Перевод: с английского на все языки

со всех языков на английский

built+to+scale

  • 61 Bell, Revd Patrick

    [br]
    b. 1799 Auchterhouse, Scotland
    d. 22 April 1869 Carmyllie, Scotland
    [br]
    Scottish inventor of the first successful reaping machine.
    [br]
    The son of a Forfarshire tenant farmer, Patrick Bell obtained an MA from the University of St Andrews. His early association with farming kindled an interest in engineering and mechanics and he was to maintain a workshop not only on his father's farm, but also, in later life, at the parsonage at Carmyllie.
    He was still studying divinity when he invented his reaping machine. Using garden shears as the basis of his design, he built a model in 1827 and a full-scale prototype the following year. Not wishing the machine to be seen during his early experiments, he and his brother planted a sheaf of oats in soil laid out in a shed, and first tried the machine on this. It cut well enough but left the straw in a mess behind it. A canvas belt system was devised and another secret trial in the barn was followed by a night excursion into a field, where corn was successfully harvested.
    Two machines were at work during 1828, apparently achieving a harvest rate of one acre per hour. In 1832 there were ten machines at work, and at least another four had been sent to the United States by this time. Despite their success Bell did not patent his design, feeling that the idea should be given free to the world. In later years he was to regret the decision, feeling that the many badly-made imitations resulted in its poor reputation and prevented its adoption.
    Bell's calling took precedence over his inventive interests and after qualifying he went to Canada in 1833, spending four years in Fergus, Ontario. He later returned to Scotland and be-came the minister at Carmyllie, with a living of £150 per annum.
    [br]
    Principal Honours and Distinctions
    Late in the day he was honoured for his part in the development of the reaping machine. He received an honorary degree from the University of St Andrews and in 1868 a testimonial and £1,000 raised by public subscription by the Highland and Agricultural Society of Scotland.
    Bibliography
    1854, Journal of Agriculture (perhaps stung by other claims, Bell wrote his own account).
    Further Reading
    G.Quick and W.Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (gives an account of the development of harvesting machinery).
    L.J.Jones, 1979, History of Technology, pp. 101–48 (gives a critical assessment of the various claims regarding the originality of the invention).
    51–69 (provides a celebration of Bell's achievement on its centenary).
    AP

    Biographical history of technology > Bell, Revd Patrick

  • 62 Brennan, Louis

    [br]
    b. 28 January 1852 Castlebar, Ireland
    d. 17 January 1932 Montreux, Switzerland
    [br]
    Irish inventor of the Brennan dirigible torpedo, and of a gyroscopically balanced monorail system.
    [br]
    The Brennan family, including Louis, emigrated to Australia in 1861. He was an inventive genius from childhood, and while at Melbourne invented his torpedo. Within it were two drums, each with several miles of steel wire coiled upon it and mounted on one of two concentric propeller shafts. The propellers revolved in opposite directions. Wires were led out of the torpedo to winding drums on land, driven by high-speed steam engines: the faster the drums on shore were driven, the quicker the wires were withdrawn from the drums within the torpedo and the quicker the propellers turned. A steering device was operated by altering the speeds of the wires relative to one another. As finally developed, Brennan torpedoes were accurate over a range of 1 1/2 miles (2.4 km), in contrast to contemporary self-propelled torpedoes, which were unreliable at ranges over 400 yards (366 in).
    Brennan moved to England in 1880 and sold the rights to his torpedo to the British Government for a total of £110,000, probably the highest payment ever made by it to an individual inventor. Brennan torpedoes became part of the defences of many vital naval ports, but never saw active service: improvement of other means of defence meant they were withdrawn in 1906. By then Brennan was deeply involved in the development of his monorail. The need for a simple and cheap form of railway had been apparent to him when in Australia and he considered it could be met by a ground-level monorail upon which vehicles would be balanced by gyroscopes. After overcoming many manufacturing difficulties, he demonstrated first a one-eighth scale version and then a full-size, electrically driven vehicle, which ran on its single rail throughout the summer of 1910 in London, carrying up to fifty passengers at a time. Development had been supported financially by, successively, the War Office, the India Office and the Government of the Indian state of Jammu and Kashmir, which had no rail access; despite all this, however, no further financial support, government or commercial, was forthcoming.
    Brennan made many other inventions, worked on the early development of helicopters and in 1929 built a gyroscopically balanced, two-wheeled motor car which, however, never went into production.
    [br]
    Principal Honours and Distinctions
    Companion of the Bath 1892.
    Bibliography
    1878, British patent no. 3359 (torpedo) 1903, British patent no. 27212 (stability mechanisms).
    Further Reading
    R.E.Wilkes, 1973, Louis Brennan CB, 2 parts, Gillingham (Kent) Public Library. J.R.Day and B.C.Wilson, 1957, Unusual Railways, London: F.Muller.
    PJGR

    Biographical history of technology > Brennan, Louis

  • 63 Brown, Samuel

    [br]
    b. unknown
    d. 1849 England
    [br]
    English cooper, inventor of a gas vacuum engine.
    [br]
    Between the years 1823 and 1833, Brown achieved a number of a firsts as a pioneer of internal-combustion engines. In 1824 he built a full-scale working model of a pumping engine; in 1826, a vehicle fitted with a gas vacuum engine ascended Shooters Hill in Kent; and in 1827 he conducted trials of a motor-driven boat on the Thames that were witnessed by Lords of the Admiralty. The principle of Brown's engine had been demonstrated by Cecil in 1820. A burning gas flame was extinguished within a closed cylinder, creating a partial vacuum; atmospheric pressure was then utilized to produce the working stroke. By 1832 a number of Brown's engines in use for pumping water were reported, the most notable being at Croydon Canal. However, high fuel consumption and running costs prevented a wide acceptance of Brown's engines, and a company formed in 1825 was dissolved only two years later. Brown continued alone with his work until his death.
    [br]
    Bibliography
    1823, British patent no. 4,874 (gas vacuum engine).
    1826, British patent no. 5,350 (improved gas vacuum engine).
    1846, British patent no. 11,076, "Improvements in Gas Engines and in Propelling Carriages and Vessels" (no specification was enrolled).
    Further Reading
    Various discussions of Brown's engines can be found in Mechanics Magazine (1824) 2:360, 385; (1825) 3:6; (1825) 4:19, 309; (1826) 5:145; (1826) 6:79; (1827) 7:82–134; (1832) 17:273.
    The Engineer 182:214.
    A.K.Bruce, Samuel Brown and the Gas Engine.
    Dugald Clerk, 1895, The Gas and Oil Engine, 6th edn, London, pp. 2–3.
    KAB

    Biographical history of technology > Brown, Samuel

  • 64 Bulleid, Oliver Vaughan Snell

    [br]
    b. 19 September 1882 Invercargill, New Zealand
    d. 25 April 1970 Malta
    [br]
    New Zealand (naturalized British) locomotive engineer noted for original experimental work in the 1940s and 1950s.
    [br]
    Bulleid's father died in 1889 and mother and son returned to the UK from New Zealand; Bulleid himself became a premium apprentice under H.A. Ivatt at Doncaster Works, Great Northern Railway (GNR). After working in France and for the Board of Trade, Bulleid returned to the GNR in 1912 as Personal Assistant to Chief Mechanical Engineer H.N. Gresley. After a break for war service, he returned as Assistant to Gresley on the latter's appointment as Chief Mechanical Engineer of the London \& North Eastern Railway in 1923. He was closely associated with Gresley during the late 1920s and early 1930s.
    In 1937 Bulleid was appointed Chief Mechanical Engineer of the Southern Railway (SR). Concentration of resources on electrification had left the Southern short of up-to-date steam locomotives, which Bulleid proceeded to provide. His first design, the "Merchant Navy" class 4–6– 2, appeared in 1941 with chain-driven valve gear enclosed in an oil-bath, and other novel features. A powerful "austerity" 0−6−0 appeared in 1942, shorn of all inessentials to meet wartime conditions, and a mixed-traffic 4−6−2 in 1945. All were largely successful.
    Under Bulleid's supervision, three large, mixed-traffic, electric locomotives were built for the Southern's 660 volt DC system and incorporated flywheel-driven generators to overcome the problem of interruptions in the live rail. Three main-line diesel-electric locomotives were completed after nationalization of the SR in 1948. All were carried on bogies, as was Bulleid's last steam locomotive design for the SR, the "Leader" class 0−6−6−0 originally intended to meet a requirement for a large, passenger tank locomotive. The first was completed after nationalization of the SR, but the project never went beyond trials. Marginally more successful was a double-deck, electric, suburban, multiple-unit train completed in 1949, with alternate high and low compartments to increase train capacity but not length. The main disadvantage was the slow entry and exit by passengers, and the type was not perpetuated, although the prototype train ran in service until 1971.
    In 1951 Bulleid moved to Coras Iompair Éireann, the Irish national transport undertaking, as Chief Mechanical Engineer. There he initiated a large-scale plan for dieselization of the railway system in 1953, the first such plan in the British Isles. Simultaneously he developed, with limited success, a steam locomotive intended to burn peat briquettes: to burn peat, the only native fuel, had been a long-unfulfilled ambition of railway engineers in Ireland. Bulleid retired in 1958.
    [br]
    Bibliography
    Bulleid took out six patents between 1941 and 1956, covering inter alia valve gear, boilers, brake apparatus and wagon underframes.
    Further Reading
    H.A.V.Bulleid, 1977, Bulleid of the Southern, Shepperton: Ian Allan (a good biography written by the subject's son).
    C.Fryer, 1990, Experiments with Steam, Wellingborough: Patrick Stephens (provides details of the austerity 0–6–0, the "Leader" locomotive and the peat-burning locomotive: see Chs 19, 20 and 21 respectively).
    PJGR

    Biographical history of technology > Bulleid, Oliver Vaughan Snell

  • 65 Churchward, George Jackson

    [br]
    b. 31 January 1857 Stoke Gabriel, Devon, England
    d. 19 December 1933 Swindon, Wiltshire, England
    [br]
    English mechanical engineer who developed for the Great Western Railway a range of steam locomotives of the most advanced design of its time.
    [br]
    Churchward was articled to the Locomotive Superintendent of the South Devon Railway in 1873, and when the South Devon was absorbed by the Great Western Railway in 1876 he moved to the latter's Swindon works. There he rose by successive promotions to become Works Manager in 1896, and in 1897 Chief Assistant to William Dean, who was Locomotive Carriage and Wagon Superintendent, in which capacity Churchward was allowed extensive freedom of action. Churchward eventually succeeded Dean in 1902: his title changed to Chief Mechanical Engineer in 1916.
    In locomotive design, Churchward adopted the flat-topped firebox invented by A.J.Belpaire of the Belgian State Railways and added a tapered barrel to improve circulation of water between the barrel and the firebox legs. He designed valves with a longer stroke and a greater lap than usual, to achieve full opening to exhaust. Passenger-train weights had been increasing rapidly, and Churchward produced his first 4–6– 0 express locomotive in 1902. However, he was still developing the details—he had a flair for selecting good engineering practices—and to aid his development work Churchward installed at Swindon in 1904 a stationary testing plant for locomotives. This was the first of its kind in Britain and was based on the work of Professor W.F.M.Goss, who had installed the first such plant at Purdue University, USA, in 1891. For comparison with his own locomotives Churchward obtained from France three 4–4–2 compound locomotives of the type developed by A. de Glehn and G. du Bousquet. He decided against compounding, but he did perpetuate many of the details of the French locomotives, notably the divided drive between the first and second pairs of driving wheels, when he introduced his four-cylinder 4–6–0 (the Star class) in 1907. He built a lone 4–6–2, the Great Bear, in 1908: the wheel arrangement enabled it to have a wide firebox, but the type was not perpetuated because Welsh coal suited narrow grates and 4–6–0 locomotives were adequate for the traffic. After Churchward retired in 1921 his successor, C.B.Collett, was to enlarge the Star class into the Castle class and then the King class, both 4–6–0s, which lasted almost as long as steam locomotives survived in service. In Church ward's time, however, the Great Western Railway was the first in Britain to adopt six-coupled locomotives on a large scale for passenger trains in place of four-coupled locomotives. The 4–6–0 classes, however, were but the most celebrated of a whole range of standard locomotives of advanced design for all types of traffic and shared between them many standardized components, particularly boilers, cylinders and valve gear.
    [br]
    Further Reading
    H.C.B.Rogers, 1975, G.J.Churchward. A Locomotive Biography, London: George Allen \& Unwin (a full-length account of Churchward and his locomotives, and their influence on subsequent locomotive development).
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Shepperton: Ian Allan, Ch. 20 (a good brief account).
    Sir William Stanier, 1955, "George Jackson Churchward", Transactions of the Newcomen
    Society 30 (a unique insight into Churchward and his work, from the informed viewpoint of his former subordinate who had risen to become Chief Mechanical Engineer of the London, Midland \& Scottish Railway).
    PJGR

    Biographical history of technology > Churchward, George Jackson

  • 66 Laird, John

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1805 (?) Greenock, Scotland
    d. 26 October 1874 Birkenhead, England
    [br]
    Scottish pioneer of large-scale iron shipbuilding.
    [br]
    When only 5 years old, Laird travelled with his family to Merseyside, where his father William Laird was setting up a ship-repair yard. Fourteen years later his father established the Birkenhead Ironworks for ship and engine repairs, which in later years was to achieve great things with John Laird at the helm. John Laird trained as a solicitor, but instead of going into practice he joined the family business. Between 1829 and 1832 they built three iron barges for inland use in Ireland; this form of construction had become less of a novelty and followed the example set by Thomas Wilson in 1819, but Laird was fired with enthusiasm for this mode of construction. New iron ships followed in rapid succession, with two of especial note: the paddle steamer Lady Lansdown of 1833, which was dismantled and later re-erected on the river Shannon, becoming one of Britain's first "knock-down" contracts; and the early steamer Robert F.Stockton, which had a double Ericsson screw propeller and the first iron transverse watertight bulkheads. With the good name of the shipyard secure, they received orders from MacGregor Laird (John Laird's younger brother) for iron ships for the West African trade. This African connection was to grow and the yard's products were to include the Ma Roberts for Dr David Livingstone. Being of steel and with constant groundings on African rivers, this craft only lasted 18 months in steady operation. In 1858 a new yard dedicated to iron construction was opened at Monk's Ferry. In 1861 John Laird was returned as the first Member of Parliament for Birkenhead and his sons took over the day-to-day affairs of the business. Laird was to suffer acute embarrassment by questions at Westminster over the building in the Birkenhead Works of the United States Confederate raider Alabama in 1862. In 1874 he suffered serious injuries in a riding accident; his health declined and he died later that year.
    [br]
    Bibliography
    1858, with Fairbairn, Forrester, Lang and Sea-ward, Steam Navigation, Vessels of Iron and Wood, the Steam Engine, etc. 2 vols, London: Weale.
    FMW

    Biographical history of technology > Laird, John

  • 67 McKay, Hugh Victor

    [br]
    b. c. 1866 Drummartin, Victoria, Australia
    d. 21 May 1926 Australia
    [br]
    Australian inventor and manufacturer of harvesting and other agricultural equipment.
    [br]
    A farmer's son, at the age of 17 McKay developed modifications to the existing stripper harvester and created a machine that would not only strip the seed from standing corn, but was able to produce a threshed, winnowed and clean sample in one operation. The prototype was produced in 1884 and worked well on the two acres of wheat that had been set aside on the family farm. By arrangement with a Melbourne plough maker, five machines were made and sold for the 1885 season. In 1886 the McKay Harvester Company was formed, with offices at Ballarat, from which the machines, built by various companies, were sold. The business expanded quickly, selling sixty machines in 1888, and eventually rising to the production of nearly 2,000 harvesters in 1905. The name "Sunshine" was given to the harvester, and the "Sun" prefix was to appear on all other implements produced by the company as it diversified its production interests. In 1902 severe drought reduced machinery sales and left 2,000 harvesters unsold. McKay was forced to look to export markets to dispose of his surplus machines. By 1914 a total of 10,000 machines were being exported annually. During the First World War McKay was appointed to the Business Board of the Defence Department. Increases in the scale of production resulted in the company moving to Melbourne, where it was close to the port of entry of raw materials and was able to export the finished article more readily. In 1909 McKay produced one of the first gas-engined harvesters, but its cost prevented it from being more than an experimental prototype. By this time McKay was the largest agricultural machinery manufacturer in the Southern hemisphere, producing a wide range of implements, including binders. In 1916 McKay hired Headlie Taylor, who had developed a machine capable of harvesting fallen crops. The jointly developed machine was a major success, coming as it did in what would otherwise have been a disastrous Australian harvest. Further developments included the "Sun Auto-header" in 1923, the first of the harvesting machines to adopt the "T" configuration to be seen on modern harvesters. The Australian market was expanding fast and a keen rivalry developed between McKay and Massey Harris. Confronted by the tariff regulations with which the Australian Government had protected its indigenous machinery industry since 1906, Massey Harris sold all its Australian assets to the H.V. McKay company in 1930. Twenty-three years later Massey Ferguson acquired the old Sunshine works and was still operating from there in the 1990s.
    Despite a long-running history of wage disputes with his workforce, McKay established a retiring fund as well as a self-help fund for distressed cases. Before his death he created a charitable trust and requested that some funds should be made available for the "aerial experiments" which were to lead to the establishment of the Flying Doctor Service.
    [br]
    Principal Honours and Distinctions
    CBE.
    Further Reading
    Graeme Quick and Wesley Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (devotes a chapter to the unique development of harvesting machinery which took place in Australia).
    AP

    Biographical history of technology > McKay, Hugh Victor

  • 68 Messerschmitt, Willi E.

    SUBJECT AREA: Aerospace
    [br]
    b. 26 June 1898 Frankfurt-am-Main, Germany
    d. 17 September 1978 Munich, Germany
    [br]
    German aircraft designer noted for successful fighters such as the Bf 109, one of the world's most widely produced aircraft.
    [br]
    Messerschmitt studied engineering at the Munich Institute of Tchnology and obtained his degree in 1923. By 1926 he was Chief Designer at the Bayerische Flugzeugwerke in Augsburg. Due to the ban on military aircraft in Germany following the First World War, his early designs included gliders, light aircraft, and a series of high-wing airliners. He began to make a major impact on German aircraft design once Hitler came to power and threw off the shackles of the Treaty of Versailles, which so restricted Germany's armed forces. In 1932 he bought out the now-bankrupt Bayerische Flugzeugwerke, but initially, because of enmity between himself and the German aviation minister, was not invited to compete for an air force contract for a single-engined fighter. However, in 1934 Messerschmitt designed the Bf 108 Taifun, a small civil aircraft with a fighter-like appearance. This displayed the quality of his design and the German air ministry was forced to recognize him. As a result, he unveiled the famous Bf 109 fighter which first flew in August 1935; it was used during the Spanish Civil War in 1936–9, and was to become one of the foremost combat aircraft of the Second World War. In 1938, after several name changes, the company became Messerschmitt Aktien-Gesellschaft (and hence a change of prefix from Bf to Me). During April 1939 a Messerschmitt aircraft broke the world air-speed record at 755.14 km/h (469.32 mph): it was entered in the FAI records as a Bf 109R, but was more accurately a new design designated Me 209V-1.
    During the Second World War, the 5/70P was progressively improved, and eventually almost 35,000 were built. Other successful fighters followed, such as the twin-engined Me 110 which also served as a bomber and night fighter. The Messerschmitt Me 262 twin-engined jet fighter, the first jet aircraft in the world to enter service, flew during the early years of the war, but it was never given a high priority by the High Command and only a small number were in service when the war ended. Another revolutionary Messerschmitt AG design was the Me 163 Komet, the concept of Professor Alexander Lippisch who had joined Messerschmitt's company in 1939; this was the first rocket-propelled fighter to enter service. It was a small tailless design capable of 880 km/hr (550 mph), but its duration under power was only about 10 minutes and it was very dangerous to fly. From late 1944 onwards it was used to intercept the United States Air Force bombers during their daylight raids. At the other end of the scale, Messerschmitt produced the Me 321 Gigant, a huge transport glider which was towed behind a flight of three Me 110s. Later it was equipped with six engines, but it was an easy target for allied fighters. This was a costly white elephant, as was his high-speed twin-engined Me 210 fighter-bomber project which nearly made his company bankrupt. Nevertheless, he was certainly an innovator and was much admired by Hitler, who declared that he had "the skull of a genius", because of the Me 163 Komet rocket-powered fighter and the Me 262.
    At the end of the war Messerschmitt was detained by the Americans for two years. In 1952 Messerschmitt became an aviation adviser to the Spanish government, and his Bf109 was produced in Spain as the Hispano Buchon for a number of years and was powered by Rolls-Royce Merlin engines. A factory was also constructed in Egypt to produce aircraft to Messerschmitt's designs. His German company, banned from building aircraft, produced prefabricated houses, sewing machines and, from 1953 to 1962, a series of bubble-cars: the KR 175 (1953–55) and the KR 200 (1955–62) were single-cylinder three-wheeled bubble-cars, and the Tiger (1958–62) was a twin-cylinder, 500cc four-wheeler. In 1958 Messerschmitt resumed aircraft construction in Germany and later became the Honorary Chairman of the merged Messerschmitt-Bölkow-Blohm company (now part of the Franco-German Eurocopter company).
    [br]
    Further Reading
    van Ishoven, 1975, Messerschmitt. Aircraft Designer, London. J.Richard Smith, 1971, Messerschmitt. An Air-craft Album, London.
    Anthony Pritchard, 1975, Messerschmitt, London (describes Messerschmitt aircraft).
    JDS / CM

    Biographical history of technology > Messerschmitt, Willi E.

  • 69 Moore, Hiram

    [br]
    b. 19 July 1801 New England, USA
    d. c. 1874 Wisconsin, USA
    [br]
    American farmer and inventor who developed the first combine harvester.
    [br]
    Hiram Moore was the son of a New England stonemason. In 1831 he moved to West Michigan to farm, and he and his two brothers settled in Climax in Kalamazoo County.
    Stimulated by a conversation with his neighbour, John Hascall, Moore made a model harvesting machine, which he patented in 1834. By the following year he had built a full-scale machine, but it broke down very quickly. In 1835 he successfully harvested 3 acres left standing for the purpose. Each year alterations and additions were made to the machine, and by 1839 over 50 acres were successfully harvested and threshed in the one operation by the Moore-Hascall machine.
    During further developments which took place in the 1840s, Moore sold much of his interest to Senator Lucius Lyon. By the late 1840s this source of funding was no longer available, and attempts to extend the patent became embroiled in similar attempts by McCormick and Hussey and were blocked by rural pressures stemming from the fear that high machinery prices would ensue if the patents continued.
    Discouraged, Moore moved to Brandon, Wisconsin, where he farmed 600 acres. He was still developing various machines, but was no longer actively involved in the development of the combine harvester. He continued to work his own machine, with which he would cut just a few acres each year.
    [br]
    Further Reading
    Graeme Quick and Wesley Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (describes Hiram Moore's achievements in detail).
    AP

    Biographical history of technology > Moore, Hiram

  • 70 Somerset, Edward, 2nd Marquis of Worcester

    [br]
    b. 1601
    d. 3 April 1667 Lambeth (?), London, England
    [br]
    English inventor of a steam-operated pump for raising water, described in his work A Century of…Inventions.
    [br]
    Edward Somerset became 6th Earl and 2nd Marquis of Worcester and Titular Earl of Glamorgan. He was educated privately and then abroad, visiting Germany, Italy and France. He was made Councillor of Wales in 1633 and Deputy Lord Lieutenant of Monmouthshire in 1635. On the outbreak of the Civil War, he was commissioned to levy forces against the Scots in 1640. He garrisoned Raglan Castle for the King and was employed by Charles I to bring troops in from Ireland. He was declared an enemy of the realm by Parliament and was banished, remaining in France for some years. On the Restoration, he recovered most of his estates, principally in South Wales, and was able to devote most of his time to mechanical studies and experiments.
    Soon after 1626, he had employed the services of a skilled Dutch or German mechanic, Caspar Kaltoff, to make small-scale models for display to interested people. In 1638 he showed Charles I a 14 ft (4.3m) diameter wheel carrying forty weights that was claimed to have solved the problem of perpetual motion. He wrote his Century of the Names and Scantlings of Such Inventions as at Present I Can Call to Mind to have Tried and Perfected in 1655, but it was not published until 1663: no. 68 describes "An admirable and most forcible way to drive up water by fire", which has been claimed as an early steam-engine. Before the Civil War he made experiments at Raglan Castle, and after the war he built one of his engines at Vauxhall, London, where it raised water to a height of 40 ft (12 m). An Act of Parliament enabling Worcester to receive the benefit and profits of his water-commanding engine for ninety-nine years did not restore his fortunes. Descriptions of this invention are so vague that it cannot be reconstructed.
    [br]
    Bibliography
    1655, Century of the Names and Scantlings of Such Inventions as at Present I Can Call to Mind to have Tried and Perfected.
    Further Reading
    H.Dircks, 1865, The Life, Times and Scientific Labours of the Second Marquis of Worcester.
    Dictionary of National Biography, 1898, Vol. L, London: Smith Elder \& Co. (mainly covers his political career).
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press (discusses his steam engine invention).
    W.H.Thorpe, 1932–3, "The Marquis of Worcester and Vauxhall", Transactions of the Newcomen Society 13.
    RLH

    Biographical history of technology > Somerset, Edward, 2nd Marquis of Worcester

  • 71 Wedgwood, Josiah

    [br]
    baptized 12 July 1730 Burslem, Staffordshire, England
    d. 3 January 1795 Etruria Hall, Staffordshire, England
    [br]
    English potter and man of science.
    [br]
    Wedgwood came from prolific farming stock who, in the seventeenth century, had turned to pot-making. At the age of 9 his education was brought to an end by his father's death and he was set to work in one of the family potteries. Two years later an attack of smallpox left him with a weakness in his right knee which prevented him from working the potter's wheel. This forced his attention to other aspects of the process, such as design and modelling. He was apprenticed to his brother Thomas in 1744, and in 1752 was in partnership with Thomas Whieldon, a leading Staffordshire potter, until probably the first half of 1759, when he became a master potter and set up in business on his own account at Ivy House Works in Burslem.
    Wedgwood was then able to exercise to the full his determination to improve the quality of his ware. This he achieved by careful attention to all aspects of the work: artistic judgement of form and decoration; chemical study of the materials; and intelligent management of manufacturing processes. For example, to achieve greater control over firing conditions, he invented a pyrometer, a temperature-measuring device by which the shrinkage of prepared clay cylinders in the furnace gave an indication of the temperature. Wedgwood was the first potter to employ steam power, installing a Boulton \& Watt engine for crushing and other operations in 1782. Beyond the confines of his works, Wedgwood concerned himself in local issues such as improvements to the road and canal systems to facilitate transport of raw materials and products.
    During the first ten years, Wedgwood steadily improved the quality of his cream ware, known as "Queen's ware" after a set of ware was presented to Queen Charlotte in 1762. The business prospered and his reputation grew. In 1766 he was able to purchase an estate on which he built new works, a mansion and a village to which he gave the name Etruria. Four years after the Etruria works were opened in 1769, Wedgwood began experimenting with a barium compound combined in a fine-textured base allied to a true porcelain. The result was Wedgwood's most original and distinctive ware similar to jasper, made in a wide variety of forms.
    Wedgwood had many followers and imitators but the merit of initiating and carrying through a large-scale technical and artistic development of English pottery belongs to Wedgwood.
    [br]
    Principal Honours and Distinctions
    FRS 1783.
    Bibliography
    Wedgwood contributed five papers to the Philosophical Transactions of the Royal Society, two in 1783 and 1790 on chemical subjects and three in 1782, 1784 and 1786 on his pyrometer.
    Further Reading
    Meteyard, 1865, Life of Josiah Wedgwood, London (biography).
    A.Burton, 1976, Josiah Wedgwood: Biography, London: André Deutsch (a very readable account).
    LRD

    Biographical history of technology > Wedgwood, Josiah

  • 72 Weston, Edward

    SUBJECT AREA: Electricity
    [br]
    b. 9 May 1850 Oswestry, England
    d. 20 August 1936 Montclair, New Jersey, USA
    [br]
    English (naturalized American) inventor noted for his contribution to the technology of electrical measurements.
    [br]
    Although he developed dynamos for electroplating and lighting, Weston's major contribution to technology was his invention of a moving-coil voltmeter and the standard cell which bears his name. After some years as a medical student, during which he gained a knowledge of chemistry, he abandoned his studies. Emigrating to New York in 1870, he was employed by a manufacturer of photographic chemicals. There followed a period with an electroplating company during which he built his first dynamo. In 1877 some business associates financed a company to build these machines and, later, arc-lighting equipment. By 1882 the Weston Company had been absorbed into the United States Electric Lighting Company, which had a counterpart in Britain, the Maxim Weston Company. By the time Weston resigned from the company, in 1886, he had been granted 186 patents. He then began the work in which he made his greatest contribution, the science of electrical measurement.
    The Weston meter, the first successful portable measuring instrument with a pivoted coil, was made in 1886. By careful arrangement of the magnet, coil and control springs, he achieved a design with a well-damped movement, which retained its calibration. These instruments were produced commercially on a large scale and the moving-coil principle was soon adopted by many manufacturers. In 1892 he invented manganin, an alloy with a small negative temperature coefficient, for use as resistances in his voltmeters.
    The Weston standard cell was invented in 1892. Using his chemical knowledge he produced a cell, based on mercury and cadmium, which replaced the Clark cell as a voltage reference source. The Weston cell became the recognized standard at the International Conference on Electrical Units and Standards held in London in 1908.
    [br]
    Principal Honours and Distinctions
    President, AIEE 1888–9. Franklin Institute Elliott Cresson Medal 1910, Franklin medal 1924.
    Bibliography
    29 April 1890, British patent no. 6,569 (the Weston moving-coil instrument). 6 February 1892, British patent no. 22,482 (the Weston standard cell).
    Further Reading
    D.O.Woodbury, 1949, A Measure of Greatness. A Short Biography of Edward Weston, New York (a detailed account).
    C.N.Brown, 1988, in Proceedings of the Meeting on the History of Electrical Engineering, IEE, 17–21 (describes Weston's meter).
    H.C.Passer, 1953, The Electrical Manufacturers: 1875–1900, Cambridge, Mass.
    GW

    Biographical history of technology > Weston, Edward

  • 73 range

    range n
    дальность
    ranging v
    определение дальности
    aileron range
    диапазон отклонения элерона
    aircraft capacity range
    предел коммерческой загрузки воздушного судна
    aircraft operational range
    эксплуатационная дальность полета воздушного судна
    aircraft range
    дальность полета воздушного судна
    all-burnt range
    дальность активного полета
    altitude range
    диапазон высот
    angle-of-attack range
    диапазон углов атаки
    automatic range measurement
    автоматическое измерение дальности
    automatic range tracker
    устройство автоматического сопровождения
    automatic range tracking
    автоматическое сопровождение по дальности
    automatic range unit
    блок автоматического определения дальности
    autorotation range
    дальность полета на режиме авторотации
    autotracking range
    дальность автоматического сопровождения
    beacon range
    радиус действия маяка
    built-in range
    дальность полета без дополнительных топливных баков
    center-of-gravity range
    предел центровки
    clean range
    дальность полета без наружных подвесок
    closed-circuit range
    дальность полета по замкнутому маршруту
    close range mapping
    составление карты дальнего обзора
    commercial range
    дальность полета с полной коммерческой загрузкой
    compute the visual range
    вычислять дальность видимости
    controllable range
    дальность управляемого полета
    cruising speeds range
    предел скоростей на крейсерском режиме
    daily range
    суточное колебание
    design flying range
    расчетная дальность полета
    direct range
    дальность полета по прямой
    downwind range
    дальность полета при попутном ветре
    dynamic range
    динамический диапазон
    effective visual range
    эффективная дальность видимости
    extend range
    увеличивать дальность полета
    ferry range
    дальность перегонки
    flap-deflection range
    диапазон отклонения закрылков
    flight-perfomance range
    диапазон полетных характеристик
    flight range
    дальность полета
    flight range with no reserves
    дальность полета до полного израсходования топлива
    flight service range
    эксплуатационная дальность полета
    flight visual range
    дальность видимости в полете
    frequency range
    частотный диапазон
    fuel range
    запас топлива
    fuel range estimating
    расчет запаса топлива
    full-load range
    дальность полета с максимальной загрузкой
    full-tanks range
    дальность полета при полной заправке
    gliding range
    дальность планирования
    ground mapping range
    дальность обзора местности
    guidance range
    радиус действия системы наведения
    high-speed range
    диапазон больших скоростей
    homing range
    радиус действия системы самонаведения
    horizontal range
    дальность горизонтального полета
    initial contact range
    дальность связи
    interference range
    зона искаженного приема
    interference range contour
    контур зоны помех
    lateral manoeuvring range
    диапазон бокового маневрирования
    lie beyond the range
    находиться вне заданного предела
    lift range
    диапазон изменения подъемной силы
    limiting range of mass
    предел ограничения массы
    line-of-sight range
    дальность видимости по прямой
    lock-on range
    дальность захвата
    long range mapping
    картографирование путем радиолокационного обзора местности
    meteorological optical range
    метеорологическая оптическая дальность
    nondirectional range
    ненаправленный радиомаяк
    nonstop range
    дальность беспосадочного перелета
    normal operating range
    диапазон рабочих режимов
    observed range
    дальность видимости
    omnidirectional radio range
    всенаправленный
    on-the-deck range
    дальность полета на предельно малой высоте
    operating range
    радиус действия
    operational range
    эксплуатационный диапазон
    payload versus range
    зависимость коммерческой загрузки от дальности полета
    radar range
    радар действия радиолокатора
    radar range finder
    радиолокационный дальномер
    radar ranging
    определение дальности радиолокационным методом
    radar ranging set
    радиолокационный дальномер
    radar search range
    радиус действия радиолокатора в режиме поиска
    radar-tracking range
    дальность радиолокационного сопровождения
    radio range
    радиус действия радиомаяка
    radio range beacon
    направленный радиомаяк
    radio range leg
    равносигнальная зона радиомаяка
    range ability
    дальность полета
    range calibration
    тарировка по дальности
    range computer
    вычислитель дальности
    range deviation
    отклонение по дальности
    range error
    ошибка по дальности
    range finder
    дальномер
    range indicator
    указатель дальности
    range marker spacing
    масштаб развертки на экране радиолокационной станции
    range of coverage
    радиус действия
    range of motion
    диапазон отклонения
    range of revolutions
    диапазон оборотов
    range of visibility
    дальность видимости
    range of vision
    дальность обзора
    range resolution
    разрешающая способность по дальности
    range scanning
    развертка по дальности
    range scope
    дальномер
    range sensor
    датчик дальности
    range to go
    дальность полета до намеченного пункта
    runway visual range
    дальность видимости на ВПП
    runway visual range observation
    наблюдение за дальностью видимости на ВПП
    scale range
    диапазон шкалы
    search range
    дальность поиска
    short range radio navigation system
    радиосистема ближней навигации
    slant visual range
    дальность наклонной видимости
    speed range
    диапазон скоростей
    stability range
    диапазон устойчивости
    still-air flight range
    дальность полета в невозмущенной атмосфере
    takeoff range
    диапазон взлетных режимов
    transit range
    дальность перелета
    trimmer range
    диапазон отклонения триммера
    ultimate range
    максимальная дальность
    upwind range
    дальность при встречном ветре
    VHF omnidirectional radio range
    всенаправленный ОВЧ-РАДИОМАЯК
    visibility range marker
    указатель дальности видимости
    visual-aural radio range
    визуально-звуковой радиомаяк
    visual detection range
    дальность визуального обнаружения
    visual range
    дальность видимости
    within the range
    в заданном диапазоне
    zero-payload range
    дальность полета без коммерческой загрузки

    English-Russian aviation dictionary > range

  • 74 purchase

    [ˈpə:tʃəs]
    bargain purchase покупка по предложению bond purchase покупка облигаций bulk purchase государственная закупка bulk purchase закупка большого количества bulk purchase закупка всего производства bulk purchase закупка всего товарного запаса bulk purchase массовая закупка bulk purchase централизованная закупка call purchase покупка с доставкой cash purchase кассовая сделка cash purchase покупка за наличные compulsory purchase принудительное отчуждение compulsory purchase of property принудительное отчуждение собственности compulsory purchase order распоряжение о принудительном отчуждении cover purchase покупка для покрытия обязательств по срочным сделкам credit purchase покупка в кредит currency purchase покупка валюты effect a purchase совершать покупку fictitious purchase фиктивная покупка firm purchase твердо обусловленная покупка fixed date purchase покупка на определенный срок forward purchase бирж. покупка на срок forward purchase бирж. форвардная покупка purchase точка опоры; точка приложения силы; to get a purchase with one's feet найти точку опоры для ног gift with purchase бесплатная добавка к основной покупке government purchase правительственная закупка hire purchase юр. переход в собственность взятого напрокат предмета hire purchase юр. покупка в рассрочку impulse purchase покупка под влиянием порыва initial purchase первая покупка instalment purchase покупка в рассрочку joint purchase совместная покупка purchase годовой доход с земли; the land is bought at 20 years' purchase имение окупится в течение 20 лет large-scale purchase массовая закупка local purchase местная закупка lump purchase покупка с оплатой по соглашению purchase department отдел снабжения; purchase tax налог на покупки; the man's life is not worth a day's purchase он и дня не проживет outright purchase окончательная покупка outright purchase покупка с безотлагательной уплатой наличными panic purchase ажиотажная закупка pegging purchase закупка для искусственного поддержания цены на одном уровне project purchase приобретение проекта purchase выигрыш в силе, преимущество purchase выигрыш в силе; преимущество purchase годовой доход с земли; the land is bought at 20 years' purchase имение окупится в течение 20 лет purchase годовой доход с земли purchase закупать purchase закупка purchase купленная вещь, покупка purchase купленная вещь purchase купля purchase механическое приспособление для поднятия и перемещения грузов (напр. тали, рычаг, ворот и т. п.) purchase покупать, закупать, приобретать (кроме наследования) purchase покупать, закупать; приобретать purchase покупать purchase покупка, закупка, приобретение purchase покупка; закупка; приобретение purchase покупка purchase покупка имущества purchase преимущество purchase приобрести, завоевать (доверие) purchase приобретать purchase приобретение purchase стоимость purchase точка опоры; точка приложения силы; to get a purchase with one's feet найти точку опоры для ног purchase тех. тянуть лебедкой; поднимать рычагом purchase ценность, стоимость purchase ценность purchase by description покупка по описанию purchase by sample покупка по образцам purchase department отдел снабжения; purchase tax налог на покупки; the man's life is not worth a day's purchase он и дня не проживет purchase for stock закупать для хранения на складе purchase for stock закупка для создания запасов purchase of advertising space покупка места для рекламы purchase of ascertained goods покупка индивидуализированных товаров purchase of companies покупка компаний purchase of custom-built goods приобретение продукции, изготовленной на заказ purchase of fixed assets приобретение недвижимости purchase of generic goods покупка товаров, определенных родовыми признаками purchase of goods покупка товаров purchase of goods приобретение товаров purchase of goods according to kind покупка товаров в зависимости от сорта purchase of goods to be forwarded покупка товаров на срок purchase of land приобретение земли purchase of specific goods покупка индивидуализированных товаров purchase on account покупка в кредит purchase on instalment contract покупка в рассрочку purchase on sale or return покупка с возможностью продажи или возврата purchase department отдел снабжения; purchase tax налог на покупки; the man's life is not worth a day's purchase он и дня не проживет tax: purchase purchase косвенный налог на покупки (Великобритания) purchase purchase налог на покупки purchase to support market закупка для поддержания рыночной конъюнктуры replacement purchase покупка для замены retail purchase розничная покупка sham purchase фиктивная покупка share purchase покупка акций speculative purchase спекулятивная покупка spot purchase покупка за наличные spot purchase покупка с немедленной сдачей товара spot purchase покупка с немедленной уплатой наличными supporting purchase покупка с целью поддержки курса term purchase покупка на срок trial purchase пробная закупка wholesale purchase оптовая закупка

    English-Russian short dictionary > purchase

  • 75 microecosystem

    1. микроэкосистема

     

    микроэкосистема

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    microecosystem
    A small-scale, simplified, experimental ecosystem, laboratory- or field- based, which may be: a) derived directly from nature (e.g. when samples of pond water are maintained subsequently by the input of artificial light and gas-exchange); or b) built up from axenic cultures (a culture of an organism that consists of one type of organism only, i.e. that is free from any contaminating organism) until the required conditions of organisms and environment are achieved. Also known as microcosm. (Source: ALL2)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > microecosystem

См. также в других словарях:

  • Scale model — A scale model of the Tower of London. This model can be found inside the tower …   Wikipedia

  • Scale factor (computer science) — A scale factor is used in computer science when a real world set of numbers needs to be represented on a different scale in order to fit a specific number format. For instance, a 16 bit unsigned integer ( uint16 ) can only hold a value as large… …   Wikipedia

  • Scale (string instruments) — For the musical (rather than instrumental) scale, see Pythagorean tuning. In a string instrument, the scale length (often simply called the scale ) is the sounding length of the strings. On instruments with strings which are not stopped (harp,… …   Wikipedia

  • Built environment — The phrase built environment refers to the man made surroundings that provide the setting for human activity, ranging from the large scale civic surroundings to the personal places.The term is also now widely used to describe the… …   Wikipedia

  • scale — scale1 scaleless, adj. scalelike, adj. /skayl/, n., v., scaled, scaling. n. 1. Zool. a. one of the thin, flat, horny plates forming the covering of certain animals, as snakes, lizards, and pangolins. b. one of the hard, b …   Universalium

  • Scale-free network — A scale free network is a network whose degree distribution follows a power law, at least asymptotically. That is, the fraction P ( k ) of nodes in the network having k connections to other nodes goes for large values of k as P ( k ) k − γ where… …   Wikipedia

  • Scale-and-platt — A scale and platt staircase is a modern style straight staircase as opposed to traditional spiral staircases. One of the first of this type was built at Crichton Castle …   Wikipedia

  • scale down — {v.} To make smaller or less; decrease. * /John scaled down each boy s share of food after a bear robbed the camp./ * /Tom built a scaled down model of the plane./ Compare: CUT DOWN …   Dictionary of American idioms

  • scale down — {v.} To make smaller or less; decrease. * /John scaled down each boy s share of food after a bear robbed the camp./ * /Tom built a scaled down model of the plane./ Compare: CUT DOWN …   Dictionary of American idioms

  • scale\ down — v To make smaller or less; decrease. John scaled down each boy s share of food after a bear robbed the camp. Tom built a scaled down model of the plane. Compare: cut down …   Словарь американских идиом

  • N scale — This article is about the model railway track size. For the handheld video game system/mobile telephone, see N Gage. U.S. Prototype model of an N scale (1:160) Chesapeake and Ohio Railway 2 6 6 2 Mallèt shown with a pencil for size N scale is a… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»