-
41 функция управления с помощью компьютера
Aviation medicine: computer-directed functionУниверсальный русско-английский словарь > функция управления с помощью компьютера
-
42 П-526
ПРИКАЗАТЬ (ВЕЛЕТЬ) ДОЛГО ЖИТЬ VP usu. past)1. (subj: human to dieX приказал долго жить — X went to his final (eternal) restX passed away (on) X took leave of (departed) this world X breathed his last.Одним утром Матвей взошел ко мне в спальню с вестью, что старик Р. «приказал долго жить» (Герцен 1). One morning Matvey came into my bedroom with the news that old R- "had passed away" (1a).«Каледин... приказал долго жить» (Шолохов 3). "Kaledin has passed on" (За).2. coll, often humorsubj: collect, concr, or abstr) to cease to exist or functionX приказал долго жить = X died (out)X went out of existence X is no more.Мне нужно купить новый компьютер - мой приказал долго жить, а мне нужно закончить срочную работу. I have to buy a new computer: mine died, and I've got an urgent project to finish up.Этот журнал больше не издаётся. Он просуществовал три года и приказал долго жить. That magazine is no longer published. It survived for three years then went out of existence. -
43 велеть долго жить
• ПРИКАЗАТЬ < ВЕЛЕТЬ> ДОЛГО ЖИТЬ[VP; usu. past]=====1. [subj: human]⇒ to die:- X breathed his last.♦ Одним утром Матвей взошел ко мне в спальню с вестью, что старик Р. "приказал долго жить" (Герцен 1). One morning Matvey came into my bedroom with the news that old R. "had passed away" (1a).♦ "Каледин... приказал долго жить" (Шолохов 3). "Kaledin has passed on" (За).2. coll, often humor [subj: collect, concr, or abstr]⇒ to cease to exist or function:- X is no more.♦ Мне нужно купить новый компьютер - мой приказал долго жить, а мне нужно закончить срочную работу. I have to buy a new computer: mine died, and I've got an urgent project to finish up.♦ Этот журнал больше не издаётся. Он просуществовал три года и приказал долго жить. That magazine is no longer published. It survived for three years then went out of existence.Большой русско-английский фразеологический словарь > велеть долго жить
-
44 приказать долго жить
• ПРИКАЗАТЬ < ВЕЛЕТЬ> ДОЛГО ЖИТЬ[VP; usu. past]=====1. [subj: human]⇒ to die:- X breathed his last.♦ Одним утром Матвей взошел ко мне в спальню с вестью, что старик Р. "приказал долго жить" (Герцен 1). One morning Matvey came into my bedroom with the news that old R. "had passed away" (1a).♦ "Каледин... приказал долго жить" (Шолохов 3). "Kaledin has passed on" (За).2. coll, often humor [subj: collect, concr, or abstr]⇒ to cease to exist or function:- X is no more.♦ Мне нужно купить новый компьютер - мой приказал долго жить, а мне нужно закончить срочную работу. I have to buy a new computer: mine died, and I've got an urgent project to finish up.♦ Этот журнал больше не издаётся. Он просуществовал три года и приказал долго жить. That magazine is no longer published. It survived for three years then went out of existence.Большой русско-английский фразеологический словарь > приказать долго жить
-
45 операция
operation вчт., making, operator, run, procedure, step* * *опера́ция ж.
operationвы́разить опера́цию че́рез штрих Ше́ффера ( в математической логике) — express an operation in terms of the Sheffer strokeзаверша́ть опера́цию — complete an operationза одну́ опера́цию — in one operationопера́ция над … мат. — operation on …начина́ть опера́цию вчт. — initiate an operationосуществля́ть [реализова́ть] опера́цию, напр. умноже́ния — perform the operation of, e. g., multiplicationосуществля́ть [реализова́ть] опера́цию умноже́ния с примене́нием, напр. сумми́рования и сдви́га вчт. — perform [carry out] multiplication by the combined operations of, e. g., addition and shiftingплани́ровать опера́цию вхо́да-вы́хода вчт. — schedule an input-output [I/ O] operationпрекраща́ть опера́цию вчт. — terminate an operationсовмеща́ть опера́ции (напр. чтения, записи и обработки данных) — overlap (e. g., read, write and process) operationsсовмеща́ть (выполне́ние) опера́ции вчт. — overlap operationsарифмети́ческая опера́ция — arithmetic(al) operation, arithmetic(s)арифмети́ческая опера́ция над поря́дками — exponent arithmetic(s)арифмети́ческая опера́ция с двойно́й то́чностью — double precision arithmetic(s)арифмети́ческая опера́ция с пла́вающей запято́й — floating-point arithmetic(s)арифмети́ческая опера́ция с фикси́рованной запято́й — fixed-point arithmeticsвычисли́тельная опера́ция — computationопера́ция Г ( в алгебре логики) — Pierce strokeопера́ция за́писи — write operationопера́ция запре́та — inhibit operationопера́ция И — AND operationопера́ция ИЛИ — OR operationлоги́ческая опера́ция — logical operationреализова́ть логи́ческую опера́цию аппарату́рно [физи́чески] — instrument [mechanize] a logical functionмаши́нная опера́ция — computer operationнала́дочная опера́ция — setting-up, adjustment, tuningопера́ция НЕ — NOT operationопера́ция «НЕ-И» — NAND operationопера́ция «НЕ-ИЛИ» — NOR operationнеобрати́мая опера́ция — irreversible operationотде́лочная опера́ция — finishing operationопера́ция отноше́ния ( в АЛГОЛе) — relation(al) operatorпо́лная опера́ция вчт. — complete operationпроизво́дственная опера́ция — ( в обрабатывающих отраслях) manufacturing operation; ( в перерабатывающих отраслях) processing operationплани́ровать произво́дственные опера́ции — schedule the operationsпроизво́дственная опера́ция обслу́живания — service operationпроизво́дственная, основна́я опера́ция — productive operationпроизво́дственные, вспомога́тельные опера́ции — auxiliary operationsопера́ция развё́ртывания ( в алгебре логики) — expansionраздели́тельная опера́ция метал. — shearing operationопера́ция счи́тывания — read operationтехнологи́ческая опера́ция — production operationопера́ция управле́ния — control operation -
46 машинозависимый язык
1. computer-dependent language2. machine-dependent languageРусско-английский большой базовый словарь > машинозависимый язык
-
47 операция
ж. operationоперация над … — operation on …
операция «НЕ-И» — NAND operation
операция «НЕ-ИЛИ» — NOR operation
производственная операция — manufacturing operation; processing operation
-
48 решение
1. с. мат. solutionне поддающийся решению; неразрешимый — incapable of solution
оптимальное решение; оптимальный план — optimal solution
допустимое решение; возможное решение — feasible solution
2. с. decisionрешающая функция; функция выбора решения — decision function
3. с. approach, design, treatmentСинонимический ряд:постановление (сущ.) постановление -
49 коэффициент
coefficient (coeff.), factor
безразмерное число, в основном отношение к-п. величин, характеризующих заданные условия. — а number indicating the amount of some change under certain specified сoпditions, often expressed as a ratio.
- безопасности — factor of safety
число, равное отношению расчетной нагрузки к эксплуатационной. расчетная нагрузка - произведение эксплуатационной нагрузки на коэффициент безопасности. — а number indicating the ratio between the ultimate load and limit load (maximum load expected in service). ultimate load is limit load multiplied by factor of safety.
- восстановления давления — pressure recovery factor
- двухконтурности (дтрд) — bypass ratio
- загрузки пассажирами, безубыточный — passenger break-even load factor
- запаса длины впп — field length factor
- запаса длины летной полосы — field length factor
- запаса длины летной полосы в направлении взлета — takeoff field length factor
- запаса длины летной полосы в направлении посадки — landing field length factor
- запаса длины летной полосы при всех работающих двигателей — field length factor for all-engines-operating сase
- запаса длины летной полосы при одном отказавшем двигателе — field length factor for one-engine-inoperative ease
- запаса прочности — reserve factor
отношение фактической прочности конструкции к минимально-потребной в данных условиях. — а ratio of the actual strength of the structure to the minimum required to specific condition.
- заполнения (в вычислительном уст-ве) — duty factor in computer, the ratio of active time to total time.
- заполнения (воздушного) винта — propeller solidity ratio
отношение суммарной площади всех лопастей винта к сметаемой ими площади. — the ratio of the total projected blade area to the area of the projected outline of the propeller disc.
- заполнения несущего винта (вертолета) — rotor solidity ratio solidity of rotor is a ratio of the total blade area to the disc area.
- лобового сопротивления (сх) — drag coefficient (cd)
коэффициент, характеризующий лобовое сопротивление рассматриваемого аэродинамического профиля. — а coefficient representing the drag on а given airfoil.
- маневренной перегрузки — maneuvering load factor
- момента крена — rolling-moment coefficient
- момента рыскания — yawing-moment coefficient
- момента тангажа — pitching-moment coefficient
- мощности — power factor
- мощности (воздушного винта) — activity factor
- мощности лопасти (возд. винта) — blade activity factor
безразмерная функция поверхности лопасти, характеризующая способность лопасти использовать прикладываемую мощность. — а non-dimensional function of the blade surface used to express capacity of a blade for absorbing power.
- несущей поверхности (покрытия аэродрома), калифорнийский — californian bearing ratio (с.в.r.)
-, относительный (воздушного винта) — figure of merit
- перегрузки (n) — load factor (n)
число, показывающее, во сколько раз нагрузки, действующие на самолет (или его отдельные части), превышает нагрузки в равномерном горизонтальном полете или нагрузки от веса при стоянке. — the ratio to the weight of an aircraft of а specified exterпаl load. such load may arise from aerodynamic forces, gravity, ground or water reaction, or from combinations of these forces.
- перегрузки, максимальный эксплуатационный — limit load factor
- перегрузки, (полетный) — flight load factor
отношение составляющей аэродинамической нагрузки (действующей перпендикулярно продольной оси ла) к весу ла. — the ratio of the aerodynamic force component (acting normal to the assumed longitudiпа1 axis of the airplane) to the weight of the airplane.
- перегрузки (полетной), отрицательный — negative load factor
- перегрузки (полетной), положительный — positive load factor
в данном случае аэродинамичеекая сила воздействует на ла снизу вверх. — in positive load factor the aerodynamic force acts upward with respect to the airplane.
- перегрузки при маневре — maneuvering load factor
- перегрузки при маневре, максимальный эксплуатационный — limit maneuvering load factor
- перегрузки, расчетный — ultimate load factor
- передачи (коэффициент передаточного числа в системе управления ла) — gain
- подъемной силы (су) безразмерная величина, определяемая по формуле. — lift coefficient (cl) а coefficient representing the lift of а given airfoil or other body. the lift coefficient is obtained ьу dividing the lift by the free-stream dynamic pressure and by the representative area under consideration.
- полезного действия (кпд) — efficiency (n)
the ratio of the useful output of the quantity to its total input.
- полезного действия, общий — overall efficiency
- полезного действия,тепловой — thermal efficiency
-, поправочный — correction factor
например, для учета влияния погодных (сезонных) условий (температура наружного воздуха, атмосферные осадки, обледенение) на характеристики тормозного участка впп в пределах установленных эксплуатационных ограничений. — the correction factors must account for the particular surface characteristics of the stopway and the variations in these characteristics with seasonal weather conditions (such as temperature, rain, snow, and ice) within the established operational limits.
- предельной перегрузки — ultimate load factor
- преобразования (в преобразователе) — conversion efficiency ratio of dc output power to ас input power.
- профильного сопротивления — profile drag coefficient
- прочности грунта, калифорнийский — californian bearing ratio (c.b.r.)
(к. несущей способности покрытия аэродрома, впп) — c.b.r. is used to measure subsoil strength of the runways and airfields.
- связи (эл.) — coupling coefficient
- сжимаемости — coefficient of compressibility
относительное уменьшение объема газа при повышении давления в изотермическом процессе. — the relative decrease of the volume of а gaseous system with increasing pressure in an isothermal process.
- совершенства (воздушного винта) — figure of merit
- сопротивления (лобовой, сx) — drag coefficient (cd)
- сопротивления (сx) груза на внешней подвеске (вертолета) — drag coefficient (cd) representing а drag caused by an externally-slung load
- стоячей волны — standing wave ratio (swr)
- схождения карты — chart convergence factor (ccf)
- сцепления (между шиной колеса и поверхностью впп) — coefficient of friction
-, сцепления (между шиной и впп при торможении) — braking coefficient of friction
- трансформации (в трансформаторе) — transformation ratio compensation windings are used to correct for variations in the resolvers transformation ratio.
- трения — coefficient of friction
- трения торможения — braking coefficient of friction
коэффициент трения между шиной и поверхностью взлетно-посадочной полосы при торможении самолета. — braking coefficient of friction between the aircraft wheel tires and runway (surface).
- трения торможения, осредненный приведенный — (mean) corrected braking coefficient of friction
- тяги (воздушного винта) — thrust coefficient (ст)
- усиления (эл.) — amplification factor
the ratio of output magnitude to input magnitude.
- усиления антенны — antenna gain
- усиления (передаточное число в системе управления) — gain
- усиления, самонастраивающийся (системы управления) — adaptive gain
- утечки — leakage factor
- шарнирного момента — hinge moment factor
- шарнирного момента от порыва ветра на земле, предельный — limit hinge moment factor (к) for ground gusts
в отношении элеронов и рулей высоты, коэффициент имеет положительный знак, если момент, воздействующий на поверхность управления, вызывает ее опускание. — for ailerons and elevators, а positive value of к indicates а moment tending to depress the surface, and а negative value of к - to raise the surface.
- шума — noise factor
для данной полосы частот, отношение суммарной величины помех на выходе к величине помехи на входе. — for а given bandwidth, the ratio оf total noise at the output, to the noise at the input.
- эксплуатационной маневренной перегрузки (максимальный), или эксплуатационной перегрузки при маневрировании (отрицательный или попожительный) — (negative, positive) limit maneuvering load factor rotorcraft must be designed for positive limit maneuvering load factor of 3.5 and negafive limit maneuvering load factor of 1.0.Русско-английский сборник авиационно-технических терминов > коэффициент
-
50 система
система
Группа взаимодействующих объектов, выполняющих общую функциональную задачу. В ее основе лежит некоторый механизм связи.
[ ГОСТ Р МЭК 61850-5-2011]
система
Набор элементов, которые взаимодействуют в соответствии с проектом, в котором элементом системы может быть другая система, называемая подсистемой; система может быть управляющей системой или управляемой системой и включать аппаратные средства, программное обеспечение и взаимодействие с человеком.
Примечания
1 Человек может быть частью системы. Например, человек может получать информацию от программируемого электронного устройства и выполнять действие, связанное с безопасностью, основываясь на этой информации, либо выполнять действие с помощью программируемого электронного устройства.
2 Это определение отличается от приведенного в МЭС 351-01-01.
[ ГОСТ Р МЭК 61508-4-2007]
система
Множество (совокупность) материальных объектов (элементов) любой, в том числе различной физической природы, а также информационных объектов, взаимосвязанных и взаимодействующих между собой для достижения общей цели.
[ ГОСТ Р 43.0.2-2006]
система
Совокупность элементов, объединенная связями между ними и обладающая определенной целостностью.
[ ГОСТ 34.003-90]
система
Совокупность взаимосвязанных и взаимодействующих элементов.
[ ГОСТ Р ИСО 9000-2008]
система
-
[IEV number 151-11-27]
система
Набор связанных элементов, работающих совместно для достижения общей Цели. Например: • Компьютерная система, состоящая из аппаратного обеспечения, программного обеспечения и приложений. • Система управления, состоящая из множества процессов, которые планируются и управляются совместно. Например, система менеджмента качества. • Система управления базами данных или операционная система, состоящая из множества программных модулей, разработанных для выполнения набора связанных функций.
[Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]
система
Множество элементов, находящихся в отношениях и связях друг с другом, которое образует определенную целостность, единство. Следует отметить, что это определение (взятое нами из Большой Советской Энциклопедии) не является ни единственным, ни общепризнанным. Есть десятки определений понятия “С.”, которые с некоторой условностью можно поделить на три группы. Определения, принадлежащие к первой группе, рассматривают С. как комплекс процессов и явлений, а также связей между ними, существующий объективно, независимо от наблюдателя. Его задача состоит в том, чтобы выделить эту С. из окружающей среды, т.е. как минимум определить ее входы и выходы (тогда она рассматривается как “черный ящик”), а как максимум — подвергнуть анализу ее структуру (произвести структуризацию), выяснить механизм функционирования и, исходя из этого, воздействовать на нее в нужном направлении. Здесь С. — объект исследования и управления. Определения второй группы рассматривают С. как инструмент, способ исследования процессов и явлений. Наблюдатель, имея перед собой некоторую цель, конструирует (синтезирует) С. как некоторое абстрактное отображение реальных объектов. При этом С. (“абстрактная система”) понимается как совокупность взаимосвязанных переменных, представляющих те или иные свойства, характеристики объектов, которые рассматриваются в данной С. В этой трактовке понятие С. практически смыкается с понятием модели, и в некоторых работах эти два термина вообще употребляются как взаимозаменяемые. Говоря о синтезе С., в таких случаях имеют в виду формирование макромодели, анализ же С. совпадает в этой трактовке с микромоделированием отдельных элементов и процессов. Третья группа определений представляет собой некий компромисс между двумя первыми. С. здесь — искусственно создаваемый комплекс элементов (например, коллективов людей, технических средств, научных теорий и т.д.), предназначенный для решения сложной организационной, экономической, технической задачи. Следовательно, здесь наблюдатель не только выделяет из среды С. (и ее отдельные части), но и создает, синтезирует ее. С. является реальным объектом и одновременно — абстрактным отображением связей действительности. Именно в этом смысле понимает С. наука системотехника. Между этими группами определений нет непроходимых границ. Во всех случаях термин “С.” включает понятие о целом, состоящем из взаимосвязанных, взаимодействующих, взаимозависимых частей, причем свойства этих частей зависят от С. в целом, свойства С. — от свойств ее частей. Во всех случаях имеется в виду наличие среды, в которой С. существует и функционирует. Для исследуемой С. среда может рассматриваться как надсистема, соответственно, ее части — как подсистемы, а также элементы С., если их внутренняя структура не является предметом рассмотрения. С. делятся на материальные и нематериальные. К первым относятся, например, железная дорога, народное хозяйство, ко вторым — С. уравнений в математике, математика как наука, далее — С. наук. Автоматизированная система управления включает как материальные элементы (ЭВМ, документация, люди), так и нематериальные — математические модели, знания людей. Разделение это тоже неоднозначно: железную дорогу можно рассматривать не только как материальную С., но и как нематериальную С. взаимосвязей, соотношений, потоков информации и т.д. Закономерности функционирования систем изучаются общей теорией систем, оперирующей понятием абстрактной С. Наибольшее значение среди абстрактных С. имеют кибернетические С. Есть два понятия, близкие понятию С.: комплекс, совокупность (множество объектов). Они, однако, не тождественны ему, как нередко утверждают. Их можно рассматривать как усеченные, неполные понятия по отношению к С.: комплекс включает части, не обязательно обладающие системными свойствами (в том смысле, как это указано выше), но эти части сами могут быть системами, и элементы последних такими свойствами по отношению к ним способны обладать. Совокупность же есть множество элементов, не обязательно находящихся в системных отношениях и связях друг с другом. В данном словаре мы стремимся по возможности последовательно различать понятия С. и модели, рассматривая С. как некий объект (реальной действительности или воображаемый — безразлично), который подвергается наблюдению и изучению, а модель — как средство этого наблюдения и изучения. Разумеется, и модель, если она сама оказывается объектом наблюдения и изучения, в свою очередь рассматривается как С. (в частности, как моделируемая С.) — и так до бесконечности. Все это означает, что такие, например, понятия, как переменная или параметр, мы (в отличие от многих авторов) относим не к С., а к ее описанию, т.е. к модели (см. Параметры модели, Переменная модели), численные же их значения, характеризующие С., — к С. (например, координаты С.). • Системы математически описываются различными способами. Каждая переменная модели, выражающая определенную характеристику С., может быть задана множеством конкретных значений, которые эта переменная может принимать. Состояние С. описывается вектором (или кортежем, если учитываются также величины, не имеющие численных значений), каждая компонента которого соответствует конкретному значению определенной переменной. С. в целом может быть описана соответственно множеством ее состояний. Например, если x = (1, 2, … m) — вектор существенных переменных модели, каждая из которых может принять y значений (y = 1, 2, …, n), то матрица S = [ Sxy ] размерностью m ? n представляет собой описание данной С. Широко применяется описание динамической С. с помощью понятий, связанных с ее функционированием в среде. При этом С. определяется как три множества: входов X, выходов Y и отношений между ними R. Полученный “портрет системы” может записываться так: XRY или Y = ®X. Аналитическое описание С. представляет собой систему уравнений, характеризующих преобразования, выполняемые ее элементами и С. в целом в процессе ее функционирования: в непрерывном случае применяется аппарат дифференциальных уравнений, в дискретном — аппарат разностных уравнений. Графическое описание С. чаще всего состоит в построении графа, вершины которого соответствуют элементам С., а дуги — их связям. Существует ряд классификаций систем. Наиболее известны три: 1) Ст. Бир делит все С. (в природе и обществе), с одной стороны, на простые, сложные и очень сложные, с другой — на детерминированные и вероятностные; 2) Н.Винер исходит из особенностей поведения С. (бихевиористский подход) и строит дихотомическую схему: С., характеризующиеся пассивным и активным поведением; среди последних — нецеленаправленным (случайным) и целенаправленным; в свою очередь последние подразделяются на С. без обратной связи и с обратной связью и т.д.; 3) К.Боулдинг выделяет восемь уровней иерархии С., начиная с простых статических (например, карта земли) и простых кибернетических (механизм часов), продолжая разного уровня сложности кибернетическими С., вплоть до самых сложных — социальных организаций. Предложены также классификации по другим основаниям, в том числе более частные, например, ряд классификаций С. управления. См. также: Абстрактная система, Адаптирующиеся, адаптивные системы, Большая система, Вероятностная система, Выделение системы, Входы и выходы системы, Детерминированная система, Динамическая система, Дискретная система, Диффузная система, Замкнутая (закрытая) система, Иерархическая структура, Имитационная система, Информационная система, Информационно-развивающаяся система, Кибернетическая система, Координаты системы, Надсистема, Нелинейная система, Непрерывная система, Открытая система, Относительно обособленная система, Память системы, Подсистема, Портрет системы, Разомкнутая система, Рефлексная система, Решающая система, Самонастраивающаяся система, Самообучающаяся система, Самоорганизующаяся система, Сложная система, Состояние системы, Статическая система, Стохастическая система, Структура системы, Структуризация системы, Управляющая система, Устойчивость системы, Целенаправленная система, Экономическая система, Функционирование экономической системы..
[ http://slovar-lopatnikov.ru/]EN
system
set of interrelated elements considered in a defined context as a whole and separated from their environment
NOTE 1 – A system is generally defined with the view of achieving a given objective, e.g. by performing a definite function.
NOTE 2 – Elements of a system may be natural or man-made material objects, as well as modes of thinking and the results thereof (e.g. forms of organisation, mathematical methods, programming languages).
NOTE 3 – The system is considered to be separated from the environment and the other external systems by an imaginary surface, which cuts the links between them and the system.
NOTE 4 – The term "system" should be qualified when it is not clear from the context to what it refers, e.g. control system, colorimetric system, system of units, transmission system.
Source: 351-01-01 MOD
[IEV number 151-11-27]
system
A number of related things that work together to achieve an overall objective. For example: • A computer system including hardware, software and applications • A management system, including the framework of policy, processes, functions, standards, guidelines and tools that are planned and managed together – for example, a quality management system • A database management system or operating system that includes many software modules which are designed to perform a set of related functions.
[Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]FR
système, m
ensemble d'éléments reliés entre eux, considéré comme un tout dans un contexte défini et séparé de son environnement
NOTE 1 – Un système est en général défini en vue d'atteindre un objectif déterminé, par exemple en réalisant une certaine fonction.
NOTE 2 – Les éléments d'un système peuvent être aussi bien des objets matériels, naturels ou artificiels, que des modes de pensée et les résultats de ceux-ci (par exemple des formes d'organisation, des méthodes mathématiques, des langages de programmation).
NOTE 3 – Le système est considéré comme séparé de l'environnement et des autres systèmes extérieurs par une surface imaginaire qui coupe les liaisons entre eux et le système.
NOTE 4 – Il convient de qualifier le terme "système" lorsque le concept ne résulte pas clairement du contexte, par exemple système de commande, système colorimétrique, système d'unités, système de transmission.
Source: 351-01-01 MOD
[IEV number 151-11-27]Тематики
- автоматизированные системы
- информационные технологии в целом
- релейная защита
- системы менеджмента качества
- экономика
EN
DE
FR
Русско-немецкий словарь нормативно-технической терминологии > система
-
51 система
система
Группа взаимодействующих объектов, выполняющих общую функциональную задачу. В ее основе лежит некоторый механизм связи.
[ ГОСТ Р МЭК 61850-5-2011]
система
Набор элементов, которые взаимодействуют в соответствии с проектом, в котором элементом системы может быть другая система, называемая подсистемой; система может быть управляющей системой или управляемой системой и включать аппаратные средства, программное обеспечение и взаимодействие с человеком.
Примечания
1 Человек может быть частью системы. Например, человек может получать информацию от программируемого электронного устройства и выполнять действие, связанное с безопасностью, основываясь на этой информации, либо выполнять действие с помощью программируемого электронного устройства.
2 Это определение отличается от приведенного в МЭС 351-01-01.
[ ГОСТ Р МЭК 61508-4-2007]
система
Множество (совокупность) материальных объектов (элементов) любой, в том числе различной физической природы, а также информационных объектов, взаимосвязанных и взаимодействующих между собой для достижения общей цели.
[ ГОСТ Р 43.0.2-2006]
система
Совокупность элементов, объединенная связями между ними и обладающая определенной целостностью.
[ ГОСТ 34.003-90]
система
Совокупность взаимосвязанных и взаимодействующих элементов.
[ ГОСТ Р ИСО 9000-2008]
система
-
[IEV number 151-11-27]
система
Набор связанных элементов, работающих совместно для достижения общей Цели. Например: • Компьютерная система, состоящая из аппаратного обеспечения, программного обеспечения и приложений. • Система управления, состоящая из множества процессов, которые планируются и управляются совместно. Например, система менеджмента качества. • Система управления базами данных или операционная система, состоящая из множества программных модулей, разработанных для выполнения набора связанных функций.
[Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]
система
Множество элементов, находящихся в отношениях и связях друг с другом, которое образует определенную целостность, единство. Следует отметить, что это определение (взятое нами из Большой Советской Энциклопедии) не является ни единственным, ни общепризнанным. Есть десятки определений понятия “С.”, которые с некоторой условностью можно поделить на три группы. Определения, принадлежащие к первой группе, рассматривают С. как комплекс процессов и явлений, а также связей между ними, существующий объективно, независимо от наблюдателя. Его задача состоит в том, чтобы выделить эту С. из окружающей среды, т.е. как минимум определить ее входы и выходы (тогда она рассматривается как “черный ящик”), а как максимум — подвергнуть анализу ее структуру (произвести структуризацию), выяснить механизм функционирования и, исходя из этого, воздействовать на нее в нужном направлении. Здесь С. — объект исследования и управления. Определения второй группы рассматривают С. как инструмент, способ исследования процессов и явлений. Наблюдатель, имея перед собой некоторую цель, конструирует (синтезирует) С. как некоторое абстрактное отображение реальных объектов. При этом С. (“абстрактная система”) понимается как совокупность взаимосвязанных переменных, представляющих те или иные свойства, характеристики объектов, которые рассматриваются в данной С. В этой трактовке понятие С. практически смыкается с понятием модели, и в некоторых работах эти два термина вообще употребляются как взаимозаменяемые. Говоря о синтезе С., в таких случаях имеют в виду формирование макромодели, анализ же С. совпадает в этой трактовке с микромоделированием отдельных элементов и процессов. Третья группа определений представляет собой некий компромисс между двумя первыми. С. здесь — искусственно создаваемый комплекс элементов (например, коллективов людей, технических средств, научных теорий и т.д.), предназначенный для решения сложной организационной, экономической, технической задачи. Следовательно, здесь наблюдатель не только выделяет из среды С. (и ее отдельные части), но и создает, синтезирует ее. С. является реальным объектом и одновременно — абстрактным отображением связей действительности. Именно в этом смысле понимает С. наука системотехника. Между этими группами определений нет непроходимых границ. Во всех случаях термин “С.” включает понятие о целом, состоящем из взаимосвязанных, взаимодействующих, взаимозависимых частей, причем свойства этих частей зависят от С. в целом, свойства С. — от свойств ее частей. Во всех случаях имеется в виду наличие среды, в которой С. существует и функционирует. Для исследуемой С. среда может рассматриваться как надсистема, соответственно, ее части — как подсистемы, а также элементы С., если их внутренняя структура не является предметом рассмотрения. С. делятся на материальные и нематериальные. К первым относятся, например, железная дорога, народное хозяйство, ко вторым — С. уравнений в математике, математика как наука, далее — С. наук. Автоматизированная система управления включает как материальные элементы (ЭВМ, документация, люди), так и нематериальные — математические модели, знания людей. Разделение это тоже неоднозначно: железную дорогу можно рассматривать не только как материальную С., но и как нематериальную С. взаимосвязей, соотношений, потоков информации и т.д. Закономерности функционирования систем изучаются общей теорией систем, оперирующей понятием абстрактной С. Наибольшее значение среди абстрактных С. имеют кибернетические С. Есть два понятия, близкие понятию С.: комплекс, совокупность (множество объектов). Они, однако, не тождественны ему, как нередко утверждают. Их можно рассматривать как усеченные, неполные понятия по отношению к С.: комплекс включает части, не обязательно обладающие системными свойствами (в том смысле, как это указано выше), но эти части сами могут быть системами, и элементы последних такими свойствами по отношению к ним способны обладать. Совокупность же есть множество элементов, не обязательно находящихся в системных отношениях и связях друг с другом. В данном словаре мы стремимся по возможности последовательно различать понятия С. и модели, рассматривая С. как некий объект (реальной действительности или воображаемый — безразлично), который подвергается наблюдению и изучению, а модель — как средство этого наблюдения и изучения. Разумеется, и модель, если она сама оказывается объектом наблюдения и изучения, в свою очередь рассматривается как С. (в частности, как моделируемая С.) — и так до бесконечности. Все это означает, что такие, например, понятия, как переменная или параметр, мы (в отличие от многих авторов) относим не к С., а к ее описанию, т.е. к модели (см. Параметры модели, Переменная модели), численные же их значения, характеризующие С., — к С. (например, координаты С.). • Системы математически описываются различными способами. Каждая переменная модели, выражающая определенную характеристику С., может быть задана множеством конкретных значений, которые эта переменная может принимать. Состояние С. описывается вектором (или кортежем, если учитываются также величины, не имеющие численных значений), каждая компонента которого соответствует конкретному значению определенной переменной. С. в целом может быть описана соответственно множеством ее состояний. Например, если x = (1, 2, … m) — вектор существенных переменных модели, каждая из которых может принять y значений (y = 1, 2, …, n), то матрица S = [ Sxy ] размерностью m ? n представляет собой описание данной С. Широко применяется описание динамической С. с помощью понятий, связанных с ее функционированием в среде. При этом С. определяется как три множества: входов X, выходов Y и отношений между ними R. Полученный “портрет системы” может записываться так: XRY или Y = ®X. Аналитическое описание С. представляет собой систему уравнений, характеризующих преобразования, выполняемые ее элементами и С. в целом в процессе ее функционирования: в непрерывном случае применяется аппарат дифференциальных уравнений, в дискретном — аппарат разностных уравнений. Графическое описание С. чаще всего состоит в построении графа, вершины которого соответствуют элементам С., а дуги — их связям. Существует ряд классификаций систем. Наиболее известны три: 1) Ст. Бир делит все С. (в природе и обществе), с одной стороны, на простые, сложные и очень сложные, с другой — на детерминированные и вероятностные; 2) Н.Винер исходит из особенностей поведения С. (бихевиористский подход) и строит дихотомическую схему: С., характеризующиеся пассивным и активным поведением; среди последних — нецеленаправленным (случайным) и целенаправленным; в свою очередь последние подразделяются на С. без обратной связи и с обратной связью и т.д.; 3) К.Боулдинг выделяет восемь уровней иерархии С., начиная с простых статических (например, карта земли) и простых кибернетических (механизм часов), продолжая разного уровня сложности кибернетическими С., вплоть до самых сложных — социальных организаций. Предложены также классификации по другим основаниям, в том числе более частные, например, ряд классификаций С. управления. См. также: Абстрактная система, Адаптирующиеся, адаптивные системы, Большая система, Вероятностная система, Выделение системы, Входы и выходы системы, Детерминированная система, Динамическая система, Дискретная система, Диффузная система, Замкнутая (закрытая) система, Иерархическая структура, Имитационная система, Информационная система, Информационно-развивающаяся система, Кибернетическая система, Координаты системы, Надсистема, Нелинейная система, Непрерывная система, Открытая система, Относительно обособленная система, Память системы, Подсистема, Портрет системы, Разомкнутая система, Рефлексная система, Решающая система, Самонастраивающаяся система, Самообучающаяся система, Самоорганизующаяся система, Сложная система, Состояние системы, Статическая система, Стохастическая система, Структура системы, Структуризация системы, Управляющая система, Устойчивость системы, Целенаправленная система, Экономическая система, Функционирование экономической системы..
[ http://slovar-lopatnikov.ru/]EN
system
set of interrelated elements considered in a defined context as a whole and separated from their environment
NOTE 1 – A system is generally defined with the view of achieving a given objective, e.g. by performing a definite function.
NOTE 2 – Elements of a system may be natural or man-made material objects, as well as modes of thinking and the results thereof (e.g. forms of organisation, mathematical methods, programming languages).
NOTE 3 – The system is considered to be separated from the environment and the other external systems by an imaginary surface, which cuts the links between them and the system.
NOTE 4 – The term "system" should be qualified when it is not clear from the context to what it refers, e.g. control system, colorimetric system, system of units, transmission system.
Source: 351-01-01 MOD
[IEV number 151-11-27]
system
A number of related things that work together to achieve an overall objective. For example: • A computer system including hardware, software and applications • A management system, including the framework of policy, processes, functions, standards, guidelines and tools that are planned and managed together – for example, a quality management system • A database management system or operating system that includes many software modules which are designed to perform a set of related functions.
[Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]FR
système, m
ensemble d'éléments reliés entre eux, considéré comme un tout dans un contexte défini et séparé de son environnement
NOTE 1 – Un système est en général défini en vue d'atteindre un objectif déterminé, par exemple en réalisant une certaine fonction.
NOTE 2 – Les éléments d'un système peuvent être aussi bien des objets matériels, naturels ou artificiels, que des modes de pensée et les résultats de ceux-ci (par exemple des formes d'organisation, des méthodes mathématiques, des langages de programmation).
NOTE 3 – Le système est considéré comme séparé de l'environnement et des autres systèmes extérieurs par une surface imaginaire qui coupe les liaisons entre eux et le système.
NOTE 4 – Il convient de qualifier le terme "système" lorsque le concept ne résulte pas clairement du contexte, par exemple système de commande, système colorimétrique, système d'unités, système de transmission.
Source: 351-01-01 MOD
[IEV number 151-11-27]Тематики
- автоматизированные системы
- информационные технологии в целом
- релейная защита
- системы менеджмента качества
- экономика
EN
DE
FR
4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей.
Примечание 1 - Система может рассматриваться как продукт или предоставляемые им услуги.
Примечание 2 - На практике интерпретация данного термина зачастую уточняется с помощью ассоциативного существительного, например, «система самолета». В некоторых случаях слово «система» может заменяться контекстно-зависимым синонимом, например, «самолет», хотя это может впоследствии затруднить восприятие системных принципов.
Источник: ГОСТ Р ИСО/МЭК 12207-2010: Информационная технология. Системная и программная инженерия. Процессы жизненного цикла программных средств оригинал документа
4.17 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей.
Примечания
1. Система может рассматриваться как продукт или как совокупность услуг, которые она обеспечивает.
2. На практике интерпретация данного термина зачастую уточняется с помощью ассоциативного существительного, например, система самолета. В некоторых случаях слово «система» может заменяться контекстным синонимом, например, самолет, хотя это может впоследствии затруднять восприятие системных принципов.
Источник: ГОСТ Р ИСО/МЭК 15288-2005: Информационная технология. Системная инженерия. Процессы жизненного цикла систем оригинал документа
4.44 система (system): Комплекс процессов, технических и программных средств, устройств, обслуживаемый персоналом и обладающий возможностью удовлетворять установленным потребностям и целям (3.31 ГОСТ Р ИСО/МЭК 12207).
Источник: ГОСТ Р ИСО/МЭК 15910-2002: Информационная технология. Процесс создания документации пользователя программного средства оригинал документа
3.31 система (system): Комплекс, состоящий из процессов, технических и программных средств, устройств и персонала, обладающий возможностью удовлетворять установленным потребностям или целям.
Источник: ГОСТ Р ИСО/МЭК 12207-99: Информационная технология. Процессы жизненного цикла программных средств оригинал документа
3.36 система (system): Совокупность взаимосвязанных и взаимодействующих объектов. [ ГОСТ Р ИСО 9000, статья 3.2.1]
Источник: ГОСТ Р 51901.6-2005: Менеджмент риска. Программа повышения надежности оригинал документа
3.2 система (system): Совокупность взаимосвязанных и взаимодействующих элементов. [ ГОСТ Р ИСО 9000 - 2001]
Примечания
1 С точки зрения надежности система должна иметь:
a) определенную цель, выраженную в виде требований к функционированию системы;
b) заданные условия эксплуатации.
2 Система имеет иерархическую структуру.
Источник: ГОСТ Р 51901.5-2005: Менеджмент риска. Руководство по применению методов анализа надежности оригинал документа
3.2.1 система (system): Совокупность взаимосвязанных и взаимодействующих элементов.
Источник: ГОСТ Р ИСО 9000-2008: Системы менеджмента качества. Основные положения и словарь оригинал документа
3.7 система (system): Совокупность взаимосвязанных или взаимодействующих элементов.
Примечания
1 Применительно к надежности система должна иметь:
a) определенные цели, представленные в виде требований к ее функциям;
b) установленные условия функционирования;
c) определенные границы.
2 Структура системы является иерархической.
Источник: ГОСТ Р 51901.12-2007: Менеджмент риска. Метод анализа видов и последствий отказов оригинал документа
3.2.1 система (en system; fr systéme): Совокупность взаимосвязанных или взаимодействующих элементов.
Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа
2.39 система (system): Совокупность взаимосвязанных и взаимодействующих элементов.
Источник: ГОСТ Р 53647.2-2009: Менеджмент непрерывности бизнеса. Часть 2. Требования оригинал документа
3.20 система (system): Конфигурация взаимодействующих в соответствии с проектом составляющих, в которой элемент системы может сам представлять собой систему, называемую в этом случае подсистемой.
(МЭК 61513, статья 3.61)
Источник: ГОСТ Р МЭК 61226-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Классификация функций контроля и управления оригинал документа
3.61 система (system): Конфигурация взаимодействующих в соответствии с проектом составляющих, в которой элемент системы может сам представлять собой систему, называемую в этом случае подсистемой.
[МЭК 61508-4, пункт 3.3.1, модифицировано]
Примечание 1 - См. также «система контроля и управления».
Примечание 2 - Системы контроля и управления следует отличать от механических систем и электрических систем АС.
Источник: ГОСТ Р МЭК 61513-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Общие требования оригинал документа
3.2.1 система (system): Совокупность взаимосвязанных и взаимодействующих элементов.
Источник: ГОСТ ISO 9000-2011: Системы менеджмента качества. Основные положения и словарь
2.34 система (system): Специфическое воплощение ИТ с конкретным назначением и условиями эксплуатации.
[ИСО/МЭК 15408-1]
а) комбинация взаимодействующих компонентов, организованных для достижения одной или нескольких поставленных целей.
[ИСО/МЭК 15288]
Примечания
1 Система может рассматриваться как продукт или совокупность услуг, которые она обеспечивает.
[ИСО/МЭК 15288]
2 На практике интерпретация данного зачастую уточняется с помощью ассоциативного существительного, например, «система самолета». В некоторых случаях слово «система» допускается заменять, например, контекстным синонимом «самолет», хотя это может впоследствии затруднить восприятие системных принципов.
[ИСО/МЭК 15288]
Источник: ГОСТ Р 54581-2011: Информационная технология. Методы и средства обеспечения безопасности. Основы доверия к безопасности ИТ. Часть 1. Обзор и основы оригинал документа
3.34 система (system):
Совокупность связанных друг с другом подсистем и сборок компонентов и/или отдельных компонентов, функционирующих совместно для выполнения установленной задачи или
совокупность оборудования, подсистем, обученного персонала и технических приемов, обеспечивающих выполнение или поддержку установленных функциональных задач. Полная система включает в себя относящиеся к ней сооружения, оборудование, подсистемы, материалы, обслуживание и персонал, необходимые для ее функционирования в той степени, которая считается достаточной для выполнения установленных задач в окружающей обстановке.
Источник: ГОСТ Р 51317.1.5-2009: Совместимость технических средств электромагнитная. Воздействия электромагнитные большой мощности на системы гражданского назначения. Основные положения оригинал документа
3.1.13 система, использующая солнечную и дополнительную энергию (solar-plus-supplementary system): Система солнечного теплоснабжения, использующая одновременно источники как солнечной, так и резервной энергии и способная обеспечить заданный уровень теплоснабжения независимо от поступления солнечной энергии.
Источник: ГОСТ Р 54856-2011: Теплоснабжение зданий. Методика расчета энергопотребности и эффективности системы теплогенерации с солнечными установками оригинал документа
3.2.6 система (system): Совокупность взаимосвязанных или взаимодействующих элементов.
Источник: ГОСТ Р 54147-2010: Стратегический и инновационный менеджмент. Термины и определения оригинал документа
3.12 система (system): Совокупность взаимосвязанных и взаимодействующих элементов
[ ГОСТ Р ИСО 9000-2008, ст. 3.2.1]
3.136 система (system): Совокупность объектов реального мира, организованная для заданной цели.
Источник: ГОСТ Р 54136-2010: Системы промышленной автоматизации и интеграция. Руководство по применению стандартов, структура и словарь оригинал документа
Русско-английский словарь нормативно-технической терминологии > система
-
52 система
система
Группа взаимодействующих объектов, выполняющих общую функциональную задачу. В ее основе лежит некоторый механизм связи.
[ ГОСТ Р МЭК 61850-5-2011]
система
Набор элементов, которые взаимодействуют в соответствии с проектом, в котором элементом системы может быть другая система, называемая подсистемой; система может быть управляющей системой или управляемой системой и включать аппаратные средства, программное обеспечение и взаимодействие с человеком.
Примечания
1 Человек может быть частью системы. Например, человек может получать информацию от программируемого электронного устройства и выполнять действие, связанное с безопасностью, основываясь на этой информации, либо выполнять действие с помощью программируемого электронного устройства.
2 Это определение отличается от приведенного в МЭС 351-01-01.
[ ГОСТ Р МЭК 61508-4-2007]
система
Множество (совокупность) материальных объектов (элементов) любой, в том числе различной физической природы, а также информационных объектов, взаимосвязанных и взаимодействующих между собой для достижения общей цели.
[ ГОСТ Р 43.0.2-2006]
система
Совокупность элементов, объединенная связями между ними и обладающая определенной целостностью.
[ ГОСТ 34.003-90]
система
Совокупность взаимосвязанных и взаимодействующих элементов.
[ ГОСТ Р ИСО 9000-2008]
система
-
[IEV number 151-11-27]
система
Набор связанных элементов, работающих совместно для достижения общей Цели. Например: • Компьютерная система, состоящая из аппаратного обеспечения, программного обеспечения и приложений. • Система управления, состоящая из множества процессов, которые планируются и управляются совместно. Например, система менеджмента качества. • Система управления базами данных или операционная система, состоящая из множества программных модулей, разработанных для выполнения набора связанных функций.
[Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]
система
Множество элементов, находящихся в отношениях и связях друг с другом, которое образует определенную целостность, единство. Следует отметить, что это определение (взятое нами из Большой Советской Энциклопедии) не является ни единственным, ни общепризнанным. Есть десятки определений понятия “С.”, которые с некоторой условностью можно поделить на три группы. Определения, принадлежащие к первой группе, рассматривают С. как комплекс процессов и явлений, а также связей между ними, существующий объективно, независимо от наблюдателя. Его задача состоит в том, чтобы выделить эту С. из окружающей среды, т.е. как минимум определить ее входы и выходы (тогда она рассматривается как “черный ящик”), а как максимум — подвергнуть анализу ее структуру (произвести структуризацию), выяснить механизм функционирования и, исходя из этого, воздействовать на нее в нужном направлении. Здесь С. — объект исследования и управления. Определения второй группы рассматривают С. как инструмент, способ исследования процессов и явлений. Наблюдатель, имея перед собой некоторую цель, конструирует (синтезирует) С. как некоторое абстрактное отображение реальных объектов. При этом С. (“абстрактная система”) понимается как совокупность взаимосвязанных переменных, представляющих те или иные свойства, характеристики объектов, которые рассматриваются в данной С. В этой трактовке понятие С. практически смыкается с понятием модели, и в некоторых работах эти два термина вообще употребляются как взаимозаменяемые. Говоря о синтезе С., в таких случаях имеют в виду формирование макромодели, анализ же С. совпадает в этой трактовке с микромоделированием отдельных элементов и процессов. Третья группа определений представляет собой некий компромисс между двумя первыми. С. здесь — искусственно создаваемый комплекс элементов (например, коллективов людей, технических средств, научных теорий и т.д.), предназначенный для решения сложной организационной, экономической, технической задачи. Следовательно, здесь наблюдатель не только выделяет из среды С. (и ее отдельные части), но и создает, синтезирует ее. С. является реальным объектом и одновременно — абстрактным отображением связей действительности. Именно в этом смысле понимает С. наука системотехника. Между этими группами определений нет непроходимых границ. Во всех случаях термин “С.” включает понятие о целом, состоящем из взаимосвязанных, взаимодействующих, взаимозависимых частей, причем свойства этих частей зависят от С. в целом, свойства С. — от свойств ее частей. Во всех случаях имеется в виду наличие среды, в которой С. существует и функционирует. Для исследуемой С. среда может рассматриваться как надсистема, соответственно, ее части — как подсистемы, а также элементы С., если их внутренняя структура не является предметом рассмотрения. С. делятся на материальные и нематериальные. К первым относятся, например, железная дорога, народное хозяйство, ко вторым — С. уравнений в математике, математика как наука, далее — С. наук. Автоматизированная система управления включает как материальные элементы (ЭВМ, документация, люди), так и нематериальные — математические модели, знания людей. Разделение это тоже неоднозначно: железную дорогу можно рассматривать не только как материальную С., но и как нематериальную С. взаимосвязей, соотношений, потоков информации и т.д. Закономерности функционирования систем изучаются общей теорией систем, оперирующей понятием абстрактной С. Наибольшее значение среди абстрактных С. имеют кибернетические С. Есть два понятия, близкие понятию С.: комплекс, совокупность (множество объектов). Они, однако, не тождественны ему, как нередко утверждают. Их можно рассматривать как усеченные, неполные понятия по отношению к С.: комплекс включает части, не обязательно обладающие системными свойствами (в том смысле, как это указано выше), но эти части сами могут быть системами, и элементы последних такими свойствами по отношению к ним способны обладать. Совокупность же есть множество элементов, не обязательно находящихся в системных отношениях и связях друг с другом. В данном словаре мы стремимся по возможности последовательно различать понятия С. и модели, рассматривая С. как некий объект (реальной действительности или воображаемый — безразлично), который подвергается наблюдению и изучению, а модель — как средство этого наблюдения и изучения. Разумеется, и модель, если она сама оказывается объектом наблюдения и изучения, в свою очередь рассматривается как С. (в частности, как моделируемая С.) — и так до бесконечности. Все это означает, что такие, например, понятия, как переменная или параметр, мы (в отличие от многих авторов) относим не к С., а к ее описанию, т.е. к модели (см. Параметры модели, Переменная модели), численные же их значения, характеризующие С., — к С. (например, координаты С.). • Системы математически описываются различными способами. Каждая переменная модели, выражающая определенную характеристику С., может быть задана множеством конкретных значений, которые эта переменная может принимать. Состояние С. описывается вектором (или кортежем, если учитываются также величины, не имеющие численных значений), каждая компонента которого соответствует конкретному значению определенной переменной. С. в целом может быть описана соответственно множеством ее состояний. Например, если x = (1, 2, … m) — вектор существенных переменных модели, каждая из которых может принять y значений (y = 1, 2, …, n), то матрица S = [ Sxy ] размерностью m ? n представляет собой описание данной С. Широко применяется описание динамической С. с помощью понятий, связанных с ее функционированием в среде. При этом С. определяется как три множества: входов X, выходов Y и отношений между ними R. Полученный “портрет системы” может записываться так: XRY или Y = ®X. Аналитическое описание С. представляет собой систему уравнений, характеризующих преобразования, выполняемые ее элементами и С. в целом в процессе ее функционирования: в непрерывном случае применяется аппарат дифференциальных уравнений, в дискретном — аппарат разностных уравнений. Графическое описание С. чаще всего состоит в построении графа, вершины которого соответствуют элементам С., а дуги — их связям. Существует ряд классификаций систем. Наиболее известны три: 1) Ст. Бир делит все С. (в природе и обществе), с одной стороны, на простые, сложные и очень сложные, с другой — на детерминированные и вероятностные; 2) Н.Винер исходит из особенностей поведения С. (бихевиористский подход) и строит дихотомическую схему: С., характеризующиеся пассивным и активным поведением; среди последних — нецеленаправленным (случайным) и целенаправленным; в свою очередь последние подразделяются на С. без обратной связи и с обратной связью и т.д.; 3) К.Боулдинг выделяет восемь уровней иерархии С., начиная с простых статических (например, карта земли) и простых кибернетических (механизм часов), продолжая разного уровня сложности кибернетическими С., вплоть до самых сложных — социальных организаций. Предложены также классификации по другим основаниям, в том числе более частные, например, ряд классификаций С. управления. См. также: Абстрактная система, Адаптирующиеся, адаптивные системы, Большая система, Вероятностная система, Выделение системы, Входы и выходы системы, Детерминированная система, Динамическая система, Дискретная система, Диффузная система, Замкнутая (закрытая) система, Иерархическая структура, Имитационная система, Информационная система, Информационно-развивающаяся система, Кибернетическая система, Координаты системы, Надсистема, Нелинейная система, Непрерывная система, Открытая система, Относительно обособленная система, Память системы, Подсистема, Портрет системы, Разомкнутая система, Рефлексная система, Решающая система, Самонастраивающаяся система, Самообучающаяся система, Самоорганизующаяся система, Сложная система, Состояние системы, Статическая система, Стохастическая система, Структура системы, Структуризация системы, Управляющая система, Устойчивость системы, Целенаправленная система, Экономическая система, Функционирование экономической системы..
[ http://slovar-lopatnikov.ru/]EN
system
set of interrelated elements considered in a defined context as a whole and separated from their environment
NOTE 1 – A system is generally defined with the view of achieving a given objective, e.g. by performing a definite function.
NOTE 2 – Elements of a system may be natural or man-made material objects, as well as modes of thinking and the results thereof (e.g. forms of organisation, mathematical methods, programming languages).
NOTE 3 – The system is considered to be separated from the environment and the other external systems by an imaginary surface, which cuts the links between them and the system.
NOTE 4 – The term "system" should be qualified when it is not clear from the context to what it refers, e.g. control system, colorimetric system, system of units, transmission system.
Source: 351-01-01 MOD
[IEV number 151-11-27]
system
A number of related things that work together to achieve an overall objective. For example: • A computer system including hardware, software and applications • A management system, including the framework of policy, processes, functions, standards, guidelines and tools that are planned and managed together – for example, a quality management system • A database management system or operating system that includes many software modules which are designed to perform a set of related functions.
[Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]FR
système, m
ensemble d'éléments reliés entre eux, considéré comme un tout dans un contexte défini et séparé de son environnement
NOTE 1 – Un système est en général défini en vue d'atteindre un objectif déterminé, par exemple en réalisant une certaine fonction.
NOTE 2 – Les éléments d'un système peuvent être aussi bien des objets matériels, naturels ou artificiels, que des modes de pensée et les résultats de ceux-ci (par exemple des formes d'organisation, des méthodes mathématiques, des langages de programmation).
NOTE 3 – Le système est considéré comme séparé de l'environnement et des autres systèmes extérieurs par une surface imaginaire qui coupe les liaisons entre eux et le système.
NOTE 4 – Il convient de qualifier le terme "système" lorsque le concept ne résulte pas clairement du contexte, par exemple système de commande, système colorimétrique, système d'unités, système de transmission.
Source: 351-01-01 MOD
[IEV number 151-11-27]Тематики
- автоматизированные системы
- информационные технологии в целом
- релейная защита
- системы менеджмента качества
- экономика
EN
DE
FR
Русско-французский словарь нормативно-технической терминологии > система
См. также в других словарях:
function — func|tion1 W1S3 [ˈfʌŋkʃən] n [Date: 1500 1600; : Latin; Origin: functio, from fungi to perform ] 1.) [U and C] the purpose that something has, or the job that someone or something does perform/fulfil a function ▪ In your new job you will perform… … Dictionary of contemporary English
Computer for operations with functions — Computer for operations with mathematical functions (unlike the usual computer) operates with functions at the hardware level (i.e. without programming these operations).[1][2][3] Contents 1 History … Wikipedia
computer science — computer scientist. the science that deals with the theory and methods of processing information in digital computers, the design of computer hardware and software, and the applications of computers. [1970 75] * * * Study of computers, their… … Universalium
Computer network — Computer networks redirects here. For the periodical, see Computer Networks (journal). Datacom redirects here. For other uses, see Datacom (disambiguation). Internet map. The Internet is a global system of interconnected computer networks that… … Wikipedia
Computer facial animation — is primarily an area of computer graphics that encapsulates models and techniques for generating and animating images of the human head and face. Due to its subject and output type, it is also related to many other scientific and artistic fields… … Wikipedia
Computer-aided diagnosis — Computer aided detection (CADe) and computer aided diagnosis (CADx) are procedures in medicine that assist doctors in the interpretation of medical images. Imaging techniques in X ray, MRI, and Ultrasound diagnostics yield a great deal of… … Wikipedia
Computer Associates Int. Inc. v. Altai Inc. — Computer Associates International, Inc. v. Altai, Inc. Court United States Court of Appeals for the Second Circuit Full case name Computer Associates International, Inc. v. Altai, Inc … Wikipedia
Function overloading — or method overloading is a feature found in various programming languages such as Ada, C#, VB.NET, C++, D and Java that allows the creation of several methods with the same name which differ from each other in terms of the type of the input and… … Wikipedia
Computer vision — is the field concerned with automated imaging and automated computer based processing of images to extract and interpret information. It is the science and technology of machines that see. Here see means the machine is able to extract information … Wikipedia
Computer music — is a term that was originally used within academia to describe a field of study relating to the applications of computing technology in music composition; particularly that stemming from the Western art music tradition. It includes the theory and … Wikipedia
Computer ethics — is a branch of practical philosophy which deals with how computing professionals should make decisions regarding professional and social conduct.[1] Margaret Anne Pierce, a professor in the Department of Mathematics and Computers at Georgia… … Wikipedia