Перевод: с английского на все языки

со всех языков на английский

chair+professor

  • 61 Gonin, Jules

    SUBJECT AREA: Medical technology
    [br]
    b. 10 August 1870 Vaud, Switzerland
    d. 11 June 1935 Lausanne, Switzerland
    [br]
    Swiss ophthalmic surgeon, originator of the therapy of retinal detachment with cautery.
    [br]
    After graduating form the University of Berne in 1894, Gonin was appointed Assistant to Marc Dufour, Professor of Ophthalmology at the Hôpital de l'Asile des Aveugles, Lausanne. At the International Congress of Ophthalmology at Lucerne in 1904, the general opinion was expressed that the condition of retinal detachment was untreatable. Gonin spent the following decade studying the condition, and by 1920 he was able to inform the French Ophthalmological Society that he had been able to cure a number of cases by the use of localized cautery. In the same year Gonin succeeded to the chair in Lausanne, which became a centre for the treatment of retinal detachment; despite initial scepticism, by 1929 a convincing series of cases led to international acceptance and the further development of the technique with the use of diathermy. On his death he left a substantial bequest to the blind of Lausanne whom he had not been able to cure. The Gonin Medal is awarded quadrennially to the outstanding international figure in ophthalmology.
    [br]
    Principal Honours and Distinctions
    Marcel Benoist Prize 1928. Mackenzie Medal 1933. Von Graefe Medal 1936.
    Bibliography
    1918, The Anatomical Causes of Detachment of the Retina.
    1929, "Detachment of the retina", Proceedings of the International Congress of- Ophthalmology, Amsterdam.
    Further Reading
    S.Duke-Elder, 1960–70, System of Ophthalmology, London.
    MG

    Biographical history of technology > Gonin, Jules

  • 62 Helmholtz, Hermann Ludwig Ferdinand von

    SUBJECT AREA: Medical technology
    [br]
    b. 31 August 1821 Potsdam, Germany
    d. 8 September 1894 Berlin, Germany
    [br]
    German physicist and man of science, inventor of the ophthalmoscope.
    [br]
    Constrained by poverty despite displaying considerable gifts, particularly in the realm of mathematics, he became a surgeon in the Prussian Army but was able to undertake research; in 1842 he wrote a thesis on the discovery of nerve cells in ganglia. He became Professor of Physiology in Königsberg (now Kaliningrad, Russia) in 1849. moving to a similar post in Bonn in 1855, to Heidelberg in 1858, and the Chair of Physic in Berlin in 1871. This latter included the directorship of the physicotechnical institute at Charlottenburg.
    His investigations over the years encompassed almost the whole field of science, including physiology, physiological optics, physiological acoustics, chemistry, mathematics, electricity and magnetism, meteorology and theoretical mechanics. He also made important additions to the understanding of putrefaction and fermentation.
    Helmholtz's contributions to the understanding of vision and optics ranged widely, but one of the most significant was the definitive development of the ophthalmoscope in 1851. Incorporating some of the aspects of Babbage's original suggestions (which were not brought to practical fruition), his instrument inaugurated a new diagnostic era in ophthalmology, particularly when his method of direct ophthalmoscopy was supplemented by the indirect method of Ruete. His personal life was uneventful, in contrast to his inventive achievements, which were perhaps unequalled in scope in his century. Michael Faraday's tribute, "the absolute simplicity, modesty and untroubled purity of his disposition had a charm such as I have never encountered in another man", is therefore all the more to be valued.
    [br]
    Bibliography
    1850. "The ophthalmoscope", Physikalische Gesellschaft, Berlin.
    1851. Beschreibung eines Augen-Spiegels zur Untersuchung der Netzhaut im lebenden Auge, Berlin. 1856–66, Physiological Optics (2 vols).
    Further Reading
    L.Konigsberger, 1906, trans. F.A.Welby, Hermann von Helmholtz, Oxford.
    MG

    Biographical history of technology > Helmholtz, Hermann Ludwig Ferdinand von

  • 63 Hertz, Heinrich Rudolph

    [br]
    b. 22 February 1857 Hamburg, Germany
    d. 1 January 1894 Bonn, Germany
    [br]
    German physicist who was reputedly the first person to transmit and receive radio waves.
    [br]
    At the age of 17 Hertz entered the Gelehrtenschule of the Johaneums in Hamburg, but he left the following year to obtain practical experience for a year with a firm of engineers in Frankfurt am Main. He then spent six months at the Dresden Technical High School, followed by year of military service in Berlin. At this point he decided to switch from engineering to physics, and after a year in Munich he studied physics under Helmholtz at the University of Berlin, gaining his PhD with high honours in 1880. From 1883 to 1885 he was a privat-dozent at Kiel, during which time he studied the electromagnetic theory of James Clerk Maxwell. In 1885 he succeeded to the Chair in Physics at Karlsruhe Technical High School. There, in 1887, he constructed a rudimentary transmitter consisting of two 30 cm (12 in.) rods with metal balls separated by a 7.5 mm (0.3 in.) gap at the inner ends and metallic plates at the outer ends, the whole assembly being mounted at the focus of a large parabolic metal mirror and the two rods being connected to an induction coil. At the other side of his laboratory he placed a 70 cm (27½ in.) diameter wire loop with a similar air gap at the focus of a second metal mirror. When the induction coil was made to create a spark across the transmitter air gap, he found that a spark also occurred at the "receiver". By a series of experiments he was not only able to show that the invisible waves travelled in straight lines and were reflected by the parabolic mirrors, but also that the vibrations could be refracted like visible light and had a similar wavelength. By this first transmission and reception of radio waves he thus confirmed the theoretical predictions made by Maxwell some twenty years earlier. It was probably in his experiments with this apparatus in 1887 that Hertz also observed that the voltage at which a spark was able to jump a gap was significantly reduced by the presence of ultraviolet light. This so-called photoelectric effect was subsequently placed on a theoretical basis by Albert Einstein in 1905. In 1889 he became Professor of Physics at the University of Bonn, where he continued to investigate the nature of electric discharges in gases at low pressure until his death after a long and painful illness. In recognition of his measurement of radio and other waves, the international unit of frequency of an oscillatory wave, the cycle per second, is now universally known as the Hertz.
    [br]
    Principal Honours and Distinctions
    Royal Society Rumford Medal 1890.
    Bibliography
    Much of Hertz's work, including his 1890 paper "On the fundamental equations of electrodynamics for bodies at rest", is recorded in three collections of his papers which are available in English translations by D.E.Jones et al., namely Electric Waves (1893), Miscellaneous Papers (1896) and Principles of Mechanics (1899).
    Further Reading
    J.G.O'Hara and W.Pricha, 1987, Hertz and the Maxwellians, London: Peter Peregrinus. J.Hertz, 1977, Heinrich Hertz, Memoirs, Letters and Diaries, San Francisco: San Francisco Press.
    KF

    Biographical history of technology > Hertz, Heinrich Rudolph

  • 64 Hosking, William

    SUBJECT AREA: Civil engineering
    [br]
    b. 1800
    d. 1861
    [br]
    Australian architect and engineer.
    [br]
    William Hosking was appointed Professor of'the arts and construction' at King's College, London, in 1840. He was an architect and engineer who moved to England in 1819 after working as a builder in Sydney. He thus represents an unusually early example of the reverse migration of professional talent between Britain and its colonies. He exhibited drawings in London, becoming a Fellow of the Society of Antiquaries in 1830 and Fellow of the Royal Institution of British Architects in 1835. He was then caught up, like so many of his contemporaries with engineering ability, in railway building, working on the West London Railway. From 1840 to his death in 1861 he occupied the Chair at King's College, making a pioneering contribution to the development of engineering education in Britain. He published his Theory, Practice and Architecture of Bridges in 1843, and contributed to the design for the British Museum reading room.
    [br]
    Principal Honours and Distinctions
    Fellow of the Society of Antiquaries 1830. FRIBA 1835.
    Bibliography
    1843, Theory, Practice and Architecture of Bridges.
    Further Reading
    Dictionary of National Biography, London.
    AB

    Biographical history of technology > Hosking, William

  • 65 Lodge, Sir Oliver Joseph

    [br]
    b. 12 June 1851 Penkhull, Staffordshire, England
    d. 22 August 1940 Lake, near Salisbury, Wiltshire, England
    [br]
    English physicist who perfected Branly's coherer; said to have given the first public demonstration of wireless telegraphy.
    [br]
    At the age of 8 Lodge entered Newport Grammar School, and in 1863–5 received private education at Coombs in Suffolk. He then returned to Staffordshire, where he assisted his father in the potteries by working as a book-keeper. Whilst staying with an aunt in London in 1866–7, he attended scientific lectures and became interested in physics. As a result of this and of reading copies of English Mechanic magazine, when he was back home in Hanley he began to do experiments and attended the Wedgewood Institute. Returning to London c. 1870, he studied initially at the Royal College of Science and then, from 1874, at University College, London (UCL), at the same time attending lectures at the Royal Institution.
    In 1875 he obtained his BSc, read a paper to the British Association on "Nodes and loops in chemical formulae" and became a physics demonstrator at UCL. The following year he was appointed a physics lecturer at Bedford College, completing his DSc in 1877. Three years later he became Assistant Professor of Mathematics at UCL, but in 1881, after only two years, he accepted the Chair of Experimental Physics at the new University College of Liverpool. There began a period of fruitful studies of electricity and radio transmission and reception, including development of the lightning conductor, discovery of the "coherent" effect of sparks and improvement of Branly's coherer, and, in 1894, what is said to be the first public demonstration of the transmission and reception (using a coherer) of wireless telegraphy, from Lewis's department store to the clock tower of Liverpool University's Victoria Building. On 10 May 1897 he filed a patent for selective tuning by self-in-ductance; this was before Marconi's first patent was actually published and its priority was subsequently upheld.
    In 1900 he became the first Principal of the new University of Birmingham, where he remained until his retirement in 1919. In his later years he was increasingly interested in psychical research.
    [br]
    Principal Honours and Distinctions
    Knighted 1902. FRS 1887. Royal Society Council Member 1893. President, Society for Psychical Research 1901–4, 1932. President, British Association 1913. Royal Society Rumford Medal 1898. Royal Society of Arts Albert Medal 1919. Institution of Electrical Engineers Faraday Medal 1932. Fourteen honorary degrees from British and other universities.
    Bibliography
    1875, "The flow of electricity in a plane", Philosophical Magazine (May, June and December).
    1876, "Thermo-electric phenomena", Philosophical Magazine (December). 1888, "Lightning conductors", Philosophical Magazine (August).
    1889, Modern Views of Electricity (lectures at the Royal Institution).
    10 May 1897, "Improvements in syntonized telegraphy without line wires", British patent no. 11,575, US patent no. 609,154.
    1898, "Radio waves", Philosophical Magazine (August): 227.
    1931, Past Years, An Autobiography, London: Hodder \& Stoughton.
    Further Reading
    W.P.Jolly, 1974, Sir Oliver Lodge, Psychical Resear cher and Scientist, London: Constable.
    E.Hawks, 1927, Pioneers of Wireless, London: Methuen.
    KF

    Biographical history of technology > Lodge, Sir Oliver Joseph

  • 66 Ludwig, Karl Friedrich Wilhelm

    SUBJECT AREA: Medical technology
    [br]
    b. 29 December 1816 Wittenhausen, Breslau, Germany (now Wroclaw, Poland)
    d. 23 April 1895 Leipzig, Saxony, Germany
    [br]
    German physiologist, inventor of the kymograph for the measurement of blood pressure, early experimenter in tissue grafting.
    [br]
    He graduated MD from Marburg and in 1846 was appointed Professor of Comparative Anatomy. He later held the Chairs of Anatomy and Physiology at Zurich, in 1849, and of Physiology and Zoology at Vienna, in 1855. In 1865 he was appointed to the Chair of Physiology at Leipzig and founded the Physiological Institute named after him.
    Renowned as a teacher, who often published under his pupils' names, his field of research was wide-ranging and he was an inspiration to many future distinguished names. In 1847 he invented the kymograph, an instrument which permitted the recording of variations in blood pressure. He supplemented this in 1867 with the "Stromuhr", with which the volume of blood passing through a blood vessel could be measured. He was also much involved in the elucidation of kidney function, and the kidney tubules are named after him.
    [br]
    Bibliography
    1847, "Beiträge zur Kenntnis des Einflußes der Respirationsbewegungen auf den Blutlauf im Aortensystem" Arch. Anat. Physiol. wiss. Med.
    Further Reading
    1852–6, Textbook of Human Physiology.
    MG

    Biographical history of technology > Ludwig, Karl Friedrich Wilhelm

  • 67 MacNeill, Sir John Benjamin

    [br]
    b. 1793 (?) Mount Pleasant, near Dundalk, Louth, Ireland
    d. 2 March 1880
    [br]
    Irish railway engineer and educator.
    [br]
    Sir John MacNeill became a pupil of Thomas Telford and served under him as Superintendent of the Southern Division of the Holyhead Road from London to Shrewsbury. In this capacity he invented a "Road Indicator" or dynamometer. Like other Telford followers, he viewed the advent of railways with some antipathy, but after the death of Telford in 1834 he quickly became involved in railway construction and in 1837 he was retained by the Irish Railway Commissioners to build railways in the north of Ireland (Vignoles received the commission for the south). Much of his subsequent career was devoted to schemes for Irish railways, both those envisaged by the Commissioners and other private lines with more immediately commercial objectives. He was knighted in 1844 on the completion of the Dublin \& Drogheda Railway along the east coast of Ireland. In 1845 MacNeill lodged plans for over 800 miles (1,300 km) of Irish railways. Not all of these were built, many falling victim to Irish poverty in the years after the Famine, but he maintained a large staff and became financially embarrassed. His other schemes included the Grangemouth Docks in Scotland, the Liverpool \& Bury Railway, and the Belfast Waterworks, the latter completed in 1843 and subsequently extended by Bateman.
    MacNeill was an engineer of originality, being the person who introduced iron-lattice bridges into Britain, employing the theoretical and experimental work of Fairbairn and Eaton Hodgkinson (the Boyne Bridge at Drogheda had two such spans of 250ft (76m) each). He also devised the Irish railway gauge of 5 ft 2 in. (1.57 m). Consulted by the Board of Trinity College, Dublin, regarding a School of Engineering in 1842, he was made an Honorary LLD of the University and appointed the first Professor of Civil Engineering, but he relinquished the chair to his assistant, Samuel Downing, in 1846. MacNeill was a large and genial man, but not, we are told, "of methodical and business habit": he relied heavily on his subordinates. Blindness obliged him to retire from practice several years before his death. He was an early member of the Institution of Civil Engineers, joining in 1827, and was elected a Fellow of the Royal Society in 1838.
    [br]
    Principal Honours and Distinctions
    FRS 1838.
    Further Reading
    Dictionary of National Biography. Proceedings of the Institution of Civil Engineers
    73:361–71.
    AB

    Biographical history of technology > MacNeill, Sir John Benjamin

  • 68 Merivale, John Herman

    [br]
    b. mid-nineteenth century
    d. after 1895
    [br]
    English mining educator.
    [br]
    J.H.Merivale had the distinction of being elected to the first English professorship in mining when a chair in this subject was endowed by a group of prominent coal-mine owners at the Durham College of Science, Newcastle upon Tyne (then the University of Durham, but subsequently to become the nucleus of the University of Newcastle). He was the son of Dean Merivale, a distinguished Roman historian, and had been educated at Winchester. He had been the first student to register to train as a mining engineer at the school of science in Durham. He served as Professor for fifteen years, resigning in 1895 to become Manager of the Broomhill collieries. About a hundred students attended his classes in 1887–8, and the College acquired a reputation for supplying more Government Inspectors of Mines than any other institution.
    [br]
    Further Reading
    R.A.Buchanan, 1989, The Engineers, p. 173. C.E.Whiting, 1932, University of Durham, p. 197.
    AB

    Biographical history of technology > Merivale, John Herman

  • 69 Petzval, Josef Max

    [br]
    b. 1807 Spisska-Beila, Hungary
    d. 17 September 1891 Vienna, Austria
    [br]
    Hungarian mathematician and photographic-lens designer, inventor of the first "rapid" portrait lens.
    [br]
    Although born in Hungary, Petzval was the son of German schoolteacher. He studied engineering at the University of Budapest and after graduation was appointed to the staff as a lecturer. In 1835 he became the University's Professor of Higher Mathematics. Within a year he was offered a similar position at the more prestigious University of Vienna, a chair he was to occupy until 1884.
    The earliest photographic cameras were fitted with lenses originally designed for other optical instruments. All were characterized by small apertures, and the long exposures required by the early process were in part due to the "slow" lenses. As early as 1839, Petzval began calculations with the idea of producing a fast achromatic objective for photographic work. For technical advice he turned to the Viennese optician Peter Voigtländer, who went on to make the first Petzval portrait lens in 1840. It had a short focal length but an extremely large aperture for the day, enabling exposure times to be reduced to at least one tenth of that required with other contemporary lenses. The Petzval portrait lens was to become the basic design for years to come and was probably the single most important development in making portrait photography possible; by capturing public imagination, portrait photography was to drive photographic innovation during the early years.
    Petzval later fell out with Voigtländer and severed his connection with the company in 1845. When Petzval was encouraged to design a landscape lens in the 1850s, the work was entrusted to another Viennese optician, Dietzler. Using some early calculations by Petzval, Voigtländer was able to produce a similar lens, which he marketed in competition, and an acrimonious dispute ensued. Petzval, embittered by the quarrel and depressed by a burglary which destroyed years of records of his optical work, abandoned optics completely in 1862 and devoted himself to acoustics. He retired from his professorship on his seventieth birthday, respected by his colleagues but unloved, and lived the life of a recluse until his death.
    [br]
    Principal Honours and Distinctions
    Member of the Hungarian Academy of Science 1873.
    Further Reading
    J.M.Eder, 1945, History of Photography, trans. E. Epstean, New York (provides details of Petzval's life and work; Eder claims he was introduced to Petzval by mutual friends and succeeded in obtaining personal data).
    Rudolf Kingslake, 1989, A History of the Photographic Lens, Boston (brief biographical details).
    L.W.Sipley, 1965, Photography's Great Inventors, Philadelphia (brief biographical details).
    JW

    Biographical history of technology > Petzval, Josef Max

  • 70 Quincke, Heinrich Irenaeus

    SUBJECT AREA: Medical technology
    [br]
    b. 28 August 1842 Frankfurt an der Oder, Germany
    d. 19 May 1922 Frankfurt am Main, Germany
    [br]
    German physician, inventor of the technique of lumbar puncture.
    [br]
    Quincke trained in medicine at Berlin, Würzburg and Heidelberg Universities. Following three years as a postgraduate at the University of Berlin, he was appointed Professor of Internal Medicine at Berne. Five years later he was appointed to the Chair in Kiel that he held for the next thirty years.
    During this time his researches included the study of angioneurotic oedema, blood pressure and the systemic responses to carotid sinus stimulation. His studies of lumbar puncture procedures in animals led to the use of the technique in humans, and in 1911 he reported on the results of using the procedure twenty-two times in ten patients.
    [br]
    Bibliography
    1902, Die Technik der Lumbarpunktion.
    1890, "Lumbar Puncture in Hydrocephalus", Klin. Wschr.
    MG

    Biographical history of technology > Quincke, Heinrich Irenaeus

  • 71 Rankine, William John Macquorn

    [br]
    b. 5 July 1820 Edinburgh, Scotland
    d. 1872
    [br]
    [br]
    Rankine was educated at Ayr Academy and Glasgow High School, although he appears to have learned much of his basic mathematics and physics through private study. He attended Edinburgh University and then assisted his father, who was acting as Superintendent of the Edinburgh and Dalkeith Railway. This introduction to engineering practice was followed in 1838 by his appointment as a pupil to Sir John MacNeill, and for the next four years he served under MacNeill on his Irish railway projects. While still in his early twenties, Rankine presented pioneering papers on metal fatigue and other subjects to the Institution of Civil Engineers, for which he won a prize, but he appears to have resigned from the Civils in 1857 after an argument because the Institution would not transfer his Associate Membership into full Membership. From 1844 to 1848 Rankine worked on various projects for the Caledonian Railway Company, but his interests were becoming increasingly theoretical and a series of distinguished papers for learned societies established his reputation as a leading scholar in the new science of thermodynamics. He was elected Fellow of the Royal Society in 1853. At the same time, he remained intimately involved with practical questions of applied science, in shipbuilding, marine engineering and electric telegraphy, becoming associated with the influential coterie of fellow Scots such as the Thomson brothers, Napier, Elder, and Lewis Gordon. Gordon was then the head of a large and successful engineering practice, but he was also Regius Professor of Engineering at the University of Glasgow, and when he retired from the Chair to pursue his business interests, Rankine, who had become his Assistant, was appointed in his place.
    From 1855 until his premature death in 1872, Rankine built up an impressive engineering department, providing a firm theoretical basis with a series of text books that he wrote himself and most of which remained in print for many decades. Despite his quarrel with the Institution of Civil Engineers, Rankine took a keen interest in the institutional development of the engineering profession, becoming the first President of the Institution of Engineers and Shipbuilders in Scotland, which he helped to establish in 1857. Rankine campaigned vigorously for the recognition of engineering studies as a full university degree at Glasgow, and he achieved this in 1872, the year of his death. Rankine was one of the handful of mid-nineteenth century engineers who virtually created engineering as an academic discipline.
    [br]
    Principal Honours and Distinctions
    FRS 1853. First President, Institution of Engineers and Shipbuilders in Scotland, 1857.
    Bibliography
    1858, Manual of Applied Mechanics.
    1859, Manual of the Steam Engine and Other Prime Movers.
    1862, Manual of Civil Engineering.
    1869, Manual of Machinery and Millwork.
    Further Reading
    J.Small, 1957, "The institution's first president", Proceedings of the Institution of Engineers and Shipbuilders in Scotland: 687–97.
    H.B.Sutherland, 1972, Rankine. His Life and Times.
    AB

    Biographical history of technology > Rankine, William John Macquorn

  • 72 Russell, John Scott

    SUBJECT AREA: Ports and shipping
    [br]
    b. 9 May 1808 Parkhead, near Glasgow, Scotland
    d. 8 June 1882 Isle of Wight, England
    [br]
    Scottish engineer, naval architect and academic.
    [br]
    A son of the manse, Russell was originally destined for the Church and commenced studies at the University of St Andrews, but shortly afterwards he transferred to Glasgow, graduating MA in 1825 when only 17 years old. He began work as a teacher in Edinburgh, working up from a school to the Mechanics Institute and then in 1832 to the University, where he took over the classes in natural philosophy following the death of the professor. During this period he designed and advised on the application of steam power to road transport and to the Forth and Clyde Canal, thereby awakening his interest in ships and naval architecture.
    Russell presented papers to the British Association over several years, and one of them, The Wave Line Theory of Ship Form (although now superseded), had great influence on ship designers of the time and helped to establish the formal study of hydromechanics. With a name that was becoming well known, Russell looked around for better opportunities, and on narrowly missing appointment to the Chair of Mathematics at Edinburgh University he joined the upand-coming Clyde shipyard of Caird \& Co., Greenock, as Manager in 1838.
    Around 1844 Russell and his family moved to London; following some business problems he was in straitened circumstances. However, appointment as Secretary to the Committee setting up the Great Exhibition of 1851 eased his path into London's intellectual society and allowed him to take on tasks such as, in 1847, the purchase of Fairbairn's shipyard on the Isle of Dogs and the subsequent building there of I.K. Brunel's Great Eastern steamship. This unhappy undertaking was a millstone around the necks of Brunel and Russell and broke the health of the former. With the yard failing to secure the order for HMS Warrior, the Royal Navy's first ironclad, Russell pulled out of shipbuilding and for the remainder of his life was a designer, consultant and at times controversial, but at all times polished and urbane, member of many important committees and societies. He is remembered as one of the founders of the Institution of Naval Architects in 1860. His last task was to design a Swiss Lake steamer for Messrs Escher Wyss, a company that coincidentally had previously retained Sir William Fairbairn.
    [br]
    Principal Honours and Distinctions
    FRS 1847.
    Bibliography
    John Scott Russell published many papers under the imprint of the British Association, the Royal Society of Arts and the Institution of Naval Architects. His most impressive work was the mammoth three-volume work on shipbuilding published in London in 1865 entitled The Modern System of Naval Architecture. Full details and plans of the Great Eastern are included.
    Further Reading
    G.S.Emmerson, 1977, John Scott Russell, a Great Victorian Engineer and Naval Architect, London: Murray
    FMW

    Biographical history of technology > Russell, John Scott

См. также в других словарях:

  • Chair of Gaelic, Glasgow — Chair of Gaelic University of Glasgow Incumbent Roibeard Ó Maolalaigh …   Wikipedia

  • Chair of Jurisprudence, Glasgow — Chair of Jurisprudence University of Glasgow Incumbent Scott Veitch since 1999 …   Wikipedia

  • Chair of Celtic, Glasgow — Chair of Celtic University of Glasgow Incumbent Thomas Clancy …   Wikipedia

  • Professor Moriarty — Sherlock Holmes character Professor Moriarty, illustration by Sidney Paget which accompanied the original publication of The Final Problem . Last appearance …   Wikipedia

  • Chair of Mercantile Law, Glasgow — Chair of Mercantile Law University of Glasgow Incumbent Vacant since 1993 …   Wikipedia

  • Chair — (ch[^a]r), n. [OE. chaiere, chaere, OF. chaiere, chaere, F. chaire pulpit, fr. L. cathedra chair, armchair, a teacher s or professor s chair, Gr. ? down + ? seat, ? to sit, akin to E. sit. See {Sit}, and cf. {Cathedral}, {chaise}.] [1913 Webster] …   The Collaborative International Dictionary of English

  • Chair days — Chair Chair (ch[^a]r), n. [OE. chaiere, chaere, OF. chaiere, chaere, F. chaire pulpit, fr. L. cathedra chair, armchair, a teacher s or professor s chair, Gr. ? down + ? seat, ? to sit, akin to E. sit. See {Sit}, and cf. {Cathedral}, {chaise}.]… …   The Collaborative International Dictionary of English

  • Chair of Conveyancing, Glasgow — Chair of Conveyancing University of Glasgow Incumbent Robert Rennie since 1993 …   Wikipedia

  • Chair (official) — Chair is a term frequently used for the highest office in an assembly such as a committee, commission, or board. The term is also applied to the holder of the office. While the term chairman remains in widespread use, chairperson , and chair have …   Wikipedia

  • Professor of Divinity, Glasgow — Professor of Divinity is an academic position at the University of Glasgow.Although divinity was taught from the foundations of the university in 1451, it was in 1577, as part of James VI s Nova Erectio, that a Chair was established, to be held… …   Wikipedia

  • Professor — For other uses, see Professor (disambiguation). A professor is a scholarly teacher; the precise meaning of the term varies by country. Literally, professor derives from Latin as a person who professes being usually an expert in arts or sciences;… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»