.F. (1910). The phenomenology of mind. J. B. Baille (Trans.). London: Sonnenschein. (Originally published as Phaenomenologie des Geistes, 1807.)
     ■ Heisenberg, W. (1958). Physics and philosophy. New York: Harper & Row.
     ■ Hempel, C. G. (1966). Philosophy of natural science. Englewood Cliffs, NJ: PrenticeHall.
     ■ Herman, A. (1997). The idea of decline in Western history. New York: Free Press.
     ■ Herrnstein, R. J., & E. G. Boring (Eds.) (1965). A source book in the history of psy chology. Cambridge, MA: Harvard University Press.
     ■ Herzmann, E. (1964). Mozart's creative process. In P. H. Lang (Ed.), The creative world of Mozart (pp. 17-30). London: Oldbourne Press.
     ■ Hilgard, E. R. (1957). Introduction to psychology. London: Methuen.
     ■ Hobbes, T. (1651). Leviathan. London: Crooke.
     ■ Hofstadter, D. R. (1979). Goedel, Escher, Bach: An eternal golden braid. New York: Basic Books.
     ■ Holliday, S. G., & M. J. Chandler (1986). Wisdom: Explorations in adult competence. Basel, Switzerland: Karger.
     ■ Horn, J. L. (1986). In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol. 3). Hillsdale, NJ: Erlbaum.
     ■ Hull, C. (1943). Principles of behavior. New York: Appleton-Century-Crofts.
     ■ Hume, D. (1955). An inquiry concerning human understanding. New York: Liberal Arts Press. (Originally published in 1748.)
     ■ Hume, D. (1975). An enquiry concerning human understanding. In L. A. SelbyBigge (Ed.), Hume's enquiries (3rd. ed., revised P. H. Nidditch). Oxford: Clarendon. (Spelling and punctuation revised.) (Originally published in 1748.)
     ■ Hume, D. (1978). A treatise of human nature. L. A. Selby-Bigge (Ed.), Hume's enquiries (3rd. ed., revised P. H. Nidditch). Oxford: Clarendon. (With some modifications of spelling and punctuation.) (Originally published in 1690.)
     ■ Hunt, E. (1973). The memory we must have. In R. C. Schank & K. M. Colby (Eds.), Computer models of thought and language. (pp. 343-371) San Francisco: W. H. Freeman.
     ■ Husserl, E. (1960). Cartesian meditations. The Hague: Martinus Nijhoff.
     ■ Inhelder, B., & J. Piaget (1958). The growth of logical thinking from childhood to adolescence. New York: Basic Books. (Originally published in 1955 as De la logique de l'enfant a` la logique de l'adolescent. [Paris: Presses Universitaire de France])
     ■ James, W. (1890a). The principles of psychology (Vol. 1). New York: Dover Books.
     ■ James, W. (1890b). The principles of psychology. New York: Henry Holt.
     ■ Jevons, W. S. (1900). The principles of science (2nd ed.). London: Macmillan.
     ■ Johnson, G. (1986). Machinery of the mind: Inside the new science of artificial intelli gence. New York: Random House.
     ■ Johnson, M. L. (1988). Mind, language, machine. New York: St. Martin's Press.
     ■ Johnson-Laird, P. N. (1983). Mental models: Toward a cognitive science of language, inference, and consciousness. Cambridge, MA: Harvard University Press.
     ■ Johnson-Laird, P. N. (1988). The computer and the mind: An introduction to cognitive science. Cambridge, MA: Harvard University Press.
     ■ Jones, E. (1961). The life and work of Sigmund Freud. L. Trilling & S. Marcus (Eds.). London: Hogarth.
     ■ Jones, R. V. (1985). Complementarity as a way of life. In A. P. French & P. J. Kennedy (Eds.), Niels Bohr: A centenary volume. Cambridge, MA: Harvard University Press.
     ■ Kant, I. (1933). Critique of Pure Reason (2nd ed.). N. K. Smith (Trans.). London: Macmillan. (Originally published in 1781 as Kritik der reinen Vernunft.)
     ■ Kant, I. (1891). Solution of the general problems of the Prolegomena. In E. Belfort (Trans.), Kant's Prolegomena. London: Bell. (With minor modifications.) (Originally published in 1783.)
     ■ Katona, G. (1940). Organizing and memorizing: Studies in the psychology of learning and teaching. New York: Columbia University Press.
     ■ Kaufman, A. S. (1979). Intelligent testing with the WISC-R. New York: Wiley.
     ■ Koestler, A. (1964). The act of creation. New York: Arkana (Penguin).
     ■ Kohlberg, L. (1971). From is to ought. In T. Mischel (Ed.), Cognitive development and epistemology. (pp. 151-235) New York: Academic Press.
     ■ KoЁhler, W. (1925). The mentality of apes. New York: Liveright.
     ■ KoЁhler, W. (1927). The mentality of apes (2nd ed.). Ella Winter (Trans.). London: Routledge & Kegan Paul.
     ■ KoЁhler, W. (1930). Gestalt psychology. London: G. Bell.
     ■ KoЁhler, W. (1947). Gestalt psychology. New York: Liveright.
     ■ KoЁhler, W. (1969). The task of Gestalt psychology. Princeton, NJ: Princeton University Press.
     ■ Kuhn, T. (1970). The structure of scientific revolutions (2nd ed.). Chicago: University of Chicago Press.
     ■ Langer, E. J. (1989). Mindfulness. Reading, MA: Addison-Wesley.
     ■ Langer, S. (1962). Philosophical sketches. Baltimore: Johns Hopkins University Press.
     ■ Langley, P., H. A. Simon, G. L. Bradshaw & J. M. Zytkow (1987). Scientific dis covery: Computational explorations of the creative process. Cambridge, MA: MIT Press.
     ■ Lashley, K. S. (1951). The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior, the Hixon Symposium (pp. 112-146) New York: Wiley.
     ■ LeDoux, J. E., & W. Hirst (1986). Mind and brain: Dialogues in cognitive neuroscience. Cambridge: Cambridge University Press.
     ■ Lehnert, W. (1978). The process of question answering. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Leiber, J. (1991). Invitation to cognitive science. Oxford: Blackwell.
     ■ Lenat, D. B., & G. Harris (1978). Designing a rule system that searches for scientific discoveries. In D. A. Waterman & F. Hayes-Roth (Eds.), Pattern directed inference systems (pp. 25-52) New York: Academic Press.
     ■ Levenson, T. (1995). Measure for measure: A musical history of science. New York: Touchstone. (Originally published in 1994.)
     ■ Leґvi-Strauss, C. (1963). Structural anthropology. C. Jacobson & B. Grundfest Schoepf (Trans.). New York: Basic Books. (Originally published in 1958.)
     ■ Levine, M. W., & J. M. Schefner (1981). Fundamentals of sensation and perception. London: Addison-Wesley.
     ■ Lewis, C. I. (1946). An analysis of knowledge and valuation. LaSalle, IL: Open Court.
     ■ Lighthill, J. (1972). A report on artificial intelligence. Unpublished manuscript, Science Research Council.
     ■ Lipman, M., A. M. Sharp & F. S. Oscanyan (1980). Philosophy in the classroom. Philadelphia: Temple University Press.
     ■ Lippmann, W. (1965). Public opinion. New York: Free Press. (Originally published in 1922.)
     ■ Locke, J. (1956). An essay concerning human understanding. Chicago: Henry Regnery Co. (Originally published in 1690.)
     ■ Locke, J. (1975). An essay concerning human understanding. P. H. Nidditch (Ed.). Oxford: Clarendon. (Originally published in 1690.) (With spelling and punctuation modernized and some minor modifications of phrasing.)
     ■ Lopate, P. (1994). The art of the personal essay. New York: Doubleday/Anchor Books.
     ■ Lorimer, F. (1929). The growth of reason. London: Kegan Paul. Machlup, F., & U. Mansfield (Eds.) (1983). The study of information. New York: Wiley.
     ■ Manguel, A. (1996). A history of reading. New York: Viking.
     ■ Margolis, H. (1987). Patterns, thinking, and cognition. Chicago: University of Chicago Press.
     ■ Markey, J. F. (1928). The symbolic process. London: Kegan Paul.
     ■ Martin, R. M. (1969). On Ziff's "Natural and formal languages." In S. Hook (Ed.), Language and philosophy: A symposium (pp. 249-263). New York: New York University Press.
     ■ Mazlish, B. (1993). The fourth discontinuity: the co- evolution of humans and machines. New Haven, CT: Yale University Press.
     ■ McCarthy, J., & P. J. Hayes (1969). Some philosophical problems from the standpoint of artificial intelligence. In B. Meltzer & D. Michie (Eds.), Machine intelligence 4. Edinburgh: Edinburgh University Press.
     ■ McClelland, J. L., D. E. Rumelhart & G. E. Hinton (1986). The appeal of parallel distributed processing. In D. E. Rumelhart, J. L. McClelland & the PDP Research Group (Eds.), Parallel distributed processing: Explorations in the mi crostructure of cognition (Vol. 1, pp. 3-40). Cambridge, MA: MIT Press/ Bradford Books.
     ■ McCorduck, P. (1979). Machines who think. San Francisco: W. H. Freeman.
     ■ McLaughlin, T. (1970). Music and communication. London: Faber & Faber.
     ■ Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review 69, 431-436.
     ■ Meehl, P. E., & C. J. Golden (1982). Taxometric methods. In Kendall, P. C., & Butcher, J. N. (Eds.), Handbook of research methods in clinical psychology (pp. 127-182). New York: Wiley.
     ■ Mehler, J., E.C.T. Walker & M. Garrett (Eds.) (1982). Perspectives on mental rep resentation: Experimental and theoretical studies of cognitive processes and ca pacities. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Mill, J. S. (1900). A system of logic, ratiocinative and inductive: Being a connected view of the principles of evidence and the methods of scientific investigation. London: Longmans, Green.
     ■ Miller, G. A. (1979, June). A very personal history. Talk to the Cognitive Science Workshop, Cambridge, MA.
     ■ Miller, J. (1983). States of mind. New York: Pantheon Books.
     ■ Minsky, M. (1975). A framework for representing knowledge. In P. H. Winston (Ed.), The psychology of computer vision (pp. 211-277). New York: McGrawHill.
     ■ Minsky, M., & S. Papert (1973). Artificial intelligence. Condon Lectures, Oregon State System of Higher Education, Eugene, Oregon.
     ■ Minsky, M. L. (1986). The society of mind. New York: Simon & Schuster.
     ■ Mischel, T. (1976). Psychological explanations and their vicissitudes. In J. K. Cole & W. J. Arnold (Eds.), Nebraska Symposium on motivation (Vol. 23). Lincoln, NB: University of Nebraska Press.
     ■ Morford, M.P.O., & R. J. Lenardon (1995). Classical mythology (5th ed.). New York: Longman.
     ■ Murdoch, I. (1954). Under the net. New York: Penguin.
     ■ Nagel, E. (1959). Methodological issues in psychoanalytic theory. In S. Hook (Ed.), Psychoanalysis, scientific method, and philosophy: A symposium. New York: New York University Press.
     ■ Nagel, T. (1979). Mortal questions. London: Cambridge University Press.
     ■ Nagel, T. (1986). The view from nowhere. Oxford: Oxford University Press.
     ■ Neisser, U. (1967). Cognitive psychology. New York: Appleton-Century-Crofts.
     ■ Neisser, U. (1972). Changing conceptions of imagery. In P. W. Sheehan (Ed.), The function and nature of imagery (pp. 233-251). London: Academic Press.
     ■ Neisser, U. (1976). Cognition and reality. San Francisco: W. H. Freeman.
     ■ Neisser, U. (1978). Memory: What are the important questions? In M. M. Gruneberg, P. E. Morris & R. N. Sykes (Eds.), Practical aspects of memory (pp. 3-24). London: Academic Press.
     ■ Neisser, U. (1979). The concept of intelligence. In R. J. Sternberg & D. K. Detterman (Eds.), Human intelligence: Perspectives on its theory and measurement (pp. 179-190). Norwood, NJ: Ablex.
     ■ Nersessian, N. (1992). How do scientists think? Capturing the dynamics of conceptual change in science. In R. N. Giere (Ed.), Cognitive models of science (pp. 3-44). Minneapolis: University of Minnesota Press.
     ■ Newell, A. (1973a). Artificial intelligence and the concept of mind. In R. C. Schank & K. M. Colby (Eds.), Computer models of thought and language (pp. 1-60). San Francisco: W. H. Freeman.
     ■ Newell, A. (1973b). You can't play 20 questions with nature and win. In W. G. Chase (Ed.), Visual information processing (pp. 283-310). New York: Academic Press.
     ■ Newell, A., & H. A. Simon (1963). GPS: A program that simulates human thought. In E. A. Feigenbaum & J. Feldman (Eds.), Computers and thought (pp. 279-293). New York & McGraw-Hill.
     ■ Newell, A., & H. A. Simon (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.
     ■ Nietzsche, F. (1966). Beyond good and evil. W. Kaufmann (Trans.). New York: Vintage. (Originally published in 1885.)
     ■ Nilsson, N. J. (1971). Problem- solving methods in artificial intelligence. New York: McGraw-Hill.
     ■ Nussbaum, M. C. (1978). Aristotle's Princeton University Press. De Motu Anamalium. Princeton, NJ:
     ■ Oersted, H. C. (1920). Thermo-electricity. In Kirstine Meyer (Ed.), H. C. Oersted, Natuurvidenskabelige Skrifter (Vol. 2). Copenhagen: n.p. (Originally published in 1830 in The Edinburgh encyclopaedia.)
     ■ Ong, W. J. (1982). Orality and literacy: The technologizing of the word. London: Methuen.
     ■ Onians, R. B. (1954). The origins of European thought. Cambridge, MA: Cambridge University Press.
     ■ Osgood, C. E. (1960). Method and theory in experimental psychology. New York: Oxford University Press. (Originally published in 1953.)
     ■ Osgood, C. E. (1966). Language universals and psycholinguistics. In J. H. Greenberg (Ed.), Universals of language (2nd ed., pp. 299-322). Cambridge, MA: MIT Press.
     ■ Palmer, R. E. (1969). Hermeneutics. Evanston, IL: Northwestern University Press.
     ■ Peirce, C. S. (1934). Some consequences of four incapacities-Man, a sign. In C. Hartsborne & P. Weiss (Eds.), Collected papers of Charles Saunders Peirce (Vol. 5, pp. 185-189). Cambridge, MA: Harvard University Press.
     ■ Penfield, W. (1959). In W. Penfield & L. Roberts, Speech and brain mechanisms. Princeton, NJ: Princeton University Press.
     ■ Penrose, R. (1994). Shadows of the mind: A search for the missing science of conscious ness. Oxford: Oxford University Press.
     ■ Perkins, D. N. (1981). The mind's best work. Cambridge, MA: Harvard University Press.
     ■ Peterfreund, E. (1986). The heuristic approach to psychoanalytic therapy. In
     ■ J. Reppen (Ed.), Analysts at work, (pp. 127-144). Hillsdale, NJ: Analytic Press.
     ■ Piaget, J. (1952). The origin of intelligence in children. New York: International Universities Press. (Originally published in 1936.)
     ■ Piaget, J. (1954). Le langage et les opeґrations intellectuelles. Proble` mes de psycho linguistique. Symposium de l'Association de Psychologie Scientifique de Langue Francёaise. Paris: Presses Universitaires de France.
     ■ Piaget, J. (1977). Problems of equilibration. In H. E. Gruber & J. J. Voneche (Eds.), The essential Piaget (pp. 838-841). London: Routlege & Kegan Paul. (Originally published in 1975 as L'eґquilibration des structures cognitives [Paris: Presses Universitaires de France].)
     ■ Piaget, J., & B. Inhelder. (1973). Memory and intelligence. New York: Basic Books.
     ■ Pinker, S. (1994). The language instinct. New York: Morrow.
     ■ Pinker, S. (1996). Facts about human language relevant to its evolution. In J.-P. Changeux & J. Chavaillon (Eds.), Origins of the human brain. A symposium of the Fyssen foundation (pp. 262-283). Oxford: Clarendon Press. Planck, M. (1949). Scientific autobiography and other papers. F. Gaynor (Trans.). New York: Philosophical Library.
     ■ Planck, M. (1990). Wissenschaftliche Selbstbiographie. W. Berg (Ed.). Halle, Germany: Deutsche Akademie der Naturforscher Leopoldina.
     ■ Plato (1892). Meno. In The Dialogues of Plato (B. Jowett, Trans.; Vol. 2). New York: Clarendon. (Originally published circa 380 B.C.)
     ■ Poincareґ, H. (1913). Mathematical creation. In The foundations of science. G. B. Halsted (Trans.). New York: Science Press.
     ■ Poincareґ, H. (1921). The foundations of science: Science and hypothesis, the value of science, science and method. G. B. Halstead (Trans.). New York: Science Press.
     ■ Poincareґ, H. (1929). The foundations of science: Science and hypothesis, the value of science, science and method. New York: Science Press.
     ■ Poincareґ, H. (1952). Science and method. F. Maitland (Trans.) New York: Dover.
     ■ Polya, G. (1945). How to solve it. Princeton, NJ: Princeton University Press.
     ■ Polanyi, M. (1958). Personal knowledge. London: Routledge & Kegan Paul.
     ■ Popper, K. (1968). Conjectures and refutations: The growth of scientific knowledge. New York: Harper & Row/Basic Books.
     ■ Popper, K., & J. Eccles (1977). The self and its brain. New York: Springer-Verlag.
     ■ Popper, K. R. (1959). The logic of scientific discovery. London: Hutchinson.
     ■ Putnam, H. (1975). Mind, language and reality: Philosophical papers (Vol. 2). Cambridge: Cambridge University Press.
     ■ Putnam, H. (1987). The faces of realism. LaSalle, IL: Open Court.
     ■ Pylyshyn, Z. W. (1981). The imagery debate: Analog media versus tacit knowledge. In N. Block (Ed.), Imagery (pp. 151-206). Cambridge, MA: MIT Press.
     ■ Pylyshyn, Z. W. (1984). Computation and cognition: Towards a foundation for cog nitive science. Cambridge, MA: MIT Press/Bradford Books.
     ■ Quillian, M. R. (1968). Semantic memory. In M. Minsky (Ed.), Semantic information processing (pp. 216-260). Cambridge, MA: MIT Press.
     ■ Quine, W.V.O. (1960). Word and object. Cambridge, MA: Harvard University Press.
     ■ Rabbitt, P.M.A., & S. Dornic (Eds.). Attention and performance (Vol. 5). London: Academic Press.
     ■ Rawlins, G.J.E. (1997). Slaves of the Machine: The quickening of computer technology. Cambridge, MA: MIT Press/Bradford Books.
     ■ Reid, T. (1970). An inquiry into the human mind on the principles of common sense. In R. Brown (Ed.), Between Hume and Mill: An anthology of British philosophy- 1749- 1843 (pp. 151-178). New York: Random House/Modern Library.
     ■ Reitman, W. (1970). What does it take to remember? In D. A. Norman (Ed.), Models of human memory (pp. 470-510). London: Academic Press.
     ■ Ricoeur, P. (1974). Structure and hermeneutics. In D. I. Ihde (Ed.), The conflict of interpretations: Essays in hermeneutics (pp. 27-61). Evanston, IL: Northwestern University Press.
     ■ Robinson, D. N. (1986). An intellectual history of psychology. Madison: University of Wisconsin Press.
     ■ Rorty, R. (1979). Philosophy and the mirror of nature. Princeton, NJ: Princeton University Press.
     ■ Rosch, E. (1977). Human categorization. In N. Warren (Ed.), Studies in cross cultural psychology (Vol. 1, pp. 1-49) London: Academic Press.
     ■ Rosch, E. (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization (pp. 27-48). Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Rosch, E., & B. B. Lloyd (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Rose, S. (1970). The chemistry of life. Baltimore: Penguin Books.
     ■ Rose, S. (1976). The conscious brain (updated ed.). New York: Random House.
     ■ Rose, S. (1993). The making of memory: From molecules to mind. New York: Anchor Books. (Originally published in 1992)
     ■ Roszak, T. (1994). The cult of information: A neo- Luddite treatise on high- tech, artificial intelligence, and the true art of thinking (2nd ed.). Berkeley: University of California Press.
     ■ Royce, J. R., & W. W. Rozeboom (Eds.) (1972). The psychology of knowing. New York: Gordon & Breach.
     ■ Rumelhart, D. E. (1977). Introduction to human information processing. New York: Wiley.
     ■ Rumelhart, D. E. (1980). Schemata: The building blocks of cognition. In R. J. Spiro, B. Bruce & W. F. Brewer (Eds.), Theoretical issues in reading comprehension. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Rumelhart, D. E., & J. L. McClelland (1986). On learning the past tenses of English verbs. In J. L. McClelland & D. E. Rumelhart (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 2). Cambridge, MA: MIT Press.
     ■ Rumelhart, D. E., P. Smolensky, J. L. McClelland & G. E. Hinton (1986). Schemata and sequential thought processes in PDP models. In J. L. McClelland, D. E. Rumelhart & the PDP Research Group (Eds.), Parallel Distributed Processing (Vol. 2, pp. 7-57). Cambridge, MA: MIT Press.
     ■ Russell, B. (1927). An outline of philosophy. London: G. Allen & Unwin.
     ■ Russell, B. (1961). History of Western philosophy. London: George Allen & Unwin.
     ■ Russell, B. (1965). How I write. In Portraits from memory and other essays. London: Allen & Unwin.
     ■ Russell, B. (1992). In N. Griffin (Ed.), The selected letters of Bertrand Russell (Vol. 1), The private years, 1884- 1914. Boston: Houghton Mifflin. Ryecroft, C. (1966). Psychoanalysis observed. London: Constable.
     ■ Sagan, C. (1978). The dragons of Eden: Speculations on the evolution of human intel ligence. New York: Ballantine Books.
     ■ Salthouse, T. A. (1992). Expertise as the circumvention of human processing limitations. In K. A. Ericsson & J. Smith (Eds.), Toward a general theory of expertise: Prospects and limits (pp. 172-194). Cambridge: Cambridge University Press.
     ■ Sanford, A. J. (1987). The mind of man: Models of human understanding. New Haven, CT: Yale University Press.
     ■ Sapir, E. (1921). Language. New York: Harcourt, Brace, and World.
     ■ Sapir, E. (1964). Culture, language, and personality. Berkeley: University of California Press. (Originally published in 1941.)
     ■ Sapir, E. (1985). The status of linguistics as a science. In D. G. Mandelbaum (Ed.), Selected writings of Edward Sapir in language, culture and personality (pp. 160166). Berkeley: University of California Press. (Originally published in 1929).
     ■ Scardmalia, M., & C. Bereiter (1992). Literate expertise. In K. A. Ericsson & J. Smith (Eds.), Toward a general theory of expertise: Prospects and limits (pp. 172-194). Cambridge: Cambridge University Press.
     ■ Schafer, R. (1954). Psychoanalytic interpretation in Rorschach testing. New York: Grune & Stratten.
     ■ Schank, R. C. (1973). Identification of conceptualizations underlying natural language. In R. C. Schank & K. M. Colby (Eds.), Computer models of thought and language (pp. 187-248). San Francisco: W. H. Freeman.
     ■ Schank, R. C. (1976). The role of memory in language processing. In C. N. Cofer (Ed.), The structure of human memory. (pp. 162-189) San Francisco: W. H. Freeman.
     ■ Schank, R. C. (1986). Explanation patterns: Understanding mechanically and creatively. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Schank, R. C., & R. P. Abelson (1977). Scripts, plans, goals, and understanding. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ SchroЁdinger, E. (1951). Science and humanism. Cambridge: Cambridge University Press.
     ■ Searle, J. R. (1981a). Minds, brains, and programs. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, artificial intelligence (pp. 282-306). Cambridge, MA: MIT Press.
     ■ Searle, J. R. (1981b). Minds, brains and programs. In D. Hofstadter & D. Dennett (Eds.), The mind's I (pp. 353-373). New York: Basic Books.
     ■ Searle, J. R. (1983). Intentionality. New York: Cambridge University Press.
     ■ Serres, M. (1982). The origin of language: Biology, information theory, and thermodynamics. M. Anderson (Trans.). In J. V. Harari & D. F. Bell (Eds.), Hermes: Literature, science, philosophy (pp. 71-83). Baltimore: Johns Hopkins University Press.
     ■ Simon, H. A. (1966). Scientific discovery and the psychology of problem solving. In R. G. Colodny (Ed.), Mind and cosmos: Essays in contemporary science and philosophy (pp. 22-40). Pittsburgh: University of Pittsburgh Press.
     ■ Simon, H. A. (1979). Models of thought. New Haven, CT: Yale University Press.
     ■ Simon, H. A. (1989). The scientist as a problem solver. In D. Klahr & K. Kotovsky (Eds.), Complex information processing: The impact of Herbert Simon. Hillsdale, N.J.: Lawrence Erlbaum Associates.
     ■ Simon, H. A., & C. Kaplan (1989). Foundations of cognitive science. In M. Posner (Ed.), Foundations of cognitive science (pp. 1-47). Cambridge, MA: MIT Press.
     ■ Simonton, D. K. (1988). Creativity, leadership and chance. In R. J. Sternberg (Ed.), The nature of creativity. Cambridge: Cambridge University Press.
     ■ Skinner, B. F. (1974). About behaviorism. New York: Knopf.
     ■ Smith, E. E. (1988). Concepts and thought. In J. Sternberg & E. E. Smith (Eds.), The psychology of human thought (pp. 19-49). Cambridge: Cambridge University Press.
     ■ Smith, E. E. (1990). Thinking: Introduction. In D. N. Osherson & E. E. Smith (Eds.), Thinking. An invitation to cognitive science. (Vol. 3, pp. 1-2). Cambridge, MA: MIT Press.
     ■ Socrates. (1958). Meno. In E. H. Warmington & P. O. Rouse (Eds.), Great dialogues of Plato W.H.D. Rouse (Trans.). New York: New American Library. (Original publication date unknown.)
     ■ Solso, R. L. (1974). Theories of retrieval. In R. L. Solso (Ed.), Theories in cognitive psychology. Potomac, MD: Lawrence Erlbaum Associates.
     ■ Spencer, H. (1896). The principles of psychology. New York: Appleton-CenturyCrofts.
     ■ Steiner, G. (1975). After Babel: Aspects of language and translation. New York: Oxford University Press.
     ■ Sternberg, R. J. (1977). Intelligence, information processing, and analogical reasoning. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Sternberg, R. J. (1994). Intelligence. In R. J. Sternberg, Thinking and problem solving. San Diego: Academic Press.
     ■ Sternberg, R. J., & J. E. Davidson (1985). Cognitive development in gifted and talented. In F. D. Horowitz & M. O'Brien (Eds.), The gifted and talented (pp. 103-135). Washington, DC: American Psychological Association.
     ■ Storr, A. (1993). The dynamics of creation. New York: Ballantine Books. (Originally published in 1972.)
     ■ Stumpf, S. E. (1994). Philosophy: History and problems (5th ed.). New York: McGraw-Hill.
     ■ Sulloway, F. J. (1996). Born to rebel: Birth order, family dynamics, and creative lives. New York: Random House/Vintage Books.
     ■ Thorndike, E. L. (1906). Principles of teaching. New York: A. G. Seiler.
     ■ Thorndike, E. L. (1970). Animal intelligence: Experimental studies. Darien, CT: Hafner Publishing Co. (Originally published in 1911.)
     ■ Titchener, E. B. (1910). A textbook of psychology. New York: Macmillan.
     ■ Titchener, E. B. (1914). A primer of psychology. New York: Macmillan.
     ■ Toulmin, S. (1957). The philosophy of science. London: Hutchinson.
     ■ Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organisation of memory. London: Academic Press.
     ■ Turing, A. (1946). In B. E. Carpenter & R. W. Doran (Eds.), ACE reports of 1946 and other papers. Cambridge, MA: MIT Press.
     ■ Turkle, S. (1984). Computers and the second self: Computers and the human spirit. New York: Simon & Schuster.
     ■ Tyler, S. A. (1978). The said and the unsaid: Mind, meaning, and culture. New York: Academic Press.
     ■ van Heijenoort (Ed.) (1967). From Frege to Goedel. Cambridge: Harvard University Press.
     ■ Varela, F. J. (1984). The creative circle: Sketches on the natural history of circularity. In P. Watzlawick (Ed.), The invented reality (pp. 309-324). New York: W. W. Norton.
     ■ Voltaire (1961). On the Penseґs of M. Pascal. In Philosophical letters (pp. 119-146). E. Dilworth (Trans.). Indianapolis: Bobbs-Merrill.
     ■ Wagman, M. (1997a). Cognitive science and the symbolic operations of human and artificial intelligence: Theory and research into the intellective processes. Westport, CT: Praeger.
     ■ Wagman, M. (1997b). The general unified theory of intelligence: Central conceptions and specific application to domains of cognitive science. Westport, CT: Praeger.
     ■ Wagman, M. (1998a). Cognitive science and the mind- body problem: From philosophy to psychology to artificial intelligence to imaging of the brain. Westport, CT: Praeger.
     ■ Wagman, M. (1999). The human mind according to artificial intelligence: Theory, re search, and implications. Westport, CT: Praeger.
     ■ Wall, R. (1972). Introduction to mathematical linguistics. Englewood Cliffs, NJ: Prentice-Hall.
     ■ Wallas, G. (1926). The Art of Thought. New York: Harcourt, Brace & Co.
     ■ Wason, P. (1977). Self contradictions. In P. Johnson-Laird & P. Wason (Eds.), Thinking: Readings in cognitive science. Cambridge: Cambridge University Press.
     ■ Wason, P. C., & P. N. Johnson-Laird. (1972). Psychology of reasoning: Structure and content. Cambridge, MA: Harvard University Press.
     ■ Watson, J. (1930). Behaviorism. New York: W. W. Norton.
     ■ Watzlawick, P. (1984). Epilogue. In P. Watzlawick (Ed.), The invented reality. New York: W. W. Norton, 1984.
     ■ Weinberg, S. (1977). The first three minutes: A modern view of the origin of the uni verse. New York: Basic Books.
     ■ Weisberg, R. W. (1986). Creativity: Genius and other myths. New York: W. H. Freeman.
     ■ Weizenbaum, J. (1976). Computer power and human reason: From judgment to cal culation. San Francisco: W. H. Freeman.
     ■ Wertheimer, M. (1945). Productive thinking. New York: Harper & Bros.
     ■ Whitehead, A. N. (1925). Science and the modern world. New York: Macmillan.
     ■ Whorf, B. L. (1956). In J. B. Carroll (Ed.), Language, thought and reality: Selected writings of Benjamin Lee Whorf. Cambridge, MA: MIT Press.
     ■ Whyte, L. L. (1962). The unconscious before Freud. New York: Anchor Books.
     ■ Wiener, N. (1954). The human use of human beings. Boston: Houghton Mifflin.
     ■ Wiener, N. (1964). God & Golem, Inc.: A comment on certain points where cybernetics impinges on religion. Cambridge, MA: MIT Press.
     ■ Winograd, T. (1972). Understanding natural language. New York: Academic Press.
     ■ Winston, P. H. (1987). Artificial intelligence: A perspective. In E. L. Grimson & R. S. Patil (Eds.), AI in the 1980s and beyond (pp. 1-12). Cambridge, MA: MIT Press.
     ■ Winston, P. H. (Ed.) (1975). The psychology of computer vision. New York: McGrawHill.
     ■ Wittgenstein, L. (1953). Philosophical investigations. Oxford: Basil Blackwell.
     ■ Wittgenstein, L. (1958). The blue and brown books. New York: Harper Colophon.
     ■ Woods, W. A. (1975). What's in a link: Foundations for semantic networks. In D. G. Bobrow & A. Collins (Eds.), Representations and understanding: Studies in cognitive science (pp. 35-84). New York: Academic Press.
     ■ Woodworth, R. S. (1938). Experimental psychology. New York: Holt; London: Methuen (1939).
     ■ Wundt, W. (1904). Principles of physiological psychology (Vol. 1). E. B. Titchener (Trans.). New York: Macmillan.
     ■ Wundt, W. (1907). Lectures on human and animal psychology. J. E. Creighton & E. B. Titchener (Trans.). New York: Macmillan.
     ■ Young, J. Z. (1978). Programs of the brain. New York: Oxford University Press.
     ■ Ziman, J. (1978). Reliable knowledge: An exploration of the grounds for belief in science. Cambridge: Cambridge University Press.

    Historical dictionary of quotations in cognitive science > Bibliography

  • 6 ciencia

    f.
    1 science.
    a ciencia cierta for certain
    no se conoce a ciencia cierta el número de víctimas the number of victims isn't known for certain
    ciencias naturales natural sciences
    ciencias ocultas occultism
    ciencias políticas political science
    ciencias sociales social sciences
    2 learning, knowledge.
    * * *
    1 (disciplina) science
    2 (saber) knowledge, learning
    \
    saber algo a ciencia cierta figurado to know something for certain
    ser un pozo de ciencia to be a well of knowledge
    ciencia ficción science fiction
    ciencia infusa intuition
    ciencias empresariales business studies
    ciencias exactas mathematics sing
    ciencias naturales natural sciences
    ciencias ocultas the occult sing
    * * *
    noun f.
    * * *
    SF
    1) (=conocimiento) science

    no tener mucha ciencia —

    ciencia infusa, lo sabe por ciencia infusa — iró he has God-given intelligence

    2) (=doctrina) science, sciences pl

    ciencias sociales — social science, social sciences pl

    3) pl ciencias (Educ) science sing, sciences
    * * *
    a) ( rama del saber) science; (saber, conocimiento) knowledge, learning

    a ciencia cierta — for sure, for certain

    b) ciencias femenino plural (Educ) science
    * * *
    = scholarship, science.
    Ex. The most important of the functions of librarians is the collection, preservation and affording access to the materials of scholarship.
    Ex. Thus we all agree that one component of a building is a roof (and not vice versa!), and that chemistry is a branch of science.
    ----
    * academia de las ciencias = academy of sciences.
    * a ciencia cierta = for sure, for certain.
    * alfabetización en ciencias de la salud = health literacy.
    * árbol de la ciencia, el = tree of knowledge, the.
    * biblioteca de ciencias = science library.
    * biblioteca de ciencias de la salud = health sciences library, health library.
    * Biblioteca Nacional de Préstamo para la Ciencia y la Tecnología (NLL) = National Lending Library for Science and Technology (NLL).
    * bibliotecario de ciencias de la salud = health librarian.
    * bibliotecario de las ciencias de la salud = health sciences librarian.
    * centro de las ciencias = science centre.
    * ciencia aplicada = applied science.
    * Ciencia Cristiana, la = Christian Science.
    * ciencia de la comunicación = communication science.
    * ciencia de las zonas polares = polar science.
    * ciencia del conocimiento = cognitive science.
    * ciencia del libro = bookmanship.
    * ciencia de los alimentos = food science.
    * ciencia del suelo = soil science.
    * ciencia experimental = hard sciences, the.
    * ciencia ficción = science fiction, sci-fi.
    * ciencia forense = forensic science.
    * ciencia médica = medical science.
    * ciencia militar = military science.
    * ciencia mundial = world science.
    * ciencias agrícolas = agricultural economics.
    * ciencias biológicas = biological sciences.
    * ciencias biomédicas = biomedical sciences.
    * ciencias de la atmósfera = atmospheric sciences.
    * ciencias de la computación = computer science, computational science.
    * ciencias de la computación y tecnología informática = computer science and technology.
    * ciencias de la construcción = building sciences.
    * ciencias de la documentación = information science, library science.
    * ciencias de la educación = educational science.
    * ciencias de la navegación = nautical science.
    * ciencias de la salud = health sciences.
    * ciencias de las plantas = plant science(s).
    * ciencias de la tierra = geosciences.
    * ciencias de la tierra, las = earth sciences, the.
    * ciencias de la vida = biosciences.
    * ciencias de la vida, las = life sciences, the.
    * ciencias del comportamiento = behavioural sciences.
    * ciencias del espacio, las = space science(s), the.
    * ciencias del mar = aquatic sciences.
    * ciencias del mar, las = ocean sciences, the.
    * ciencias de los materiales = materials sciences.
    * ciencias domésticas = domestic science.
    * ciencias duras, las = hard sciences, the.
    * ciencias exactas, las = exact sciences, the, hard sciences, the.
    * ciencias físicas = physical science.
    * ciencias forestales = forestry.
    * ciencias históricas = historical sciences.
    * ciencias humanas = human science.
    * ciencias naturales = natural sciences.
    * ciencias navales = ship science.
    * ciencias planetarias, las = planetary sciences, the.
    * ciencias políticas = political science.
    * ciencias puras = pure sciences.
    * ciencias sobre la vida en el espacio = space life sciences.
    * ciencias sociales = social sciences, soft sciences, the, social studies.
    * ciencia virtual = e-science.
    * ciencia y tecnología = sci-tech [scitech o sci/tech].
    * Ciencia y Tecnología (C + T) = S & T (Science and Technology).
    * ciencia y tecnología de los alimentos = food science and technology.
    * ciencia y tecnología de los materiales = materials science and technology.
    * científico de las ciencias de la tierra = geoscientist.
    * conocer a ciencia cierta = know for + certain, know for + sure, know for + a fact.
    * delegación de educación y ciencia = local education authority (LEA).
    * enseñanza de las ciencias = science education.
    * especialista en ciencias de la tierra = earth scientist.
    * estudiante de ciencias de la educación = education student, student teacher.
    * facultad de ciencias de la educación = teachers college, teacher training college.
    * filosofía de la ciencia = philosophy of science.
    * Fundación Nacional para las Ciencias (NSF) = National Science Foundation (NSF).
    * humanidades y ciencias sociales = arts and social sciences.
    * Indice de Citas de Ciencia (SCI) = Science Citation Index (SCI).
    * Indice de Citas de las Ciencias Sociales (SSCI) = Social Sciences Citation Index (SSCI).
    * investigación en ciencias de la documentación = information science research.
    * Licenciatura de Ciencias = M.Sc. (Master of Science).
    * Ministerio de Educación y Ciencia = Department of Education and Science.
    * mundo de la ciencia, el = world of science, the, scientific world, the.
    * museo de ciencias naturales = natural science museum.
    * museo de las ciencias = science museum.
    * no es una ciencia exacta = not (exactly) rocket science.
    * novela de ciencia ficción = science fiction novel.
    * relacionado con las ciencias = science-related.
    * revista de ciencia y tecnología = science and technology journal.
    * saber a ciencia cierta = know for + certain, know for + sure, know for + a fact.
    * saber a ciencia cierta que = know + for a fact that.
    * ser una ciencia exacta = be an exact science.
    * sistema de la ciencia, el = system of science, the.
    * tecnología de la información para ciencias de la salud = health informatics.
    * * *
    a) ( rama del saber) science; (saber, conocimiento) knowledge, learning

    a ciencia cierta — for sure, for certain

    b) ciencias femenino plural (Educ) science
    * * *
    = scholarship, science.

    Ex: The most important of the functions of librarians is the collection, preservation and affording access to the materials of scholarship.

    Ex: Thus we all agree that one component of a building is a roof (and not vice versa!), and that chemistry is a branch of science.
    * academia de las ciencias = academy of sciences.
    * a ciencia cierta = for sure, for certain.
    * alfabetización en ciencias de la salud = health literacy.
    * árbol de la ciencia, el = tree of knowledge, the.
    * biblioteca de ciencias = science library.
    * biblioteca de ciencias de la salud = health sciences library, health library.
    * Biblioteca Nacional de Préstamo para la Ciencia y la Tecnología (NLL) = National Lending Library for Science and Technology (NLL).
    * bibliotecario de ciencias de la salud = health librarian.
    * bibliotecario de las ciencias de la salud = health sciences librarian.
    * centro de las ciencias = science centre.
    * ciencia aplicada = applied science.
    * Ciencia Cristiana, la = Christian Science.
    * ciencia de la comunicación = communication science.
    * ciencia de las zonas polares = polar science.
    * ciencia del conocimiento = cognitive science.
    * ciencia del libro = bookmanship.
    * ciencia de los alimentos = food science.
    * ciencia del suelo = soil science.
    * ciencia experimental = hard sciences, the.
    * ciencia ficción = science fiction, sci-fi.
    * ciencia forense = forensic science.
    * ciencia médica = medical science.
    * ciencia militar = military science.
    * ciencia mundial = world science.
    * ciencias = science and technology.
    * ciencias agrícolas = agricultural economics.
    * ciencias biológicas = biological sciences.
    * ciencias biomédicas = biomedical sciences.
    * ciencias de la atmósfera = atmospheric sciences.
    * ciencias de la computación = computer science, computational science.
    * ciencias de la computación y tecnología informática = computer science and technology.
    * ciencias de la construcción = building sciences.
    * ciencias de la documentación = information science, library science.
    * ciencias de la educación = educational science.
    * ciencias de la navegación = nautical science.
    * ciencias de la salud = health sciences.
    * ciencias de las plantas = plant science(s).
    * ciencias de la tierra = geosciences.
    * ciencias de la tierra, las = earth sciences, the.
    * ciencias de la vida = biosciences.
    * ciencias de la vida, las = life sciences, the.
    * ciencias del comportamiento = behavioural sciences.
    * ciencias del espacio, las = space science(s), the.
    * ciencias del mar = aquatic sciences.
    * ciencias del mar, las = ocean sciences, the.
    * ciencias de los materiales = materials sciences.
    * ciencias domésticas = domestic science.
    * ciencias duras, las = hard sciences, the.
    * ciencias exactas, las = exact sciences, the, hard sciences, the.
    * ciencias físicas = physical science.
    * ciencias forestales = forestry.
    * ciencias históricas = historical sciences.
    * ciencias humanas = human science.
    * ciencias naturales = natural sciences.
    * ciencias navales = ship science.
    * ciencias planetarias, las = planetary sciences, the.
    * ciencias políticas = political science.
    * ciencias puras = pure sciences.
    * ciencias sobre la vida en el espacio = space life sciences.
    * ciencias sociales = social sciences, soft sciences, the, social studies.
    * ciencia virtual = e-science.
    * ciencia y tecnología = sci-tech [scitech o sci/tech].
    * Ciencia y Tecnología (C + T) = S & T (Science and Technology).
    * ciencia y tecnología de los alimentos = food science and technology.
    * ciencia y tecnología de los materiales = materials science and technology.
    * científico de las ciencias de la tierra = geoscientist.
    * conocer a ciencia cierta = know for + certain, know for + sure, know for + a fact.
    * delegación de educación y ciencia = local education authority (LEA).
    * enseñanza de las ciencias = science education.
    * especialista en ciencias de la tierra = earth scientist.
    * estudiante de ciencias de la educación = education student, student teacher.
    * facultad de ciencias de la educación = teachers college, teacher training college.
    * filosofía de la ciencia = philosophy of science.
    * Fundación Nacional para las Ciencias (NSF) = National Science Foundation (NSF).
    * humanidades y ciencias sociales = arts and social sciences.
    * Indice de Citas de Ciencia (SCI) = Science Citation Index (SCI).
    * Indice de Citas de las Ciencias Sociales (SSCI) = Social Sciences Citation Index (SSCI).
    * investigación en ciencias de la documentación = information science research.
    * Licenciatura de Ciencias = M.Sc. (Master of Science).
    * Ministerio de Educación y Ciencia = Department of Education and Science.
    * mundo de la ciencia, el = world of science, the, scientific world, the.
    * museo de ciencias naturales = natural science museum.
    * museo de las ciencias = science museum.
    * no es una ciencia exacta = not (exactly) rocket science.
    * novela de ciencia ficción = science fiction novel.
    * relacionado con las ciencias = science-related.
    * revista de ciencia y tecnología = science and technology journal.
    * saber a ciencia cierta = know for + certain, know for + sure, know for + a fact.
    * saber a ciencia cierta que = know + for a fact that.
    * ser una ciencia exacta = be an exact science.
    * sistema de la ciencia, el = system of science, the.
    * tecnología de la información para ciencias de la salud = health informatics.

    * * *
    1 (rama del saber) science; (saber, conocimiento) knowledge, learning
    los adelantos de la ciencia scientific advances, the advances of science
    a ciencia cierta for sure, for certain
    no tiene ninguna ciencia there's nothing difficult o complicated about it
    2 ciencias fpl ( Educ) science
    Compuestos:
    soil science
    space science
    science fiction
    tiene la ciencia infusa ( iró); he has God-given intelligence ( iro)
    fpl Education
    fpl Media Studies
    fpl Business Studies
    fpl exact sciences
    fpl natural science(s)
    fpl occultism
    fpl Political Science, Politics
    * * *

     

    ciencia sustantivo femenino

    (saber, conocimiento) knowledge, learning;

    a ciencia cierta for sure, for certain
    b)

    ciencias sustantivo femenino plural (Educ) science;

    Cciencias Empresariales/de la Información Business/Media Studies;
    Cciencias Políticas/de la Educación Politics/Education
    ciencia sustantivo femenino
    1 science
    2 frml (conocimiento) knowledge: descorchar un botella no tiene mucha ciencia, there is no mystery about uncorking a bottle
    3 ciencia ficción, science fiction
    irón ciencia infusa, divine inspiration
    ciencias ocultas, the occult sing
    ♦ Locuciones: a ciencia cierta, for certain: lo sé a ciencia cierta, I'm absolutely sure o I know it for certain
    ' ciencia' also found in these entries:
    Spanish:
    divulgación
    - estadística
    - interés
    - jurisprudencia
    - mecánica
    - óptica
    - ortopedia
    - padre
    - ramo
    - reino
    - toponimia
    - acústica
    - adelanto
    - aeronáutica
    - avanzar
    - contabilidad
    - dedicar
    - economía
    - evolucionar
    - ramificarse
    - triunfo
    - veterinaria
    English:
    advancement
    - area
    - branch
    - certain
    - data processing
    - economics
    - electronic
    - forestry
    - medicine
    - sci-fi
    - science
    - science fiction
    - statistics
    - surgery
    - social
    - wishful thinking
    * * *
    nf
    1. [método, estudio] science;
    la ciencia ya no puede hacer nada para salvar al enfermo science is unable to do anything more to help the patient;
    la astronomía es la ciencia que estudia los cuerpos celestes astronomy is the science in which heavenly bodies are studied
    ciencias aplicadas applied sciences;
    ciencias biológicas life sciences;
    ciencia del conocimiento cognitive science;
    ciencias económicas economics [singular];
    ciencias empresariales business studies;
    ciencias exactas mathematics [singular];
    ciencia ficción science fiction;
    ciencias físicas physical sciences;
    ciencias naturales natural sciences;
    ciencias ocultas occultism;
    ciencias políticas political science;
    ciencias de la salud medical sciences;
    ciencias sociales social sciences;
    ciencias de la Tierra earth sciences
    2. [sabiduría] learning, knowledge;
    Fam
    tener poca ciencia to be straightforward;
    la cocina tiene poca ciencia, pero requiere mucho sentido común cooking doesn't require a lot of skill, but you do need to use common sense;
    Hum
    por ciencia infusa through divine inspiration
    3. Educ
    ciencias science;
    soy de ciencias I studied science
    ciencias mixtas = secondary school course comprising mainly science subjects but including some arts subjects;
    ciencias puras = secondary school course comprising science subjects only
    a ciencia cierta loc adv
    for certain;
    no se conoce a ciencia cierta el número de víctimas the number of victims isn't known for certain
    * * *
    f
    1 science;
    a ciencia cierta for certain, for sure;
    ser un pozo de ciencia fam be a fount of knowledge
    2
    :
    ciencias pl EDU science sg ;
    ciencias (naturales) natural sciences
    * * *
    1) : science
    2) : learning, knowledge
    3)
    a ciencia cierta : for a fact, for certain
    * * *
    ciencia n science

    Spanish-English dictionary > ciencia

  • 7 Mind

       It becomes, therefore, no inconsiderable part of science... to know the different operations of the mind, to separate them from each other, to class them under their proper heads, and to correct all that seeming disorder in which they lie involved when made the object of reflection and inquiry.... It cannot be doubted that the mind is endowed with several powers and faculties, that these powers are distinct from one another, and that what is really distinct to the immediate perception may be distinguished by reflection and, consequently, that there is a truth and falsehood which lie not beyond the compass of human understanding. (Hume, 1955, p. 22)
       Let us then suppose the mind to be, as we say, white Paper, void of all Characters, without any Ideas: How comes it to be furnished? Whence comes it by that vast store, which the busy and boundless Fancy of Man has painted on it, with an almost endless variety? Whence has it all the materials of Reason and Knowledge? To this I answer, in one word, from Experience. (Locke, quoted in Herrnstein & Boring, 1965, p. 584)
       The kind of logic in mythical thought is as rigorous as that of modern science, and... the difference lies, not in the quality of the intellectual process, but in the nature of things to which it is applied.... Man has always been thinking equally well; the improvement lies, not in an alleged progress of man's mind, but in the discovery of new areas to which it may apply its unchanged and unchanging powers. (Leґvi-Strauss, 1963, p. 230)
       MIND. A mysterious form of matter secreted by the brain. Its chief activity consists in the endeavor to ascertain its own nature, the futility of the attempt being due to the fact that it has nothing but itself to know itself with. (Bierce, quoted in Minsky, 1986, p. 55)
       [Philosophy] understands the foundations of knowledge and it finds these foundations in a study of man-as-knower, of the "mental processes" or the "activity of representation" which make knowledge possible. To know is to represent accurately what is outside the mind, so to understand the possibility and nature of knowledge is to understand the way in which the mind is able to construct such representation.... We owe the notion of a "theory of knowledge" based on an understanding of "mental processes" to the seventeenth century, and especially to Locke. We owe the notion of "the mind" as a separate entity in which "processes" occur to the same period, and especially to Descartes. We owe the notion of philosophy as a tribunal of pure reason, upholding or denying the claims of the rest of culture, to the eighteenth century and especially to Kant, but this Kantian notion presupposed general assent to Lockean notions of mental processes and Cartesian notions of mental substance. (Rorty, 1979, pp. 3-4)
       Under pressure from the computer, the question of mind in relation to machine is becoming a central cultural preoccupation. It is becoming for us what sex was to Victorians-threat, obsession, taboo, and fascination. (Turkle, 1984, p. 313)
       7) Understanding the Mind Remains as Resistant to Neurological as to Cognitive Analyses
       Recent years have been exciting for researchers in the brain and cognitive sciences. Both fields have flourished, each spurred on by methodological and conceptual developments, and although understanding the mechanisms of mind is an objective shared by many workers in these areas, their theories and approaches to the problem are vastly different....
       Early experimental psychologists, such as Wundt and James, were as interested in and knowledgeable about the anatomy and physiology of the nervous system as about the young science of the mind. However, the experimental study of mental processes was short-lived, being eclipsed by the rise of behaviorism early in this century. It was not until the late 1950s that the signs of a new mentalism first appeared in scattered writings of linguists, philosophers, computer enthusiasts, and psychologists.
       In this new incarnation, the science of mind had a specific mission: to challenge and replace behaviorism. In the meantime, brain science had in many ways become allied with a behaviorist approach.... While behaviorism sought to reduce the mind to statements about bodily action, brain science seeks to explain the mind in terms of physiochemical events occurring in the nervous system. These approaches contrast with contemporary cognitive science, which tries to understand the mind as it is, without any reduction, a view sometimes described as functionalism.
       The cognitive revolution is now in place. Cognition is the subject of contemporary psychology. This was achieved with little or no talk of neurons, action potentials, and neurotransmitters. Similarly, neuroscience has risen to an esteemed position among the biological sciences without much talk of cognitive processes. Do the fields need each other?... [Y]es because the problem of understanding the mind, unlike the wouldbe problem solvers, respects no disciplinary boundaries. It remains as resistant to neurological as to cognitive analyses. (LeDoux & Hirst, 1986, pp. 1-2)
       Since the Second World War scientists from different disciplines have turned to the study of the human mind. Computer scientists have tried to emulate its capacity for visual perception. Linguists have struggled with the puzzle of how children acquire language. Ethologists have sought the innate roots of social behaviour. Neurophysiologists have begun to relate the function of nerve cells to complex perceptual and motor processes. Neurologists and neuropsychologists have used the pattern of competence and incompetence of their brain-damaged patients to elucidate the normal workings of the brain. Anthropologists have examined the conceptual structure of cultural practices to advance hypotheses about the basic principles of the mind. These days one meets engineers who work on speech perception, biologists who investigate the mental representation of spatial relations, and physicists who want to understand consciousness. And, of course, psychologists continue to study perception, memory, thought and action.
    ... [W]orkers in many disciplines have converged on a number of central problems and explanatory ideas. They have realized that no single approach is likely to unravel the workings of the mind: it will not give up its secrets to psychology alone; nor is any other isolated discipline-artificial intelligence, linguistics, anthropology, neurophysiology, philosophy-going to have any greater success. (Johnson-Laird, 1988, p. 7)

    Historical dictionary of quotations in cognitive science > Mind

  • 8 Cognitive Science

       The basic idea of cognitive science is that intelligent beings are semantic engines-in other words, automatic formal systems with interpretations under which they consistently make sense.... [P]eople and intelligent computers turn out to be merely different manifestations of the same underlying phenomenon. (Haugeland, 1981b, p. 31)
       2) Experimental Psychology, Theoretical Linguistics, and Computational Simulation of Cognitive Processes Are All Components of Cognitive Science
       I went away from the Symposium with a strong conviction, more intuitive than rational, that human experimental psychology, theoretical linguistics, and computer simulation of cognitive processes were all pieces of a larger whole, and that the future would see progressive elaboration and coordination of their shared concerns.... I have been working toward a cognitive science for about twenty years beginning before I knew what to call it. (G. A. Miller, 1979, p. 9)
        Cognitive Science studies the nature of cognition in human beings, other animals, and inanimate machines (if such a thing is possible). While computers are helpful within cognitive science, they are not essential to its being. A science of cognition could still be pursued even without these machines.
        Computer Science studies various kinds of problems and the use of computers to solve them, without concern for the means by which we humans might otherwise resolve them. There could be no computer science if there were no machines of this kind, because they are indispensable to its being. Artificial Intelligence is a special branch of computer science that investigates the extent to which the mental powers of human beings can be captured by means of machines.
       There could be cognitive science without artificial intelligence but there could be no artificial intelligence without cognitive science. One final caveat: In the case of an emerging new discipline such as cognitive science there is an almost irresistible temptation to identify the discipline itself (as a field of inquiry) with one of the theories that inspired it (such as the computational conception...). This, however, is a mistake. The field of inquiry (or "domain") stands to specific theories as questions stand to possible answers. The computational conception should properly be viewed as a research program in cognitive science, where "research programs" are answers that continue to attract followers. (Fetzer, 1996, pp. xvi-xvii)
       What is the nature of knowledge and how is this knowledge used? These questions lie at the core of both psychology and artificial intelligence.
       The psychologist who studies "knowledge systems" wants to know how concepts are structured in the human mind, how such concepts develop, and how they are used in understanding and behavior. The artificial intelligence researcher wants to know how to program a computer so that it can understand and interact with the outside world. The two orientations intersect when the psychologist and the computer scientist agree that the best way to approach the problem of building an intelligent machine is to emulate the human conceptual mechanisms that deal with language.... The name "cognitive science" has been used to refer to this convergence of interests in psychology and artificial intelligence....
       This working partnership in "cognitive science" does not mean that psychologists and computer scientists are developing a single comprehensive theory in which people are no different from machines. Psychology and artificial intelligence have many points of difference in methods and goals.... We simply want to work on an important area of overlapping interest, namely a theory of knowledge systems. As it turns out, this overlap is substantial. For both people and machines, each in their own way, there is a serious problem in common of making sense out of what they hear, see, or are told about the world. The conceptual apparatus necessary to perform even a partial feat of understanding is formidable and fascinating. (Schank & Abelson, 1977, pp. 1-2)
       Within the last dozen years a general change in scientific outlook has occurred, consonant with the point of view represented here. One can date the change roughly from 1956: in psychology, by the appearance of Bruner, Goodnow, and Austin's Study of Thinking and George Miller's "The Magical Number Seven"; in linguistics, by Noam Chomsky's "Three Models of Language"; and in computer science, by our own paper on the Logic Theory Machine. (Newell & Simon, 1972, p. 4)

    Historical dictionary of quotations in cognitive science > Cognitive Science

  • 9 Artificial Intelligence

       In my opinion, none of [these programs] does even remote justice to the complexity of human mental processes. Unlike men, "artificially intelligent" programs tend to be single minded, undistractable, and unemotional. (Neisser, 1967, p. 9)
       Future progress in [artificial intelligence] will depend on the development of both practical and theoretical knowledge.... As regards theoretical knowledge, some have sought a unified theory of artificial intelligence. My view is that artificial intelligence is (or soon will be) an engineering discipline since its primary goal is to build things. (Nilsson, 1971, pp. vii-viii)
       Most workers in AI [artificial intelligence] research and in related fields confess to a pronounced feeling of disappointment in what has been achieved in the last 25 years. Workers entered the field around 1950, and even around 1960, with high hopes that are very far from being realized in 1972. In no part of the field have the discoveries made so far produced the major impact that was then promised.... In the meantime, claims and predictions regarding the potential results of AI research had been publicized which went even farther than the expectations of the majority of workers in the field, whose embarrassments have been added to by the lamentable failure of such inflated predictions....
       When able and respected scientists write in letters to the present author that AI, the major goal of computing science, represents "another step in the general process of evolution"; that possibilities in the 1980s include an all-purpose intelligence on a human-scale knowledge base; that awe-inspiring possibilities suggest themselves based on machine intelligence exceeding human intelligence by the year 2000 [one has the right to be skeptical]. (Lighthill, 1972, p. 17)
       4) Just as Astronomy Succeeded Astrology, the Discovery of Intellectual Processes in Machines Should Lead to a Science, Eventually
       Just as astronomy succeeded astrology, following Kepler's discovery of planetary regularities, the discoveries of these many principles in empirical explorations on intellectual processes in machines should lead to a science, eventually. (Minsky & Papert, 1973, p. 11)
       Many problems arise in experiments on machine intelligence because things obvious to any person are not represented in any program. One can pull with a string, but one cannot push with one.... Simple facts like these caused serious problems when Charniak attempted to extend Bobrow's "Student" program to more realistic applications, and they have not been faced up to until now. (Minsky & Papert, 1973, p. 77)
       What do we mean by [a symbolic] "description"? We do not mean to suggest that our descriptions must be made of strings of ordinary language words (although they might be). The simplest kind of description is a structure in which some features of a situation are represented by single ("primitive") symbols, and relations between those features are represented by other symbols-or by other features of the way the description is put together. (Minsky & Papert, 1973, p. 11)
       [AI is] the use of computer programs and programming techniques to cast light on the principles of intelligence in general and human thought in particular. (Boden, 1977, p. 5)
       The word you look for and hardly ever see in the early AI literature is the word knowledge. They didn't believe you have to know anything, you could always rework it all.... In fact 1967 is the turning point in my mind when there was enough feeling that the old ideas of general principles had to go.... I came up with an argument for what I called the primacy of expertise, and at the time I called the other guys the generalists. (Moses, quoted in McCorduck, 1979, pp. 228-229)
       9) Artificial Intelligence Is Psychology in a Particularly Pure and Abstract Form
       The basic idea of cognitive science is that intelligent beings are semantic engines-in other words, automatic formal systems with interpretations under which they consistently make sense. We can now see why this includes psychology and artificial intelligence on a more or less equal footing: people and intelligent computers (if and when there are any) turn out to be merely different manifestations of the same underlying phenomenon. Moreover, with universal hardware, any semantic engine can in principle be formally imitated by a computer if only the right program can be found. And that will guarantee semantic imitation as well, since (given the appropriate formal behavior) the semantics is "taking care of itself" anyway. Thus we also see why, from this perspective, artificial intelligence can be regarded as psychology in a particularly pure and abstract form. The same fundamental structures are under investigation, but in AI, all the relevant parameters are under direct experimental control (in the programming), without any messy physiology or ethics to get in the way. (Haugeland, 1981b, p. 31)
       There are many different kinds of reasoning one might imagine:
        Formal reasoning involves the syntactic manipulation of data structures to deduce new ones following prespecified rules of inference. Mathematical logic is the archetypical formal representation. Procedural reasoning uses simulation to answer questions and solve problems. When we use a program to answer What is the sum of 3 and 4? it uses, or "runs," a procedural model of arithmetic. Reasoning by analogy seems to be a very natural mode of thought for humans but, so far, difficult to accomplish in AI programs. The idea is that when you ask the question Can robins fly? the system might reason that "robins are like sparrows, and I know that sparrows can fly, so robins probably can fly."
        Generalization and abstraction are also natural reasoning process for humans that are difficult to pin down well enough to implement in a program. If one knows that Robins have wings, that Sparrows have wings, and that Blue jays have wings, eventually one will believe that All birds have wings. This capability may be at the core of most human learning, but it has not yet become a useful technique in AI.... Meta- level reasoning is demonstrated by the way one answers the question What is Paul Newman's telephone number? You might reason that "if I knew Paul Newman's number, I would know that I knew it, because it is a notable fact." This involves using "knowledge about what you know," in particular, about the extent of your knowledge and about the importance of certain facts. Recent research in psychology and AI indicates that meta-level reasoning may play a central role in human cognitive processing. (Barr & Feigenbaum, 1981, pp. 146-147)
       Suffice it to say that programs already exist that can do things-or, at the very least, appear to be beginning to do things-which ill-informed critics have asserted a priori to be impossible. Examples include: perceiving in a holistic as opposed to an atomistic way; using language creatively; translating sensibly from one language to another by way of a language-neutral semantic representation; planning acts in a broad and sketchy fashion, the details being decided only in execution; distinguishing between different species of emotional reaction according to the psychological context of the subject. (Boden, 1981, p. 33)
       Can the synthesis of Man and Machine ever be stable, or will the purely organic component become such a hindrance that it has to be discarded? If this eventually happens-and I have... good reasons for thinking that it must-we have nothing to regret and certainly nothing to fear. (Clarke, 1984, p. 243)
       The thesis of GOFAI... is not that the processes underlying intelligence can be described symbolically... but that they are symbolic. (Haugeland, 1985, p. 113)
        14) Artificial Intelligence Provides a Useful Approach to Psychological and Psychiatric Theory Formation
       It is all very well formulating psychological and psychiatric theories verbally but, when using natural language (even technical jargon), it is difficult to recognise when a theory is complete; oversights are all too easily made, gaps too readily left. This is a point which is generally recognised to be true and it is for precisely this reason that the behavioural sciences attempt to follow the natural sciences in using "classical" mathematics as a more rigorous descriptive language. However, it is an unfortunate fact that, with a few notable exceptions, there has been a marked lack of success in this application. It is my belief that a different approach-a different mathematics-is needed, and that AI provides just this approach. (Hand, quoted in Hand, 1985, pp. 6-7)
       We might distinguish among four kinds of AI.
       Research of this kind involves building and programming computers to perform tasks which, to paraphrase Marvin Minsky, would require intelligence if they were done by us. Researchers in nonpsychological AI make no claims whatsoever about the psychological realism of their programs or the devices they build, that is, about whether or not computers perform tasks as humans do.
       Research here is guided by the view that the computer is a useful tool in the study of mind. In particular, we can write computer programs or build devices that simulate alleged psychological processes in humans and then test our predictions about how the alleged processes work. We can weave these programs and devices together with other programs and devices that simulate different alleged mental processes and thereby test the degree to which the AI system as a whole simulates human mentality. According to weak psychological AI, working with computer models is a way of refining and testing hypotheses about processes that are allegedly realized in human minds.
    ... According to this view, our minds are computers and therefore can be duplicated by other computers. Sherry Turkle writes that the "real ambition is of mythic proportions, making a general purpose intelligence, a mind." (Turkle, 1984, p. 240) The authors of a major text announce that "the ultimate goal of AI research is to build a person or, more humbly, an animal." (Charniak & McDermott, 1985, p. 7)
       Research in this field, like strong psychological AI, takes seriously the functionalist view that mentality can be realized in many different types of physical devices. Suprapsychological AI, however, accuses strong psychological AI of being chauvinisticof being only interested in human intelligence! Suprapsychological AI claims to be interested in all the conceivable ways intelligence can be realized. (Flanagan, 1991, pp. 241-242)
        16) Determination of Relevance of Rules in Particular Contexts
       Even if the [rules] were stored in a context-free form the computer still couldn't use them. To do that the computer requires rules enabling it to draw on just those [ rules] which are relevant in each particular context. Determination of relevance will have to be based on further facts and rules, but the question will again arise as to which facts and rules are relevant for making each particular determination. One could always invoke further facts and rules to answer this question, but of course these must be only the relevant ones. And so it goes. It seems that AI workers will never be able to get started here unless they can settle the problem of relevance beforehand by cataloguing types of context and listing just those facts which are relevant in each. (Dreyfus & Dreyfus, 1986, p. 80)
       Perhaps the single most important idea to artificial intelligence is that there is no fundamental difference between form and content, that meaning can be captured in a set of symbols such as a semantic net. (G. Johnson, 1986, p. 250)
        18) The Assumption That the Mind Is a Formal System
       Artificial intelligence is based on the assumption that the mind can be described as some kind of formal system manipulating symbols that stand for things in the world. Thus it doesn't matter what the brain is made of, or what it uses for tokens in the great game of thinking. Using an equivalent set of tokens and rules, we can do thinking with a digital computer, just as we can play chess using cups, salt and pepper shakers, knives, forks, and spoons. Using the right software, one system (the mind) can be mapped into the other (the computer). (G. Johnson, 1986, p. 250)
        19) A Statement of the Primary and Secondary Purposes of Artificial Intelligence
       The primary goal of Artificial Intelligence is to make machines smarter.
       The secondary goals of Artificial Intelligence are to understand what intelligence is (the Nobel laureate purpose) and to make machines more useful (the entrepreneurial purpose). (Winston, 1987, p. 1)
       The theoretical ideas of older branches of engineering are captured in the language of mathematics. We contend that mathematical logic provides the basis for theory in AI. Although many computer scientists already count logic as fundamental to computer science in general, we put forward an even stronger form of the logic-is-important argument....
       AI deals mainly with the problem of representing and using declarative (as opposed to procedural) knowledge. Declarative knowledge is the kind that is expressed as sentences, and AI needs a language in which to state these sentences. Because the languages in which this knowledge usually is originally captured (natural languages such as English) are not suitable for computer representations, some other language with the appropriate properties must be used. It turns out, we think, that the appropriate properties include at least those that have been uppermost in the minds of logicians in their development of logical languages such as the predicate calculus. Thus, we think that any language for expressing knowledge in AI systems must be at least as expressive as the first-order predicate calculus. (Genesereth & Nilsson, 1987, p. viii)
        21) Perceptual Structures Can Be Represented as Lists of Elementary Propositions
       In artificial intelligence studies, perceptual structures are represented as assemblages of description lists, the elementary components of which are propositions asserting that certain relations hold among elements. (Chase & Simon, 1988, p. 490)
       Artificial intelligence (AI) is sometimes defined as the study of how to build and/or program computers to enable them to do the sorts of things that minds can do. Some of these things are commonly regarded as requiring intelligence: offering a medical diagnosis and/or prescription, giving legal or scientific advice, proving theorems in logic or mathematics. Others are not, because they can be done by all normal adults irrespective of educational background (and sometimes by non-human animals too), and typically involve no conscious control: seeing things in sunlight and shadows, finding a path through cluttered terrain, fitting pegs into holes, speaking one's own native tongue, and using one's common sense. Because it covers AI research dealing with both these classes of mental capacity, this definition is preferable to one describing AI as making computers do "things that would require intelligence if done by people." However, it presupposes that computers could do what minds can do, that they might really diagnose, advise, infer, and understand. One could avoid this problematic assumption (and also side-step questions about whether computers do things in the same way as we do) by defining AI instead as "the development of computers whose observable performance has features which in humans we would attribute to mental processes." This bland characterization would be acceptable to some AI workers, especially amongst those focusing on the production of technological tools for commercial purposes. But many others would favour a more controversial definition, seeing AI as the science of intelligence in general-or, more accurately, as the intellectual core of cognitive science. As such, its goal is to provide a systematic theory that can explain (and perhaps enable us to replicate) both the general categories of intentionality and the diverse psychological capacities grounded in them. (Boden, 1990b, pp. 1-2)
       Because the ability to store data somewhat corresponds to what we call memory in human beings, and because the ability to follow logical procedures somewhat corresponds to what we call reasoning in human beings, many members of the cult have concluded that what computers do somewhat corresponds to what we call thinking. It is no great difficulty to persuade the general public of that conclusion since computers process data very fast in small spaces well below the level of visibility; they do not look like other machines when they are at work. They seem to be running along as smoothly and silently as the brain does when it remembers and reasons and thinks. On the other hand, those who design and build computers know exactly how the machines are working down in the hidden depths of their semiconductors. Computers can be taken apart, scrutinized, and put back together. Their activities can be tracked, analyzed, measured, and thus clearly understood-which is far from possible with the brain. This gives rise to the tempting assumption on the part of the builders and designers that computers can tell us something about brains, indeed, that the computer can serve as a model of the mind, which then comes to be seen as some manner of information processing machine, and possibly not as good at the job as the machine. (Roszak, 1994, pp. xiv-xv)
       The inner workings of the human mind are far more intricate than the most complicated systems of modern technology. Researchers in the field of artificial intelligence have been attempting to develop programs that will enable computers to display intelligent behavior. Although this field has been an active one for more than thirty-five years and has had many notable successes, AI researchers still do not know how to create a program that matches human intelligence. No existing program can recall facts, solve problems, reason, learn, and process language with human facility. This lack of success has occurred not because computers are inferior to human brains but rather because we do not yet know in sufficient detail how intelligence is organized in the brain. (Anderson, 1995, p. 2)

    Historical dictionary of quotations in cognitive science > Artificial Intelligence

  • 10 Experience

       Any kind of experience-accidental impressions, observations, and even "inner experience" not induced by stimuli received from the environment-may initiate cognitive processes leading to changes in a person's knowledge. Thus, new knowledge can be acquired without new information being received. (That this statement refers to subjective knowledge goes without saying; but there is no such thing as objective knowledge that was not previously somebody's subjective knowledge. (Machlup & Mansfield, 1983, p. 644)
       Our faith in experience is far from well grounded, because we have an untenable concept of the nature of experience, one that assumes truth is manifest, and does not have to be inferred. (Brehmer, 1986, p. 715)
       I now wish to unfold the principles of experimental science, since without experience nothing can be sufficiently known. For there are two modes of acquiring knowledge, namely by reasoning and experience. Reasoning draws a conclusion and makes us grant the conclusion, but does not make the conclusion certain, nor does it remove doubt so that the mind may rest on the intuition of truth, unless the mind discovers it by the path of experience.... Aristotle's statement then that proof is reasoning that causes us to know is to be understood with the proviso that the proof is accompanied by its appropriate experience, and is not to be understood of the bare proof.... He therefore who wishes to rejoice without doubt in regard to the truths underlying phenomena must know how to devote himself to experiment. (Bacon, 1928, Pt. VI, Chap. 1)

    Historical dictionary of quotations in cognitive science > Experience

  • 11 Introspection

       1) Experimental Introspection Is the One Reliable Method of Knowing Ourselves
       When we are trying to understand the mental processes of a child or a dog or an insect as shown by conduct and action, the outward signs of mental processes,... we must always fall back upon experimental introspection... [;] we cannot imagine processes in another mind that we do not find in our own. Experimental introspection is thus our one reliable method of knowing ourselves; it is the sole gateway to psychology. (Titchener, 1914, p. 32)
       There is a somewhat misleading point of view that one's own experience provides a sufficient understanding of mental life for scientific purposes. Indeed, early in the history of experimental psychology, the main method for studying cognition was introspection. By observing one's own mind, the argument went, one could say how one carried out cognitive activities....
       Yet introspection failed to be a good technique for the elucidation of mental processes in general. There are two simple reasons for this. First, so many things which we can do seem to be quite unrelated to conscious experience. Someone asks you your name. You do not know how you retrieve it, yet obviously there is some process by which the retrieval occurs. In the same way, when someone speaks to you, you understand what they say, but you do not know how you came to understand. Yet somehow processes take place in which words are picked out from the jumble of sound waves which reach your ears, in-built knowledge of syntax and semantics gives it meaning, and the significance of the message comes to be appreciated. Clearly, introspection is not of much use here, but it is undeniable that understanding language is as much a part of mental life as is thinking.
       As if these arguments were not enough, it is also the case that introspective data are notoriously difficult to evaluate. Because it is private to the experiencer, and experience may be difficult to convey in words to somebody else. Many early introspective protocols were very confusing to read and, even worse, the kinds of introspection reported tended to conform to the theoretical categories used in different laboratories. Clearly, what was needed was both a change in experimental method and a different (non-subjective) theoretical framework to describe mental life. (Sanford, 1987, pp. 2-3)

    Historical dictionary of quotations in cognitive science > Introspection

  • 12 Psychology

       We come therefore now to that knowledge whereunto the ancient oracle directeth us, which is the knowledge of ourselves; which deserveth the more accurate handling, by how much it toucheth us more nearly. This knowledge, as it is the end and term of natural philosophy in the intention of man, so notwithstanding it is but a portion of natural philosophy in the continent of nature.... [W]e proceed to human philosophy or Humanity, which hath two parts: the one considereth man segregate, or distributively; the other congregate, or in society. So as Human philosophy is either Simple and Particular, or Conjugate and Civil. Humanity Particular consisteth of the same parts whereof man consisteth; that is, of knowledges which respect the Body, and of knowledges that respect the Mind... how the one discloseth the other and how the one worketh upon the other... [:] the one is honored with the inquiry of Aristotle, and the other of Hippocrates. (Bacon, 1878, pp. 236-237)
       The claims of Psychology to rank as a distinct science are... not smaller but greater than those of any other science. If its phenomena are contemplated objectively, merely as nervo-muscular adjustments by which the higher organisms from moment to moment adapt their actions to environing co-existences and sequences, its degree of specialty, even then, entitles it to a separate place. The moment the element of feeling, or consciousness, is used to interpret nervo-muscular adjustments as thus exhibited in the living beings around, objective Psychology acquires an additional, and quite exceptional, distinction. (Spencer, 1896, p. 141)
       Kant once declared that psychology was incapable of ever raising itself to the rank of an exact natural science. The reasons that he gives... have often been repeated in later times. In the first place, Kant says, psychology cannot become an exact science because mathematics is inapplicable to the phenomena of the internal sense; the pure internal perception, in which mental phenomena must be constructed,-time,-has but one dimension. In the second place, however, it cannot even become an experimental science, because in it the manifold of internal observation cannot be arbitrarily varied,-still less, another thinking subject be submitted to one's experiments, comformably to the end in view; moreover, the very fact of observation means alteration of the observed object. (Wundt, 1904, p. 6)
       It is [Gustav] Fechner's service to have found and followed the true way; to have shown us how a "mathematical psychology" may, within certain limits, be realized in practice.... He was the first to show how Herbart's idea of an "exact psychology" might be turned to practical account. (Wundt, 1904, pp. 6-7)
       "Mind," "intellect," "reason," "understanding," etc. are concepts... that existed before the advent of any scientific psychology. The fact that the naive consciousness always and everywhere points to internal experience as a special source of knowledge, may, therefore, be accepted for the moment as sufficient testimony to the rights of psychology as science.... "Mind," will accordingly be the subject, to which we attribute all the separate facts of internal observation as predicates. The subject itself is determined p. 17) wholly and exclusively by its predicates. (Wundt, 1904,
       The study of animal psychology may be approached from two different points of view. We may set out from the notion of a kind of comparative physiology of mind, a universal history of the development of mental life in the organic world. Or we may make human psychology the principal object of investigation. Then, the expressions of mental life in animals will be taken into account only so far as they throw light upon the evolution of consciousness in man.... Human psychology... may confine itself altogether to man, and generally has done so to far too great an extent. There are plenty of psychological text-books from which you would hardly gather that there was any other conscious life than the human. (Wundt, 1907, pp. 340-341)
       The Behaviorist began his own formulation of the problem of psychology by sweeping aside all medieval conceptions. He dropped from his scientific vocabulary all subjective terms such as sensation, perception, image, desire, purpose, and even thinking and emotion as they were subjectively defined. (Watson, 1930, pp. 5-6)
       According to the medieval classification of the sciences, psychology is merely a chapter of special physics, although the most important chapter; for man is a microcosm; he is the central figure of the universe. (deWulf, 1956, p. 125)
       At the beginning of this century the prevailing thesis in psychology was Associationism.... Behavior proceeded by the stream of associations: each association produced its successors, and acquired new attachments with the sensations arriving from the environment.
       In the first decade of the century a reaction developed to this doctrine through the work of the Wurzburg school. Rejecting the notion of a completely self-determining stream of associations, it introduced the task ( Aufgabe) as a necessary factor in describing the process of thinking. The task gave direction to thought. A noteworthy innovation of the Wurzburg school was the use of systematic introspection to shed light on the thinking process and the contents of consciousness. The result was a blend of mechanics and phenomenalism, which gave rise in turn to two divergent antitheses, Behaviorism and the Gestalt movement. The behavioristic reaction insisted that introspection was a highly unstable, subjective procedure.... Behaviorism reformulated the task of psychology as one of explaining the response of organisms as a function of the stimuli impinging upon them and measuring both objectively. However, Behaviorism accepted, and indeed reinforced, the mechanistic assumption that the connections between stimulus and response were formed and maintained as simple, determinate functions of the environment.
       The Gestalt reaction took an opposite turn. It rejected the mechanistic nature of the associationist doctrine but maintained the value of phenomenal observation. In many ways it continued the Wurzburg school's insistence that thinking was more than association-thinking has direction given to it by the task or by the set of the subject. Gestalt psychology elaborated this doctrine in genuinely new ways in terms of holistic principles of organization.
       Today psychology lives in a state of relatively stable tension between the poles of Behaviorism and Gestalt psychology.... (Newell & Simon, 1963, pp. 279-280)
       As I examine the fate of our oppositions, looking at those already in existence as guide to how they fare and shape the course of science, it seems to me that clarity is never achieved. Matters simply become muddier and muddier as we go down through time. Thus, far from providing the rungs of a ladder by which psychology gradually climbs to clarity, this form of conceptual structure leads rather to an ever increasing pile of issues, which we weary of or become diverted from, but never really settle. (Newell, 1973b, pp. 288-289)
       The subject matter of psychology is as old as reflection. Its broad practical aims are as dated as human societies. Human beings, in any period, have not been indifferent to the validity of their knowledge, unconcerned with the causes of their behavior or that of their prey and predators. Our distant ancestors, no less than we, wrestled with the problems of social organization, child rearing, competition, authority, individual differences, personal safety. Solving these problems required insights-no matter how untutored-into the psychological dimensions of life. Thus, if we are to follow the convention of treating psychology as a young discipline, we must have in mind something other than its subject matter. We must mean that it is young in the sense that physics was young at the time of Archimedes or in the sense that geometry was "founded" by Euclid and "fathered" by Thales. Sailing vessels were launched long before Archimedes discovered the laws of bouyancy [ sic], and pillars of identical circumference were constructed before anyone knew that C IID. We do not consider the ship builders and stone cutters of antiquity physicists and geometers. Nor were the ancient cave dwellers psychologists merely because they rewarded the good conduct of their children. The archives of folk wisdom contain a remarkable collection of achievements, but craft-no matter how perfected-is not science, nor is a litany of successful accidents a discipline. If psychology is young, it is young as a scientific discipline but it is far from clear that psychology has attained this status. (Robinson, 1986, p. 12)

    Historical dictionary of quotations in cognitive science > Psychology

  • 13 понимание

    understanding, comprehension, meaning
    Большая часть этого не дала нам никакого дополнительного понимания... - Most of this fails to provide any additional insight into...
    В данной главе (у читателя) предполагается интуитивное понимание... - In this chapter we assume an intuitive knowledge of...
    В соответствии с таким пониманием,... - According to this view,...
    Для лучшего понимания процесса необходимо... - In order to have a better understanding of the process, it is necessary to...
    Его лекции внесли новое понимание явлений... - His lectures provided new insight regarding the effects of...
    Его точный смысл достаточно труден для понимания. - The precise meaning of this is rather difficult to grasp.
    Лучшее понимание было получено на пути, когда/где... - A better understanding has been gained of the way in which...
    Мы не можем достичь совершенного понимания этого, пока не... - We cannot arrive at a comprehensive view of this unless we...
    Мы рассматриваем довольно идеализированную модель, которая дает некоторое понимание... - We consider a rather idealized model which gives some insight into...
    Наше современное понимание... основано на... - Our present-day understanding of... is based on...
    Невозможно получить полное понимание... без основных знаний... - It is impossible to gain a thorough knowledge of... without a basic knowledge of...
    Некоторая аналогия иногда бывает полезной для понимания... - An analogy is sometimes useful in understanding...
    Некоторое знание... необходимо для понимания... - Some knowledge of... is necessary to an understanding of...
    Некоторое понимание причины такого поведения можно получить... - Some insight into the reason for this behavior can be gained by...
    Но очевидно, что подобное понимание является бессмысленным. - But such a view is clearly nonsense.
    Поверхностное понимание данной теоремы могло бы привести к убеждению, что... - A superficial reading of this theorem might lead one to believe that...
    Решающим здесь является понимание, что... - It is crucial to understand that...
    Следующая теорема дает более глубокое понимание... - The next theorem provides more insight into...
    Следующее простое рассуждение может дать некоторое понимание... - The following simple reasoning may give some insight into...
    Такое понимание (= точка зрения) предполагает, что... - This view presumes that...
    Только в последние годы мы пришли к пониманию, что... - Only in recent years have we come to understand that...
    Что (действительно) необходимо - это ясное понимание... - What is needed is a clear understanding of...
    Чтобы избежать неверного понимания, мы... - То avoid misunderstanding, we shall...
    Экспериментальная работа дала нам лучшее понимание механизма... - Experimental work has given us a better insight into the mechanism of...
    Эта книга предназначена для того, чтобы дать практическим инженерам полное понимание... - This book is intended to give practicing engineers a thorough understanding of...
    Это могло бы также привести к лучшему пониманию... - This could also lead to a better understanding of...
    Это необходимо для существенного понимания... - This is required for a fundamental understanding of...
    Это понимание не вступает в конфликт с... - This view does not conflict with... (
    Это предполагает глубокое понимание... - This presupposes an intimate knowledge of...
    Это сложная теория, она трудна для понимания. - This theory is difficult to comprehend in simple terms.
    Этот результат подтверждает интуитивное понимание того, что... - This result confirms the intuitive view that...

    Русско-английский словарь научного общения > понимание

  • 14 babel

    f.
    1 Babel.
    2 babel, chaos, bedlam.
    * * *
    torre de Babel Tower of Babel
    * * *
    * * *
    masculino complete bedlam (colloq)
    * * *
    = Babel, BABEL.
    Ex. The article 'Terminological Babel' presents the complex terminological situation in the field of information science.
    Ex. This article discusses the implementation of a knowledge base for an experimental library information system called BABEL.
    ----
    * torre de Babel, la = Tower of Babel, the.
    * * *
    masculino complete bedlam (colloq)
    * * *
    = Babel, BABEL.

    Ex: The article 'Terminological Babel' presents the complex terminological situation in the field of information science.

    Ex: This article discusses the implementation of a knowledge base for an experimental library information system called BABEL.
    * torre de Babel, la = Tower of Babel, the.

    * * *
    Babel torre
    * * *
    babel nm o nf
    Fam
    el debate se convirtió en una babel the debate degenerated into noisy chaos
    * * *
    m (also f) chaos
    * * *
    babel nf
    : babel, chaos, bedlam

    Spanish-English dictionary > babel

  • 15 situación

    f.
    1 situation, state, picture.
    2 position, siting.
    3 presentation of the fetus, lie, lie of the fetus, presentation.
    * * *
    1 (circunstancia) situation
    2 (posición) position
    3 (emplazamiento) situation, location
    * * *
    noun f.
    * * *
    SF
    1) (=circunstancias) situation

    ¿qué harías en una situación así? — what would you do in a situation like that?

    2) (=emplazamiento) situation, location

    la casa tiene una situación inmejorable — the house is in a superb location, the house is superbly located o situated

    3) [en la sociedad] position, standing

    crearse una situación — to do well for o.s.

    situación económica — financial position, financial situation

    4) (=estado) state
    5)

    precio de situación LAm bargain price

    * * *
    1)
    a) ( coyuntura) situation
    b) ( en la sociedad) position, standing
    2) ( emplazamiento) position, situation (frml), location (frml)
    * * *
    = event, location, picture, position, scenario, scene, setting, situation, state, state of affairs, pass, set and setting, landscape, juncture, setup [set-up], footing, stage, climate, conjuncture.
    Ex. The concept of corporate body includes named occasional groups and events, such as meetings, conferences, congresses, expeditions, exhibitions, festivals, and fairs.
    Ex. Having been alerted to the existence of a document, the user needs information concerning the actual location of the document, in order that the document may be read.
    Ex. Outside the Gwynedd, Dyfed and Clwyd heartland the picture was not encouraging.
    Ex. The directory is a finding list which lists for every field its tag, the number of characters in the field, and the starting character position of the field within the record.
    Ex. This article describes a scenario in which the training of junior staff on-the-job is discussed emphasising that the reality in New Zealand libraries falls far short of the ideal.
    Ex. Scenes that include conflict, emotions, prejudices, misunderstandings, and unreasonableness but also kindliness, humor, friendliness, and goodwill are acted out daily in different kinds of libraries.
    Ex. Over 700 CRT terminals are online to Columbus and are used in a variety of ways to improve service in the local library settings.
    Ex. Even in this apparently straightforward situation, complications can arise.
    Ex. Before she could respond and follow up with a question about her distraught state, Feng escaped to the women's room.
    Ex. One likely effect of this would be that the information-rich would become richer and the information-poor poorer, a state of affairs which many would consider highly undesirable.
    Ex. As he traversed the length of the corridor to the media center, Anthony Datto reflected on the events that had brought him to this unhappy pass.
    Ex. For me a picture of myself in a dentist's waiting room is a perfect metaphor for set and setting very much in play against the easily obtained pleasures I usually get from reading.
    Ex. During the post-war period international organizations have become a prominent feature of the international landscape.
    Ex. For all national libraries a major factor is technological change in communication proceeding at an ever accelerating rating which has brought them to the current juncture.
    Ex. 'You know,' she had said amiably, 'there might be a better job for you here once things get rolling with this new regional setup'.
    Ex. Certain new factors have fertilized the ground for the rooting and growth of activity on a stronger and firmer footing than has ever been possible in the past.
    Ex. Although this study examines the international management stage, there are some points of relevance to this project.
    Ex. The article 'Keeping your ear to the ground' discusses the skills and knowledge information professionals need to have in today's IT-rich climate.
    Ex. This has opened up issues of what is & is not thinkable &, therefore, doable in the present conjuncture of crisis & instability.
    ----
    * aceptar la situación = accept + situation.
    * adaptable a la situación = situation-aware.
    * afrontar la situación = bear + the strain.
    * agravar una situación = exacerbate + situation, aggravate + situation.
    * analizar los pormenores de una situación = look + behind the scene.
    * aprovechar la situación = ride + the wave.
    * cambiar a la situación anterior = reverse.
    * cambiar la situación = change + the course of events.
    * complicar la situación = cloud + the issue, confuse + the issue.
    * confundir la situación = cloud + the view, cloud + the picture.
    * contemplar una situación = address + situation.
    * controlar la situación = tame + the beast.
    * corregir una situación = correct + situation, redress + situation.
    * crear una situación = create + a situation.
    * dada la situación = in the circumstances.
    * darse una situación más esperanzadora = sound + a note of hope.
    * desafiar una situación = challenge + situation.
    * describir una situación = depict + situation.
    * disfrutar de la situación = ride + the wave.
    * dominar la situación = tame + the beast.
    * empeorar la situación = make + things worse.
    * empeorar una situación = exacerbate + situation, aggravate + situation.
    * encontrarse con una situación = come across + situation, meet + situation.
    * encontrarse en una mejor situación económica = be economically better off.
    * en cualquier otra situación = in the normal run of things, in the normal run of events.
    * en cualquier situación = in any given situation.
    * en esta situación = at this juncture.
    * enfrentarse a una situación = face + situation, meet + situation.
    * en la situación concreta = on the scene.
    * en situación de = in the position to.
    * en situación de crisis = on the rocks.
    * en situaciones de riesgo = in harm's way.
    * en situaciones normales = under normal circumstances.
    * en situaciones peligrosas = in harm's way.
    * en una situación de emergencia = in an emergency situation, in an emergency.
    * en una situación desesperada = in dire straits.
    * en una situación muy problemática = in deep trouble, in deep water.
    * estado de una situación = state of being.
    * estar en situación de = be in a position to.
    * estar en una situación diferente = be on a different track.
    * explicar la situación = explain + the situation.
    * gravedad de la situación, la = seriousness of the situation, la, gravity of the situation, the.
    * hacer frente a la situación = tackle + situation.
    * hacer que se produzca una situación = bring about + situation.
    * hecho para una situación específica = niche-specific.
    * imaginarse una situación = envision + situation.
    * información que permite mejorar la situación social de Alguien = empowering information.
    * informe de situación = status report.
    * informe sobre la situación actual = state of the art report.
    * la situación = the course of events.
    * mecanismo de reducción de situaciones difíciles = threat-reduction mechanism.
    * mejora de situación social = upward mobility.
    * mejorar la situación = improve + the lot.
    * mejorar una situación = ameliorate + situation.
    * meterse en una situación embarazosa = put + Reflexivo + into + position.
    * ocupar una situación idónea para = be well-placed to.
    * pasar a una situación económica más confortable = improve + Posesivo + lot.
    * perder el control de la situacion = things + get out of hand.
    * reaccionar ante una situación = respond to + situation.
    * rectificar una situación = rectify + situation.
    * remediar una situación = remedy + situation.
    * resolver una situación = manage + situation, resolve + situation.
    * responder a una situación = respond to + situation.
    * salir de una situación difícil = haul + Reflexivo + out of + Posesivo + bog.
    * sensible a la situación = situation-aware.
    * simulacro de una situación supuesta = play-acting.
    * situación actual = current situation, current state, present state, current status.
    * situación actual, la = scheme of things, the.
    * situación + agravar = situation + exacerbate.
    * situación análoga = analogue.
    * situación apremiante = plight.
    * situación apurada = hardship.
    * situación azarosa = predicament.
    * situación buena = strong position.
    * situación + cambiar = tide + turn.
    * situación cómica = comedy sketch.
    * situación confusa = muddy waters.
    * situación cotidiana = everyday situation, daily situation.
    * situación crítica = critical situation.
    * situación de decadencia irreversible = terminal decline.
    * situación de desesperación = scene of despair.
    * situación de estrés = stress situation.
    * situación de préstamo = loan status.
    * situación desagradable = unpleasantness.
    * situación de tensión = stress situation.
    * situación diaria = daily situation.
    * situación difícil = plight, hardship, bumpy ride.
    * situación económica = financial situation, economic status.
    * situación económica, la = economics of the situation, the.
    * situación embarazosa = embarrassing situation.
    * situación en la que hay un vencedor y un perdedor = win-lose + Nombre.
    * situación en la que las dos partes salen ganando = win-win + Nombre.
    * situaciones = sphere of activity, sphere of life, walks (of/in) life.
    * situaciones de la vida = life situations [life-situations].
    * situación experimental = laboratory situation.
    * situación forzada = Procrustean bed.
    * situación hipotética = scenario.
    * situación ideal = ideal situation.
    * situación insoportable = unbearable situation.
    * situación insostenible = unbearable situation.
    * situación + irse de las manos = things + get out of hand.
    * situación laboral = employment situation, employment status.
    * situación + mejorar = situation + ease.
    * situación peligrosa = endangerment, dangerous situation.
    * situación penosa = plight.
    * situación poco clara = clouding.
    * situación política = political scene.
    * situación posible = scenario.
    * situación precaria = precarious situation.
    * situación privilegiada = advantageous location.
    * situación problemática = problem situation.
    * situación sin solución = impasse.
    * situación + surgir = situation + arise.
    * situación tensa = stress situation.
    * situación ventajosa = winning situation.
    * superar una situación difícil = weather + the bumpy ride, weather + the storm.
    * verse en la situación = find + Reflexivo + in the position.
    * * *
    1)
    a) ( coyuntura) situation
    b) ( en la sociedad) position, standing
    2) ( emplazamiento) position, situation (frml), location (frml)
    * * *
    = event, location, picture, position, scenario, scene, setting, situation, state, state of affairs, pass, set and setting, landscape, juncture, setup [set-up], footing, stage, climate, conjuncture.

    Ex: The concept of corporate body includes named occasional groups and events, such as meetings, conferences, congresses, expeditions, exhibitions, festivals, and fairs.

    Ex: Having been alerted to the existence of a document, the user needs information concerning the actual location of the document, in order that the document may be read.
    Ex: Outside the Gwynedd, Dyfed and Clwyd heartland the picture was not encouraging.
    Ex: The directory is a finding list which lists for every field its tag, the number of characters in the field, and the starting character position of the field within the record.
    Ex: This article describes a scenario in which the training of junior staff on-the-job is discussed emphasising that the reality in New Zealand libraries falls far short of the ideal.
    Ex: Scenes that include conflict, emotions, prejudices, misunderstandings, and unreasonableness but also kindliness, humor, friendliness, and goodwill are acted out daily in different kinds of libraries.
    Ex: Over 700 CRT terminals are online to Columbus and are used in a variety of ways to improve service in the local library settings.
    Ex: Even in this apparently straightforward situation, complications can arise.
    Ex: Before she could respond and follow up with a question about her distraught state, Feng escaped to the women's room.
    Ex: One likely effect of this would be that the information-rich would become richer and the information-poor poorer, a state of affairs which many would consider highly undesirable.
    Ex: As he traversed the length of the corridor to the media center, Anthony Datto reflected on the events that had brought him to this unhappy pass.
    Ex: For me a picture of myself in a dentist's waiting room is a perfect metaphor for set and setting very much in play against the easily obtained pleasures I usually get from reading.
    Ex: During the post-war period international organizations have become a prominent feature of the international landscape.
    Ex: For all national libraries a major factor is technological change in communication proceeding at an ever accelerating rating which has brought them to the current juncture.
    Ex: 'You know,' she had said amiably, 'there might be a better job for you here once things get rolling with this new regional setup'.
    Ex: Certain new factors have fertilized the ground for the rooting and growth of activity on a stronger and firmer footing than has ever been possible in the past.
    Ex: Although this study examines the international management stage, there are some points of relevance to this project.
    Ex: The article 'Keeping your ear to the ground' discusses the skills and knowledge information professionals need to have in today's IT-rich climate.
    Ex: This has opened up issues of what is & is not thinkable &, therefore, doable in the present conjuncture of crisis & instability.
    * aceptar la situación = accept + situation.
    * adaptable a la situación = situation-aware.
    * afrontar la situación = bear + the strain.
    * agravar una situación = exacerbate + situation, aggravate + situation.
    * analizar los pormenores de una situación = look + behind the scene.
    * aprovechar la situación = ride + the wave.
    * cambiar a la situación anterior = reverse.
    * cambiar la situación = change + the course of events.
    * complicar la situación = cloud + the issue, confuse + the issue.
    * confundir la situación = cloud + the view, cloud + the picture.
    * contemplar una situación = address + situation.
    * controlar la situación = tame + the beast.
    * corregir una situación = correct + situation, redress + situation.
    * crear una situación = create + a situation.
    * dada la situación = in the circumstances.
    * darse una situación más esperanzadora = sound + a note of hope.
    * desafiar una situación = challenge + situation.
    * describir una situación = depict + situation.
    * disfrutar de la situación = ride + the wave.
    * dominar la situación = tame + the beast.
    * empeorar la situación = make + things worse.
    * empeorar una situación = exacerbate + situation, aggravate + situation.
    * encontrarse con una situación = come across + situation, meet + situation.
    * encontrarse en una mejor situación económica = be economically better off.
    * en cualquier otra situación = in the normal run of things, in the normal run of events.
    * en cualquier situación = in any given situation.
    * en esta situación = at this juncture.
    * enfrentarse a una situación = face + situation, meet + situation.
    * en la situación concreta = on the scene.
    * en situación de = in the position to.
    * en situación de crisis = on the rocks.
    * en situaciones de riesgo = in harm's way.
    * en situaciones normales = under normal circumstances.
    * en situaciones peligrosas = in harm's way.
    * en una situación de emergencia = in an emergency situation, in an emergency.
    * en una situación desesperada = in dire straits.
    * en una situación muy problemática = in deep trouble, in deep water.
    * estado de una situación = state of being.
    * estar en situación de = be in a position to.
    * estar en una situación diferente = be on a different track.
    * explicar la situación = explain + the situation.
    * gravedad de la situación, la = seriousness of the situation, la, gravity of the situation, the.
    * hacer frente a la situación = tackle + situation.
    * hacer que se produzca una situación = bring about + situation.
    * hecho para una situación específica = niche-specific.
    * imaginarse una situación = envision + situation.
    * información que permite mejorar la situación social de Alguien = empowering information.
    * informe de situación = status report.
    * informe sobre la situación actual = state of the art report.
    * la situación = the course of events.
    * mecanismo de reducción de situaciones difíciles = threat-reduction mechanism.
    * mejora de situación social = upward mobility.
    * mejorar la situación = improve + the lot.
    * mejorar una situación = ameliorate + situation.
    * meterse en una situación embarazosa = put + Reflexivo + into + position.
    * ocupar una situación idónea para = be well-placed to.
    * pasar a una situación económica más confortable = improve + Posesivo + lot.
    * perder el control de la situacion = things + get out of hand.
    * reaccionar ante una situación = respond to + situation.
    * rectificar una situación = rectify + situation.
    * remediar una situación = remedy + situation.
    * resolver una situación = manage + situation, resolve + situation.
    * responder a una situación = respond to + situation.
    * salir de una situación difícil = haul + Reflexivo + out of + Posesivo + bog.
    * sensible a la situación = situation-aware.
    * simulacro de una situación supuesta = play-acting.
    * situación actual = current situation, current state, present state, current status.
    * situación actual, la = scheme of things, the.
    * situación + agravar = situation + exacerbate.
    * situación análoga = analogue.
    * situación apremiante = plight.
    * situación apurada = hardship.
    * situación azarosa = predicament.
    * situación buena = strong position.
    * situación + cambiar = tide + turn.
    * situación cómica = comedy sketch.
    * situación confusa = muddy waters.
    * situación cotidiana = everyday situation, daily situation.
    * situación crítica = critical situation.
    * situación de decadencia irreversible = terminal decline.
    * situación de desesperación = scene of despair.
    * situación de estrés = stress situation.
    * situación de préstamo = loan status.
    * situación desagradable = unpleasantness.
    * situación de tensión = stress situation.
    * situación diaria = daily situation.
    * situación difícil = plight, hardship, bumpy ride.
    * situación económica = financial situation, economic status.
    * situación económica, la = economics of the situation, the.
    * situación embarazosa = embarrassing situation.
    * situación en la que hay un vencedor y un perdedor = win-lose + Nombre.
    * situación en la que las dos partes salen ganando = win-win + Nombre.
    * situaciones = sphere of activity, sphere of life, walks (of/in) life.
    * situaciones de la vida = life situations [life-situations].
    * situación experimental = laboratory situation.
    * situación forzada = Procrustean bed.
    * situación hipotética = scenario.
    * situación ideal = ideal situation.
    * situación insoportable = unbearable situation.
    * situación insostenible = unbearable situation.
    * situación + irse de las manos = things + get out of hand.
    * situación laboral = employment situation, employment status.
    * situación + mejorar = situation + ease.
    * situación peligrosa = endangerment, dangerous situation.
    * situación penosa = plight.
    * situación poco clara = clouding.
    * situación política = political scene.
    * situación posible = scenario.
    * situación precaria = precarious situation.
    * situación privilegiada = advantageous location.
    * situación problemática = problem situation.
    * situación sin solución = impasse.
    * situación + surgir = situation + arise.
    * situación tensa = stress situation.
    * situación ventajosa = winning situation.
    * superar una situación difícil = weather + the bumpy ride, weather + the storm.
    * verse en la situación = find + Reflexivo + in the position.

    * * *
    A
    1 (coyuntura) situation
    nuestra situación económica our financial situation o position
    no está en situación de poder ayudarnos she is not in a position to be able to help us
    se encuentra en una situación desesperada her situation o plight is desperate, she is in a desperate situation
    apenas crearon situaciones de gol they hardly made any scoring chances
    salvar la situación to save the day o rescue the situation
    2 (en la sociedad) position, standing
    Compuesto:
    extreme situation
    B (emplazamiento) position, situation ( frml), location ( frml)
    la situación del local es excelente the premises are ideally situated o located
    * * *

     

    situación sustantivo femenino
    1


    2 ( emplazamiento) position, situation (frml), location (frml)
    situación sustantivo femenino
    1 (económica) situation
    2 (trance) me puso en una situación muy embarazosa, he put me in an awkward situation
    3 (emplazamiento) location
    4 (condiciones, disposición) state: no estamos en situación de rechazarlo, we are in no position to refuse it
    ' situación' also found in these entries:
    Spanish:
    abusiva
    - abusivo
    - acierto
    - aclimatarse
    - adueñarse
    - afianzarse
    - airosa
    - airoso
    - ambiente
    - ámbito
    - anterioridad
    - aprovechar
    - caer
    - calibrar
    - callejón
    - cañón
    - capear
    - cargo
    - caso
    - comparable
    - comprometedor
    - comprometedora
    - comprometida
    - comprometido
    - compromiso
    - condición
    - conducir
    - considerablemente
    - correr
    - coyuntura
    - crisis
    - decantar
    - desdramatizar
    - desembocar
    - detonante
    - dimanar
    - disposición
    - dueña
    - dueño
    - embrollo
    - emotiva
    - emotivo
    - endemoniada
    - endemoniado
    - enrarecerse
    - enredar
    - enredarse
    - entrar
    - estar
    - estado
    English:
    aggravate
    - anywhere
    - applicable
    - apprise
    - aspect
    - assess
    - assessment
    - awkward
    - backdrop
    - border on
    - break
    - bullet
    - business
    - case
    - command
    - confuse
    - consolidate
    - danger
    - defuse
    - deteriorate
    - dinner
    - dire
    - disgusting
    - distressing
    - encouraging
    - end
    - explosive
    - fraught
    - fuel
    - further
    - grim
    - heat
    - hook
    - hot up
    - in
    - indoors
    - inflammable
    - injustice
    - irritating
    - joke
    - mess
    - misjudge
    - muddy
    - nasty
    - need
    - no-win
    - off
    - ongoing
    - pass
    - picture
    * * *
    1. [circunstancias] situation;
    [legal, social] status;
    estar en situación de hacer algo [en general] to be in a position to do sth;
    [enfermo, borracho] to be in a fit state to do sth;
    estar en una situación privilegiada to be in a privileged position
    situación económica economic situation;
    situación límite extreme o critical situation
    2. [ubicación] location;
    la tienda está en una situación muy céntrica the shop is in a very central location
    * * *
    f situation;
    estar en situación de be in a position to
    * * *
    situación nf, pl - ciones : situation
    * * *
    situación n situation

    Spanish-English dictionary > situación

  • 16 Memory

       To what extent can we lump together what goes on when you try to recall: (1) your name; (2) how you kick a football; and (3) the present location of your car keys? If we use introspective evidence as a guide, the first seems an immediate automatic response. The second may require constructive internal replay prior to our being able to produce a verbal description. The third... quite likely involves complex operational responses under the control of some general strategy system. Is any unitary search process, with a single set of characteristics and inputoutput relations, likely to cover all these cases? (Reitman, 1970, p. 485)
       [Semantic memory] Is a mental thesaurus, organized knowledge a person possesses about words and other verbal symbols, their meanings and referents, about relations among them, and about rules, formulas, and algorithms for the manipulation of these symbols, concepts, and relations. Semantic memory does not register perceptible properties of inputs, but rather cognitive referents of input signals. (Tulving, 1972, p. 386)
       The mnemonic code, far from being fixed and unchangeable, is structured and restructured along with general development. Such a restructuring of the code takes place in close dependence on the schemes of intelligence. The clearest indication of this is the observation of different types of memory organisation in accordance with the age level of a child so that a longer interval of retention without any new presentation, far from causing a deterioration of memory, may actually improve it. (Piaget & Inhelder, 1973, p. 36)
       4) The Logic of Some Memory Theorization Is of Dubious Worth in the History of Psychology
       If a cue was effective in memory retrieval, then one could infer it was encoded; if a cue was not effective, then it was not encoded. The logic of this theorization is "heads I win, tails you lose" and is of dubious worth in the history of psychology. We might ask how long scientists will puzzle over questions with no answers. (Solso, 1974, p. 28)
       We have iconic, echoic, active, working, acoustic, articulatory, primary, secondary, episodic, semantic, short-term, intermediate-term, and longterm memories, and these memories contain tags, traces, images, attributes, markers, concepts, cognitive maps, natural-language mediators, kernel sentences, relational rules, nodes, associations, propositions, higher-order memory units, and features. (Eysenck, 1977, p. 4)
       The problem with the memory metaphor is that storage and retrieval of traces only deals [ sic] with old, previously articulated information. Memory traces can perhaps provide a basis for dealing with the "sameness" of the present experience with previous experiences, but the memory metaphor has no mechanisms for dealing with novel information. (Bransford, McCarrell, Franks & Nitsch, 1977, p. 434)
       7) The Results of a Hundred Years of the Psychological Study of Memory Are Somewhat Discouraging
       The results of a hundred years of the psychological study of memory are somewhat discouraging. We have established firm empirical generalisations, but most of them are so obvious that every ten-year-old knows them anyway. We have made discoveries, but they are only marginally about memory; in many cases we don't know what to do with them, and wear them out with endless experimental variations. We have an intellectually impressive group of theories, but history offers little confidence that they will provide any meaningful insight into natural behavior. (Neisser, 1978, pp. 12-13)
       A schema, then is a data structure for representing the generic concepts stored in memory. There are schemata representing our knowledge about all concepts; those underlying objects, situations, events, sequences of events, actions and sequences of actions. A schema contains, as part of its specification, the network of interrelations that is believed to normally hold among the constituents of the concept in question. A schema theory embodies a prototype theory of meaning. That is, inasmuch as a schema underlying a concept stored in memory corresponds to the mean ing of that concept, meanings are encoded in terms of the typical or normal situations or events that instantiate that concept. (Rumelhart, 1980, p. 34)
       Memory appears to be constrained by a structure, a "syntax," perhaps at quite a low level, but it is free to be variable, deviant, even erratic at a higher level....
       Like the information system of language, memory can be explained in part by the abstract rules which underlie it, but only in part. The rules provide a basic competence, but they do not fully determine performance. (Campbell, 1982, pp. 228, 229)
       When people think about the mind, they often liken it to a physical space, with memories and ideas as objects contained within that space. Thus, we speak of ideas being in the dark corners or dim recesses of our minds, and of holding ideas in mind. Ideas may be in the front or back of our minds, or they may be difficult to grasp. With respect to the processes involved in memory, we talk about storing memories, of searching or looking for lost memories, and sometimes of finding them. An examination of common parlance, therefore, suggests that there is general adherence to what might be called the spatial metaphor. The basic assumptions of this metaphor are that memories are treated as objects stored in specific locations within the mind, and the retrieval process involves a search through the mind in order to find specific memories....
       However, while the spatial metaphor has shown extraordinary longevity, there have been some interesting changes over time in the precise form of analogy used. In particular, technological advances have influenced theoretical conceptualisations.... The original Greek analogies were based on wax tablets and aviaries; these were superseded by analogies involving switchboards, gramophones, tape recorders, libraries, conveyor belts, and underground maps. Most recently, the workings of human memory have been compared to computer functioning... and it has been suggested that the various memory stores found in computers have their counterparts in the human memory system. (Eysenck, 1984, pp. 79-80)
       Primary memory [as proposed by William James] relates to information that remains in consciousness after it has been perceived, and thus forms part of the psychological present, whereas secondary memory contains information about events that have left consciousness, and are therefore part of the psychological past. (Eysenck, 1984, p. 86)
       Once psychologists began to study long-term memory per se, they realized it may be divided into two main categories.... Semantic memories have to do with our general knowledge about the working of the world. We know what cars do, what stoves do, what the laws of gravity are, and so on. Episodic memories are largely events that took place at a time and place in our personal history. Remembering specific events about our own actions, about our family, and about our individual past falls into this category. With amnesia or in aging, what dims... is our personal episodic memories, save for those that are especially dear or painful to us. Our knowledge of how the world works remains pretty much intact. (Gazzaniga, 1988, p. 42)
       The nature of memory... provides a natural starting point for an analysis of thinking. Memory is the repository of many of the beliefs and representations that enter into thinking, and the retrievability of these representations can limit the quality of our thought. (Smith, 1990, p. 1)

    Historical dictionary of quotations in cognitive science > Memory

  • 17 опыт

    1) General subject: attempt, background, ballast (ность), best practices (АД), essay, experience, experiment, experimental (чувственный), know-how, proven record, skill, sophistication, trial
    2) Biology: (жизненный) experience
    3) Medicine: test
    4) French: expertise
    5) Philosophy: (чувственный) experimental
    7) Chemistry: run
    8) Religion: adventure
    9) Linguistics: horizon of experience
    10) Cinema: mileage
    11) Forestry: sample
    12) Psychology: experience (жизненный), operation
    13) Abbreviation: exp (работы)
    14) Jargon: moxie
    15) Information technology: proficiency
    16) Ecology: procedure
    17) Drilling: practice
    18) Education: qualifications
    19) Polymers: art
    20) Programming: wisdom
    21) Quality control: (необходимый) know-how, tryout
    22) Robots: skills
    23) Science: measurement
    24) leg.N.P. torture
    25) Aviation medicine: event proficiency, testing

    Универсальный русско-английский словарь > опыт

  • 18 трудность

    (= затруднение, сложность) difficulty, obstacle
    Более серьезная трудность это... - A more formidable difficulty is that of...
    Все эти трудности исчезают, когда... - These complications disappear altogether when...
    Вследствие практических трудностей в... - Because of the practical difficulties involved in...
    Данная трудность возникает из того факта, что... - The difficulty arises from the fact that...
    Действительная трудность лежит в нашем недостаточном знании... - The real difficulty lies in our inadequate knowledge of...
    Для преодоления этой трудности был разработан один метод. - One method has been advanced for overcoming this difficulty.
    Если мы пытаемся избежать этой трудности... - If we try to escape this difficulty by...
    Здесь мы должны упомянуть о двух трудностях, связанных с... - Two difficulties associated with... should be mentioned here.
    К счастью, эту трудность можно преодолеть (следующим образом)... - Fortunately, this difficulty can be overcome by...
    Как мы обойдем все эти трудности? - How do we get around these difficulties?
    Мы избежали эти трудности, предположив, что... - We avoid these difficulties by assuming that...
    Мы можем удалить эту трудность (путем)... - We can remove the difficulty by...
    Мы удалим эту трудность, используя... - We remove this difficulty by using...
    Один выход из этой трудности (= из этого затруднения) заключается в том, чтобы... - One way out of this difficulty is to...
    Одна из трудностей, обнаруженных в данном методе, состоит в том, что... - One of the difficulties encountered in this method is that...
    Однако (еще) остаются две трудности. - Two difficulties remain, however.
    (= затруднение) можно обойти. - In special cases, however, this difficulty may be circumvented.
    Однако здесь мы встречаем трудность вследствие/из-за... - At this point, however, we encounter a difficulty due to...
    Однако мы можем обойти эту трудность... - However, we can circumvent the difficulty by...
    Однако эта интерпретация вскоре натолкнулась на серьезные трудности, когда было открыто, что... - This interpretation, however, soon encountered serious difficulties when it was discovered that...
    Опытные исследователи испытывают лишь небольшие трудности, оценивая... - Experienced investigators have little difficulty estimating...
    Основная трудность эксперимента проистекает из... - The main experimental difficulty arises from...
    Первая трудность проявляется, как только мы попытаемся... - The first difficulty comes to light as soon as we attempt to...
    Первая трудность состоит в том, что... - The first difficulty is that...
    Подобные трудности часто встречаются на практике. - Such difficulties often arise in practice.
    Серьезная трудность в большинстве лабораторных измерений возникает из-за того, что... - A severe complication in most laboratory measurements arises from...
    Следовательно, в связи с... не возникает никаких трудностей. - Therefore, no difficulties arise in connection with...
    Техника для преодоления данной трудности состоит в том, чтобы... - The technique for overcoming the difficulty is to...
    Трудности возникают, как только мы пытаемся... - Difficulties occur as soon as we try to...
    Трудности на пути решения этой задачи чрезвычайно велики. - The difficulties to be surmounted are great.
    Трудности этого экспериментирования становятся ясными, когда понимаешь, что... - The experimental difficulties become apparent when one realizes that...
    Трудность возникает, когда... - A difficulty arises when...
    Трудность заключается в... - The difficulty is that...
    Трудность, которую мы обсуждали, не возникнет, если... - The difficulty we have been discussing will not arise if...
    Чтобы избавиться от этих трудностей, мы будем... - In order to avoid these difficulties, we shall...
    Чтобы избежать этой трудности, можно представить, что... - То obviate this difficulty it may be imagined that...
    Чтобы обойти эту трудность, мы вынуждены прибегнуть к... - То get around this difficulty, we resort to...
    Чтобы попытаться исключить эту трудность, давайте предположим, что... - In an attempt to remove this difficulty, let us assume that...
    Чтобы устранить трудности... - То avoid difficulties,...
    Эта трудность возникает вследствие использования... - This difficulty arises from the use of...
    Эту трудность можно преодолеть, делая/ производя... - This difficulty is overcome by making...
    Эти трудности мотивировали формулировку приближенных теорий, чтобы описать... - These complications have motivated the formulation of approximate theories to describe...
    Эти фундаментальные трудности повлияли на развитие... - These fundamental difficulties have influenced the development of...
    Это доставило трудности при проектировании... - This presented a difficulty in the design of...
    Это не приводит ни к каким концептуальным трудностям, однако... - This introduces no conceptual difficulties, but...
    Это причиняет некоторую трудность при выборе... - This causes some difficulty in the choice of...
    Этой трудности можно избежать... - This difficulty can be circumvented by...
    Эту трудность можно преодолеть (путем)... - This difficulty can be overcome by...
    Эту трудность невозможно преодолеть (способом)... - The difficulty cannot be overcome by...
    Эту трудность невозможно преодолеть (способом)... - The difficulty is not overcome by...

    Русско-английский словарь научного общения > трудность

  • 19 Whittle, Sir Frank

    SUBJECT AREA: Aerospace
    [br]
    b. 1 June 1907 Coventry, England
    [br]
    English engineer who developed the first British jet engine.
    [br]
    Frank Whittle enlisted in the Royal Air Force (RAF) as an apprentice, and after qualifying as a pilot he developed an interest in the technical aspects of aircraft propulsion. He was convinced that the gas-turbine engine could be adapted for use in aircraft, but he could not convince the Air Ministry, who turned down the proposal. Nevertheless, Whittle applied for a patent for his turbojet engine the following year, 1930. While still in the RAF, he was allowed time to study for a degree at Cambridge University and carry out postgraduate research (1934–7). By 1936 the official attitude had changed, and a company called Power Jets Ltd was set up to develop Whittle's jet engine. On 12 April 1937 the experimental engine was bench-tested. After further development, an official order was placed in March 1938. Whittle's engine had a centrifugal compressor, ten combustion chambers and a turbine to drive the compressor; all the power output came from the jet of hot gases.
    In 1939 an experimental aircraft was ordered from the Gloster Aircraft Company, the E 28/39, to house the Whittle W1 engine, and this made its first flight on 15 May 1941. A development of the W1 by Rolls-Royce, the Welland, was used to power the twin-engined Gloster Meteor fighter, which saw service with the RAF in 1944. Whittle retired from the RAF in 1948 and became a consultant. From 1977 he lived in the United States. Comparisons between the work of Whittle and Hans von Ohain show that each of the two engineers developed his engine without knowledge of the other's work. Whittle was the first to take out a patent, Ohain achieved the first flight; the Whittle engine and its derivatives, however, played a much greater role in the history of the jet engine.
    [br]
    Principal Honours and Distinctions
    Knighted 1948. Commander of the Order of the Bath 1947. Order of Merit 1986. FRS 1947. Honorary Fellow of the Royal Aeronautical Society.
    Bibliography
    1953, Jet, London (an account not only of his technical problems, but also of the difficulties with civil servants, politicians and commercial organizations).
    Further Reading
    J.Golley, 1987, Whittle: The True Story, Shrewsbury (this author based his work on Jet, but carried out research, aided by Whittle, to give a fuller account with the benefit of hindsight).
    JDS

    Biographical history of technology > Whittle, Sir Frank

  • 20 Thinking

       But what then am I? A thing which thinks. What is a thing which thinks? It is a thing which doubts, understands, [conceives], affirms, denies, wills, refuses, which also imagines and feels. (Descartes, 1951, p. 153)
       I have been trying in all this to remove the temptation to think that there "must be" a mental process of thinking, hoping, wishing, believing, etc., independent of the process of expressing a thought, a hope, a wish, etc.... If we scrutinize the usages which we make of "thinking," "meaning," "wishing," etc., going through this process rids us of the temptation to look for a peculiar act of thinking, independent of the act of expressing our thoughts, and stowed away in some particular medium. (Wittgenstein, 1958, pp. 41-43)
       Analyse the proofs employed by the subject. If they do not go beyond observation of empirical correspondences, they can be fully explained in terms of concrete operations, and nothing would warrant our assuming that more complex thought mechanisms are operating. If, on the other hand, the subject interprets a given correspondence as the result of any one of several possible combinations, and this leads him to verify his hypotheses by observing their consequences, we know that propositional operations are involved. (Inhelder & Piaget, 1958, p. 279)
       In every age, philosophical thinking exploits some dominant concepts and makes its greatest headway in solving problems conceived in terms of them. The seventeenth- and eighteenth-century philosophers construed knowledge, knower, and known in terms of sense data and their association. Descartes' self-examination gave classical psychology the mind and its contents as a starting point. Locke set up sensory immediacy as the new criterion of the real... Hobbes provided the genetic method of building up complex ideas from simple ones... and, in another quarter, still true to the Hobbesian method, Pavlov built intellect out of conditioned reflexes and Loeb built life out of tropisms. (S. Langer, 1962, p. 54)
       Experiments on deductive reasoning show that subjects are influenced sufficiently by their experience for their reasoning to differ from that described by a purely deductive system, whilst experiments on inductive reasoning lead to the view that an understanding of the strategies used by adult subjects in attaining concepts involves reference to higher-order concepts of a logical and deductive nature. (Bolton, 1972, p. 154)
       There are now machines in the world that think, that learn and create. Moreover, their ability to do these things is going to increase rapidly until-in the visible future-the range of problems they can handle will be coextensive with the range to which the human mind has been applied. (Newell & Simon, quoted in Weizenbaum, 1976, p. 138)
       But how does it happen that thinking is sometimes accompanied by action and sometimes not, sometimes by motion, and sometimes not? It looks as if almost the same thing happens as in the case of reasoning and making inferences about unchanging objects. But in that case the end is a speculative proposition... whereas here the conclusion which results from the two premises is an action.... I need covering; a cloak is a covering. I need a cloak. What I need, I have to make; I need a cloak. I have to make a cloak. And the conclusion, the "I have to make a cloak," is an action. (Nussbaum, 1978, p. 40)
       It is well to remember that when philosophy emerged in Greece in the sixth century, B.C., it did not burst suddenly out of the Mediterranean blue. The development of societies of reasoning creatures-what we call civilization-had been a process to be measured not in thousands but in millions of years. Human beings became civilized as they became reasonable, and for an animal to begin to reason and to learn how to improve its reasoning is a long, slow process. So thinking had been going on for ages before Greece-slowly improving itself, uncovering the pitfalls to be avoided by forethought, endeavoring to weigh alternative sets of consequences intellectually. What happened in the sixth century, B.C., is that thinking turned round on itself; people began to think about thinking, and the momentous event, the culmination of the long process to that point, was in fact the birth of philosophy. (Lipman, Sharp & Oscanyan, 1980, p. xi)
       The way to look at thought is not to assume that there is a parallel thread of correlated affects or internal experiences that go with it in some regular way. It's not of course that people don't have internal experiences, of course they do; but that when you ask what is the state of mind of someone, say while he or she is performing a ritual, it's hard to believe that such experiences are the same for all people involved.... The thinking, and indeed the feeling in an odd sort of way, is really going on in public. They are really saying what they're saying, doing what they're doing, meaning what they're meaning. Thought is, in great part anyway, a public activity. (Geertz, quoted in J. Miller, 1983, pp. 202-203)
       Everything should be made as simple as possible, but not simpler. (Einstein, quoted in Minsky, 1986, p. 17)
       What, in effect, are the conditions for the construction of formal thought? The child must not only apply operations to objects-in other words, mentally execute possible actions on them-he must also "reflect" those operations in the absence of the objects which are replaced by pure propositions. Thus, "reflection" is thought raised to the second power. Concrete thinking is the representation of a possible action, and formal thinking is the representation of a representation of possible action.... It is not surprising, therefore, that the system of concrete operations must be completed during the last years of childhood before it can be "reflected" by formal operations. In terms of their function, formal operations do not differ from concrete operations except that they are applied to hypotheses or propositions [whose logic is] an abstract translation of the system of "inference" that governs concrete operations. (Piaget, quoted in Minsky, 1986, p. 237)
       [E]ven a human being today (hence, a fortiori, a remote ancestor of contemporary human beings) cannot easily or ordinarily maintain uninterrupted attention on a single problem for more than a few tens of seconds. Yet we work on problems that require vastly more time. The way we do that (as we can observe by watching ourselves) requires periods of mulling to be followed by periods of recapitulation, describing to ourselves what seems to have gone on during the mulling, leading to whatever intermediate results we have reached. This has an obvious function: namely, by rehearsing these interim results... we commit them to memory, for the immediate contents of the stream of consciousness are very quickly lost unless rehearsed.... Given language, we can describe to ourselves what seemed to occur during the mulling that led to a judgment, produce a rehearsable version of the reaching-a-judgment process, and commit that to long-term memory by in fact rehearsing it. (Margolis, 1987, p. 60)

    Historical dictionary of quotations in cognitive science > Thinking

См. также в других словарях:

  • Knowledge of Jesus Christ — • Knowledge of Jesus Christ, as used in this article, does not mean a summary of what we know about Jesus Christ, but a survey of the intellectual endowment of Christ Catholic Encyclopedia. Kevin Knight. 2006. Knowledge of Jesus Christ      …   Catholic encyclopedia

  • Knowledge of Christ — Stained glass window of Christ, Peter and Paul Cathedral, St. Petersburg, Russia. The knowledge of …   Wikipedia

  • experimental — experimentally, adv. /ik sper euh men tl/, adj. 1. pertaining to, derived from, or founded on experiment: an experimental science. 2. of the nature of an experiment; tentative: The new program is still in an experimental stage. 3. functioning as… …   Universalium

  • Knowledge intensive business services — (commonly known as KIBS) are services and business operations heavily reliant on professional knowledge. They are mainly concerned with providing knowledge intensive support for the business processes of other organizations. As a result, their… …   Wikipedia

  • Experimental psychology — approaches psychology as one of the natural sciences, investigates it using the experimental method. The focus of experimental psychology is on discovering the underlying processes behind behavior and the specific nature of mental life. This is… …   Wikipedia

  • Experimental software engineering — is a sub domain of software engineering focusing on experiments on software systems (software products, processes, and resources). It is interested in devising experiments on software, in collecting data from these experiments, and in devising… …   Wikipedia

  • Experimental philosophy — is a form of philosophical inquiry that makes at least partial use of quantitative research especially opinion polling in order to address philosophical questions. This is in contrast with more traditional methods found in analytic philosophy,… …   Wikipedia

  • Knowledge entrepreneurship — describes the ability to recognize or create an opportunity and take action aimed at realizing the innovative knowledge practice or product. Knowledge entrepreneurship is different from ‘traditional’ economic entrepreneurship in that it does not… …   Wikipedia

  • Knowledge-based engineering — (KBE) is a discipline with roots in computer aided design (CAD) and knowledge based systems but has several definitions and roles depending upon the context. An early role was support tool for a design engineer generally within the context of… …   Wikipedia

  • Experimental travel — Experimental tourism is a novel approach to tourism in which visitors do not visit the ordinary tourist attractions (or, at least not with the ordinary approach), but allow whim to guide them. It is an alternative form of tourism in which… …   Wikipedia

  • Experimental physics — Within the field of physics, experimental physics is the category of disciplines and sub disciplines concerned with the observation of physical phenomena in order to gather data about the universe. Methods vary from discipline to discipline, from …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»