Перевод: со всех языков на все языки

со всех языков на все языки

a+widely+known+subject

  • 21 Gilbert, Cass

    [br]
    b. 24 November 1859 Zanesville, Ohio, USA
    d. 17 May 1934 Brockenhurst, Hampshire, England
    [br]
    American architect who designed a variety of high-quality, large-scale public buildings in eclectic mode.
    [br]
    Gilbert travelled widely in Europe before returning to the USA to join the well-known firm of McKim, Mead \& White, for whom he designed the Minnesota State Capitol at Saint Paul (1896–1903). This building, like the majority of Gilbert's work, was in classical form, the great dome modelled on that of Saint Peter's Basilica in Rome. Other designs, on similar classical themes, included his large US Customs House in New York (1907). The structure for which Gilbert is best known, however, was an adaptation of French Gothic style to a sixty-storeyed skyscraper. This was the Woolworth Building, an office tower of romantic silhouette in downtown New York (1913). In contra-distinction to the high-rise designs of Louis Sullivan, who broke new ground in relating the design of the building to the verticality of the structure, Gilbert continued the skyscraper pattern of earlier years by clothing the steel structure in eclectic manner unrelated to the form beneath. The result, if backward-looking, is an elegant, attractive and familiar part of the New York skyline.
    [br]
    Further Reading
    W.H.Jordy, 1976, American Buildings and their Architects, Vol. 3, Garden City, New York: Anchor.
    W.Weisman, 1970, The Rise of American Architecture, New York: Praeger.
    DY

    Biographical history of technology > Gilbert, Cass

  • 22 Knight, Margaret E.

    [br]
    b. 1838 Maine, USA
    d. 1914 USA
    [br]
    American inventor.
    [br]
    Little is known of Knight's childhood, except that she was probably educated to high school level. She made her first invention at the age of 12, after seeing a woman cotton-mill worker injured when a dislodged shuttle fell on her. Knight set herself to design a mechanism that would shut down the machine if the thread broke and caused a shuttle to fly out. The device was widely used by cotton and woollen mills. Between that and her first patent in 1870, little is known of her activities; but she then embarked on a career of invention, achieving over 90 of them, earning herself the title "the female Edison ". Perhaps her most notable invention was a machine for making paper bags with square or satchel bottoms, which proved to be of great benefit to shoppers until the advent of the plastic bag. It won her little financial reward, but a decoration from Queen Victoria. Her other two main inventions related to the manufacture of shoes and, around 1902, to a rotary automobile engine. She worked for various companies, assigning to them her patent rights, so that at her death her estate was valued at less than $300.
    [br]
    Further Reading
    A.Stanley, 1993, Mothers and Daughters of Invention, Meruchen, NJ: Scarecrow Press.
    LRD

    Biographical history of technology > Knight, Margaret E.

  • 23 Archer, Frederick Scott

    [br]
    b. 1813 Bishops Stortford, Hertfordshire, England
    d. May 1857 London, England
    [br]
    English photographer, inventor of the wet-collodion process, the dominant photographic process between 1851 and c.1880.
    [br]
    Apprenticed to a silversmith in London, Archer's interest in coin design and sculpture led to his taking up photography in 1847. Archer began experiments to improve Talbot's calotype process and by 1848 he was investigating the properties of a newly discovered material, collodion, a solution of gun-cotton in ether. In 1851 Archer published details of a process using collodion on glass plates as a carrier for silver salts. The process combined the virtues of both the calotype and the daguerreotype processes, then widely practised, and soon displaced them from favour. Collodion plates were only sensitive when moist and it was therefore essential to use them immediately after they had been prepared. Popularly known as "wet plate" photography, it became the dominant photographic process for thirty years.
    Archer introduced other minor photographic innovations and in 1855 patented a collodion stripping film. He had not patented the wet-plate process, however, and made no financial gain from his photographic work. He died in poverty in 1857, a matter of some embarrassment to his contemporaries. A subscription fund was raised, to which the Government was subsequently persuaded to add an annual pension.
    [br]
    Bibliography
    1851, Chemist (March) (announced Archer's process).
    Further Reading
    J.Werge, 1890, The Evolution of Photography.
    H.Gernsheim and A.Gernsheim, 1969, The History of "Photography", rev. edn, London.
    JW

    Biographical history of technology > Archer, Frederick Scott

  • 24 Boulsover, Thomas

    [br]
    b. 1704
    d. 1788
    [br]
    English cutler, metalworker and inventor of Sheffield plate.
    [br]
    Boulsover, originally a small-scale manufacturer of cutlery, is believed to have specialized in making knife-handle components. About 1742 he found that a thin sheet of silver could be fused to copper sheet by rolling or beating to flatten it. Thus he developed the plating of silver, later called Sheffield plate.
    The method when perfected consisted of copper sheet overlaid by thin sheet silver being annealed by red heat. Protected by iron sheeting, the copper and silver were rolled together, becoming fused to a single plate capable of undergoing further manufacturing processes. Later developments included methods of edging the fused sheets and the placing of silver sheet on both lower and upper surfaces of copper, to produce high-quality silver plate, in much demand by the latter part of the century. Boulsover himself is said to have produced only small articles such as buttons and snuff boxes from this material, which by 1758 was being exploited more commercially by Joseph Hancock in Sheffield making candlesticks, hot-water pots and coffee pots. Matthew Boulton introduced its manufacture in very high-quality products during the 1760s to Birmingham, where the technique was widely adopted later. By the 1770s Boulsover was engaged in rolling his plated copper for industry elsewhere, also trading in iron and purchasing blister steel which he converted by the Huntsman process to crucible steel. Blister steel was converted on his behalf to shear steel by forging. He is thought to have also been responsible for improving this product further, introducing "double-shear steel", by repeating the forging and faggoting of shear steel bars. Thomas Boulsover had become a Sheffield entrepreneur, well known for his numerous skills with metals.
    [br]
    Further Reading
    H.W.Dickinson, 1937, Matthew Boulton, Cambridge: Cambridge University Press (describes Boulsover's innovation and further development of Sheffield plate).
    J.Holland, 1834, Manufactures in Metal III, 354–8.
    For activities in steel see: K.C.Barraclough, 1991, "Steel in the Industrial Revolution", in J.Day and R.F.Tylecote (eds), The Industrial Revolution in Metals, The Institute of Metals.
    JD

    Biographical history of technology > Boulsover, Thomas

  • 25 Braun, Karl Ferdinand

    [br]
    b. 6 June 1850 Fulda, Hesse, Germany
    d. 20 April 1918 New York City, New York, USA
    [br]
    German physicist who shared with Marconi the 1909 Nobel Prize for Physics for developments in wireless telegraphy; inventor of the cathode ray oscilloscope.
    [br]
    After obtaining degrees from the universities of Marburg and Berlin (PhD) and spending a short time as Headmaster of the Thomas School in Berlin, Braun successively held professorships in theoretical physics at the universities of Marburg (1876), Strasbourg (1880) and Karlsruhe (1883) before becoming Professor of Experimental Physics at Tübingen in 1885 and Director and Professor of Physics at Strasbourg in 1895.
    During this time he devised experimental apparatus to determine the dielectric constant of rock salt and developed the Braun high-tension electrometer. He also discovered that certain mineral sulphide crystals would only conduct electricity in one direction, a rectification effect that made it possible to detect and demodulate radio signals in a more reliable manner than was possible with the coherer. Primarily, however, he was concerned with improving Marconi's radio transmitter to increase its broadcasting range. By using a transmitter circuit comprising a capacitor and a spark-gap, coupled to an aerial without a spark-gap, he was able to obtain much greater oscillatory currents in the latter, and by tuning the transmitter so that the oscillations occupied only a narrow frequency band he reduced the interference with other transmitters. Other achievements include the development of a directional aerial and the first practical wavemeter, and the measurement in Strasbourg of the strength of radio waves received from the Eiffel Tower transmitter in Paris. For all this work he subsequently shared with Marconi the 1909 Nobel Prize for Physics.
    Around 1895 he carried out experiments using a torsion balance in order to measure the universal gravitational constant, g, but the work for which he is probably best known is the addition of deflecting plates and a fluorescent screen to the Crooke's tube in 1897 in order to study the characteristics of high-frequency currents. The oscilloscope, as it was called, was not only the basis of a now widely used and highly versatile test instrument but was the forerunner of the cathode ray tube, or CRT, used for the display of radar and television images.
    At the beginning of the First World War, while in New York to testify in a patent suit, he was trapped by the entry of the USA into the war and remained in Brooklyn with his son until his death.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Physics (jointly with Marconi) 1909.
    Bibliography
    1874, "Assymetrical conduction of certain metal sulphides", Pogg. Annal. 153:556 (provides an account of the discovery of the crystal rectifier).
    1897, "On a method for the demonstration and study of currents varying with time", Wiedemann's Annalen 60:552 (his description of the cathode ray oscilloscope as a measuring tool).
    Further Reading
    K.Schlesinger \& E.G.Ramberg, 1962, "Beamdeflection and photo-devices", Proceedings of the Institute of Radio Engineers 50, 991.
    KF

    Biographical history of technology > Braun, Karl Ferdinand

  • 26 Cady, Walter Guyton

    [br]
    b. 10 December 1874 Providence, Rhode Island, USA
    d. 9 December 1974 Providence, Rhode Island, USA
    [br]
    American physicist renowned for his pioneering work on piezo-electricity.
    [br]
    After obtaining BSc and MSc degrees in physics at Brown University in 1896 and 1897, respectively, Cady went to Berlin, obtaining his PhD in 1900. Returning to the USA he initially worked for the US Coast and Geodetic Survey, but in 1902 he took up a post at the Wesleyan University, Connecticut, remaining as Professor of Physics from 1907 until his retirement in 1946. During the First World War he became interested in piezo-electricity as a result of attending a meeting on techniques for detecting submarines, and after the war he continued to work on the use of piezo-electricity as a transducer for generating sonar beams. In the process he discovered that piezo-electric materials, such as quartz, exhibited high-stability electrical resonance, and in 1921 he produced the first working piezo-electric resonator. This idea was subsequently taken up by George Washington Pierce and others, resulting in very stable oscillators and narrow-band filters that are widely used in the 1990s in radio communications, electronic clocks and watches.
    Internationally known for his work, Cady retired from his professorship in 1946, but he continued to work for the US Navy. From 1951 to 1955 he was a consultant and research associate at the California Institute of Technology, after which he returned to Providence to continue research at Brown, filing his last patent (one of over fifty) at the age of 93 years.
    [br]
    Principal Honours and Distinctions
    President, Institute of Radio Engineers 1932. London Physical Society Duddell Medal. Institute of Electrical and Electronics Engineers Morris N.Liebmann Memorial Prize 1928.
    Bibliography
    28 January 1920, US patent no. 1,450,246 (piezo-electric resonator).
    1921, "The piezo-electric resonator", Physical Review 17:531. 1946, Piezoelectricity, New York: McGraw Hill (his classic work).
    Further Reading
    B.Jaffe, W.R.Cooke \& H.Jaffe, 1971, Piezoelectric Ceramics.
    KF

    Biographical history of technology > Cady, Walter Guyton

  • 27 Clymer, George E.

    SUBJECT AREA: Paper and printing
    [br]
    b. 1754 Bucks County, Pennsylvania, USA
    d. 27 August 1834 London, England
    [br]
    American inventor of the Columbian printing press.
    [br]
    Clymer was born on his father's farm, of a family that emigrated from Switzerland in the early eighteenth century. He attended local schools, helping out on the farm in his spare time, and he showed a particular talent for maintaining farm machinery. At the age of 16 he learned the trade of carpenter and joiner, which he followed in the same district for over twenty-five years. During that time, he showed his talent for mechanical invention in many ways, including the invention of a plough specially adapted to the local soils. Around 1800, he moved to Philadelphia, where his interest was aroused by the erection of the first bridge over the Schuylkill River. He devised a pump to remove water from the cofferdams at a rate of 500 gallons per day, superior to any other pumps then in use. He obtained a US patent for this in 1801, and a British one soon after.
    Clymer then turned his attention to the improvement of the printing press. For three and a half centuries after its invention, the old wooden-framed press had remained virtually unchanged except in detail. The first real change came in 1800 with the introduction of the iron press by Earl Stanhope. Modified versions were developed by other inventors, notably George Clymer, who after more than ten years' effort achieved his Columbian press. With its new system of levers, it enabled perfect impressions to be obtained with far less effort by the pressman. The Columbian was also notable for its distinctive cast-iron ornamentation, including a Hermes on each pillar and alligators and other reptiles on the levers. Most spectacular, it was surmounted by an American spread eagle, usually covered in gilt, which also served as a counterweight to raise the platen. The earliest known Columbian, surviving only in an illustration, bears the inscription Columbian Press/No.25/invented by George Clymer/Anno Domini 1813/Made in Philadelphia 1816. Few American printers could afford the US$400 selling price, so in 1817 Clymer went to England, where it was taken up enthusiastically. He obtained a British patent for it the same year, and by the following March it was being manufactured by the engineering firm R.W.Cope, although Clymer was probably making it on his own account soon afterwards. The Columbian was widely used for many years and continued to be made even into the twentieth century. The King of the Netherlands awarded Clymer a gold medal for his invention and the Tsar of Russia gave him a present for installing the press in Russia. Doubtless for business reasons, Clymer spent most of his remaining years in England and Europe.
    [br]
    Further Reading
    J.Moran, 1973, Printing Presses, London: Faber \& Faber.
    —1969, contributed a thorough survey of the press in J. Printing Hist. Soc., no. 3.
    LRD

    Biographical history of technology > Clymer, George E.

  • 28 Curr, John

    [br]
    b. 1756 Kyo, near Lanchester, or in Greenside, near Ryton-on-Tyne, Durham, England
    d. 27 January 1823 Sheffield, England
    [br]
    English coal-mine manager and engineer, inventor of flanged, cast-iron plate rails.
    [br]
    The son of a "coal viewer", Curr was brought up in the West Durham colliery district. In 1777 he went to the Duke of Norfolk's collieries at Sheffield, where in 1880 he was appointed Superintendent. There coal was conveyed underground in baskets on sledges: Curr replaced the wicker sledges with wheeled corves, i.e. small four-wheeled wooden wagons, running on "rail-roads" with cast-iron rails and hauled from the coal-face to the shaft bottom by horses. The rails employed hitherto had usually consisted of plates of iron, the flange being on the wheels of the wagon. Curr's new design involved flanges on the rails which guided the vehicles, the wheels of which were unflanged and could run on any hard surface. He appears to have left no precise record of the date that he did this, and surviving records have been interpreted as implying various dates between 1776 and 1787. In 1787 John Buddle paid tribute to the efficiency of the rails of Curr's type, which were first used for surface transport by Joseph Butler in 1788 at his iron furnace at Wingerworth near Chesterfield: their use was then promoted widely by Benjamin Outram, and they were adopted in many other English mines. They proved serviceable until the advent of locomotives demanded different rails.
    In 1788 Curr also developed a system for drawing a full corve up a mine shaft while lowering an empty one, with guides to separate them. At the surface the corves were automatically emptied by tipplers. Four years later he was awarded a patent for using double ropes for lifting heavier loads. As the weight of the rope itself became a considerable problem with the increasing depth of the shafts, Curr invented the flat hemp rope, patented in 1798, which consisted of several small round ropes stitched together and lapped upon itself in winding. It acted as a counterbalance and led to a reduction in the time and cost of hoisting: at the beginning of a run the loaded rope began to coil upon a small diameter, gradually increasing, while the unloaded rope began to coil off a large diameter, gradually decreasing.
    Curr's book The Coal Viewer (1797) is the earliest-known engineering work on railway track and it also contains the most elaborate description of a Newcomen pumping engine, at the highest state of its development. He became an acknowledged expert on construction of Newcomen-type atmospheric engines, and in 1792 he established a foundry to make parts for railways and engines.
    Because of the poor financial results of the Duke of Norfolk's collieries at the end of the century, Curr was dismissed in 1801 despite numerous inventions and improvements which he had introduced. After his dismissal, six more of his patents were concerned with rope-making: the one he gained in 1813 referred to the application of flat ropes to horse-gins and perpendicular drum-shafts of steam engines. Curr also introduced the use of inclined planes, where a descending train of full corves pulled up an empty one, and he was one of the pioneers employing fixed steam engines for hauling. He may have resided in France for some time before his death.
    [br]
    Bibliography
    1788. British patent no. 1,660 (guides in mine shafts).
    1789. An Account of tin Improved Method of Drawing Coals and Extracting Ores, etc., from Mines, Newcastle upon Tyne.
    1797. The Coal Viewer and Engine Builder's Practical Companion; reprinted with five plates and an introduction by Charles E.Lee, 1970, London: Frank Cass, and New York: Augustus M.Kelley.
    1798. British patent no. 2,270 (flat hemp ropes).
    Further Reading
    F.Bland, 1930–1, "John Curr, originator of iron tram roads", Transactions of the Newcomen Society 11:121–30.
    R.A.Mott, 1969, Tramroads of the eighteenth century and their originator: John Curr', Transactions of the Newcomen Society 42:1–23 (includes corrections to Fred Bland's earlier paper).
    Charles E.Lee, 1970, introduction to John Curr, The Coal Viewer and Engine Builder's Practical Companion, London: Frank Cass, pp. 1–4; orig. pub. 1797, Sheffield (contains the most comprehensive biographical information).
    R.Galloway, 1898, Annals of Coalmining, Vol. I, London; reprinted 1971, London (provides a detailed account of Curr's technological alterations).
    WK / PJGR

    Biographical history of technology > Curr, John

  • 29 Deville, Henri Etienne Sainte-Claire

    SUBJECT AREA: Metallurgy
    [br]
    b. 11 March 1818 St Thomas, Virgin Islands
    d. 1 July 1881 Boulogne-sur-Seine, France
    [br]
    French chemist and metallurgist, pioneer in the large-scale production of aluminium and other light metals.
    [br]
    Deville was the son of a prosperous shipowner with diplomatic duties in the Virgin Islands. With his elder brother Charles, who later became a distinguished physicist, he was sent to Paris to be educated. He took his degree in medicine in 1843, but before that he had shown an interest in chemistry, due particularly to the lectures of Thenard. Two years later, with Thenard's influence, he was appointed Professor of Chemistry at Besançon. In 1851 he was able to return to Paris as Professor at the Ecole Normale Supérieure. He remained there for the rest of his working life, greatly improving the standard of teaching, and his laboratory became one of the great research centres of Europe. His first chemical work had been in organic chemistry, but he then turned to inorganic chemistry, specifically to improve methods of producing the new and little-known metal aluminium. Essentially, the process consisted of forming sodium aluminium trichloride and reducing it with sodium to metallic aluminium. He obtained sodium in sufficient quantity by reducing sodium carbonate with carbon. In 1855 he exhibited specimens of the metal at the Paris Exhibition, and the same year Napoleon III asked to see them, with a view to using it for breastplates for the Army and for spoons and forks for State banquets. With the resulting government support, he set up a pilot plant at Jarvel to develop the process, and then set up a small company, the Société d'Aluminium at Nan terre. This raised the output of this attractive and useful metal, so it could be used more widely than for the jewellery to which it had hitherto been restricted. Large-scale applications, however, had to await the electrolytic process that began to supersede Deville's in the 1890s. Deville extended his sodium reduction method to produce silicon, boron and the light metals magnesium and titanium. His investigations into the metallurgy of platinum revolutionized the industry and led in 1872 to his being asked to make the platinum-iridium (90–10) alloy for the standard kilogram and metre. Deville later carried out important work in high-temperature chemistry. He grieved much at the death of his brother Charles in 1876, and his retirement was forced by declining health in 1880; he did not survive for long.
    [br]
    Bibliography
    Deville published influential books on aluminium and platinum; these and all his publications are listed in the bibliography in the standard biography by J.Gray, 1889, Henri Sainte-Claire Deville: sa vie et ses travaux, Paris.
    Further Reading
    M.Daumas, 1949, "Henri Sainte-Claire Deville et les débuts de l'industrie de l'aluminium", Rev.Hist.Sci 2:352–7.
    J.C.Chaston, 1981, "Henri Sainte-Claire Deville: his outstanding contributions to the chemistry of the platinum metals", Platinum Metals Review 25:121–8.
    LRD

    Biographical history of technology > Deville, Henri Etienne Sainte-Claire

  • 30 Fizeau, Armand Hippolyte Louis

    [br]
    b. 23 September 1819 Paris, France
    d. 18 September 1896 Nanteuil-le-Haudouin, France
    [br]
    French physicist who introduced early improvements to the daguerreotype process.
    [br]
    Fizeau's interest in photography was comparatively brief, but during this period he was at the forefront of French attempts to explore and exploit the potential of the recently announced daguerreotype process (see Daguerre). Fizeau is best remembered for his introduction in August 1840 of the practice of gold-toning daguerreotypes. This improvement not only helped protect the delicate surface of the plate from abrasion and tarnishing, but also enhanced the quality of the image. The technique was not patented and was immediately adopted by all daguerreotypists. Between 1839 and 1841, in association with Alfred Donné, Fizeau conducted experiments with the aim of converting daguerreotypes into printing plates. Prints from two of his plates were published in 1842, but the technique was never widely practised. In association with J.B.Léon Foucault, Fizeau discovered the reciprocity failure of daguerreotypes, and the same partnership produced what were probably the first daguerreotypes of the sun. Fizeau is best known in physics for making the first accurate determination of the speed of light, in 1849.
    [br]
    Further Reading
    W.H.Thornthwaite, 1843, Photographic Manipulation, London (provides details of Fizeau's gold-toning process).
    H.Gernsheim and A.Gernsheim, 1969, The History of Photography, rev. edn, London (a more general account of Fizeau's contributions to photography).
    JW

    Biographical history of technology > Fizeau, Armand Hippolyte Louis

  • 31 Flügge-Lotz, Irmgard

    SUBJECT AREA: Aerospace
    [br]
    b. 1903 Germany
    d. 1974 USA
    [br]
    German/American aeronautical engineer, specializing inflight control.
    [br]
    Both her father, a mathematician, and her mother encouraged Flügge-Lotz in her desire, unusual for a woman at that time, for a technical education. Her interest in aeronautics was awakened when she was a child, by seeing zeppelins (see Zeppelin, Ferdinand, Count von) being tested. In 1923 she entered the Technische Hochschule in Hannover to study engineering, specializing in aeronautics; she was often the only woman in the class. She obtained her doctorate in 1929 and began working in aeronautics. Two years later she derived the Lotz Method for calculating the distribution in aircraft wings of different shapes, which became widely used. Later, Flügge-Lotz took up an interest in automatic flight control of aircraft, notably of the discontinuous or "on-off" type. These were simple in design, inexpensive to manufacture and reliable in operation. By 1928 she had risen to the position of head of the Department of Theoretical Aerodynamics at Göttingen University, but she and her husband, Wilhelm Flügge, an engineering academic known for his anti-Nazi views, felt themselves increasingly discriminated against by the Hitler regime. In 1948 they emigrated to the USA, where Flügge was soon offered a professorship in engineering, while his wife had at first to make do with a lectureship. But her distinguished work eventually earned her appointment as the first woman full professor in the Engineering Department at Stanford University.
    She later extended her work on automatic flight control to the guidance of rockets and missiles, earning herself the description "a female Werner von Braun ".
    [br]
    Principal Honours and Distinctions
    Society of Women Engineers Achievement Award 1970. Fellow, Institution of Aeronautics and Astronautics.
    Bibliography
    Flügge-Lotz was the author of two books on automatic control and over fifty scientific papers.
    Further Reading
    A.Stanley, 1993, Mothers and Daughters of Invention, Meruchen, NJ: Scarecrow Press, pp. 899–901.
    LRD

    Biographical history of technology > Flügge-Lotz, Irmgard

  • 32 Forrester, George

    [br]
    b. 1780/1 Scotland
    d. after 1841
    [br]
    Scottish locomotive builder and technical innovator.
    [br]
    George Forrester \& Co. built locomotives at the Vauxhall Foundry, Liverpool, between 1834 and c.1847. The first locomotives built by them, in 1834, were three for the Dublin \& Kingstown Railway and one for the Liverpool \& Manchester Railway; they were the first locomotives to have outside horizontal cylinders and the first to have four fixed eccentrics to operate the valves, in place of two loose eccentrics. Two locomotives built by Forrester in 1835 for the Dublin \& Kingstown Railway were the first tank locomotives to run regularly on a public railway, and two more supplied in 1836 to the London \& Greenwich Railway were the first such locomotives in England. Little appears to be known about Forrester himself. In the 1841 census his profession is shown as "civil engineer, residence 1 Lord Nelson Street". Directories for Liverpool, contemporary with Forrester \& Co.'s locomotive building period, describe the firm variously as engineers, iron founders and boilermakers, located at (successively) 234,224 and 40 Vauxhall Road. Works Manager until 1840 was Alexander Allan, who subsequently used the experience he had gained with Forrester in the design of his "Crewe Type" outside-cylinder locomotive, which became widely used.
    [br]
    Further Reading
    E.L.Ahrons, 1927, The British Steam Railway Locomotive 1825–1925, The Locomotive Publishing Co., pp. 29, 43, 50 and 83.
    J.Lowe, 1975, British Steam Locomotive Builders, Cambridge: Goose \& Son.
    R.H.G.Thomas, 1986, London's First Railway: The London \& Greenwich, B.T.Batsford, p. 176.
    PJGR

    Biographical history of technology > Forrester, George

  • 33 Fuller, Richard Buckminster

    [br]
    b. 12 July 1895 Milton, Massachusetts, USA
    d. 1 July 1983 Los Angeles, California, USA
    [br]
    American engineer, designer and inventor noted particularly for his creation of the geodesic dome.
    [br]
    After naval service during the First World War, Fuller worked for some time in the building industry with his father, who was an architect. In 1927 he became interested in trying to solve social problems by providing good, low-cost housing for an expanding population. Utilizing modern techniques applicable in other industries, such as the design of aircraft and ships, he produced his "Dymaxion House", which was transportable and cheap. This was followed in 1946 by his aluminium, stressed-skin, prefabricated house. The geodesic dome is the structural concept for which Fuller is particularly known. It was patented in 1954 and 300,000 were built over a thirty-year period. He had envisaged the dome being utilized on smaller or larger, simple or complex patterns for a wide variety of needs such as enclosing a covered area for a house, a botanical garden, an exhibition pavilion, a factory, a weather station or, indeed, an entire city. A famous example that he designed was that for the US pavilion at Expo '67 in Montreal. A geodesic dome is generally spherical in form, the chief structural elements of which are interconnected in a geodesic pattern, i.e. one in which the lines connecting two points are the shortest possible. The structure is composed of slender, lightweight struts (usually of aluminium) arranged in geometrical patterns, with the metal skeleton covered by a light, plastic material. Inside the dome, all the space is usable and the climate is controllable. Fuller wrote and lectured widely on his patented invention, explaining the importance of structural research particularly in relation to world needs.
    [br]
    Bibliography
    1975, Synergetics: Exploration on the Geometry of Thinking, Macmillan.
    1973, with R.W.Marks, The Dymaxion World of Buckminster Fuller, New York: Reprint Anchor.
    Further Reading
    M.Pawley, 1990, Buckminster Fuller, Trefoil Books.
    DY

    Biographical history of technology > Fuller, Richard Buckminster

  • 34 Galilei, Galileo

    [br]
    b. 15 February 1564 Pisa, Italy
    d. 8 January 1642 Arcetri, near Florence, Italy
    [br]
    Italian mathematician, astronomer and physicist who established the principle of the pendulum and was first to exploit the telescope.
    [br]
    Galileo began studying medicine at the University of Pisa but soon turned to his real interests, mathematics, mechanics and astronomy. He became Professor of Mathematics at Pisa at the age of 25 and three years later moved to Padua. In 1610 he transferred to Florence. While still a student he discovered the isochronous property of the pendulum, probably by timing with his pulse the swings of a hanging lamp during a religious ceremony in Pisa Cathedral. He later designed a pendulum-controlled clock, but it was not constructed until after his death, and then not successfully; the first successful pendulum clock was made by the Dutch scientist Christiaan Huygens in 1656. Around 1590 Galileo established the laws of motion of falling bodies, by timing rolling balls down inclined planes and not, as was once widely believed, by dropping different weights from the Leaning Tower of Pisa. These and other observations received definitive treatment in his Discorsi e dimostrazioni matematiche intorno a due nuove scienzi attenenti alla, meccanica (Dialogues Concerning Two New Sciences…) which was completed in 1634 and first printed in 1638. This work also included Galileo's proof that the path of a projectile was a parabola and, most importantly, the development of the concept of inertia.
    In astronomy Galileo adopted the Copernican heliocentric theory of the universe while still in his twenties, but he lacked the evidence to promote it publicly. That evidence came with the invention of the telescope by the Dutch brothers Lippershey. Galileo heard of its invention in 1609 and had his own instrument constructed, with a convex object lens and concave eyepiece, a form which came to be known as the Galilean telescope. Galileo was the first to exploit the telescope successfully with a series of striking astronomical discoveries. He was also the first to publish the results of observations with the telescope, in his Sidereus nuncius (Starry Messenger) of 1610. All the discoveries told against the traditional view of the universe inherited from the ancient Greeks, and one in particular, that of the four satellites in orbit around Jupiter, supported the Copernican theory in that it showed that there could be another centre of motion in the universe besides the Earth: if Jupiter, why not the Sun? Galileo now felt confident enough to advocate the theory, but the advance of new ideas was opposed, not for the first or last time, by established opinion, personified in Galileo's time by the ecclesiastical authorities in Rome. Eventually he was forced to renounce the Copernican theory, at least in public, and turn to less contentious subjects such as the "two new sciences" of his last and most important work.
    [br]
    Bibliography
    1610, Sidereus nuncius (Starry Messenger); translation by A.Van Helden, 1989, Sidereus Nuncius, or the Sidereal Messenger; Chicago: University of Chicago Press.
    1623, Il Saggiatore (The Assayer).
    1632, Dialogo sopre i due massimi sistemi del mondo, tolemaico e copernicano (Dialogue Concerning the Two Chief World Systems, Ptolemaic and Copernican); translation, 1967, Berkeley: University of California Press.
    1638, Discorsi e dimostrazioni matematiche intorno a due nuove scienzi attenenti alla
    meccanica (Dialogues Concerning Two New Sciences…); translation, 1991, Buffalo, New York: Prometheus Books (reprint).
    Further Reading
    G.de Santillana, 1955, The Crime of Galileo, Chicago: University of Chicago Press; also 1958, London: Heinemann.
    H.Stillman Drake, 1980, Galileo, Oxford: Oxford Paperbacks. M.Sharratt, 1994, Galileo: Decisive Innovator, Oxford: Blackwell.
    J.Reston, 1994, Galileo: A Life, New York: HarperCollins; also 1994, London: Cassell.
    A.Fantoli, 1994, Galileo: For Copemicanism and for the Church, trans. G.V.Coyne, South Bend, Indiana: University of Notre Dame Press.
    LRD

    Biographical history of technology > Galilei, Galileo

  • 35 Garratt, Herbert William

    [br]
    b. 8 June 1864 London, England
    d. 25 September 1913 Richmond, Surrey, England
    [br]
    English engineer, inventor of the Beyer-Garratt articulated locomotive.
    [br]
    After apprenticeship at the North London Railway's locomotive works, Garratt had a varied career which included responsibility for the locomotive departments of several British-owned railways overseas. This gave him an insight into the problems of such lines: locomotives, which were often inadequate, had to be operated over lines with weak bridges, sharp curves and steep gradients. To overcome these problems, he designed an articulated locomotive in which the boiler, mounted on a girder frame, was sus pended between two power bogies. This enabled a wide firebox and large-diameter boiler barrel to be combined with large driving-wheels and good visibility. Coal and water containers were mounted directly upon the bogies to keep them steady. The locomotive was inherently stable on curves because the central line of the boiler between its pivots lay within the curve of the centre line of the track. Garratt applied for a patent for his locomotive in 1907 and manufacture was taken up by Beyer, Peacock \& Co. under licence: the type became known as the Beyer-Garratt. The earliest Beyer-Garratt locomotives were small, but subsequent examples were larger. Sadly, only twenty-six locomotives of the type had been built or were under construction when Garratt died in 1913. Subsequent classes came to include some of the largest and most powerful steam locomotives: they were widely used and particularly successful in Central and Southern Africa, where examples continue to give good service in the 1990s.
    [br]
    Bibliography
    H.W.Garratt took out nine British patents, of which the most important is: 1907, British patent no. 17,165, "Improvements in and Relating to Locomotive Engines".
    Further Reading
    R.L.Hills, 1979–80, "The origins of the Garratt locomotive", Transactions of the Newcomen Society 51:175 (a good description of Garratt's career and the construction of the earliest Beyer-Garratt locomotives).
    A.E.Durrant, 1981, Garratt Locomotives of the World, Newton Abbot: David \& Charles. L.Wiener, 1930, Articulated Locomotives, London: Constable \& Co.
    PJGR

    Biographical history of technology > Garratt, Herbert William

  • 36 Glauber, Johann Rudolf

    SUBJECT AREA: Metallurgy
    [br]
    b. 1604 Karlstadt, Germany
    d. March 1670 Amsterdam, Holland
    [br]
    German chemist and metallurgist.
    [br]
    The son of a barber, Glauber took up the study of alchemy and travelled widely in search of its secrets. Around 1639, the political uncertainties of the Thirty Years War persuaded him to leave Germany for a more settled life in Amsterdam. While there, he carried out most of the practical work for which he is famous, including his distillation furnace, which made it possible to reach higher temperatures and to heat substances in a variety of conditions. To earn a living he set up in the wine trade, but he continued his alchemical pursuits, under cover on account of the unpopularity of the would-be gold makers. After the end of the war, he returned to Germany, but in 1655 personal disputes and religious friction drove him back to Amsterdam. He set about constructing the largest and most elaborate chemical laboratory in Europe.
    Glauber's best-known writing, the Furni novi philosophici (1646–9) gives the clearest idea of his practical methods and was influential on some of the leading chemists of the time and later. His name survives today in Glauber's salt for hydrated sodium sulphate. Glauber described several methods for preparing the mineral acids, materials of great importance to the chemist, and obtained the concentrated acids by using his distilling furnace. He tried distilling any substance he could lay hands on, and in the course of this work became probably the first chemist to distil coal and, using hydrochloric acid, obtain benzene and phenol. Glauber was the best practical chemist of the age and the first industrial chemist.
    [br]
    Bibliography
    Further Reading
    K.F.Gugel, 1955, Johann Rudolf Glauber (1604–1670), Leben und Werke, Würzburg (the fullest account of his life; with a bibliography).
    P.Walden, 1929, "Glauber", in Das Buch der grossen Chemiker, ed. G.Bugge, Berlin, pp. 151–72 (the best account of Glauber's practical methods).
    E.Farber, 1961, Great Chemists, New York, pp. 115–31 (an abridged translation of ibid.).
    LRD

    Biographical history of technology > Glauber, Johann Rudolf

  • 37 Hall, Joseph

    SUBJECT AREA: Metallurgy
    [br]
    b. 1789
    d. 1862
    [br]
    English ironmaker who invented the wet puddling process.
    [br]
    Hall was a practical man with no theoretical background: his active years were spent at Bloomfield Ironworks, Tipton, Staffordshire. Around 1816 he began experimenting in the production of wrought iron. At that time, blast-furnace or cast iron was converted to wrought iron by the dry puddling process invented by Henry Cort in 1784. In this process, the iron was decarburized (i.e. had its carbon removed) by heating it in a current of air in a furnace with a sand bed. Some of the iron combined with the silica in the sand to form a slag, however, so that no less than 2 tons of cast iron were needed to produce 1 ton of wrought. Hall found that if bosh cinder was charged into the furnace, a vigorous reaction occurred in which the cast iron was converted much more quickly than before, to produce better quality wrought iron, a ton of which could be formed by no more than 21 cwt (1,067 kg) of cast iron. Because of the boiling action, the process came to be known as pig boiling. Bosh cinder, essentially iron oxide, was formed in the water troughs or boshes in which workers cooled their tools used in puddling and reacted with the carbon in the cast iron. The advantages of pig boiling over dry puddling were striking enough for the process to be widely used by the late 1820s. By mid-century it was virtually the only process used for producing wrought iron, an essential material for mechanical and civil engineering during the Industrial Revolution. Hall reckoned that if he had patented his invention he would have "made a million". As luck would have it, the process that he did patent in 1838 left his finances unchanged: this was for the roasting of cinder for use as the base of the puddling furnace, providing better protection than the bosh cinder for the iron plates that formed the base.
    [br]
    Bibliography
    1857, The Iron Question Considered in Connection with Theory, Practice and Experience with Special Reference to the Bessemer Process, London.
    Further Reading
    J.Percy, 1864, Metallurgy. Iron and Steel, London, pp. 670 ff. W.K.V.Gale, Iron and Steel, London: Longmans, pp. 46–50.
    LRD

    Biographical history of technology > Hall, Joseph

  • 38 McCoy, Elijah

    [br]
    b. 1843 Colchester, Ontario, Canada
    d. 1929 Detroit, Michigan (?), USA
    [br]
    African-American inventor of steam-engine lubricators.
    [br]
    McCoy was born into a community of escaped African-American slaves. As a youth he went to Scotland and served an apprenticeship in Edinburgh in mechanical engineering. He returned to North America and ended up in Ypsilanti, Michigan, seeking employment at the headquarters of the Michigan Central Railroad Company. In spite of his training, the only job McCoy could obtain was that of locomotive fireman. Still, that enabled him to study at close quarters the problem of lubricating adequately the moving parts of a steam locomotive. Inefficient lubrication led to overheating, delays and even damage. In 1872 McCoy patented the first of his lubricating devices, applicable particularly to stationary engines. He assigned his patent rights to W. and S.C.Hamlin of Ypsilanti, from which he derived enough financial resources to develop his invention. A year later he patented an improved hydrostatic lubricator, which could be used for both stationary and locomotive engines, and went on to make further improvements. McCoy's lubricators were widely taken up by other railroads and his employers promoted him from the footplate to the task of giving instruction in the use of his lubricating equipment. Many others had been attempting to achieve the same result and many rival products were on the market, but none was superior to McCoy's, which came to be known as "the Real McCoy", a term that has since acquired a wider application than to engine lubricators. McCoy moved to Detroit, Michigan, as a patent consultant in the railroad business. Altogether, he took out over fifty patents for various inventions, so that he became one of the most prolific of nineteenth-century black inventors, whose activities had been so greatly stimulated by the freedoms they acquired after the American Civil War. His more valuable patents were assigned to investors, who formed the Elijah McCoy Manufacturing Company. McCoy himself, however, was not a major shareholder, so he seems not to have derived the benefit that was due to him.
    [br]
    Further Reading
    P.P.James, 1989, The Real McCoy: African-American Invention and Innovation 1619– 1930, Washington: Smithsonian Institution, pp. 73–5.
    LRD

    Biographical history of technology > McCoy, Elijah

  • 39 Muller, Paul Hermann

    [br]
    b. 12 January 1899 Olten, Solothurn, Switzerland
    d. 13 October 1965 Basle, Switzerland
    [br]
    Swiss chemist, inventor of the insecticide DDT.
    [br]
    Muller was educated in Basle and his interest in chemistry was stimulated when he started work as a laboratory assistant in the chemical factory of Dreyfus \& Co. After further laboratory work, he entered the University of Basle in 1919, achieving his doctorate in 1925. The same year, he entered the dye works of J.R.Geigy AG as a research chemist. He spent the rest of his career there, rising to the position of Deputy Head of Pest Control Research. From 1935 he began the search for an insecticide that was fast acting and persistent, but harmless to plants and warmblooded animals. In 1940 he patented the use of a compound known since 1873, dichlorodiphenyltrichloroethane, or DDT. It could be easily and cheaply manufactured and was highly effective. Muller obtained a Swiss patent for DDT in 1940 and it went into commercial production two years later. One useful application of DDT at the end of the Second World War was in killing lice to prevent typhus epidemics. It was widely used and an important factor in farmers' postwar success in raising food production, but after twenty years or so, some species of insects were found to have developed resistance to its action, thus limiting its effectiveness. Worse, it was found to be harmful to other animals, which gave rise to anxieties about its persistence in the food chain. By the 1970s its use was banned or strictly limited in developed countries. Nevertheless, in its earlier career it had conferred undoubted benefits and was highly valued, as reflected by the award of a Nobel Prize in Medicine or Physiology in 1948.
    [br]
    Principal Honours and Distinctions
    Nobel Prize in Medicine or Physiology 1948.
    Bibliography
    Further Reading
    Obituary, 1965, Nature 208:1,043–4.
    LRD

    Biographical history of technology > Muller, Paul Hermann

  • 40 Staudinger, Hermann

    [br]
    b. 23 March 1881 Worms, Germany
    d. 8 September 1965 Freiberg im Breisgau, Germany
    [br]
    German chemist, founder of polymer chemistry.
    [br]
    Staudinger studied chemistry at the universities of Halle, Darmstadt and Munich, originally as a preparation for botanical studies, but chemistry claimed his full attention. He followed an academic career, with professorships at Karlsruhe in 1908, Zurich in 1912 and Freiberg from 1926 until his retirement in 1951. Staudinger began his work as an organic chemist by following well-established lines of research, but from 1920 he struck out in a new direction. Until that time, rubber and other apparently non-crystalline materials with high molecular weight were supposed to consist of a disordered collection of small molecules. Staudinger investigated the structure of rubber and realized that it was made up of very large molecules with many basic groups of atoms held together by normal chemical bonds. Substances formed in this way are known as "polymers". Staudinger's views first met with opposition, but he developed methods of determining the molecular weights of these "high polymers". Finally, the introduction of X-ray crystallographic investigation of chemical structure confirmed his views. This discovery has proved to be the basis of a new branch of chemistry with momentous consequences for industry. From it stemmed the synthetic rubber, plastics, fibres, adhesives and other industries, with all their multifarious applications in everyday life. The Staudinger equation, linking viscosity with molecular weight, is still widely used, albeit with some reservations, in the polymer industry.
    During the 1930s, Staudinger turned his attention to biopolymers and foresaw the discovery some twenty years later that these macromolecules were the building blocks of life. In 1953 he belatedly received the Nobel Prize in Chemistry.
    [br]
    Principal Honours and Distinctions
    Nobel Prize in Chemistry 1953.
    Bibliography
    1961, Arbeitserinnerungen, Heidelberg; pub. in English, 1970 as From Organic Chemistry to Macromolecules, New York (includes a comprehensive bibliography of 644 items).
    Further Reading
    E.Farber, 1963, Nobel Prize Winners in Chemistry, New York.
    R.C.Olby, 1970, "The macromolecular concept and the origins of molecular biology", J. Chem. Ed. 47:168–74.
    LRD

    Biographical history of technology > Staudinger, Hermann

См. также в других словарях:

  • List of British words not widely used in the United States — Differences between American and British English American English …   Wikipedia

  • Short subject — is a format description originally coined in the North American film industry in the early period of cinema. The description is now used almost interchangeably with short film. Either term is often abbreviated to short (as a noun, e.g. a short… …   Wikipedia

  • Europe, history of — Introduction       history of European peoples and cultures from prehistoric times to the present. Europe is a more ambiguous term than most geographic expressions. Its etymology is doubtful, as is the physical extent of the area it designates.… …   Universalium

  • performing arts — arts or skills that require public performance, as acting, singing, or dancing. [1945 50] * * * ▪ 2009 Introduction Music Classical.       The last vestiges of the Cold War seemed to thaw for a moment on Feb. 26, 2008, when the unfamiliar strains …   Universalium

  • United Kingdom — a kingdom in NW Europe, consisting of Great Britain and Northern Ireland: formerly comprising Great Britain and Ireland 1801 1922. 58,610,182; 94,242 sq. mi. (244,100 sq. km). Cap.: London. Abbr.: U.K. Official name, United Kingdom of Great… …   Universalium

  • United States — a republic in the N Western Hemisphere comprising 48 conterminous states, the District of Columbia, and Alaska in North America, and Hawaii in the N Pacific. 267,954,767; conterminous United States, 3,022,387 sq. mi. (7,827,982 sq. km); with… …   Universalium

  • KABBALAH — This entry is arranged according to the following outline: introduction general notes terms used for kabbalah the historical development of the kabbalah the early beginnings of mysticism and esotericism apocalyptic esotericism and merkabah… …   Encyclopedia of Judaism

  • education — /ej oo kay sheuhn/, n. 1. the act or process of imparting or acquiring general knowledge, developing the powers of reasoning and judgment, and generally of preparing oneself or others intellectually for mature life. 2. the act or process of… …   Universalium

  • France — /frans, frahns/; Fr. /frddahonns/, n. 1. Anatole /ann nann tawl /, (Jacques Anatole Thibault), 1844 1924, French novelist and essayist: Nobel prize 1921. 2. a republic in W Europe. 58,470,421; 212,736 sq. mi. (550,985 sq. km). Cap.: Paris. 3.… …   Universalium

  • India — /in dee euh/, n. 1. Hindi, Bharat. a republic in S Asia: a union comprising 25 states and 7 union territories; formerly a British colony; gained independence Aug. 15, 1947; became a republic within the Commonwealth of Nations Jan. 26, 1950.… …   Universalium

  • Italy — /it l ee/, n. a republic in S Europe, comprising a peninsula S of the Alps, and Sicily, Sardinia, Elba, and other smaller islands: a kingdom 1870 1946. 57,534,088; 116,294 sq. mi. (301,200 sq. km). Cap.: Rome. Italian, Italia. * * * Italy… …   Universalium

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»