-
41 software
программное обеспечение, программные средства, программы- AI software
- application software
- autoinstall software
- AVC software
- bundled software
- business software
- canned software
- collaboration software
- common software
- communication software
- compatible software
- computer manufacturer's software
- coordination software
- copyprotected software
- copyrighted software
- cottage software
- cross software
- custom-made software
- database software
- desktop software
- development software
- diagnostic software
- dialog-oriented software
- disk compression software
- disk software
- distributed software
- dual media software
- educational software
- engineering software
- error-detection software
- error-free software
- floppy-disk software
- graphics software
- industry-standard software
- interactive software
- library software
- mainboard software
- maintenance software
- malicious software
- mathematical software
- menu-driven software
- microcode software
- microprocessor-based software
- mouse software
- multitasking software
- operational software
- OS level software
- paper tape software
- performance measurement software
- placement-and-routing software
- portable software
- premastering/mastering software
- pre-release software
- problem-oriented software
- prototype software
- ROM-based software
- routing software
- rule-capture software
- schematic-capture software
- self-checking software
- silicon software
- simulation software
- software in silicon
- standard software
- startup software
- supporting software
- support software
- system management software
- system software
- testability software
- testbed software
- third-pary software
- user software
- vendor-manufactured software
- word-processing softwareEnglish-Russian dictionary of computer science and programming > software
-
42 development
n1) развитие, совершенствование, доводка2) разработка; проектирование3) разработка; освоение4) застройка; строительство5) выведение (сорта)6) pl событие
- accelerated development
- advanced development
- agricultural development
- balanced development
- business development
- commercial development
- economic development
- engineering development
- executive development
- exploratory development
- export development
- general development
- housing development
- industrial development
- inflationary development
- land development
- long-run development
- long-term development
- management development
- management system development
- market development
- marketing development
- marketing strategy development
- model development
- natural development
- new product development
- oilfield development
- operational development
- operational system development
- peaceful development
- personnel development
- planned development
- population development
- price development
- priority development
- product development
- property development
- prototype development
- public development
- rapid development
- recent development
- recreational development
- regular development
- residential development
- resource development
- rural development
- satellite developments
- social development
- systematic development
- technological development
- trade development
- unbalanced development
- uneven development
- world economic development
- development of contacts
- development of cooperation
- development of economic cooperation
- development of economic resources
- development of economic ties
- development of the economy
- development of export
- development of information science
- development of industry
- development of labour productivity
- development of land
- development of a market
- development of methods
- development of the national economy
- development of natural resources
- development of new equipment
- development of a process
- development of a product
- development of production
- development of a production process
- development of a project
- development of tourism
- development of trade
- development of trade relations
- development of vocational competence
- authorize development
- encourage development
- facilitate development
- further development
- promote developmentEnglish-russian dctionary of contemporary Economics > development
-
43 stage
nстадия, фаза, период; этап
- analysis stage
- design stage
- development stage
- dream stage
- engineering stage
- experimental stage
- fabrication stage
- final stage
- initial stage
- intermediate stage
- manufacturing stage
- operational stage
- pilot stage
- planning stage
- preparatory stage
- production stage
- prototype stage
- research stage
- testing stage
- working stage
- stage of economic development
- stage of education
- stage of manufacture
- stage of negotiations
- stage of proceedings
- stage of production
- stage of a project
- stage of work
- at the stage
- in the initial stage
- proceed by stages -
44 development
1) строительство, застройка2) освоение территории, земель; инженерная подготовка территории к застройке3) развитие; расширение (напр. строительных работ)4) мн. ч. проектно-конструкторские работы6) вывод; проявление9) проявление фотоплёнки, проявление киноплёнки•- development of infrastructure - development of land - development of soffit - construction site development - continuous development - dispersed development - engineering development - executive development - experimental development - first stage development - housing development - hydroelectric developments - in-house development - land development - landscape development - management development - new-community development - operational development - orderly urban development - organization development - organizational development - personnel development - planned development - population development - prototype development - public developments - recent development - recreation development - ribbon development - rural development - spontaneous development - sustainable development - urban development - water development - waterpower development* * *1. застройка; освоение ( территории)2. развитие, разработка3. проект застройки квартала или микрорайона4. осушение земель5. проявление ( фото)6. развёртывание ( проекции)- comprehensive developmentdevelopments in precast concrete ( production) — усовершенствования в области (производства) сборного бетона
- dispersed development
- growth center new community development
- high-head development
- housing development
- hydroelectric development
- integrated river basin development
- land development
- multiple-use development
- object-oriented development
- planned development
- planned unit development
- private enterprise development
- rapid-strength development
- residential development
- ribbon development
- river development
- slow development of compressive strength
- sporadic development
- step-by-step development
- strength development
- technological developments
- temperature development in concrete
- uncontrolled development
- upper development
- urban development
- water and power development -
45 alloy in experimental production
English-Russian big polytechnic dictionary > alloy in experimental production
-
46 development
разработка; опытно-конструкторские работы; развитие, эволюция; усовершенствование; доводка; отработка; отладка; наполнение купола ( парашюта) ; проявление ( фотоматериалов) ; усовершенствованный образец; вариант; модификация; опытный ( образец) ; экспериментальный; головной серииdevelopment of planetary quarantine — разработка мер [средств] (биологической) защиты планет (исследуемых с помощью КЛА)
-
47 flight
полет; рейс; перелёт; звено; летательный аппарат ( в полете) ; ркт. стартовый комплекс; лётный; полётный; бортовой1g flight — прямолинейный горизонтальный полет, полет с единичной перегрузкой, полет без ускорения или торможения
45° climbing inverted flight — набор высоты под углом 45° в перевёрнутом положении
45° climbing knife flight — набор высоты под углом 45° с боковым скольжением, подъём «по лезвию» под углом 45°
45° diving knife flight — пикирование под углом 45° с боковым скольжением, пикирование «по лезвию» под углом 45°
45° sliding flight — набор высоты под углом 45° с боковым скольжением, подъём «по лезвию» под углом 45°
45° sliding flight — пикирование под углом 45° с боковым скольжением, пикирование «по лезвию» под углом 45°
90° climbing flight — вертикальный подъём, отвесный набор высоты
break up in flight — разрушаться в воздухе [в полете]
Doppler hold hovering flight — полет на висении со стабилизацией по доплеровскому измерителю скорости сноса
flight at the controls — полет за рычагами управления (в качестве лётчика, пилотирующего самолёт)
flight on the deck — бреющий полет, полет на предельно малой высоте
— q flight -
48 Aubert, Jean
[br]b. 7 February 1894 Paris, Franced. 25 November 1984 Paris, France[br]French civil engineer.[br]Aubert was educated at the Lycée Louis-leGrand in Paris, and entered the Ecole Polytechnique in 1913. His studies were interrupted by the First World War, when he served as an artillery officer, being wounded twice and awarded the Croix de Guerre in 1916. He returned to the Ecole Polytechnique in 1919, and from 1920 to 1922 he attended the Ecole Nationale des Ponts et Chaussées; he graduated as Bachelor of Law from the University of Paris.In 1922 he began his long career, devoted principally to river and canal works. He was engineer in charge of the navigation works in Paris until 1932; he was then appointed Professor in the Chair of Internal Navigation at the Ecole des Ponts et Chaussées, a post he held until his retirement in 1961. From 1933 to 1945 he was general manager and later chairman of the Compagnie Nationale du Rhône; from 1945 to 1953, chairman of the electricity board of the Société Nationale des Chemins de Fer français; and from 1949 to 1967, chairman of the Rhine Navigation Company. Following his retirement, he was chairman of the Société des Constructions des Batignolles, and from 1966 consulting engineer and honorary chairman of SPIE Batignolles; he was also chairman of several other companies.In 1919 he published La Probabilité dans les tires de guerre, for which he was awarded the Pierson-Perrim prize by the Académie des Sciences in 1922. During his career he wrote numerous articles and papers on technical and economic subjects, his last, entitled "Philosophic de la pente d'eau", appearing in the journal Travaux in 1984 when he was ninety years old.Aubert's principal works included the construction of the Pont Edouard-Herriort on the Rhône at Lyon; the design and construction of the Génissiat and Lonzères-Mondragon dams on the Rhône; and the conception and design of the Denouval dam on the Seine near Andresy, completed in 1980. He was awarded the Caméré prize in 1934 by the Académie des Sciences for a new type of movable dam. Overseas governments and the United Nations consulted him on river navigation inter alia in Brazil, on the Mahanadi river in India, on the Konkomé river in Guinea, on the Vistula river in Poland, on the Paraguay river in South America and others.In 1961 he published his revolutionary ideas on the pente d'eau, or "water slope", which was designed to eliminate delays and loss of water in transferring barges from one level to another, without the use of locks. This design consisted of a sloping flume or channel through which a wedge of water, in which the barge was floating, was pushed by a powered unit. A prototype at Mon tech on the Canal Latéral at La Garonne, bypassing five locks, was opened in 1973. A second was opened in 1984 on the Canal du Midi at Fonserannes, near Béziers.[br]Principal Honours and DistinctionsCroix de Guerre 1916. Académie des Sciences: Prix Pierson-Perrim 1922, Prix Caméré 1934. Ingénieur Général des Ponts et Chaussées 1951. Commandeur de la Légion d'honneur 1960.Further ReadingDavid Tew, 1984, Canal Inclines and Lifts, Gloucester: Alan Sutton.JHB -
49 Bell, Revd Patrick
SUBJECT AREA: Agricultural and food technology[br]b. 1799 Auchterhouse, Scotlandd. 22 April 1869 Carmyllie, Scotland[br]Scottish inventor of the first successful reaping machine.[br]The son of a Forfarshire tenant farmer, Patrick Bell obtained an MA from the University of St Andrews. His early association with farming kindled an interest in engineering and mechanics and he was to maintain a workshop not only on his father's farm, but also, in later life, at the parsonage at Carmyllie.He was still studying divinity when he invented his reaping machine. Using garden shears as the basis of his design, he built a model in 1827 and a full-scale prototype the following year. Not wishing the machine to be seen during his early experiments, he and his brother planted a sheaf of oats in soil laid out in a shed, and first tried the machine on this. It cut well enough but left the straw in a mess behind it. A canvas belt system was devised and another secret trial in the barn was followed by a night excursion into a field, where corn was successfully harvested.Two machines were at work during 1828, apparently achieving a harvest rate of one acre per hour. In 1832 there were ten machines at work, and at least another four had been sent to the United States by this time. Despite their success Bell did not patent his design, feeling that the idea should be given free to the world. In later years he was to regret the decision, feeling that the many badly-made imitations resulted in its poor reputation and prevented its adoption.Bell's calling took precedence over his inventive interests and after qualifying he went to Canada in 1833, spending four years in Fergus, Ontario. He later returned to Scotland and be-came the minister at Carmyllie, with a living of £150 per annum.[br]Principal Honours and DistinctionsLate in the day he was honoured for his part in the development of the reaping machine. He received an honorary degree from the University of St Andrews and in 1868 a testimonial and £1,000 raised by public subscription by the Highland and Agricultural Society of Scotland.Bibliography1854, Journal of Agriculture (perhaps stung by other claims, Bell wrote his own account).Further ReadingG.Quick and W.Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (gives an account of the development of harvesting machinery).L.J.Jones, 1979, History of Technology, pp. 101–48 (gives a critical assessment of the various claims regarding the originality of the invention).J.Hendrick, 1928, Transactions of the Highland and Agricultural Society of Scotland, pp.51–69 (provides a celebration of Bell's achievement on its centenary).AP -
50 Camm, Sir Sydney
[br]b. 5 August 1893 Windsor, Berkshire, Englandd. 12 March 1966 Richmond, Surrey, England[br]English military aircraft designer.[br]He was the eldest of twelve children and his father was a journeyman carpenter, in whose footsteps Camm followed as an apprentice woodworker. He developed an early interest in aircraft, becoming a keen model maker in his early teens and taking a major role in founding a local society to this end, and in 1912 he designed and built a glider able to carry people. During the First World War he worked as a draughtsman for the aircraft firm Martinsyde, but became increasingly involved in design matters as the war progressed. In 1923 Camm was recruited by Sopwith to join his Hawker Engineering Company as Senior Draughtsman, but within two years had risen to be Chief Designer. His first important contribution was to develop a method of producing metal aircraft, using welded steel tubes, and in 1926 he designed his first significant aircraft, the Hawker Horsley torpedo-bomber, which briefly held the world long-distance record before it was snatched by Charles Lindbergh in his epic New York-Paris flight in 1927. His Hawker Hart light bomber followed in 1928, after which came his Hawker Fury fighter.By the mid-1930s Camm's reputation as a designer was such that he was able to wield significant influence on the Air Ministry when Royal Air Force (RAF) aircraft specifications were being drawn up. His outstanding contribution came, however, with the unveiling of his Hawker Hurricane in 1935. This single-seater fighter was to prove one of the backbones of the RAF during 1939–45, but during the war he also designed two other excellent fighters: the Tempest and the Typhoon. After the Second World War Camm turned to jet aircraft, producing in 1951 the Hawker Hunter fighter/ground-attack aircraft, which saw lengthy service in the RAF and many other air forces. His most revolutionary contribution was the design of the Harrier jump-jet, beginning with the P.1127 prototype in 1961, followed by the Kestrel three years later. These were private ventures, but eventually the Government saw the enormous merit in the vertical take-off and landing concept, and the Harrier came to fruition in 1967. Sadly Camm, who was on the Board of Sopwith Hawker Siddeley Group, died before the aircraft came into service. He is permanently commemorated in the Camm Memorial Hall at the RAF Museum, Hendon, London.[br]Principal Honours and DistinctionsCBE 1941. Knighted 1953. Associate Fellow of the Royal Aeronautical Society 1918, Fellow 1932, President 1954–5, Gold Medal 1958. Daniel Guggenheim Medal (USA) 1965.Further ReadingAlan Bramson, 1990, Pure Luck: The Authorized Biography of Sir Thomas Sopwith, 1888–1989, Wellingborough: Patrick Stephens (provides information about Camm and his association with Sopwith).Dictionary of National Biography, 1961–70.CM -
51 Hamilton, Harold Lee (Hal)
[br]b. 14 June 1890 Little Shasta, California, USAd. 3 May 1969 California, USA[br]American pioneer of diesel rail traction.[br]Orphaned as a child, Hamilton went to work for Southern Pacific Railroad in his teens, and then worked for several other companies. In his spare time he learned mathematics and physics from a retired professor. In 1911 he joined the White Motor Company, makers of road motor vehicles in Denver, Colorado, where he had gone to recuperate from malaria. He remained there until 1922, apart from an eighteenth-month break for war service.Upon his return from war service, Hamilton found White selling petrol-engined railbuses with mechanical transmission, based on road vehicles, to railways. He noted that they were not robust enough and that the success of petrol railcars with electric transmission, built by General Electric since 1906, was limited as they were complex to drive and maintain. In 1922 Hamilton formed, and became President of, the Electro- Motive Engineering Corporation (later Electro-Motive Corporation) to design and produce petrol-electric rail cars. Needing an engine larger than those used in road vehicles, yet lighter and faster than marine engines, he approached the Win ton Engine Company to develop a suitable engine; in addition, General Electric provided electric transmission with a simplified control system. Using these components, Hamilton arranged for his petrol-electric railcars to be built by the St Louis Car Company, with the first being completed in 1924. It was the beginning of a highly successful series. Fuel costs were lower than for steam trains and initial costs were kept down by using standardized vehicles instead of designing for individual railways. Maintenance costs were minimized because Electro-Motive kept stocks of spare parts and supplied replacement units when necessary. As more powerful, 800 hp (600 kW) railcars were produced, railways tended to use them to haul trailer vehicles, although that practice reduced the fuel saving. By the end of the decade Electro-Motive needed engines more powerful still and therefore had to use cheap fuel. Diesel engines of the period, such as those that Winton had made for some years, were too heavy in relation to their power, and too slow and sluggish for rail use. Their fuel-injection system was erratic and insufficiently robust and Hamilton concluded that a separate injector was needed for each cylinder.In 1930 Electro-Motive Corporation and Winton were acquired by General Motors in pursuance of their aim to develop a diesel engine suitable for rail traction, with the use of unit fuel injectors; Hamilton retained his position as President. At this time, industrial depression had combined with road and air competition to undermine railway-passenger business, and Ralph Budd, President of the Chicago, Burlington \& Quincy Railroad, thought that traffic could be recovered by way of high-speed, luxury motor trains; hence the Pioneer Zephyr was built for the Burlington. This comprised a 600 hp (450 kW), lightweight, two-stroke, diesel engine developed by General Motors (model 201 A), with electric transmission, that powered a streamlined train of three articulated coaches. This train demonstrated its powers on 26 May 1934 by running non-stop from Denver to Chicago, a distance of 1,015 miles (1,635 km), in 13 hours and 6 minutes, when the fastest steam schedule was 26 hours. Hamilton and Budd were among those on board the train, and it ushered in an era of high-speed diesel trains in the USA. By then Hamilton, with General Motors backing, was planning to use the lightweight engine to power diesel-electric locomotives. Their layout was derived not from steam locomotives, but from the standard American boxcar. The power plant was mounted within the body and powered the bogies, and driver's cabs were at each end. Two 900 hp (670 kW) engines were mounted in a single car to become an 1,800 hp (l,340 kW) locomotive, which could be operated in multiple by a single driver to form a 3,600 hp (2,680 kW) locomotive. To keep costs down, standard locomotives could be mass-produced rather than needing individual designs for each railway, as with steam locomotives. Two units of this type were completed in 1935 and sent on trial throughout much of the USA. They were able to match steam locomotive performance, with considerable economies: fuel costs alone were halved and there was much less wear on the track. In the same year, Electro-Motive began manufacturing diesel-electrie locomotives at La Grange, Illinois, with design modifications: the driver was placed high up above a projecting nose, which improved visibility and provided protection in the event of collision on unguarded level crossings; six-wheeled bogies were introduced, to reduce axle loading and improve stability. The first production passenger locomotives emerged from La Grange in 1937, and by early 1939 seventy units were in service. Meanwhile, improved engines had been developed and were being made at La Grange, and late in 1939 a prototype, four-unit, 5,400 hp (4,000 kW) diesel-electric locomotive for freight trains was produced and sent out on test from coast to coast; production versions appeared late in 1940. After an interval from 1941 to 1943, when Electro-Motive produced diesel engines for military and naval use, locomotive production resumed in quantity in 1944, and within a few years diesel power replaced steam on most railways in the USA.Hal Hamilton remained President of Electro-Motive Corporation until 1942, when it became a division of General Motors, of which he became Vice-President.[br]Further ReadingP.M.Reck, 1948, On Time: The History of the Electro-Motive Division of General Motors Corporation, La Grange, Ill.: General Motors (describes Hamilton's career).PJGRBiographical history of technology > Hamilton, Harold Lee (Hal)
-
52 Monro, Philip Peter
SUBJECT AREA: Chemical technology[br]b. 27 May 1946 London, England[br]English biologist, inventor of a water-purification process by osmosis.[br]Monro's whole family background is engineering, an interest he did not share. Instead, he preferred biology, an enthusiasm aroused by reading the celebrated Science of Life by H.G. and G.P.Wells and Julian Huxley. Educated at a London comprehensive school, Monro found it necessary to attend evening classes while at school to take his advanced level science examinations. Lacking parental support, he could not pursue a degree course until he was 21 years old, and so he gained valuable practical experience as a research technician. He resumed his studies and took a zoology degree at Portsmouth Polytechnic. He then worked in a range of zoology and medical laboratories, culminating after twelve years as a Senior Experimental Officer at Southampton Medical School. In 1989 he relinquished his post to devote himself fall time to developing his inventions as Managing Director of Hampshire Advisory and Technical Services Ltd (HATS). Also in 1988 he obtained his PhD from Southampton University, in the field of embryology.Monro had meanwhile been demonstrating a talent for invention, mainly in microscopy. His most important invention, however, is of a water-purification system. The idea for it came from Michael Wilson of the Institute of Dental Surgery in London, who evolved a technique for osmotic production of sterile oral rehydration solutions, of particular use in treating infants suffering from diarrhoea in third-world countries. Monro broadened the original concept to include dried food, intravenous solutions and even dried blood. The process uses simple equipment and no external power and works as follows: a dry sugar/salts mixture is sealed in one compartment of a double bag, the common wall of which is a semipermeable membrane. Impure water is placed in the empty compartment and the water transfers across the membrane by the osmotic force of the sugar/salts. As the pores in the membrane exclude all viruses, bacteria and their toxins, a sterile solution is produced.With the help of a research fellowship granted for humanitarian reasons at King Alfred College, Winchester, the invention was developed to functional prototype stage in 1993, with worldwide patent protection. Commercial production was expected to follow, if sufficient financial backing were forthcoming. The process is not intended to replace large installations, but will revolutionize the small-scale production of sterile water in scattered third-world communities and in disaster areas where normal services have been disrupted.HATS was awarded First Prize in the small business category and was overall prize winner in the Toshiba Year of Invention, received a NatWest/BP award for technology and a Prince of Wales Award for Innovation.[br]Bibliography1993, with M.Wilson and W.A.M.Cutting, "Osmotic production of sterile oral rehydration solutions", Tropical Doctor 23:69–72.LRD -
53 Ohain, Hans Joachim Pabst von
SUBJECT AREA: Aerospace[br]b. 14 December 1911 Dessau, Germany[br]German engineer who designed the first jet engine to power an aeroplane successfully.[br]Von Ohain studied engineering at the University of Göttingen, where he carried out research on gas-turbine engines, and centrifugal compressors in particular. In 1935 he patented a design for a jet engine (in Britain, Frank Whittle patented his jet-engine design in 1930). Von Ohain was recruited by the Heinkel company in 1936 to develop an engine for a jet aircraft. Ernst Heinkel was impressed by von Ohain's ideas and gave the project a high priority. The first engine was bench tested in September 1937. A more powerful version was developed and tested in air, suspended beneath a Heinkel dive-bomber, during the spring of 1939. A new airframe was designed to house the revolutionary power plant and designated the Heinkel He 178. A short flight was made on 24 August 1939 and the first recognized flight on 27 August. This important achievement received only a lukewarm response from the German authorities. Von Ohain's turbojet engine had a centrifugal compressor and developed a thrust of 380 kg (837 lb). An improved, more powerful, engine was developed and installed in a new twin-engined fighter design, the He 280. This flew on 2 April 1941 but never progressed beyond the prototype stage. By this time two other German companies, BMW and Junkers, were constructing successful turbojets with axial compressors: luckily for the Allies, Hitler was reluctant to pour his hard-pressed resources into this new breed of jet fighters. After the war, von Ohain emigrated to the United States and worked for the Air Force there.[br]Bibliography1929, "The evolution and future of aeropropulsion system", The Jet Age. 40 Years of Jet Aviation, Washington, DC: National Air \& Space Museum, Smithsonian Institution.Further ReadingVon Ohain's work is described in many books covering the history of aviation, and aero engines in particular, for example: R.Schlaifer and S.D.Heron, 1950, Development of Aircraft Engines and fuels, Boston. G.G.Smith, 1955, Gas Turbines and Jet Propulsion.Grover Heiman, 1963, Jet Pioneers.JDSBiographical history of technology > Ohain, Hans Joachim Pabst von
-
54 Perret, Auguste
[br]b. 12 February 1874 Ixelles, near Brussels, Belgiumd. 26 February 1954 Le Havre (?), France[br]French architect who pioneered and established building design in reinforced concrete in a style suited to the modern movement.[br]Auguste Perret belonged to the family contracting firm of A. \& G.Perret, which early specialized in the use of reinforced concrete. His eight-storey building at 25 bis Rue Franklin in Paris, built in 1902–3, was the first example of frame construction in this material and established its viability for structural design. Both ground plan and façade are uncompromisingly modern, the simplicity of the latter being relieved by unobtrusive faience decoration. The two upper floors, which are set back, and the open terrace roof garden set a pattern for future schemes. All of Perret's buildings had reinforced-concrete structures and this was clearly delineated on the façade designs. The concept was uncommon in Europe at the time, when eclecticism still largely ruled, but was derived from the late nineteenth-century skyscraper façades built by Louis Sullivan in America. In 1905–6 came Perret's Garage Ponthieu in Paris; a striking example of exposed concrete, it had a central façade window glazed in modern design in rich colours. By the 1920s ferroconcrete was in more common use, but Perret still led the field in France with his imaginative, bold use of the material. His most original structure is the Church of Notre Dame at Le Raincy on the outskirts of Paris (1922–3). The imposing exterior with its tall tower in diminishing stages is finely designed, but the interior has magnificence. It is a wide, light church, the segmented vaulted roof supported on slender columns. The whole structure is in concrete apart from the glass window panels, which extend the full height of the walls all around the church. They provide a symphony of colour culminating in deep blue behind the altar. Because of the slenderness of the columns and the richness of the glass, this church possesses a spiritual atmosphere and unimpeded sight and sound of and from the altar for everyone. It became the prototype for churches all over Europe for decades, from Moser in prewar Switzerland to Spence's postwar Coventry Cathedral.In a long working life Perret designed buildings for a wide range of purposes, adhering to his preference for ferroconcrete and adapting its use according to each building's needs. In the 1940s he was responsible for the railway station at Amiens, the Atomic Centre at Saclay and, one of his last important works, the redevelopment after wartime damage of the town centre of Le Havre. For the latter, he laid out large open squares enclosed by prefabricated units, which display a certain monotony, despite the imposing town hall and Church of St Joseph in the Place de L'Hôtel de Ville.[br]Principal Honours and DistinctionsPresident des Réunions Internationales des Architectes. American Society of the French Legion of Honour Gold Medal 1950. Elected after the Second World War to the Institut de France. First President of the International Union of Architects on its creation in 1948. RIBA Royal Gold Medal 1948.Further ReadingP.Blater, 1939, "Work of the architect A.Perret", Architektura SSSR (Moscow) 7:57 (illustrated article).1848 "Auguste Perret: a pioneer in reinforced concrete", Civil Engineers' Review, pp.296–300.Peter Collins, 1959, Concrete: The Vision of a New Architecture: A Study of Auguste Perret and his Precursors, Faber \& Faber.Marcel Zahar, 1959, D'Une Doctrine d'Architecture: Auguste Perret, Paris: Vincent Fréal.DY -
55 Rateau, Auguste Camille-Edmond
[br]b. 13 October 1863 Royan, Franced. 13 January 1930 Neuilly-sur-Seine, France[br]French constructor of turbines, inventor of the turbo compressor and a centrifugal fan for mine ventilation.[br]A don of the Ecole Polytechnique and the Ecole Supérieure des Mines in Paris, Rateau joined the French Corps des Mines in 1887. Between 1888 and 1898 he taught applied mechanics and electro technics at the Ecole des Mines in St-Etienne. Trying to apply the results of his research to practise, he became into contact with commercial firms, before he was appointed Professor of Industrial Electricity at the Ecole Supérieure des Mines in Paris in 1902. He held this position until 1910, although he founded the Société Anonyme Rateau in Paris in 1903 which by the time of his death had subsidiaries in most of the industrial centres of Europe. By the middle of the nineteenth century, when the increasing problems of ventilation in coal mines had become evident and in many countries had led to several unsatisfactory mechanical constructions, Rateau concentrated on this problem soon after he began working in St-Etienne. The result of his research was the design of a centrifugal fan in 1887 with which he established the principles of mechanical ventilation on a general basis that led to future developments and helped, together with the ventilator invented by Capell in England, to pave the way for the use of electricity in mine ventilation.Rateau continued the study of fluid mechanics and the applications of rotating engines, and after he had published widely on this subject he began to construct many steam turbines, centrifugal compressors and centrifugal pumps. The multicellular Rateau turbine of 1901 became the prototype for many others constructors. During the First World War, when he was very active in the French armaments industry, he developed the invention of the automatic supercharger for aircraft engines and later diesel engines.[br]Principal Honours and DistinctionsAcadémie des Sciences, Prix Fourneyron 1899, Prix Poncelet 1911, Member 1918.Bibliography1892, Considérations sur les turbo-machines et en particulier sur les ventilateurs, St- Etienne.1900, Traité des turbo-machines, Paris.1907, Ventilateurs centrifuges à haute pression, Paris.1908. Développement des turbines à vapeur d'échappement, Paris. 1917, Notice sur les travaux scientifiques et techniques, Paris.Further ReadingH.H.Suplee, 1930, obituary, Mechanical Engineering 52:570–1.L.Leprince-Ringuet (ed.), 1951, Les inventeurs célèbres, Geneva: 151–2 (a comprehensive description of his life and the importance of his turbines).WKBiographical history of technology > Rateau, Auguste Camille-Edmond
-
56 Rosenhain, Walter
SUBJECT AREA: Metallurgy[br]b. 24 August 1875 Berlin, Germanyd. 17 March 1934 Kingston Hill, Surrey, England[br]German metallurgist, first Superintendent of the Department of Metallurgy and Metallurgical Chemistry at the National Physical Laboratory, Teddington, Middlesex.[br]His family emigrated to Australia when he was 5 years old. He was educated at Wesley College, Melbourne, and attended Queen's College, University of Melbourne, graduating in physics and engineering in 1897. As an 1851 Exhibitioner he then spent three years at St John's College, Cambridge, under Sir Alfred Ewing, where he studied the microstructure of deformed metal crystals and abandoned his original intention of becoming a civil engineer. Rosenhain was the first to observe the slip-bands in metal crystals, and in the Bakerian Lecture delivered jointly by Ewing and Rosenhain to the Royal Society in 1899 it was shown that metals deformed plastically by a mechanism involving shear slip along individual crystal planes. From this conception modern ideas on the plasticity and recrystallization of metals rapidly developed. On leaving Cambridge, Rosenhain joined the Birmingham firm of Chance Brothers, where he worked for six years on optical glass and lighthouse-lens systems. A book, Glass Manufacture, written in 1908, derives from this period, during which he continued his metallurgical researches in the evenings in his home laboratory and published several papers on his work.In 1906 Rosenhain was appointed Head of the Metallurgical Department of the National Physical Laboratory (NPL), and in 1908 he became the first Superintendent of the new Department of Metallurgy and Metallurgical Chemistry. Many of the techniques he introduced at Teddington were described in his Introduction to Physical Metallurgy, published in 1914. At the outbreak of the First World War, Rosenhain was asked to undertake work in his department on the manufacture of optical glass. This soon made it possible to manufacture optical glass of high quality on an industrial scale in Britain. Much valuable work on refractory materials stemmed from this venture. Rosenhain's early years at the NPL were, however, inseparably linked with his work on light alloys, which between 1912 and the end of the war involved virtually all of the metallurgical staff of the laboratory. The most important end product was the well-known "Y" Alloy (4% copper, 2% nickel and 1.5% magnesium) extensively used for the pistons and cylinder heads of aircraft engines. It was the prototype of the RR series of alloys jointly developed by Rolls Royce and High Duty Alloys. An improved zinc-based die-casting alloy devised by Rosenhain was also used during the war on a large scale for the production of shell fuses.After the First World War, much attention was devoted to beryllium, which because of its strength, lightness, and stiffness would, it was hoped, become the airframe material of the future. It remained, however, too brittle for practical use. Other investigations dealt with impurities in copper, gases in aluminium alloys, dental alloys, and the constitution of alloys. During this period, Rosenhain's laboratory became internationally known as a centre of excellence for the determination of accurate equilibrium diagrams.[br]Principal Honours and DistinctionsFRS 1913. President, Institute of Metals 1828–30. Iron and Steel Institute Bessemer Medal, Carnegie Medal.Bibliography1908, Glass Manufacture.1914, An Introduction to the Study of Physical Metallurgy, London: Constable. Rosenhain published over 100 research papers.Further ReadingJ.L.Haughton, 1934, "The work of Walter Rosenhain", Journal of the Institute of Metals 55(2):17–32.ASD -
57 Sprague, Frank Julian
[br]b. 25 July 1857 Milford, Connecticut, USAd. 25 October 1934 New York, USA[br]American electrical engineer and inventor, a leading innovator in electric propulsion systems for urban transport.[br]Graduating from the United States Naval Academy, Annapolis, in 1878, Sprague served at sea and with various shore establishments. In 1883 he resigned from the Navy and obtained employment with the Edison Company; but being convinced that the use of electricity for motive power was as important as that for illumination, in 1884 he founded the Sprague Electric Railway and Motor Company. Sprague began to develop reliable and efficient motors in large sizes, marketing 15 hp (11 kW) examples by 1885. He devised the method of collecting current by using a wooden, spring-loaded rod to press a roller against the underside of an overhead wire. The installation by Sprague in 1888 of a street tramway on a large scale in Richmond, Virginia, was to become the prototype of the universally adopted trolley system with overhead conductor and the beginning of commercial electric traction. Following the success of the Richmond tramway the company equipped sixty-seven other railways before its merger with Edison General Electric in 1890. The Sprague traction motor supported on the axle of electric streetcars and flexibly mounted to the bogie set a pattern that was widely adopted for many years.Encouraged by successful experiments with multiple-sheave electric elevators, the Sprague Elevator Company was formed and installed the first set of high-speed passenger cars in 1893–4. These effectively displaced hydraulic elevators in larger buildings. From experience with control systems for these, he developed his system of multiple-unit control for electric trains, which other engineers had considered impracticable. In Sprague's system, a master controller situated in the driver's cab operated electrically at a distance the contactors and reversers which controlled the motors distributed down the train. After years of experiment, Sprague's multiple-unit control was put into use for the first time in 1898 by the Chicago South Side Elevated Railway: within fifteen years multiple-unit operation was used worldwide.[br]Principal Honours and DistinctionsPresident, American Institute of Electrical Engineers 1892–3. Franklin Institute Elliot Cresson Medal 1904, Franklin Medal 1921. American Institute of Electrical Engineers Edison Medal 1910.Bibliography1888, "The solution of municipal rapid transit", Trans. AIEE 5:352–98. See "The multiple unit system for electric railways", Cassiers Magazine, (1899) London, repub. 1960, 439–460.1934, "Digging in “The Mines of the Motor”", Electrical Engineering 53, New York: 695–706 (a short autobiography).Further ReadingLionel Calisch, 1913, Electric Traction, London: The Locomotive Publishing Co., Ch. 6 (for a near-contemporary view of Sprague's multiple-unit control).D.C.Jackson, 1934, "Frank Julian Sprague", Scientific Monthly 57:431–41.H.C.Passer, 1952, "Frank Julian Sprague: father of electric traction", in Men of Business, ed. W. Miller, Cambridge, Mass., pp. 212–37 (a reliable account).——1953, The Electrical Manufacturers: 1875–1900, Cambridge, Mass. P.Ransome-Wallis (ed.), 1959, The Concise Encyclopaedia of World RailwayLocomotives, London: Hutchinson, p. 143..John Marshall, 1978, A Biographical Dictionary of Railway Engineers, Newton Abbot: David \& Charles.GW / PJGR -
58 Tupolev, Andrei Nikolayevich
[br]b. 10 November 1888 Pastomazovo, Russiad. 23 December 1972 Moscow, Russia[br]Russian aircraft designer.[br]In 1909 he entered the Moscow Higher Technical School and became a pupil of Nikolai Zhukovsky, who was known as "the father of Russian aviation". Graduating in 1918, he helped Zhukovsky to set up the Zhukovsky Central Aerohydrodynamic Institute and was made Assistant Director. He was appointed Head of the Institute's Design Department in 1922: his work was concentrated on wind tunnels and gliders, but later included aerodynamic calculations and the construction of all-metal aircraft. His first significant design project was the twin-engined Ant-29 fighter prototype, which appeared in the early 1930s and eventually entered service as the SB-2. However, Tupolev and his wife fell victim to Stalin's purges in 1937: she was sent to a labour camp and he was imprisoned, but in 1943 both were rehabilitated and Tupolev was able to resume his design work. He devoted his attention to long-range strategic bombers, the first of these being the Tu-4, a copy of the US B-29, followed by the Tu-70 bomber. He also designed the Tu-104 airliner, and in 1967 he produced the world's first supersonic airliner, the Tu-144. Tupolev also became interested in fast-attack naval craft and designed a number of torpedo launches, and he rose to the rank of Lieutenant-General in the Soviet air force's Engineering and Technical Service.[br]Principal Honours and DistinctionsHonoured Scientist and Technologist RSFSR 1933. Hero of Socialist Labour 1945. Member of the Supreme Soviet 1950–58. Member of the Soviet Academy of Sciences 1953. Lenin Prize 1957. Stalin Prize.CMBiographical history of technology > Tupolev, Andrei Nikolayevich
-
59 Wallis, Sir Barnes Neville
[br]b. 26 September 1887 Ripley, Derbyshire, Englandd. 30 October 1979 Leatherhead, Surrey, England[br]English aeronautical designer and inventor.[br]Wallis was apprenticed first at Thames Engineering Works, and then, in 1908, at John Samuel White's shipyard at Cowes. In 1913, the Government, spurred on by the accelerating development of the German Zeppelins (see Zeppelin, Ferdinand von), ordered an airship from Vickers; Wallis was invited to join the design team. Thus began his long association with aeronautical design and with Vickers. This airship, and the R80 that followed it, were successfully completed, but the military lost interest in them.In 1924 the Government initiated a programme for the construction of two airships to settle once and for all their viability for long-dis-tance air travel. The R101 was designed by a Government-sponsored team, but the R100 was designed by Wallis working for a subsidiary of Vickers. The R100 took off on 29 July 1930 for a successful round trip to Canada, but the R101 crashed on its first flight on 4 October, killing many of its distinguished passengers. The shock of this disaster brought airship development in Britain to an abrupt end and forced Wallis to direct his attention to aircraft.In aircraft design, Wallis is known for his use of geodesic construction, which combined lightness with strength. It was applied first to the single-engined "Wellesley" and then the twin-en-gined "Wellington" bomber, which first flew in 1936. With successive modifications, it became the workhorse of RAF Bomber Command during the Second World War until the autumn of 1943, when it was replaced by four-engined machines. In other areas, it remained in service until the end of the war and, in all, no fewer than 11,461 were built.Wallis is best known for his work on bomb design, first the bouncing bomb that was used to breach the Möhne and Eder dams in the Ruhr district of Germany in 1943, an exploit immortalized in the film Dambusters. Encouraged by this success, the authorities then allowed Wallis to realize an idea he had long urged, that of heavy, penetration bombs. In the closing stages of the war, Tallboy, of 12,000 lb (5,400 kg), and the 10-ton Grand Slam were used to devastating effect.After the Second World War, Wallis returned to aeronautical design and was given his own department at Vickers to promote his ideas, principally on variable-geometry or swing-wing aircraft. Over the next thirteen years he battled towards the prototype stage of this revolutionary concept. That never came, however; changing conditions and requirements and increasing costs led to the abandonment of the project. Bit-terly disappointed, Wallis continued his researches into high-speed aircraft until his retirement from Vickers (by then the British Aircraft Corporation), in 1971.[br]Principal Honours and DistinctionsKnighted 1968. FRS 1945.Further ReadingJ.Morpurgo, 1972, Barnes Wallis: A Biography, London: Longman (a readable account, rather biased in Wallis's favour).C.J.Heap, 1987, The Papers of Sir Barnes Wallis (1887–1979) in the Science Museum Library, London: Science Museum; with a biographical introd. by L.R.Day.LRDBiographical history of technology > Wallis, Sir Barnes Neville
-
60 automation technologies
технологии для автоматизации
-
[Интент]Параллельные тексты EN-RU
Automation technologies: a strong focal point for our R&D
Технологии для автоматизации - одна из главных тем наших научно исследовательских разработок
Automation is an area of ABB’s business with an extremely high level of technological innovation.
Автоматика относится к одной из областей деятельности компании АББ, для которой характерен исключительно высокий уровень технических инноваций.
In fact, it may be seen as a showcase for exhibiting the frontiers of development in several of today’s emerging technologies, like short-range wireless communication and microelectromechanical systems (MEMS).
В определенном смысле ее можно уподобить витрине, в которой выставлены передовые разработки из области только еще зарождающихся технологий, примерами которых являются ближняя беспроводная связь и микроэлектромеханические системы (micro electromechanical systems MEMS).
Mechatronics – the synthesis of mechanics and electronics – is another very exciting and rapidly developing area, and the foundation on which ABB has built its highly successful, fast-growing robotics business.
Еще одной исключительно интересной быстро развивающейся областью и в то же время фундаментом, на котором АББ в последнее время строит свой исключительно успешный и быстро расширяющийся бизнес в области робототехники, является мехатроника - синтез механики с электроникой.
Robotic precision has now reached the levels we have come to expect of the watch-making industry, while robots’ mechanical capabilities continue to improve significantly.
Точность работы робототехнических устройств достигла сегодня уровней, которые мы привыкли ожидать только на предприятиях часовой промышленности. Большими темпами продолжают расти и механические возможности роботов.
Behind the scenes, highly sophisticated electronics and software control every move these robots make.
А за кулисами всеми перемещениями робота управляют сложные электронные устройства и компьютерные программы.
Throughout industry today we see a major shift of ‘intelligence’ to lower levels in the automation system hierarchy, leading to a demand for more communication within the system.
Во всех отраслях промышленности сегодня наблюдается интенсивный перенос "интеллекта" на нижние уровни иерархии автоматизированных систем, что требует дальнейшего развития внутрисистемных средств обмена.
‘Smart’ transmitters, with powerful microprocessors, memory chips and special software, carry out vital operations close to the processes they are monitoring.
"Интеллектуальные" датчики, снабженные высокопроизводительными микропроцессорами, мощными чипами памяти и специальным программно-математическим обеспечением, выполняют особо ответственные операции в непосредственной близости от контролируемых процессов.
And they capture and store data crucial for remote diagnostics and maintenance.
Они же обеспечивают возможность измерения и регистрации информации, крайне необходимой для дистанционной диагностики и дистанционного обслуживания техники.
The communication highway linking such systems is provided by fieldbuses.
В качестве коммуникационных магистралей, связывающих такого рода системы, служат промышленные шины fieldbus.
In an ideal world there would be no more than a few, preferably just one, fieldbus standard.
В идеале на промышленные шины должно было бы существовать небольшое количество, а лучше всего вообще только один стандарт.
However, there are still too many of them, so ABB has developed ‘fieldbus plugs’ that, with the help of translation, enable devices to communicate across different standards.
К сожалению, на деле количество их типов продолжает оставаться слишком разнообразным. Ввиду этой особенности рынка промышленных шин компанией АББ разработаны "штепсельные разъемы", которые с помощью средств преобразования обеспечивают общение различных устройств вопреки границам, возникшим из-за различий в стандартах.
This makes life easier as well as less costly for our customers. Every automation system is dependent on an electrical network for distributing – and interrupting, when necessary – the power needed to carry out its various functions.
Это, безусловно, не только облегчает, но и удешевляет жизнь нашим заказчикам. Ни одна система автоматики не может работать без сети, обеспечивающей подачу, а при необходимости и отключение напряжения, необходимого для выполнения автоматикой своих задач.
Here, too, we see a clear trend toward more intelligence and communication, for example in traditional electromechanical devices such as contactors and switches.
И здесь наблюдаются отчетливо выраженные тенденции к повышению уровня интеллектуальности и расширению возможностей связи, например, в таких традиционных электромеханических устройствах, как контакторы и выключатели.
We are pleased to see that our R&D efforts in these areas over the past few years are bearing fruit.
Мы с удовлетворением отмечаем, что научно-исследовательские разработки, выполненные нами за последние годы в названных областях, начинают приносить свои плоды.
Recently, we have seen a strong increase in the use of wireless technology in industry.
В последнее время на промышленных предприятиях наблюдается резкое расширение применения техники беспроводной связи.
This is a key R&D area at ABB, and several prototype applications have already been developed.
В компании АББ эта область также относится к числу одной из ключевых тем научно-исследовательских разработок, результатом которых стало создание ряда опытных образцов изделий практического направления.
At the international Bluetooth Conference in Amsterdam in June 2002, we presented a truly ‘wire-less’ proximity sensor – with even a wireless power supply.
На международной конференции по системам Bluetooth, состоявшейся в Амстердаме в июне 2002 г., наши специалисты выступили с докладом о поистине "беспроводном" датчике ближней локации, снабженном опять-таки "беспроводным" источником питания.
This was its second major showing after the launch at the Hanover Fair.
На столь крупном мероприятии это устройство демонстрировалось во второй раз после своего первого показа на Ганноверской торгово-промышленной ярмарке.
Advances in microelectronic device technology are also having a profound impact on the power electronics systems around which modern drive systems are built.
Достижения в области микроэлектроники оказывают также глубокое влияние на системы силовой электроники, лежащие в основе современных приводных устройств.
The ABB drive family ACS 800 is visible proof of this.
Наглядным тому доказательством может служить линейка блоков регулирования частоты вращения электродвигателей ACS-800, производство которой начато компанией АББ.
Combining advanced trench gate IGBT technology with efficient cooling and innovative design, this drive – for motors rated from 1.1 to 500 kW – has a footprint for some power ranges which is six times smaller than competing systems.
Предназначены они для двигателей мощностью от 1,1 до 500 кВт. В блоках применена новейшая разновидность приборов - биполярные транзисторы с изолированным желобковым затвором (trench gate IGBT) в сочетании с новыми конструктивными решениями, благодаря чему в отдельных диапазонах мощностей габариты блоков удалось снизить по сравнению с конкурирующими изделиями в шесть раз.
To get the maximum benefit out of this innovative drive solution we have also developed a new permanent magnet motor.
Стремясь с максимальной пользой использовать новые блоки регулирования, мы параллельно с ними разработали новый двигатель с постоянными магнитами.
It uses neodymium iron boron, a magnetic material which is more powerful at room temperature than any other known today.
В нем применен новый магнитный материал на основе неодима, железа и бора, характеристики которого при комнатной температуре на сегодняшний день не имеют себе равных.
The combination of new drive and new motor reduces losses by as much as 30%, lowering energy costs and improving sustainability – both urgently necessary – at the same time.
Совместное использование нового блока регулирования частоты вращения с новым двигателем снижает потери мощности до 30 %, что позволяет решить сразу две исключительно актуальные задачи:
сократить затраты на электроэнергию и повысить уровень безотказности.These innovations are utilized most fully, and yield the maximum benefit, when integrated by means of our Industrial IT architecture.
Потенциал перечисленных выше новых разработок используется в наиболее полной степени, а сами они приносят максимальную выгоду, если их интеграция осуществлена на основе нашей архитектуры IndustrialIT.
Industrial IT is a unique platform for exploiting the full potential of information technology in industrial applications.
IndustrialIT представляет собой уникальную платформу, позволяющую в максимальной степени использовать возможности информационных технологий применительно к задачам промышленности.
Consequently, our new products and technologies are Industrial IT Enabled, meaning that they can be integrated in the Industrial IT architecture in a ‘plug and produce’ manner.
Именно поэтому все наши новые изделия и технологии выпускаются в варианте, совместимом с архитектурой IndustrialIT, что означает их способность к интеграции с этой архитектурой по принципу "подключи и производи".
We are excited to present in this issue of ABB Review some of our R&D work and a selection of achievements in such a vital area of our business as Automation.
Мы рады представить в настоящем номере "АББ ревю" некоторые из наших научно-исследовательских разработок и достижений в такой жизненно важной для нашего бизнеса области, как автоматика.
R&D investment in our corporate technology programs is the foundation on which our product and system innovation is built.
Вклад наших разработок в общекорпоративные технологические программы группы АББ служит основой для реализации новых технических решений в создаваемых нами устройствах и системах.
Examples abound in the areas of control engineering, MEMS, wireless communication, materials – and, last but not least, software technologies. Enjoy reading about them.
[ABB Review]Это подтверждается многочисленными примерами из области техники управления, микроэлектромеханических систем, ближней радиосвязи, материаловедения и не в последнюю очередь программотехники. Хотелось бы пожелать читателю получить удовольствие от чтения этих материалов.
[Перевод Интент]
Тематики
EN
Англо-русский словарь нормативно-технической терминологии > automation technologies
См. также в других словарях:
Prototype — A prototype is an original type, form, or instance of something serving as a typical example, basis, or standard for other things of the same category. The word derives from the Greek πρωτότυπον ( prototypon ), archetype, original , neutral of… … Wikipedia
Prototype (disambiguation) — A prototype is something that is representative of a category of things. Prototype may also refer to:;Automobiles* Citroën Prototype C, range of vehicles created by Citroën from 1955 to 1956 * Citroën Prototype Y, project of replacement of the… … Wikipedia
Engineering Division USD-9 — Airco DH.9 Airco DH.9/DH.9A … Wikipédia en Français
Engineering and Research Corporation — Infobox Company company name = Engineering and Research Corporation company company type = foundation = 1930 location = Riverdale, Maryland key people = industry = Aerospace and defense products = revenue = operating income = net income = num… … Wikipedia
Engineering Education Scheme — The Engineering Education Scheme is a scheme run in the United Kingdom by the Engineering Development Trust to promote the education of school students about engineering. It is part of the Royal Academy of Engineering s BEST programme.The… … Wikipedia
Engineering Division — Infobox Defunct company company name = Engineering Division company slogan = company type = fate = Predecessor = successor = foundation = 31 August 1918 defunct = location = industry = products = key people = num employees = parent = United… … Wikipedia
Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere — The Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) is a National Science Foundation Engineering Center. The Center brings together a multidisciplinary group of engineers, computer scientists,… … Wikipedia
List of Historic Mechanical Engineering Landmarks — The following is a list of Historic Mechanical Engineering Landmarks as designated by the American Society of Mechanical Engineers since it began the program in 1971. The designation is granted to existing artifacts or systems representing a… … Wikipedia
Market engineering — comprises the structured, systematic and theoretically founded procedure of analyzing, designing, introducing and also quality assuring of electronic market platforms as well as their legal framework regarding simultaneously their market… … Wikipedia
aerospace engineering — aerospace engineer. the branch of engineering that deals with the design, development, testing, and production of aircraft and related systems (aeronautical engineering) and of spacecraft, missiles, rocket propulsion systems, and other equipment… … Universalium
Covini Engineering — is an Italian car manufacturer that was formed in 1978 by Ferruccio Covini. The company is generally best known for the Covini C6W, a 6 wheeled sports car that has two axles (four wheels) in the front of the car. Covini s first prototype, the… … Wikipedia