Перевод: со всех языков на английский

с английского на все языки

december+and+january

  • 41 Ferranti, Sebastian Ziani de

    [br]
    b. 9 April 1864 Liverpool, England
    d. 13 January 1930 Zurich, Switzerland
    [br]
    English manufacturing engineer and inventor, a pioneer and early advocate of high-voltage alternating-current electric-power systems.
    [br]
    Ferranti, who had taken an interest in electrical and mechanical devices from an early age, was educated at St Augustine's College in Ramsgate and for a short time attended evening classes at University College, London. Rather than pursue an academic career, Ferranti, who had intense practical interests, found employment in 1881 with the Siemens Company (see Werner von Siemens) in their experimental department. There he had the opportunity to superintend the installation of electric-lighting plants in various parts of the country. Becoming acquainted with Alfred Thomson, an engineer, Ferranti entered into a short-lived partnership with him to manufacture the Ferranti alternator. This generator, with a unique zig-zag armature, had an efficiency exceeding that of all its rivals. Finding that Sir William Thomson had invented a similar machine, Ferranti formed a company with him to combine the inventions and produce the Ferranti- Thomson machine. For this the Hammond Electric Light and Power Company obtained the sole selling rights.
    In 1885 the Grosvenor Gallery Electricity Supply Corporation was having serious problems with its Gaulard and Gibbs series distribution system. Ferranti, when consulted, reviewed the design and recommended transformers connected across constant-potential mains. In the following year, at the age of 22, he was appointed Engineer to the company and introduced the pattern of electricity supply that was eventually adopted universally. Ambitious plans by Ferranti for London envisaged the location of a generating station of unprecedented size at Deptford, about eight miles (13 km) from the city, a departure from the previous practice of placing stations within the area to be supplied. For this venture the London Electricity Supply Corporation was formed. Ferranti's bold decision to bring the supply from Deptford at the hitherto unheard-of pressure of 10,000 volts required him to design suitable cables, transformers and generators. Ferranti planned generators with 10,000 hp (7,460 kW)engines, but these were abandoned at an advanced stage of construction. Financial difficulties were caused in part when a Board of Trade enquiry in 1889 reduced the area that the company was able to supply. In spite of this adverse situation the enterprise continued on a reduced scale. Leaving the London Electricity Supply Corporation in 1892, Ferranti again started his own business, manufacturing electrical plant. He conceived the use of wax-impregnated paper-insulated cables for high voltages, which formed a landmark in the history of cable development. This method of flexible-cable manufacture was used almost exclusively until synthetic materials became available. In 1892 Ferranti obtained a patent which set out the advantages to be gained by adopting sector-shaped conductors in multi-core cables. This was to be fundamental to the future design and development of such cables.
    A total of 176 patents were taken out by S.Z. de Ferranti. His varied and numerous inventions included a successful mercury-motor energy meter and improvements to textile-yarn produc-tion. A transmission-line phenomenon where the open-circuit voltage at the receiving end of a long line is greater than the sending voltage was named the Ferranti Effect after him.
    [br]
    Principal Honours and Distinctions
    FRS 1927. President, Institution of Electrical Engineers 1910 and 1911. Institution of Electrical Engineers Faraday Medal 1924.
    Bibliography
    18 July 1882, British patent no. 3,419 (Ferranti's first alternator).
    13 December 1892, British patent no. 22,923 (shaped conductors of multi-core cables). 1929, "Electricity in the service of man", Journal of the Institution of Electrical Engineers 67: 125–30.
    Further Reading
    G.Z.de Ferranti and R. Ince, 1934, The Life and Letters of Sebastian Ziani de Ferranti, London.
    A.Ridding, 1964, S.Z.de Ferranti. Pioneer of Electric Power, London: Science Museum and HMSO (a concise biography).
    R.H.Parsons, 1939, Early Days of the Power Station Industry, Cambridge, pp. 21–41.
    GW

    Biographical history of technology > Ferranti, Sebastian Ziani de

  • 42 Haber, Fritz

    SUBJECT AREA: Chemical technology
    [br]
    b. 9 December 1868 Breslau, Germany (now Wroclaw, Poland)
    d. 29 January 1934 Basel, Switzerland
    [br]
    German chemist, inventor of the process for the synthesis of ammonia.
    [br]
    Haber's father was a manufacturer of dyestuffs, so he studied organic chemistry at Berlin and Heidelberg universities to equip him to enter his father's firm. But his interest turned to physical chemistry and remained there throughout his life. He became Assistant at the Technische Hochschule in Karlsruhe in 1894; his first work there was on pyrolysis and electrochemistry, and he published his Grundrisse der technischen Electrochemie in 1898. Haber became famous for thorough and illuminating theoretical studies in areas of growing practical importance. He rose through the academic ranks and was appointed a full professor in 1906. In 1912 he was also appointed Director of the Institute of Physical Chemistry and Electrochemistry at Dahlem, outside Berlin.
    Early in the twentieth century Haber invented a process for the synthesis of ammonia. The English chemist and physicist Sir William Crookes (1832–1919) had warned of the danger of mass hunger because the deposits of Chilean nitrate were becoming exhausted and nitrogenous fertilizers would not suffice for the world's growing population. A solution lay in the use of the nitrogen in the air, and the efforts of chemists centred on ways of converting it to usable nitrate. Haber was aware of contemporary work on the fixation of nitrogen by the cyanamide and arc processes, but in 1904 he turned to the study of ammonia formation from its elements, nitrogen and hydrogen. During 1907–9 Haber found that the yield of ammonia reached an industrially viable level if the reaction took place under a pressure of 150–200 atmospheres and a temperature of 600°C (1,112° F) in the presence of a suitable catalyst—first osmium, later uranium. He devised an apparatus in which a mixture of the gases was pumped through a converter, in which the ammonia formed was withdrawn while the unchanged gases were recirculated. By 1913, Haber's collaborator, Carl Bosch had succeeded in raising this laboratory process to the industrial scale. It was the first successful high-pressure industrial chemical process, and solved the nitrogen problem. The outbreak of the First World War directed the work of the institute in Dahlem to military purposes, and Haber was placed in charge of chemical warfare. In this capacity, he developed poisonous gases as well as the means of defence against them, such as gas masks. The synthetic-ammonia process was diverted to produce nitric acid for explosives. The great benefits and achievement of the Haber-Bosch process were recognized by the award in 1919 of the Nobel Prize in Chemistry, but on account of Haber's association with chemical warfare, British, French and American scientists denounced the award; this only added to the sense of bitterness he already felt at his country's defeat in the war. He concentrated on the theoretical studies for which he was renowned, in particular on pyrolysis and autoxidation, and both the Karlsruhe and the Dahlem laboratories became international centres for discussion and research in physical chemistry.
    With the Nazi takeover in 1933, Haber found that, as a Jew, he was relegated to second-class status. He did not see why he should appoint staff on account of their grandmothers instead of their ability, so he resigned his posts and went into exile. For some months he accepted hospitality in Cambridge, but he was on his way to a new post in what is now Israel when he died suddenly in Basel, Switzerland.
    [br]
    Bibliography
    1898, Grundrisse der technischen Electrochemie.
    1927, Aus Leben und Beruf.
    Further Reading
    J.E.Coates, 1939, "The Haber Memorial Lecture", Journal of the Chemical Society: 1,642–72.
    M.Goran, 1967, The Story of Fritz Haber, Norman, OK: University of Oklahoma Press (includes a complete list of Haber's works).
    LRD

    Biographical history of technology > Haber, Fritz

  • 43 Noyce, Robert

    [br]
    b. 12 December 1927 Burlington, Iowa, USA
    [br]
    American engineer responsible for the development of integrated circuits and the microprocessor chip.
    [br]
    Noyce was the son of a Congregational minister whose family, after a number of moves, finally settled in Grinnell, some 50 miles (80 km) east of Des Moines, Iowa. Encouraged to follow his interest in science, in his teens he worked as a baby-sitter and mower of lawns to earn money for his hobby. One of his clients was Professor of Physics at Grinnell College, where Noyce enrolled to study mathematics and physics and eventually gained a top-grade BA. It was while there that he learned of the invention of the transistor by the team at Bell Laboratories, which included John Bardeen, a former fellow student of his professor. After taking a PhD in physical electronics at the Massachusetts Institute of Technology in 1953, he joined the Philco Corporation in Philadelphia to work on the development of transistors. Then in January 1956 he accepted an invitation from William Shockley, another of the Bell transistor team, to join the newly formed Shockley Transistor Company, the first electronic firm to set up shop in Palo Alto, California, in what later became known as "Silicon Valley".
    From the start things at the company did not go well and eventually Noyce and Gordon Moore and six colleagues decided to offer themselves as a complete development team; with the aid of the Fairchild Camera and Instrument Company, the Fairchild Semiconductor Corporation was born. It was there that in 1958, contemporaneously with Jack K. Wilby at Texas Instruments, Noyce had the idea for monolithic integration of transistor circuits. Eventually, after extended patent litigation involving study of laboratory notebooks and careful examination of the original claims, priority was assigned to Noyce. The invention was most timely. The Apollo Moon-landing programme announced by President Kennedy in May 1961 called for lightweight sophisticated navigation and control computer systems, which could only be met by the rapid development of the new technology, and Fairchild was well placed to deliver the micrologic chips required by NASA.
    In 1968 the founders sold Fairchild Semicon-ductors to the parent company. Noyce and Moore promptly found new backers and set up the Intel Corporation, primarily to make high-density memory chips. The first product was a 1,024-bit random access memory (1 K RAM) and by 1973 sales had reached $60 million. However, Noyce and Moore had already realized that it was possible to make a complete microcomputer by putting all the logic needed to go with the memory chip(s) on a single integrated circuit (1C) chip in the form of a general purpose central processing unit (CPU). By 1971 they had produced the Intel 4004 microprocessor, which sold for US$200, and within a year the 8008 followed. The personal computer (PC) revolution had begun! Noyce eventually left Intel, but he remained active in microchip technology and subsequently founded Sematech Inc.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Stuart Ballantine Medal 1966. National Academy of Engineering 1969. National Academy of Science. Institute of Electrical and Electronics Engineers Medal of Honour 1978; Cledo Brunetti Award (jointly with Kilby) 1978. Institution of Electrical Engineers Faraday Medal 1979. National Medal of Science 1979. National Medal of Engineering 1987.
    Bibliography
    1955, "Base-widening punch-through", Proceedings of the American Physical Society.
    30 July 1959, US patent no. 2,981,877.
    Further Reading
    T.R.Reid, 1985, Microchip: The Story of a Revolution and the Men Who Made It, London: Pan Books.
    KF

    Biographical history of technology > Noyce, Robert

  • 44 Sauerbrun, Charles de, Baron von Drais

    SUBJECT AREA: Land transport
    [br]
    b. 1785
    d. 1851
    [br]
    German popularizer of the first form of manumotive vehicle, the hobby-horse.
    [br]
    An engineer and agriculturalist who had to travel long distances over rough country, he evolved an improved design of velocipede. The original device appears to have been first shown in the gardens of the Palais Royal by the comte de Sivrac in 1791, a small wooden "horse" fitted with two wheels and propelled by the rider's legs thrusting alternately against the ground. It was not possible to turn the front wheel to steer the machine, a small variation from the straight being obtained by the rider leaning sideways. It is not known if de Sivrac was the inventor of the machine: it is likely that it had been in existence, probably as a child's toy, for a number of years. Its original name was the celerifière, but it was renamed the velocifère in 1793. The Baron's Draisienne was an improvement on this primitive machine; it had a triangulated wooden frame, an upholstered seat, a rear luggage seat and an armrest which took the thrust of the rider as he or she pushed against the ground. Furthermore, it was steerable. In some models there was a cordoperated brake and a prop stand, and the seat height could be adjusted. At least one machine was fitted with a milometer. Drais began limited manufacture and launched a long marketing and patenting campaign, part of which involved sending advertising letters to leading figures, including a number of kings.
    The Draisienne was first shown in public in April 1817: a ladies' version became available in 1819. Von Drais took out a patent in Baden on 12 January 1818 and followed with a French patent on 17 February. Three-and four-wheeled versions became available so the two men could take the ladies for a jaunt.
    Drais left his agricultural and forestry work and devoted his full time to the "Running Machine" business. Soon copies were being made and sold in Italy, Germany and Austria. In London, a Denis Johnson took out a patent in December 1818 for a "pedestrian curricle" which was soon nicknamed the dandy horse.
    [br]
    Further Reading
    C.A.Caunter, 1955, Cycles: History and Development, London: Science Museum and HMSO.
    IMcN

    Biographical history of technology > Sauerbrun, Charles de, Baron von Drais

  • 45 Stanley, Robert Crooks

    [br]
    b. 1 August 1876 Little Falls, New Jersey, USA
    d. 12 February 1951 USA
    [br]
    American mining engineer and metallurgist, originator of Monel Metal
    [br]
    Robert, the son of Thomas and Ada (Crooks) Stanley, helped to finance his early training at the Stevens Institute of Technology, Hoboken, New Jersey, by working as a manual training instructor at Montclair High School. After graduating in mechanical engineering from Stevens in 1899, and as a mining engineer from the Columbia School of Mines in 1901, he accepted a two-year assignment from the S.S.White Dental Company to investigate platinum-bearing alluvial deposits in British Columbia. This introduced him to the International Nickel Company (Inco), which had been established on 29 March 1902 to amalgamate the major mining companies working the newly discovered cupro-nickel deposits at Sudbury, Ontario. Ambrose Monell, President of Inco, appointed Stanley as Assistant Superintendent of its American Nickel Works at Camden, near Philadelphia, in 1903. At the beginning of 1904 Stanley was General Superintendent of the Orford Refinery at Bayonne, New Jersey, where most of the output of the Sudbury mines was treated.
    Copper and nickel were separated there from the bessemerized matte by the celebrated "tops and bottoms" process introduced thirteen years previously by R.M.Thompson. It soon occurred to Stanley that such a separation was not invariably required and that, by reducing directly the mixed matte, he could obtain a natural cupronickel alloy which would be ductile, corrosion resistant, and no more expensive to produce than pure copper or nickel. His first experiment, on 30 December 1904, was completely successful. A railway wagon full of bessemerized matte, low in iron, was calcined to oxide, reduced to metal with carbon, and finally desulphurized with magnesium. Ingots cast from this alloy were successfully forged to bars which contained 68 per cent nickel, 23 per cent copper and about 1 per cent iron. The new alloy, originally named after Ambrose Monell, was soon renamed Monel to satisfy trademark requirements. A total of 300,000 ft2 (27,870 m2) of this white, corrosion-resistant alloy was used to roof the Pennsylvania Railway Station in New York, and it also found extensive applications in marine work and chemical plant. Stanley greatly increased the output of the Orford Refinery during the First World War, and shortly after becoming President of the company in 1922, he established a new Research and Development Division headed initially by A.J.Wadham and then by Paul D. Merica, who at the US Bureau of Standards had first elucidated the mechanism of age-hardening in alloys. In the mid- 1920s a nickel-ore body of unprecedented size was identified at levels between 2,000 and 3,000 ft (600 and 900 m) below the Frood Mine in Ontario. This property was owned partially by Inco and partially by the Mond Nickel Company. Efficient exploitation required the combined economic resources of both companies. They merged on 1 January 1929, when Mond became part of International Nickel. Stanley remained President of the new company until February 1949 and was Chairman from 1937 until his death.
    [br]
    Principal Honours and Distinctions
    American Society for Metals Gold Medal. Institute of Metals Platinum Medal 1948.
    Further Reading
    F.B.Howard-White, 1963, Nickel, London: Methuen (a historical review).
    ASD

    Biographical history of technology > Stanley, Robert Crooks

  • 46 Swan, Sir Joseph Wilson

    [br]
    b. 31 October 1828 Sunderland, England
    d. 27 May 1914 Warlingham, Surrey, England
    [br]
    English chemist, inventor in Britain of the incandescent electric lamp and of photographic processes.
    [br]
    At the age of 14 Swan was apprenticed to a Sunderland firm of druggists, later joining John Mawson who had opened a pharmacy in Newcastle. While in Sunderland Swan attended lectures at the Athenaeum, at one of which W.E. Staite exhibited electric-arc and incandescent lighting. The impression made on Swan prompted him to conduct experiments that led to his demonstration of a practical working lamp in 1879. As early as 1848 he was experimenting with carbon as a lamp filament, and by 1869 he had mounted a strip of carbon in a vessel exhausted of air as completely as was then possible; however, because of residual air, the filament quickly failed.
    Discouraged by the cost of current from primary batteries and the difficulty of achieving a good vacuum, Swan began to devote much of his attention to photography. With Mawson's support the pharmacy was expanded to include a photographic business. Swan's interest in making permanent photographic records led him to patent the carbon process in 1864 and he discovered how to make a sensitive dry plate in place of the inconvenient wet collodian process hitherto in use. He followed this success with the invention of bromide paper, the subject of a British patent in 1879.
    Swan resumed his interest in electric lighting. Sprengel's invention of the mercury pump in 1865 provided Swan with the means of obtaining the high vacuum he needed to produce a satisfactory lamp. Swan adopted a technique which was to become an essential feature in vacuum physics: continuing to heat the filament during the exhaustion process allowed the removal of absorbed gases. The inventions of Gramme, Siemens and Brush provided the source of electrical power at reasonable cost needed to make the incandescent lamp of practical service. Swan exhibited his lamp at a meeting in December 1878 of the Newcastle Chemical Society and again the following year before an audience of 700 at the Newcastle Literary and Philosophical Society. Swan's failure to patent his invention immediately was a tactical error as in November 1879 Edison was granted a British patent for his original lamp, which, however, did not go into production. Parchmentized thread was used in Swan's first commercial lamps, a material soon superseded by the regenerated cellulose filament that he developed. The cellulose filament was made by extruding a solution of nitro-cellulose in acetic acid through a die under pressure into a coagulating fluid, and was used until the ultimate obsolescence of the carbon-filament lamp. Regenerated cellulose became the first synthetic fibre, the further development and exploitation of which he left to others, the patent rights for the process being sold to Courtaulds.
    Swan also devised a modification of Planté's secondary battery in which the active material was compressed into a cellular lead plate. This has remained the central principle of all improvements in secondary cells, greatly increasing the storage capacity for a given weight.
    [br]
    Principal Honours and Distinctions
    Knighted 1904. FRS 1894. President, Institution of Electrical Engineers 1898. First President, Faraday Society 1904. Royal Society Hughes Medal 1904. Chevalier de la Légion d'Honneur 1881.
    Bibliography
    2 January 1880, British patent no. 18 (incandescent electric lamp).
    24 May 1881, British patent no. 2,272 (improved plates for the Planté cell).
    1898, "The rise and progress of the electrochemical industries", Journal of the Institution of Electrical Engineers 27:8–33 (Swan's Presidential Address to the Institution of Electrical Engineers).
    Further Reading
    M.E.Swan and K.R.Swan, 1968, Sir Joseph Wilson Swan F.R.S., Newcastle upon Tyne (a detailed account).
    R.C.Chirnside, 1979, "Sir Joseph Swan and the invention of the electric lamp", IEE
    Electronics and Power 25:96–100 (a short, authoritative biography).
    GW

    Biographical history of technology > Swan, Sir Joseph Wilson

  • 47 Whitney, Eli

    [br]
    b. 8 December 1765 Westborough, Massachusetts, USA
    d. 8 January 1825 New Haven, Connecticut, USA
    [br]
    American inventor of the cotton gin and manufacturer of firearms.
    [br]
    The son of a prosperous farmer, Eli Whitney as a teenager showed more interest in mechanics than school work. At the age of 15 he began an enterprise business manufacturing nails in his father's workshop, even having to hire help to fulfil his orders. He later determined to acquire a university education and, his father having declined to provide funds, he taught at local schools to obtain the means to attend Leicester Academy, Massachusetts, in preparation for his entry to Yale in 1789. He graduated in 1792 and then decided to study law. He accepted a position in Georgia as a tutor that would have given him time for study; this post did not materialize, but on his journey south he met General Nathanael Greene's widow and the manager of her plantations, Phineas Miller (1764–1803). A feature of agriculture in the southern states was that the land was unsuitable for long-staple cotton but could yield large crops of green-seed cotton. Green-seed cotton was difficult to separate from its seed, and when Whitney learned of the problem in 1793 he quickly devised a machine known as the cotton gin, which provided an effective solution. He formed a partnership with Miller to manufacture the gin and in 1794 obtained a patent. This invention made possible the extraordinary growth of the cotton industry in the United States, but the patent was widely infringed and it was not until 1807, after amendment of the patent laws, that Whitney was able to obtain a favourable decision in the courts and some financial return.
    In 1798 Whitney was in financial difficulties following the failure of the initial legal action against infringement of the cotton gin patent, but in that year he obtained a government contract to supply 10,000 muskets within two years with generous advance payments. He built a factory at New Haven, Connecticut, and proposed to use a new method of manufacture, perhaps the first application of the system of interchangeable parts. He failed to supply the firearms in the specified time, and in fact the first 500 guns were not delivered until 1801 and the full contract was not completed until 1809.
    In 1812 Whitney made application for a renewal of his cotton gin patent, but this was refused. In the same year, however, he obtained a second contract from the Government for 15,000 firearms and a similar one from New York State which ensured the success of his business.
    [br]
    Further Reading
    J.Mirsky and A.Nevins, 1952, The World of Eli Whitney, New York (a good biography). P.J.Federico, 1960, "Records of Eli Whitney's cotton gin patent", Technology and Culture 1: 168–76 (for details of the cotton gin patent).
    R.S.Woodbury, 1960, The legend of Eli Whitney and interchangeable parts', Technology and Culture 1:235–53 (challenges the traditional view of Eli Whitney as the sole originator of the "American" system of manufacture).
    See also Technology and Culture 14(1973):592–8; 18(1977):146–8; 19(1978):609–11.
    RTS

    Biographical history of technology > Whitney, Eli

  • 48 Whitworth, Sir Joseph

    [br]
    b. 21 December 1803 Stockport, Cheshire, England
    d. 22 January 1887 Monte Carlo, Monaco
    [br]
    English mechanical engineer and pioneer of precision measurement.
    [br]
    Joseph Whitworth received his early education in a school kept by his father, but from the age of 12 he attended a school near Leeds. At 14 he joined his uncle's mill near Ambergate, Derbyshire, to learn the business of cotton spinning. In the four years he spent there he realized that he was more interested in the machinery than in managing a cotton mill. In 1821 he obtained employment as a mechanic with Crighton \& Co., Manchester. In 1825 he moved to London and worked for Henry Maudslay and later for the Holtzapffels and Joseph Clement. After these years spent gaining experience, he returned to Manchester in 1833 and set up in a small workshop under a sign "Joseph Whitworth, Tool Maker, from London".
    The business expanded steadily and the firm made machine tools of all types and other engineering products including steam engines. From 1834 Whitworth obtained many patents in the fields of machine tools, textile and knitting machinery and road-sweeping machines. By 1851 the company was generally regarded as the leading manufacturer of machine tools in the country. Whitworth was a pioneer of precise measurement and demonstrated the fundamental mode of producing a true plane by making surface plates in sets of three. He advocated the use of the decimal system and made use of limit gauges, and he established a standard screw thread which was adopted as the national standard. In 1853 Whitworth visited America as a member of a Royal Commission and reported on American industry. At the time of the Crimean War in 1854 he was asked to provide machinery for manufacturing rifles and this led him to design an improved rifle of his own. Although tests in 1857 showed this to be much superior to all others, it was not adopted by the War Office. Whitworth's experiments with small arms led on to the construction of big guns and projectiles. To improve the quality of the steel used for these guns, he subjected the molten metal to pressure during its solidification, this fluid-compressed steel being then known as "Whitworth steel".
    In 1868 Whitworth established thirty annual scholarships for engineering students. After his death his executors permanently endowed the Whitworth Scholarships and distributed his estate of nearly half a million pounds to various educational and charitable institutions. Whitworth was elected an Associate of the Institution of Civil Engineers in 1841 and a Member in 1848 and served on its Council for many years. He was elected a Member of the Institution of Mechanical Engineers in 1847, the year of its foundation.
    [br]
    Principal Honours and Distinctions
    Baronet 1869. FRS 1857. President, Institution of Mechanical Engineers 1856, 1857 and 1866. Hon. LLD Trinity College, Dublin, 1863. Hon. DCL Oxford University 1868. Member of the Smeatonian Society of Civil Engineers 1864. Légion d'honneur 1868. Society of Arts Albert Medal 1868.
    Bibliography
    1858, Miscellaneous Papers on Mechanical Subjects, London; 1873, Miscellaneous Papers on Practical Subjects: Guns and Steel, London (both are collections of his papers to technical societies).
    1854, with G.Wallis, The Industry of the United States in Machinery, Manufactures, and
    Useful and Ornamental Arts, London.
    Further Reading
    F.C.Lea, 1946, A Pioneer of Mechanical Engineering: Sir Joseph Whitworth, London (a short biographical account).
    A.E.Musson, 1963, "Joseph Whitworth: toolmaker and manufacturer", Engineering Heritage, Vol. 1, London, 124–9 (a short biography).
    D.J.Jeremy (ed.), 1984–6, Dictionary of Business Biography, Vol. 5, London, 797–802 (a short biography).
    W.Steeds, 1969, A History of Machine Tools 1700–1910, Oxford (describes Whitworth's machine tools).
    RTS

    Biographical history of technology > Whitworth, Sir Joseph

  • 49 Cavaco Silva, Aníbal Antônio

    (1939-)
       Leading figure in post-1974 Portugal, Social Democrat leader, prime minister (1985-95), president of the Republic since 2006. Born in the Algarve in 1939, Cavaco Silva was educated in Faro and Lisbon and, in 1964, obtained a degree in finance at the University of Lisbon. Like many of the younger leaders of post-1974 Portugal, Cavaco Silva underwent an important part of his professional training abroad; in December 1973, he received a doctorate in economics from York University, Great Britain. He entered academic life as an economics and finance professor in 1974 and taught until he entered politics full-time in 1980, when he was named minister of finance in the sixth constitutional government of Social Democratic Party (PSD) leader and prime minister Sá Carneiro. He was elected a PSD deputy to the Republican Assembly in October 1980. Following the general legislative elections of October 1985, Cavaco Silva was named prime minister of the 10th constitutional government. His party, the PSD, strengthened its hold on the legislature yet again in the 1987 election when, for the first time since the Revolution of 25 April 1974, Portugal was ruled by a party with a clear majority of seats in the legislature.
       Cavaco Silva, who has emphasized a strong free-enterprise and denationalization policy in the framework of economic rejuvenation, served as prime minister (1985-95) and, in the elections of 1987 and 1991, his party won a clear majority of seats in the Assembly of the Republic (more than 50 percent), which encouraged stability and economic progress in postrevolutionary Portugal. In the 1995 general elections, the Socialist Party (PS) defeated the PSD; he ran for the presidency of the republic in 1995 and lost to Jorge Sampaio. Cavaco Silva retired briefly from politics to teach at the Catholic University. In October 2005, he announced his return to politics and became a candidate for the upcoming presidential election. On 22 January 2006, he received 50.5 percent of the vote and was sworn in on 9 March 2006.

    Historical dictionary of Portugal > Cavaco Silva, Aníbal Antônio

  • 50 By, Lieutenant-Colonel John

    SUBJECT AREA: Canals
    [br]
    b. 7 (?) August 1779 Lambeth, London, England
    d. 1 February 1836 Frant, Sussex, England
    [br]
    English Engineer-in-Charge of the construction of the Rideau Canal, linking the St Lawrence and Ottawa Rivers in Canada.
    [br]
    Admitted in 1797 as a Gentleman Cadet in the Royal Military Academy at Woolwich, By was commissioned on 1 August 1799 as a second lieutenant in the Royal Artillery, but was soon transferred to the Royal Engineers. Posted to Plymouth upon the development of the fortifications, he was further posted to Canada, arriving there in August 1802.
    In 1803 By was engaged in canal work, assisting Captain Bruyères in the construction of a short canal (1,500 ft (460 m) long) at the Cascades on the Grand, now the Ottawa, River. In 1805 he was back at the Cascades repairing ice damage caused during the previous winter. He was promoted Captain in 1809. Meanwhile he worked on the fortifications of Quebec and in 1806–7 he built a scale model of the Citadel, which is now in the National War Museum of Canada. He returned to England in 1810 and served in Portugal in 1811. Back in England at the end of the year, he was appointed Royal Engineer Officer in charge at the Waltham Abbey Gunpowder Works on 1 January 1812 and later planned the new Small Arms Factory at Enfield; both works were on the navigable River Lee.
    In the post-Napoleonic period Major By, as he then was, retired on half-pay but was promoted to Lieu tenant-Colonel on 2 December 1824. Eighteen months later, in March 1826, he returned to Canada on active duty to build the Rideau Canal. This was John By's greatest work. It was conceived after the American war of 1812–14 as a connection for vessels to reach Kingston and the Great Lakes from Montreal while avoiding possible attack from the United States forces. Ships would pass up the Ottawa River using the already-constructed locks and bypass channels and then travel via a new canal cut through virgin forest southwards to the St Lawrence at Kingston. By based his operational headquarters at the Ottawa River end of the new works and in a forest clearing he established a small settlement. Because of the regard in which By was held, this settlement became known as By town. In 1855, long after By's death, the settlement was designated by Queen Victoria as capital of United Canada (which was to become a self-governing Dominion in 1867) and renamed Ottawa; as a result of the presence of the national government, the growth of the town accelerated greatly.
    Between 1826–7 and 1832 the Rideau Canal was constructed. It included the massive engineering works of Jones Falls Dam (62 ft 6 in. (19 m) high) and 47 locks. By exercised an almost paternal care over those employed under his direction. The canal was completed in June 1832 at a cost of £800,000. By was summoned back to London to face virulent and unjust criticism from the Treasury. He was honoured in Canada but vilified by the British Government.
    [br]
    Further Reading
    R.F.Leggett, 1982, John By, Historical Society of Canada.
    —1976, Canals of Canada, Newton Abbot: David \& Charles.
    —1972, Rideau Waterway, Toronto: University of Toronto Press.
    Bernard Pothier, 1978, "The Quebec Model", Canadian War Museum Paper 9, Ottawa: National Museums of Canada.
    JHB

    Biographical history of technology > By, Lieutenant-Colonel John

  • 51 Chappe, Claude

    SUBJECT AREA: Telecommunications
    [br]
    b. 25 December 1763 Brulon, France
    d. 23 January 1805 Paris, France
    [br]
    French engineer who invented the semaphore visual telegraph.
    [br]
    Chappe began his studies at the Collège de Joyeuse, Rouen, and completed them at La Flèche. He was educated for the church with the intention of becoming an Abbé Commendataire, but this title did not in fact require him to perform any religious duties. He became interested in natural science and amongst other activities he carried out experiments with electrically charged soap bubbles.
    When the bénéfice was suppressed in 1781 he returned home and began to devise a system of telegraphic communication. With the help of his three brothers, particularly Abraham, and using an old idea, in 1790 he made a visual telegraph with suspended pendulums to relay coded messages over a distance of half a kilometre. Despite public suspicion and opposition, he presented the idea to the Assemblée Nationale on 22 May 1792. No doubt due to the influence of his brother, Ignace, a member of the Assemblée Nationale, the idea was favourably received, and on 1 April 1793 it was referred to the National Convention as being of military importance. As a result, Chappe was given the title of Telegraphy Engineer and commissioned to construct a semaphore (Gk. bearing a sign) link between Paris and Lille, a distance of some 240 km (150 miles), using twenty-two towers. Each station contained two telescopes for observing the adjacent towers, and each semaphore consisted of a central beam supporting two arms, whose positions gave nearly two hundred possible arrangements. Hence, by using a code book as a form of lookup table, Chappe was able to devise a code of over 8,000 words. The success of the system for communication during subsequent military conflicts resulted in him being commissioned to extend it with further links, a work that was continued by his brothers after his suicide during a period of illness and depression. Providing as it did an effective message speed of several thousand kilometres per hour, the system remained in use until the mid-nineteenth century, by which time the electric telegraph had become well established.
    [br]
    Further Reading
    R.Appleyard, 1930, Pioneers of Electrical Communication.
    International Telecommunications Union, 1965, From Semaphore to Satellite, Geneva.
    KF

    Biographical history of technology > Chappe, Claude

  • 52 Cros, Charles

    [br]
    b. 1842 France
    d. 1888
    [br]
    French doctor, painter and man of letters who pioneered research into colour photography.
    [br]
    A man of considerable intellect, Cros occupied himself with studies of topics as diverse as Sanskrit and the synthesis of precious stones. He was in particular interested in the possibility of colour photography, and deposited an account of his theories in a sealed envelope with the Académie des Sciences on 2 December 1867, with instructions that it should be opened in 1876. Learning of a forthcoming presentation on colour photography by Ducos du Hauron at the Société Française de Photographie, he arranged for the contents of his communication to be published on 25 February 1869 in Les Mondes. At the Société's meeting on 7 May 1869, Cros's letter was read and samples of colour photography from Ducos du Hauron were shown. Both had arrived at similar conclusions: that colour photography was possible with the analysis of colours using negatives exposed through red, green and blue filters, as demonstrated by Clerk Maxwell in 1861. These records could be reproduced by combining positive images produced in blue-green, magenta and yellow pigments or dyes. Cros and Ducos du Hauron had discovered the principle of subtractive colour photography, which is used in the late twentieth century. In 1878 Cros designed the Chromometre, a device for measuring colours by mixing red, green and blue light, and described the device in a paper to the Société Française de Photographie on 10 January 1879. With suitable modification, the device could be used as a viewer for colour photographs, combining red, green and blue positives. In 1880 he patented the principle of imbibition printing, in which dye taken up by a gelatine relief image could be transferred to another support. This principle, which he called hydrotypie, readily made possible the production of three-colour subtractive photographic prints.
    [br]
    Further Reading
    J.S.Friedman, 1944, History of Colour Photography, Boston. Gert Koshofer, 1981, Farbefotografie, Vol. I, Munich.
    BC

    Biographical history of technology > Cros, Charles

  • 53 Holt, Benjamin

    [br]
    b. 1 January 1849 Concord, New Hampshire, USA
    d. 5 December 1924 Stockton, California, USA
    [br]
    American machinery manufacturer responsible for the development of the Caterpillar tractor and for early developments in combine harvesters.
    [br]
    In 1864 Charles Henry Holt led three other brothers to California in response to the gold rush. In 1868 he founded C.H.Holt \& Co. in San Francisco with the help of his brothers Williams and Ames. The company dealt in timber as well as wagon and carriage materials, as did the business they had left behind in Concord in the care of their youngest brother, Benjamin. In 1883 Benjamin joined the others in California and together they formed the Stockton Wheel Company with offices in San Francisco and Stockton. The brothers recognized the potential of combine harvesters and purchased a number of patents, enlarged their works and began to experiment. Their first combine was produced in 1886, and worked for forty-six days that year. With the stimulus of Benjamin Holt the company produced the first hillside combine in 1891 and introduced the concept of belt drive. The Holt harvesting machine produced in 1904 was the first to use an auxiliary gas engine. By 1889 Benjamin was sole family executive. In 1890 the company produced its first traction engine. He began experimenting with track-laying machines, building his first in 1904. It was this machine which earned the nickname "Caterpillar", which has remained the company trade name to the present day. In 1906 thecompany produced its first gasoline-engined Caterpillar, and the first production model was introduced two years later. The development of Caterpillar tractors had a significant impact on the transport potential of the Allies during the First World War, and the Holt production of track-laying traction engines was of immense importance to the supply of the armed forces. In 1918 Benjamin Holt was still actively involved in the company, but he died in Stockton in 1920.
    [br]
    Further Reading
    W.A.Payne (ed.), 1982, Benjamin Holt: The Story of the Caterpillar Tractor, Stockton, Calif: University of the Pacific (provides an illustrated account of the life of Holt and the company he formed).
    R.Jones, "Benjamin Holt and the Caterpillar tractor", Vintage Tractor Magazine 1st special vol.
    AP

    Biographical history of technology > Holt, Benjamin

  • 54 Leblanc, Nicolas

    SUBJECT AREA: Chemical technology
    [br]
    b. 6 December 1742 Ivey-le-Pré, France
    d. 16 January 1806 Paris, France
    [br]
    French chemist, inventor of the Leblanc process for the manufacture of soda.
    [br]
    Orphaned at an early age, Leblanc was sent by his guardian, a doctor, to study medicine at the Ecole de Chirurgie in Paris. Around 1780 he entered the service of the Duke of Orléans as Surgeon. There he was able to pursue his interest in chemistry by carrying out research, particularly into crystallization; this bore fruit in a paper to the Royal Academy of Sciences in 1786, published in 1812 as a separate work entitled Crystallotechnie. At that time there was much concern that supplies of natural soda were becoming insufficient to meet the increasing demands of various industries, textile above all. In 1775 the Academy offered a prize of 2,400 livres for a means of manufacturing soda from sea salt. Several chemists studied the problem, but the prize was never awarded. However, in 1789 Leblanc reported in the Journal de physique for 1789 that he had devised a process, and he applied to his patron for support. The Duke had the process subjected to tests, and when these proved favourable he, with Leblanc and the referee, formed a company in February 1790 to exploit it. A patent was granted in 1791 and, with the manufacture of a vital substance at low cost based on a raw material, salt in unlimited supply, a bright prospect seemed to open out for Leblanc. The salt was treated with sulphuric acid to form salt-cake (sodium sulphate), which was then rotated with coal and limestone to form a substance from which the soda was extracted with water followed by evaporation. Hydrochloric acid was a valuable by-product, from which could be made calcium chloride, widely used in the textile and paper industries. The factory worked until 1793, but did not achieve regular production, and then disaster struck: Leblanc's principal patron, the Duke of Orléans, perished under the guillotine in the reign of terror; the factory was sequestered by the Revolutionary government and the agreement was revoked. Leblanc laboured in vain to secure adequate compensation. Eventually a grant was made towards the cost of restoring the factory, but it was quite inadequate, and in despair, Leblanc shot himself. However, his process proved to be one of the greatest inventions in the chemical industry, and was taken up in other countries and remained the leading process for the production of soda for a century. In 1855 his family tried again to vindicate his name and achieve compensation, this time with success.
    [br]
    Further Reading
    A.A.Leblanc, 1884, Nicolas Leblanc, sa vie, ses travaux et l'histoire de la soude artificielle, Paris (the standard biography, by his grandson).
    For more critical studies, see: C.C.Gillispie, 1957, "The discovery of the Leblanc process", Isis 48:152–70; J.G.Smith, 1970, "Studies in certain chemical industries in revolutionary and Napoleonic France", unpublished PhD thesis, Leeds University.
    LRD

    Biographical history of technology > Leblanc, Nicolas

  • 55 Owens, Michael Joseph

    [br]
    b. 1 January 1859 Mason County, Virginia, USA
    d. 27 December 1923 Toledo, Ohio, USA
    [br]
    American inventor of the automatic glass bottle making machine.
    [br]
    To assist the finances of a coal miner's family, Owens entered a glassworks at Wheeling, Virginia, at the tender age of 10, stoking coal into the "glory hole" or furnace where glass was resoftened at various stages of the hand-forming process. By the age of 15 he had become a glassblower.
    In 1888 Owens moved to the glassworks of Edward Drummond Libbey at Toledo, Ohio, where within three months he was appointed Superintendent and, not long after, a branch manager. In 1893 Owens supervised the company's famous exhibit at the World's Columbian Exposition at Chicago. He had by then begun experiments that were to lead to the first automatic bottle-blowing machine. He first used a piston pump to suck molten glass into a mould, and then transferred the gathered glass over another mould into which the bottle was blown by reversing the pump. The first patents were taken out in 1895, followed by others incorporating improvements and culminating in the patent of 8 November 1904 for an essentially perfected machine. Eventually it was capable of producing four bottles a second, thus effecting a revolution in bottle making. Owens, with Libbey and others, set up the Owens Bottle Machine Company in 1903, which Owens himself managed from 1915 to 1919, becoming Vice-President from 1915 until his death. A plant was also established in Manchester in 1905.
    Besides this, Owens and Libbey first assisted Irving W.Colburn with his experiments on the continuous drawing of flat sheet glass and then in 1912 bought the patents, forming the Owens-Libbey Sheet Glass Company. In all, Owens was granted forty-five US patents, mainly relating to the manufacture and processing of glass. Owens's undoubted inventive genius was hampered by a lack of scientific knowledge, which he made good by judicious consultation.
    [br]
    Further Reading
    1923, Michael J.Owens (privately printed) (a series of memorial articles reprinted from various sources).
    G.S.Duncan, 1960, Bibliography of Glass, Sheffield: Society of Glass Manufacturers (cites references to Owens's papers and patents).
    LRD

    Biographical history of technology > Owens, Michael Joseph

  • 56 Pattinson, Hugh Lee

    SUBJECT AREA: Metallurgy
    [br]
    b. 25 December 1796 Alston, Cumberland, England
    d. 11 November 1858 Scot's House, Gateshead, England
    [br]
    English inventor of a silver-extraction process.
    [br]
    Born into a Quaker family, he was educated at private schools; his studies included electricity and chemistry, with a bias towards metallurgy. Around 1821 Pattinson became Clerk and Assistant to Anthony Clapham, a soap-boiler of Newcastle upon Tyne. In 1825 he secured appointment as Assay Master to the lords of the manor of Alston. There he was able to pursue the subject of special interest to him, and in January 1829 he devised a method of separating silver from lead ore; however, he was prevented from developing it because of a lack of funds.
    Two years later he was appointed Manager of Wentworth Beaumont's lead-works. There he was able to continue his researches, which culminated in the patent of 1833 enshrining the invention by which he is best known: a new process for extracting silver from lead by skimming crystals of pure lead with a perforated ladle from the surface of the molten silver-bearing lead, contained in a succession of cast-iron pots. The molten metal was stirred as it cooled until one pot provided a metal containing 300 oz. of silver to the ton (8,370 g to the tonne). Until that time, it was unprofitable to extract silver from lead ores containing less than 8 oz. per ton (223 g per tonne), but the Pattinson process reduced that to 2–3 oz. (56–84 g per tonne), and it therefore won wide acceptance. Pattinson resigned his post and went into partnership to establish a chemical works near Gateshead. He was able to devise two further processes of importance, one an improved method of obtaining white lead and the other a new process for manufacturing magnesia alba, or basic carbonate of magnesium. Both processes were patented in 1841.
    Pattinson retired in 1858 and devoted himself to the study of astronomy, aided by a 7½ in. (19 cm) equatorial telescope that he had erected at his home at Scot's House.
    [br]
    Principal Honours and Distinctions
    Vice-President, British Association Chemical Section 1838. Fellow of the Geological Society, Royal Astronomical Society and Royal Society 1852.
    Bibliography
    Pattinson wrote eight scientific papers, mainly on mining, listed in Royal Society Catalogue of Scientific Papers, most of which appeared in the Philosophical
    Magazine.
    Further Reading
    J.Percy, Metallurgy (volume on lead): 121–44 (fully describes Pattinson's desilvering process).
    Lonsdale, 1873, Worthies of Cumberland, pp. 273–320 (contains details of his life). T.K.Derry and T.I.Williams, 1960, A Short History ofTechnology, Oxford: Oxford University Press.
    LRD

    Biographical history of technology > Pattinson, Hugh Lee

  • 57 Rittinger, Peter von

    [br]
    b. 23 January 1811 Neutitschein, Moravia (now Now Jicin, Czech Republic)
    d. 7 December 1872 Vienna, Austria
    [br]
    Austrian mining engineer, improver of the processing of minerals.
    [br]
    After studying law, philosophy and politics at the University of Olmutz (now Olomouc), in 1835 Rittinger became a fellow of the Mining Academy in Schemnitz (now Banská Štiavnica), Slovakia. In 1839, the year he finished at the academy, he published a book on perspective drawing. The following year, he became Inspector of Mills at the ore mines in Schemnitz, and in 1845 he was engaged in coal mining in Bohemia and Moravia. In 1849 he joined the mining administration at Joachimsthal (now Jáchymov), Bohemia. In these early years he contributed his first important innovations for the mining industry and thus fostered his career in the government's service. In 1850 he was called to Vienna to become a high-ranked officer in various ministries. He was responsible for the construction of buildings, pumping installations and all sorts of machinery in the mining industry; he reorganized the curricula of the mining schools, was responsible for the mint and became head of the department of mines, forests and salt-works in the Austrian empire.
    During all his years of public service, Rittinger continued his concern with technological innovations. He improved the processing of ores by introducing in 1844 the rotary washer and the box classifier, and later his continuously shaking concussion table which, having been exhibited at the Vienna World Fair of 1873, was soon adopted in other countries. He constructed water-column pumps, invented a differential shaft pump with hydraulic linkage to replace the heavy iron rods and worked on centrifugal pumps. He was one of the first to be concerned with the transfer of heat, and he developed a system of using exhaust steam for heating in salt-works. He kept his eye on current developments abroad, using his function as official Austrian commissioner to the world exhibitions, on which he published frequently as well as on other matters related to technology. With his systematic handbook on mineral processing, first published in 1867, he emphasized his international reputation in this specialized field of mining.
    [br]
    Principal Honours and Distinctions
    Knighted 1863. Order of the Iron Crown 1863. Honorary Citizen of Joachimsthal 1864. President, Austrian Chamber of Engineers and Architects 1863–5.
    Bibliography
    1849, Der Spitzkasten-Apparat statt Mehlrinnen und Sümpfen…bei der nassen Aufbereitung, Freiberg.
    1855, Theoretisch-praktische Abhandlung über ein für alle Gattungen von Flüssigkeiten anwendbares neues Abdampfverfahren, Vienna.
    1867, Lehrbuch der Aufbereitungskunde, Berlin (with supplements, 1870–73).
    Further Reading
    H.Kunnert, 1972, "Peter Ritter von Rittinger. Lebensbild eines grossen Montanisten", Der Anschnitt 24:3–7 (a detailed description of his life, based on source material).
    J.Steiner, 1972, "Der Beitrag von Peter Rittinger zur Entwicklung der Aufbereitungstechnik". Berg-und hüttenmännische Monatshefte 117: 471–6 (an evaluation of Rittinger's achievements for the processing of ores).
    WK

    Biographical history of technology > Rittinger, Peter von

  • 58 Short, Hugh Oswald

    SUBJECT AREA: Aerospace
    [br]
    b. 16 January 1883 Derbyshire, England
    d. 4 December 1969 Haslemere, England
    [br]
    English co-founder, with his brothers Horace Short (1872–1917) and Eustace (1875–1932), of the first company to design and build aeroplanes in Britain.
    [br]
    Oswald Short trained as an engineer; he was largely self-taught but was assisted by his brothers Eustace and Horace. In 1898 Eustace and the young Oswald set up a balloon business, building their first balloon in 1901. Two years later they sold observation balloons to the Government of India, and further orders followed. Meanwhile, in 1906 Horace designed a high-altitude balloon with a spherical pressurized gondola, an idea later used by Auguste Piccard, in 1931. Horace, a strange genius with a dominating character, joined his younger brothers in 1908 to found Short Brothers. Their first design, based on the Wright Flyer, was a limited success, but No. 2 won a Daily Mail prize of £1,000. In the same year, 1909, the Wright brothers chose Shorts to build six of their new Model A biplanes. Still using the basic Wright layout, Horace designed the world's first twin-engined aeroplane to fly successfully: it had one engine forward of the pilot, and one aft. During the years before the First World War the Shorts turned to tractor biplanes and specialized in floatplanes for the Admiralty.
    Oswald established a seaplane factory at Rochester, Kent, during 1913–14, and an airship works at Cardington, Bedfordshire, in 1916. Short Brothers went on to build the rigid airship R 32, which was completed in 1919. Unfortunately, Horace died in 1917, which threw a greater responsibility onto Oswald, who became the main innovator. He introduced the use of aluminium alloys combined with a smooth "stressed-skin" construction (unlike Junkers, who used corrugated skins). His sleek biplane the Silver Streak flew in 1920, well ahead of its time, but official support was not forthcoming. Oswald Short struggled on, trying to introduce his all-metal construction, especially for flying boats. He eventually succeeded with the biplane Singapore, of 1926, which had an all-metal hull. The prototype was used by Sir Alan Cobham for his flight round Africa. Several successful all-metal flying boats followed, including the Empire flying boats (1936) and the ubiquitous Sunderland (1937). The Stirling bomber (1939) was derived from the Sunderland. The company was nationalized in 1942 and Oswald Short retired the following year.
    [br]
    Principal Honours and Distinctions
    Honorary Fellow of the Royal Aeronautical Society. Freeman of the City of London. Oswald Short turned down an MBE in 1919 as he felt it did not reflect the achievements of the Short Brothers.
    Bibliography
    1966, "Aircraft with stressed skin metal construction", Journal of the Royal Aeronautical Society (November) (an account of the problems with patents and officialdom).
    Further Reading
    C.H.Barnes, 1967, Shorts Aircraft since 1900, London; reprinted 1989 (a detailed account of the work of the Short brothers).
    JDS

    Biographical history of technology > Short, Hugh Oswald

  • 59 Symington, William

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1764 Leadhills, Lanarkshire, Scotland
    d. 22 March 1831 Wapping, London, England
    [br]
    Scottish pioneer of steam navigation.
    [br]
    Symington was the son of the Superintendent of the Mines Company in Lanarkshire, and attended the local school. When he was 22 years old he was sent by Gilbert Meason, Manager of the Wanlockhead mines, to Edinburgh University. In 1779 he was working on the assembly of a Watt engine as an apprentice to his brother, George, and in 1786 he started experiments to modify a Watt engine in order to avoid infringing the separate condenser patent. He sought a patent for his alternative, which was paid for by Meason. He constructed a model steam road carriage which was completed in 1786; it was shown in Edinburgh by Meason, attracting interest but inadequate financial support. It had a horizontal cylinder and was non-condensing. No full-sized engine was ever built but the model secured the interest of Patrick Miller, an Edinburgh banker, who ordered an engine from Symington to drive an experimental boat, 25 ft (7.6 m) long with a dual hull, which performed satisfactorily on Dalswinton Loch in 1788. In the following year Miller ordered a larger engine for a bigger boat which was tried on the Forth \& Clyde Canal in December 1789, the component parts having been made by the Carron Company. The engine worked perfectly but had the effect of breaking the paddle wheels. These were repaired and further trials were successful but Miller lost interest and his experiments lapsed. Symington devoted himself thereafter to building stationary engines. He built other engines for mine pumping at Sanquhar and Leadhills before going further afield. In all, he built over thirty engines, about half of them being rotary. In 1800–1 he designed the engine for a boat for Lord Dundas, the Charlotte Dundas; this was apparently the first boat of that name and sailed on both the Forth and Clyde rivers. A second Charlotte Dundas with a horizontal cylinder was to follow and first sailed in January 1803 for the Forth \& Clyde Canal Company. The speed of the boat was only 2 mph (3 km/h) and much was made by its detractors of the damage said to be caused to the canal banks by its wash. Lord Dundas declined to authorize payment of outstanding accounts; Symington received little reward for his efforts. He died in the house of his son-in-law, Dr Robert Bowie, in Wapping, amidst heated controversy about the true inventor of steam navigation.
    [br]
    Further Reading
    W.S.Harvey and G.Downs-Rose, 1980, William Symington, Inventor and Engine- Builder, London: Mechanical Engineering Publications.
    IMcN

    Biographical history of technology > Symington, William

  • 60 Taylor, Albert Hoyt

    [br]
    b. 1 January 1874 Chicago, Illinois, USA
    d. 11 December 1961 Claremont, California, USA
    [br]
    American radio engineer whose work on radio-detection helped lay the foundations for radar.
    [br]
    Taylor gained his degree in engineering from Northwest University, Evanston, Illinois, then spent a time at the University of Gottingen. On his return to the USA he taught successively at Michigan State University, at Lansing, and at the universities of Wisconsin at Madison and North Dakota at Grand Forks. From 1923 until 1945 he supervised the Radio Division at the US Naval Research Laboratories. There he carried out studies of short-wave radio propagation and confirmed Heaviside's 1925 theory of the reflection characteristics of the ionosphere. In the 1920s and 1930s he investigated radio echoes, and in 1933, with L.C.Young and L.A.Hyland, he filed a patent for a system of radio-detection that contributed to the subsequent development of radar.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Morris N.Liebmann Memorial Award 1927. President, Institute of Radio Engineers 1929. Institute of Electrical and Electronics Engineers Medal of Honour 1942.
    Bibliography
    1926, with E.O.Hulbert, "The propagation of radio waves over the earth", Physical Review 27:189.
    1936, "The measurement of RF power", Proceedings of the Institute of Radio Engineers 24: 1,342.
    Further Reading
    S.S.Swords, 1986, Technical History of the Beginnings of Radar, London: Peter Peregrinus.
    KF

    Biographical history of technology > Taylor, Albert Hoyt

См. также в других словарях:

  • December 2004 — December 2004: ← – January – February – March – April – May – June – July – August – September – October – November – December → Contents 1 Events 1.1 Deaths in December …   Wikipedia

  • December 2009 — was the 12th month of that year. It began on a Tuesday and ended 31 days later on a Thursday. It was the last month of the 2000s decade. International holidays (See Holidays and observances, on sidebar at right, below) Portal:Current events This… …   Wikipedia

  • December 2003 — December 2003: January – February – March – April – May – June – July – August – September – October – November – December – → Events See also: 2004 Canadian Federal Election 2004 Taiwan Presidential Election 2004 U.S. Presidential Election Bloo …   Wikipedia

  • December 2002 — December 2002: January – February – March – April – May – June – July – August – September – October – November – December – → Contents 1 Events 1.1 December 3, 2002 …   Wikipedia

  • December 2008 — was the 12th month of the leap year. It began on a Monday and ended after 31 days on a Wednesday. International holidays December 8 – Immaculate Conception. December 8 – Eid al Adha. December 21 – Hanukkah begins at sundown. December 21 –… …   Wikipedia

  • December 2010 in sports — << December 2010 >> S M T W T …   Wikipedia

  • December 2001 — December 2001: January – February – March – April – May – June – July – August – September – October – November – December Contents 1 Events 1.1 December 2, 2001 …   Wikipedia

  • December 2000 — December 2000: January – February – March – April – May – June – July – August – September – October – November – December December 2000 is notable to be last month of 2000, the 20th century, and the 2nd millennium. Contents 1 Events 1.1 …   Wikipedia

  • January 2003 — January 2003: ← January February March April May June July August September October November DecemberEventsJanuary 1, 2003*The first day of the year in the Gregorian calendar *Luíz Inácio Lula da Silva ( Lula ) becomes the 37th president of the… …   Wikipedia

  • January 2004 — larr; January February March April May June July August September October November December →EventsJanuary 1* Ireland s Roman Catholic and Protestant Boy Scouts organisations merge after nearly a century of division, in spite of efforts by the R …   Wikipedia

  • January 2001 — ← January February March April May June July August September October November December Events* January 1 A White monolith measuring approximately nine feet tall appears in Seattle s Magnuson Park, placed by an anonymous artist in reference to t …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»