Перевод: со всех языков на все языки

со всех языков на все языки

developing+apparatus

  • 101 Murdock (Murdoch), William

    [br]
    b. 21 August 1754 Cumnock, Ayrshire, Scotland
    d. 15 November 1839 Handsworth, Birmingham, England
    [br]
    Scottish engineer and inventor, pioneer in coal-gas production.
    [br]
    He was the third child and the eldest of three boys born to John Murdoch and Anna Bruce. His father, a millwright and joiner, spelled his name Murdock on moving to England. He was educated for some years at Old Cumnock Parish School and in 1777, with his father, he built a "wooden horse", supposed to have been a form of cycle. In 1777 he set out for the Soho manufactory of Boulton \& Watt, where he quickly found employment, Boulton supposedly being impressed by the lad's hat. This was oval and made of wood, and young William had turned it himself on a lathe of his own manufacture. Murdock quickly became Boulton \& Watt's representative in Cornwall, where there was a flourishing demand for steam-engines. He lived at Redruth during this period.
    It is said that a number of the inventions generally ascribed to James Watt are in fact as much due to Murdock as to Watt. Examples are the piston and slide valve and the sun-and-planet gearing. A number of other inventions are attributed to Murdock alone: typical of these is the oscillating cylinder engine which obviated the need for an overhead beam.
    In about 1784 he planned a steam-driven road carriage of which he made a working model. He also planned a high-pressure non-condensing engine. The model carriage was demonstrated before Murdock's friends and travelled at a speed of 6–8 mph (10–13 km/h). Boulton and Watt were both antagonistic to their employees' developing independent inventions, and when in 1786 Murdock set out with his model for the Patent Office, having received no reply to a letter he had sent to Watt, Boulton intercepted him on the open road near Exeter and dissuaded him from going any further.
    In 1785 he married Mary Painter, daughter of a mine captain. She bore him four children, two of whom died in infancy, those surviving eventually joining their father at the Soho Works. Murdock was a great believer in pneumatic power: he had a pneumatic bell-push at Sycamore House, his home near Soho. The pattern-makers lathe at the Soho Works worked for thirty-five years from an air motor. He also conceived the idea of a vacuum piston engine to exhaust a pipe, later developed by the London Pneumatic Despatch Company's railway and the forerunner of the atmospheric railway.
    Another field in which Murdock was a pioneer was the gas industry. In 1791, in Redruth, he was experimenting with different feedstocks in his home-cum-office in Cross Street: of wood, peat and coal, he preferred the last. He designed and built in the backyard of his house a prototype generator, washer, storage and distribution plant, and publicized the efficiency of coal gas as an illuminant by using it to light his own home. In 1794 or 1795 he informed Boulton and Watt of his experimental work and of its success, suggesting that a patent should be applied for. James Watt Junior was now in the firm and was against patenting the idea since they had had so much trouble with previous patents and had been involved in so much litigation. He refused Murdock's request and for a short time Murdock left the firm to go home to his father's mill. Boulton \& Watt soon recognized the loss of a valuable servant and, in a short time, he was again employed at Soho, now as Engineer and Superintendent at the increased salary of £300 per year plus a 1 per cent commission. From this income, he left £14,000 when he died in 1839.
    In 1798 the workshops of Boulton and Watt were permanently lit by gas, starting with the foundry building. The 180 ft (55 m) façade of the Soho works was illuminated by gas for the Peace of Paris in June 1814. By 1804, Murdock had brought his apparatus to a point where Boulton \& Watt were able to canvas for orders. Murdock continued with the company after the death of James Watt in 1819, but retired in 1830 and continued to live at Sycamore House, Handsworth, near Birmingham.
    [br]
    Principal Honours and Distinctions
    Royal Society Rumford Gold Medal 1808.
    Further Reading
    S.Smiles, 1861, Lives of the Engineers, Vol. IV: Boulton and Watt, London: John Murray.
    H.W.Dickinson and R.Jenkins, 1927, James Watt and the Steam Engine, Oxford: Clarendon Press.
    J.A.McCash, 1966, "William Murdoch. Faithful servant" in E.G.Semler (ed.), The Great Masters. Engineering Heritage, Vol. II, London: Institution of Mechanical Engineers/Heinemann.
    IMcN

    Biographical history of technology > Murdock (Murdoch), William

  • 102 Oeynhausen, Karl von

    [br]
    b. 4 February 1795 Grevenburg, near Höxter, Germany
    d. 1 February 1865 Grevenburg, near Höxter, Germany
    [br]
    German mining officer who introduced fish joints to deep-drilling.
    [br]
    The son of a mining officer, Oeynhausen started his career in the Prussian administration of the mining industry in 1816, immediately after he had finished his studies in natural sciences and mathematics at the University of Göttingen. From 1847 until his retirement he was a most effective head of state mines inspectorates, first in Silesia (Breslau; now Wroclaw, Poland), later in Westphalia (Dortmund). During his working life he served in all the important mining districts of Prussia, and travelled to mining areas in other parts of Germany, Belgium, France and Britain. In the 1820s, after visiting Glenck's well-known saltworks near Wimpfen, he was commissioned to search for salt deposits in Prussian territory, where he discovered the thermal springs south of Minden which later became the renowned spa carrying his name.
    With deeper drills, the increased weight of the rods made it difficult to disengage the drill on each stroke and made the apparatus self-destructive on impact of the drill. Oeynhausen, from 1834, used fish joints, flexible connections between the drill and the rods. Not only did they prevent destructive impact, but they also gave a jerk on the return stroke that facilitated disengagements. He never claimed to have invented the fish joints: in fact, they appeared almost simultaneously in Europe and in America at that time, and had been used since at least the seventeenth century in China, although they were unknown in the Western hemisphere.
    Using fish joints meant the start of a new era in deep-drilling, allowing much deeper wells to be sunk than before. Five weeks after Oeynhausen, K.G. Kind operated with a different kind of fish joint, and in 1845 another Prussian mining officer, Karl Leopold Fabian (1782–1855), Director of the salt inspectorate at Schönebeck, Elbe, improved the fish joints by developing a special device between the rod and the drill to enable the chisel, strengthened by a sinker bar, to fall onto the bottom of the hole without hindrance with a higher effect. The free-fall system became another factor in the outstanding results of deep-drilling in Prussia in the nineteenth century.
    [br]
    Principal Honours and Distinctions
    Honorary PhD, University of Berlin 1860.
    Bibliography
    1824, "Über die geologische Ähnlichkeit des steinsalzführenden Gebirges in Lothringen und im südlichen Deutschland mit einigen Gegenden auf beiden Ufern der Weser", Karstens Archiv für Bergbau und Hüttenwesen 8: 52–84.
    1847, "Bemerkungen über die Anfertigung und den Effekt der aus Hohleisen zusammengesetzten Bohrgestänge", Archiv fur Mineralogie, Geognosie, Bergbau und Hüttenkunde 21:135–60.
    1832–3, with H.von Dechen, Über den Steinkohlenbergbau in England, 2 parts, Berlin.
    Further Reading
    von Gümbel, "K.v.Oeynhausen", Allgemeine deutsche Biographie 25:31–3.
    W.Serlo, 1927, "Bergmannsfamilien. Die Familien Fabian und Erdmann", Glückauf.
    492–3.
    D.Hoffmann, 1959, 150 Jahre Tiefbohrungen in Deutschland, Vienna and Hamburg (a careful elaboration of the single steps and their context with relation to the development of deep-drilling).
    WK

    Biographical history of technology > Oeynhausen, Karl von

  • 103 Raky, Anton

    [br]
    b. 5 January 1868 Seelenberg, Taunus, Germany
    d. 22 August 1943 Berlin, Germany
    [br]
    German inventor of rapid percussion drilling, entrepreneur in the exploration business.
    [br]
    While apprenticed at the drilling company of E. Przibilla, Raky already called attention by his reflections towards developing drilling methods and improving tools. Working as a drilling engineer in Alsace, he was extraordinarily successful in applying an entire new hydraulic boring system in which the rod was directly connected to the chisel. This apparatus, driven by steam, allowed extremely rapid percussions with very low lift.
    With some improvements, his boring rig drilled deep holes at high speed and at least doubled the efficiency of the methods hitherto used. His machine, which was also more reliable, was secured by a patent in 1895. With borrowed capital, he founded the Internationale Bohrgesellschaft in Strasbourg in the same year, and he began a career in the international exploration business that was unequalled as well as breathtaking. Until 1907 the total depth of the drillings carried out by the company was 1,000 km.
    Raky's rapid drilling was unrivalled and predominant until improved rotary drilling took over. His commercial sense in exploiting the technical advantages of his invention by combining drilling with producing the devices in his own factory at Erkelenz, which later became the headquarters of the company, and in speculating on the concessions for the explored deposits made him by far superior to all of his competitors, who were provoked into contests which they generally lost. His flourishing company carried out drilling in many parts of the world; he became the initiator of the Romanian oil industry and his extraordinary activities in exploring potash and coal deposits in different parts of Germany, especially in the Ruhr district, provoked the government in 1905 into stopping granting claims to private companies. Two years later, he was forced to withdraw from his holding company because of his restless and eccentric character. He turned to Russia and, during the First World War, he was responsible for the reconstruction of the destroyed Romanian oilfields. Thereafter, partly financed by mining companies, he continued explorations in several European countries, and in Germany he was pioneering again with exploring oilfields, iron ore and lignite deposits which later grew in economic value. Similar to Glenck a generation before, he was a daring entrepreneur who took many risks and opened new avenues of exploration, and he was constantly having to cope with a weak financial position, selling concessions and shares, most of them to Preussag and Wintershall; however, this could not prevent his business from collapse in 1932. He finally gave up drilling in 1936 and died a poor man.
    [br]
    Principal Honours and Distinctions
    Dr-Ing. (Hon.) Bergakademie Clausthal 1921.
    Further Reading
    G.P.R.Martin, 1967, "Hundert Jahre Anton Raky", Erdöl-Erdgas-Zeitschrift, 83:416–24 (a detailed description).
    D.Hoffmann, 1959, 150 Jahre Tiefbohrungen in Deutschland, Vienna and Hamburg: 32– 4 (an evaluation of his technologial developments).
    WK

    Biographical history of technology > Raky, Anton

  • 104 Cognitive Science

       The basic idea of cognitive science is that intelligent beings are semantic engines-in other words, automatic formal systems with interpretations under which they consistently make sense.... [P]eople and intelligent computers turn out to be merely different manifestations of the same underlying phenomenon. (Haugeland, 1981b, p. 31)
       2) Experimental Psychology, Theoretical Linguistics, and Computational Simulation of Cognitive Processes Are All Components of Cognitive Science
       I went away from the Symposium with a strong conviction, more intuitive than rational, that human experimental psychology, theoretical linguistics, and computer simulation of cognitive processes were all pieces of a larger whole, and that the future would see progressive elaboration and coordination of their shared concerns.... I have been working toward a cognitive science for about twenty years beginning before I knew what to call it. (G. A. Miller, 1979, p. 9)
        Cognitive Science studies the nature of cognition in human beings, other animals, and inanimate machines (if such a thing is possible). While computers are helpful within cognitive science, they are not essential to its being. A science of cognition could still be pursued even without these machines.
        Computer Science studies various kinds of problems and the use of computers to solve them, without concern for the means by which we humans might otherwise resolve them. There could be no computer science if there were no machines of this kind, because they are indispensable to its being. Artificial Intelligence is a special branch of computer science that investigates the extent to which the mental powers of human beings can be captured by means of machines.
       There could be cognitive science without artificial intelligence but there could be no artificial intelligence without cognitive science. One final caveat: In the case of an emerging new discipline such as cognitive science there is an almost irresistible temptation to identify the discipline itself (as a field of inquiry) with one of the theories that inspired it (such as the computational conception...). This, however, is a mistake. The field of inquiry (or "domain") stands to specific theories as questions stand to possible answers. The computational conception should properly be viewed as a research program in cognitive science, where "research programs" are answers that continue to attract followers. (Fetzer, 1996, pp. xvi-xvii)
       What is the nature of knowledge and how is this knowledge used? These questions lie at the core of both psychology and artificial intelligence.
       The psychologist who studies "knowledge systems" wants to know how concepts are structured in the human mind, how such concepts develop, and how they are used in understanding and behavior. The artificial intelligence researcher wants to know how to program a computer so that it can understand and interact with the outside world. The two orientations intersect when the psychologist and the computer scientist agree that the best way to approach the problem of building an intelligent machine is to emulate the human conceptual mechanisms that deal with language.... The name "cognitive science" has been used to refer to this convergence of interests in psychology and artificial intelligence....
       This working partnership in "cognitive science" does not mean that psychologists and computer scientists are developing a single comprehensive theory in which people are no different from machines. Psychology and artificial intelligence have many points of difference in methods and goals.... We simply want to work on an important area of overlapping interest, namely a theory of knowledge systems. As it turns out, this overlap is substantial. For both people and machines, each in their own way, there is a serious problem in common of making sense out of what they hear, see, or are told about the world. The conceptual apparatus necessary to perform even a partial feat of understanding is formidable and fascinating. (Schank & Abelson, 1977, pp. 1-2)
       Within the last dozen years a general change in scientific outlook has occurred, consonant with the point of view represented here. One can date the change roughly from 1956: in psychology, by the appearance of Bruner, Goodnow, and Austin's Study of Thinking and George Miller's "The Magical Number Seven"; in linguistics, by Noam Chomsky's "Three Models of Language"; and in computer science, by our own paper on the Logic Theory Machine. (Newell & Simon, 1972, p. 4)

    Historical dictionary of quotations in cognitive science > Cognitive Science

См. также в других словарях:

  • Developing apparatus — Проявочное устройство, проявляющее устройство …   Краткий толковый словарь по полиграфии

  • Electrophotographic developing apparatus — Устройство для проявления (скрытого) электрофотографического изображения; проявочное устройство электрофотографического аппарата …   Краткий толковый словарь по полиграфии

  • Thermal developing apparatus — Устройство для термического проявления; (копировальный) аппарат с термическим проявлением (скрытого изображения) …   Краткий толковый словарь по полиграфии

  • Xerographic developing apparatus — Ксерографическое проявляющее устройство …   Краткий толковый словарь по полиграфии

  • apparatus — 1. A collection of instruments adapted for a special purpose. 2. An instrument made up of several parts. 3. [TA] A group or system of glands, ducts, blood vessel s, muscles, or other anatomic structures involved in the performance of some… …   Medical dictionary

  • Fire apparatus — A fire apparatus, fire engine, fire truck, or fire appliance is a vehicle designed to assist in fighting fires, by transporting firefighters to the scene, and providing them with access, water or other equipment. In some areas, the terms fire… …   Wikipedia

  • Ilizarov apparatus — The Ilizarov apparatus is used in a surgical procedure that can be used to lengthen or reshape limb bones. In addition, the procedure is often used to treat complex and/or open bone fractures, where conventional treatment techniques cannot be… …   Wikipedia

  • Indoor air pollution in developing nations — is a significant form of indoor air pollution (IAP) that is little known to those in the developed world.Three billion people in developing nations across the globe rely on biomass, in the form of wood, charcoal, dung, and crop residue, as their… …   Wikipedia

  • baking — Process of cooking by dry heat, especially in an oven. Baked products include bread, cookies, pies, and pastries. Ingredients used in baking include flour, water, leavening agents (baker s yeast, baking soda, baking powder), shortening (fats,… …   Universalium

  • T-26 variants — KhT 130 (OT 130) flame throwing tank displayed in Russian Kubinka Tank Museum. Actually this is a TU 26 teletank control vehicle with a dummy flame thrower. Main article: T 26 tank More than 50 different modifications and experimental vehicles… …   Wikipedia

  • china — /chuy neuh/, n. 1. a translucent ceramic material, biscuit fired at a high temperature, its glaze fired at a low temperature. 2. any porcelain ware. 3. plates, cups, saucers, etc., collectively. 4. figurines made of porcelain or ceramic material …   Universalium

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»