Перевод: со всех языков на английский

с английского на все языки

city+technology+college

  • 21 Clark, Edward

    [br]
    fl. 1850s New York State, USA
    [br]
    American co-developer of mass-production techniques at the Singer sewing machine factory.
    [br]
    Born in upstate New York, where his father was a small manufacturer, Edward Clark attended college at Williams and graduated in 1831. He became a lawyer in New York City and from then on lived either in the city or on his rural estate near Cooperstown in upstate New York. After a series of share manipulations, Clark acquired a one-third interest in Isaac M. Singer's company. They soon bought out one of Singer's earlier partners, G.B.Zeiber, and in 1851, under the name of I.M.Singer \& Co., they set up a permanent sewing machine business with headquarters in New York.
    The success of their firm initially rested on marketing. Clark introduced door-to-door sales-people and hire-purchase for their sewing machines in 1856 ($50 cash down, or $100 with a cash payment of $5 and $3 a month thereafter). He also trained women to demonstrate to potential customers the capabilities of the Singer sewing machine. At first their sewing machines continued to be made in the traditional way, with the parts fitted together by skilled workers through hand filing and shaping so that the parts would fit only onto one machine. This resembled European practice rather than the American system of manufacture that had been pioneered in the armouries in that country. In 1856 Singer brought out their first machine intended exclusively for home use, and at the same time manufacturing capacity was improved. Through increased sales, a new factory was built in 1858–9 on Mott Street, New York, but it soon became inadequate to meet demand.
    In 1863 the Singer company was incorporated as the Singer Manufacturing Co. and began to modernize its production methods with special jigs and fixtures to help ensure uniformity. More and more specialized machinery was built for making the parts. By 1880 the factory, then at Elizabethport, New Jersey, was jammed with automatic and semi-automatic machine tools. In 1882 the factory was producing sewing machines with fully interchangeable parts that did not require hand fitting in assembly. Production rose from 810 machines in 1853 to half a million in 1880. A new family model was introduced in 1881. Clark had succeeded Singer, who died in 1875, as President of the company, but he retired in 1882 after he had seen through the change to mass production.
    [br]
    Further Reading
    National Cyclopaedia of American Biography.
    D.A.Hounshell, 1984, From the American System to Mass Production, 1800–1932. The Development of Manufacturing Technology in the United States, Baltimore (a thorough account of Clark's role in the development of Singer's factories).
    F.B.Jewell, 1975, Veteran Sewing Machines. A Collector's Guide, Newton Abbot.
    RLH

    Biographical history of technology > Clark, Edward

  • 22 אם-אי-טי

    MIT (Massachusetts Institute of Technology) famous American technical college that is located in the city of Cambridge in Massachusetts (USA)

    Hebrew-English dictionary > אם-אי-טי

  • 23 Brunel, Sir Marc Isambard

    [br]
    b. 26 April 1769 Hacqueville, Normandy, France
    d. 12 December 1849 London, England
    [br]
    French (naturalized American) engineer of the first Thames Tunnel.
    [br]
    His mother died when he was 7 years old, a year later he went to college in Gisors and later to the Seminary of Sainte-Nicaise at Rouen. From 1786 to 1792 he followed a career in the French navy as a junior officer. In Rouen he met Sophie Kingdom, daughter of a British Navy contractor, whom he was later to marry. In July 1793 Marc sailed for America from Le Havre. He was to remain there for six years, and became an American citizen, occupying himself as a land surveyor and as an architect. He became Chief Engineer to the City of New York. At General Hamilton's dinner table he learned that the British Navy used over 100,000 ship's blocks every year; this started him thinking how the manufacture of blocks could be mechanized. He roughed out a set of machines to do the job, resigned his post as Chief Engineer and sailed for England in February 1799.
    In London he was shortly introduced to Henry Maudslay, to whom he showed the drawings of his proposed machines and with whom he placed an order for their manufacture. The first machines were completed by mid-1803. Altogether Maudslay produced twenty-one machines for preparing the shells, sixteen for preparing the sheaves and eight other machines.
    In February 1809 he saw troops at Portsmouth returning from Corunna, the victors, with their lacerated feet bound in rags. He resolved to mechanize the production of boots for the Army and, within a few months, had twenty-four disabled soldiers working the machinery he had invented and installed near his Battersea sawmill. The plant could produce 400 pairs of boots and shoes a day, selling at between 9s. 6d. and 20s. a pair. One day in 1817 at Chatham dockyard he observed a piece of scrap keel timber, showing the ravages wrought by the shipworm, Teredo navalis, which, with its proboscis protected by two jagged concave triangular shells, consumes, digests and finally excretes the ship's timbers as it gnaws its way through them. The excreted material provided material for lining the walls of the tunnel the worm had drilled. Brunel decided to imitate the action of the shipworm on a large scale: the Thames Tunnel was to occupy Marc Brunel for most of the remainder of his life. Boring started in March 1825 and was completed by March 1843. The project lay dormant for long periods, but eventually the 1,200 ft (366 m)-long tunnel was completed. Marc Isambard Brunel died at the age of 80 and was buried at Kensal Green cemetery.
    [br]
    Principal Honours and Distinctions
    FRS 1814. Vice-President, Royal Society 1832.
    Further Reading
    P.Clements, 1970, Marc Isambard Brunel, London: Longmans Green.
    IMcN

    Biographical history of technology > Brunel, Sir Marc Isambard

  • 24 Gibbon, John Heysham

    SUBJECT AREA: Medical technology
    [br]
    b. 29 September 1903 Philadelphia, Pennsylvania, USA
    d. 5 February 1973 Philadelphia, Pennsylvania, USA
    [br]
    American cardiothoracic surgeon, pioneer of the heart-lung apparatus and artificial ventilation in thoracic surgery.
    [br]
    Gibbon studied medicine at Jefferson Medical College, Philadelphia, and qualified MD in 1929. He held research fellowships at Harvard from 1930 to 1936 and then moved to similar posts and an assistant professorship at the University of Pennsylvania. After a period involving service with the Army, he was appointed Professor of Surgery and Director of Surgical Research at Jefferson in 1946. His research, assisted by his wife, was particularly directed towards the construction of an artificial mechanical heart and lung apparatus which would maintain circulation and respiration during the course of chest surgery involving heart and lungs. The resulting developments have been fundamental to the expansion of cardiac and coronary surgery.
    [br]
    Principal Honours and Distinctions
    City of Philadelphia John Scott Medal 1953. American Heart Association 1965.
    Bibliography
    1939, "An oxygenator with a large surface volume ratio", J. Lab. Clin. Med.
    1954, "Application of a mechanical heart and lung apparatus to cardiac surgery", Minn. Med.
    1962 (ed.), Surgery of the Chest.
    1970, "The development of the heart-lung apparatus", Rev. Surg.
    MG

    Biographical history of technology > Gibbon, John Heysham

  • 25 Kettering, Charles Franklin

    [br]
    b. 29 August 1876 near Londonsville, Ohio, USA
    d. 25 November 1958 Dayton, Ohio, USA
    [br]
    American engineer and inventor.
    [br]
    Kettering gained degrees in mechanical and electrical engineering from Ohio State University. He was employed by the National Construction Register (NCR) of Dayton, Ohio, where he devised an electric motor for use in cash registers. He became Head of the Inventions Department of that company but left in 1909 to form, with the former Works Manager of NCR, Edward A. Deeds, the Dayton Engineering Laboratories (later called Delco), to develop improved lighting and ignition systems for automobiles. In the first two years of the new company he produced not only these but also the first self-starter, both of which were fitted to the Cadillac, America's leading luxury car. In 1914 he founded Dayton Metal Products and the Dayton Wright Airplane Company. Two years later Delco was bought by General Motors. In 1925 the independent research facilities of Delco were moved to Detroit and merged with General Motors' laboratories to form General Motors Research Corporation, of which Kettering was President and General Manager. (He had been Vice-President of General Motors since 1920.) In that position he headed investigations into methods of achieving maximum engine performance as well as into the nature of friction and combustion. Many other developments in the automobile field were made under his leadership, such as engine coolers, variable-speed transmissions, balancing machines, the two-way shock absorber, high-octane fuel, leaded petrol or gasoline, fast-drying lacquers, crank-case ventilators, chrome plating, and the high-compression automobile engine. Among his other activities were the establishment of the Charles Franklin Kettering Foundation for the Study of Chlorophyll and Photosynthesis at Antioch College, and the founding of the Sloan- Kettering Institute for Cancer Research in New York City. He sponsored the Fever Therapy Research Project at Miami Valley Hospital at Dayton, which developed the hypertherm, or artificial fever machine, for use in the treatment of disease. He resigned from General Motors in 1947.
    IMcN

    Biographical history of technology > Kettering, Charles Franklin

  • 26 Kolff, Willem Johan

    SUBJECT AREA: Medical technology
    [br]
    b. 14 February 1914 Leiden, the Netherlands
    [br]
    Dutch physician and inventor of the first effective artificial kidney.
    [br]
    Kolff studied at Leiden Medical School and qualified in 1938. While studying at Gröningen in 1938, in the utilization of cellulose sausage skin which had become available he designed an artificial kidney, developing the work of Abel in animal experiments.
    At the outbreak of the Second World War he was banished to a provincial town. Even so, he succeeded in making some clandestine machines, one of which was effective in saving the life of a patient with acute renal failure. During 1950–67 he continued in general practice and at the University of Leiden, and in 1958–67 he was head of department and Professor of the Division of Artificial Organs at the University of Utah College of Medicine, Salt Lake City, USA. He was decorated for his services in the establishment of blood banks in Holland during the war.
    [br]
    Bibliography
    1944, "The artificial kidney: dialyser with great area", Acta. Med. Scand.
    1962, "First clinical experience with the artificial kidney", Annals of Internal Medicine 62.
    1990, "The invention of the artificial heart", International Journal of Artificial Organs.
    Further Reading
    Abel et al., 1913, "On the removal of diffusible substances form the circulating blood by means of dialysis", Transactions of the Association of American Physicians 28.
    MG

    Biographical history of technology > Kolff, Willem Johan

  • 27 Porter, Charles Talbot

    [br]
    b. 18 January 1826 Auburn, New York, USA
    d. 1910 USA
    [br]
    American inventor of a stone dressing machine, an improved centrifugal governor and a high-speed steam engine.
    [br]
    Porter graduated from Hamilton College, New York, in 1845, read law in his father's office, and in the autumn of 1847 was admitted to the Bar. He practised for six or seven years in Rochester, New York, and then in New York City. He was drawn into engineering when aged about 30, first through a client who claimed to have invented a revolutionary type of engine and offered Porter the rights to it as payment of a debt. Having lent more money, Porter saw neither the man nor the engine again. Porter followed this with a similar experience over a patent for a stone dressing machine, except this time the machine was built. It proved to be a failure, but Porter set about redesigning it and found that it was vastly improved when it ran faster. His improved machine went into production. It was while trying to get the steam engine that drove the stone dressing machine to run more smoothly that he made a discovery that formed the basis for his subsequent work.
    Porter took the ordinary Watt centrifugal governor and increased the speed by a factor of about ten; although he had to reduce the size of the weights, he gained a motion that was powerful. To make the device sufficiently responsive at the right speed, he balanced the centrifugal forces by a counterweight. This prevented the weights flying outwards until the optimum speed was reached, so that the steam valves remained fully open until that point and then the weights reacted more quickly to variations in speed. He took out a patent in 1858, and its importance was quickly recognized. At first he manufactured and sold the governors himself in a specially equipped factory, because this was the only way he felt he could get sufficient accuracy to ensure a perfect action. For marine use, the counterweight was replaced by a spring.
    Higher speed had brought the advantage of smoother running and so he thought that the same principles could be applied to the steam engine itself, but it was to take extensive design modifications over several years before his vision was realized. In the winter of 1860–1, J.F. Allen met Porter and sketched out his idea of a new type of steam inlet valve. Porter saw the potential of this for his high-speed engine and Allen took out patents for it in 1862. The valves were driven by a new valve gear designed by Pius Fink. Porter decided to display his engine at the International Exhibition in London in 1862, but it had to be assembled on site because the parts were finished in America only just in time to be shipped to meet the deadline. Running at 150 rpm, the engine caused a sensation, but as it was non-condensing there were few orders. Porter added condensing apparatus and, after the failure of Ormerod Grierson \& Co., entered into an agreement with Joseph Whitworth to build the engines. Four were exhibited at the 1867 Paris Exposition Universelle, but Whitworth and Porter fell out and in 1868 Porter returned to America.
    Porter established another factory to build his engine in America, but he ran into all sorts of difficulties, both mechanical and financial. Some engines were built, and serious production was started c. 1874, but again there were further problems and Porter had to leave his firm. High-speed engines based on his designs continued to be made until after 1907 by the Southwark Foundry and Machine Company, Philadelphia, so Porter's ideas were proved viable and led to many other high-speed designs.
    [br]
    Bibliography
    1908, Engineering Reminiscences, New York: J. Wiley \& Sons; reprinted 1985, Bradley, Ill.: Lindsay (autobiography; the main source of information about his life).
    Further Reading
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (examines his governor and steam engine).
    O.Mayr, 1974, "Yankee practice and engineering theory; Charles T.Porter and the dynamics of the high-speed engine", Technology and Culture 16 (4) (examines his governor and steam engine).
    RLH

    Biographical history of technology > Porter, Charles Talbot

См. также в других словарях:

  • city technology college — noun A secondary school set up in an inner city district, funded by central government and (local) industry, specializing in teaching scientific and technological subjects • • • Main Entry: ↑city * * * City Technology College [City Technology… …   Useful english dictionary

  • City Technology College — ► NOUN ▪ (in the UK) a type of secondary school set up to teach technology and science in inner city areas …   English terms dictionary

  • City Technology College — a type of school in Britain that receives some money from business companies and teaches young people useful technical skills …   Dictionary of contemporary English

  • City Technology College — The BRIT School for Performing Arts and Technology in Croydon, London In England, a City Technology College (CTC) is a state funded all ability secondary school that charges no fees but is independent of local authority control, being overseen… …   Wikipedia

  • City Technology College — (abbr CTC) n (in Britain) a type of secondary school in a town or city that puts a special emphasis on teaching mathematics, technology and science. It has no connection with the Local Education Authority, getting its money directly from the… …   Universalium

  • City Technology College — City Technology Colleges (CTCs) sind Sekundarstufenschulen in England. Der Schultyp wurde in den 1980er Jahren von der Thatcher Regierung ins Leben gerufen. Ende der 1980er und Anfang der 1990er Jahre entstanden 15 dieser meist relativ großen… …   Deutsch Wikipedia

  • City Technology College, Kingshurst — Infobox High School name=The City Technology College Kingshurst Academy thumb headmaster= principal= Ann Jones motto= Fear Not Change established=1988 type= (Privately Owned/Public acceptance policy) location=Cooks Lane, Kingshurst, Solihull… …   Wikipedia

  • City Technology College — noun (in the UK) a type of secondary school set up to teach technology and science in inner city areas …   English new terms dictionary

  • Emmanuel City Technology College — is a secondary school based in Gateshead, Tyne and Wear in England. It was founded in 1990 as a City Technology College. Emmanuel now instructs 1250 students, aged between 11 and 19, and has almost 100 staff working on the purpose built site. It… …   Wikipedia

  • Horndean Technology College — Infobox School2 name = Horndean Technology College | motto = Striving for excellence through high quality teaching and lifelong learning. established = 1975 type = Technology College| head name = Headmaster head = Glen Strong city = Portsmouth… …   Wikipedia

  • Ashdown Technology College — Infobox UK school name =Ashdown Technology College size = latitude = longitude = dms = motto = CARE (Curriculum, Achievement, Responsibility, Excellence) motto pl = established = 1989 approx = July 7, 1989 closed = c approx = type = Technology… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»