Перевод: со всех языков на все языки

со всех языков на все языки

a+short+history

  • 21 fabella

    fābella, ae, f. dim. [fabula], a brief narrative, a short history, story (class.).
    I.
    In gen.:

    nihil debet esse in philosophia commentariis fabellis loci,

    Cic. Div. 2, 38, 80:

    vera,

    Phaedr. 2, 5, 6:

    in fabellam excedere,

    Sen. Ep. 77 med.
    II.
    In partic.
    A.
    A short fable, a tale, Phaedr. 4, 7, 22:

    Haec (anus) tibi fabellas referat, etc.,

    Tib. 1, 3, 85:

    aniles,

    Hor. S. 2, 6, 78.—Prov.:

    narrare fabellam asello,

    to preach to a stone, Hor. Ep. 2, 1, 200.—
    B.
    A short play, Cic. Q. Fr. 2, 16, 3:

    haec tota fabella, quam est sine argumento!

    id. Cael. 27, 64.

    Lewis & Short latin dictionary > fabella

  • 22 Cotton, William

    SUBJECT AREA: Textiles
    [br]
    b. 1819 Seagrave, Leicestershire, England
    d. after 1878
    [br]
    English inventor of a power-driven flat-bed knitting machine.
    [br]
    Cotton was originally employed in Loughborough and became one of the first specialized hosiery-machine builders. After the introduction of the latch needle by Matthew Townsend in 1856, knitting frames developed rapidly. The circular frame was easier to work automatically, but attempts to apply power to the flat frame, which could produce fully fashioned work, culminated in 1863 with William Cotton's machine. In that year he invented a machine that could make a dozen or more stockings or hose simultaneously and knit fashioned garments of all kinds. The difficulty was to reduce automatically the number of stitches in the courses where the hose or garment narrowed to give it shape. Cotton had early opportunities to apply himself to the improvement of hosiery machines while employed in the patent shop of Cartwright \& Warner of Loughborough, where some of the first rotaries were made. He remained with the firm for twenty years, during which time sixty or seventy of these machines were turned out. Cotton then established a factory for the manufacture of warp fabrics, and it was here that he began to work on his ideas. He had no knowledge of the principles of engineering or drawing, so his method of making sketches and then getting his ideas roughed out involved much useless labour. After twelve years, in 1863, a patent was issued for the machine that became the basis of the Cotton's Patent type. This was a flat frame driven by rotary mechanism and remarkable for its adaptability. At first he built his machine upright, like a cottage piano, but after much thought and experimentation he conceived the idea of turning the upper part down flat so that the needles were in a vertical position instead of being horizontal, and the work was carried off horizontally instead of vertically. His first machine produced four identical pieces simultaneously, but this number was soon increased. Cotton was induced by the success of his invention to begin machine building as a separate business and thus established one of the first of a class of engineering firms that sprung up as an adjunct to the new hosiery manufacture. He employed only a dozen men and turned out six machines in the first year, entering into an agreement with Hine \& Mundella for their exclusive use. This was later extended to the firm of I. \& R.Morley. In 1878, Cotton began to build on his own account, and the business steadily increased until it employed some 200 workers and had an output of 100 machines a year.
    [br]
    Bibliography
    1863, British patent no. 1,901 (flat-frame knitting machine).
    Further Reading
    F.A.Wells, 1935, The British Hosiery and Knitwear Industry: Its History and Organisation, London (based on an article in the Knitters' Circular (Feb. 1898).
    A brief account of the background to Cotton's invention can be found in T.K.Derry and T.I. Williams, 1960, A Short History of Technology from the Earliest Times to AD 1900, Oxford; C. Singer (ed.), 1958, A History of Technology, Vol. V, Oxford: Clarendon Press.
    F.Moy Thomas, 1900, I. \& R.Morley. A Record of a Hundred Years, London (mentions cotton's first machines).
    RLH

    Biographical history of technology > Cotton, William

  • 23 Deverill, Hooton

    SUBJECT AREA: Textiles
    [br]
    fl. c.1835 England
    [br]
    English patentee of the first successful adaptation of the Jacquard machine for patterned lacemaking.
    [br]
    After John Levers had brought out his lacemaking machine in 1813, other lacemakers proceeded to elaborate their machinery so as to imitate the more complicated forms of handwork. One of these was Samuel Draper of Nottingham, who took out one patent in 1835 for the use of a Jacquard mechanism on a lace making machine, followed by another in 1837. However, material made on his machine cost more than the handmade article, so the experiment was abandoned after three years. Then, in Nottingham in 1841, Hooton Deverill patented the first truly successful application of the Jacquard to lacemaking. The Jacquard needles caused the warp threads to be pushed sideways to form the holes in the lace while the bobbins were moved around them to bind them together. This made it possible to reproduce most of the traditional patterns of handmade lace in both narrow and wide pieces. Lace made on these machines became cheap enough for most people to be able to hang it in their windows as curtains, or to use it for trimming clothing. However, it raised in a most serious form the problem of patent rights between the two patentees, Deverill and Draper, threatening much litigation. Deverill's patent was bought by Richard Birkin, who with his partner Biddle relinquished the patent rights. The lacemaking trade on these machines was thus thrown open to the public and a new development of the trade took place. Levers lace is still made in the way described here.
    [br]
    Bibliography
    1841, British patent no. 8,955 (adaptation of Jacquard machine for patterned lacemaking).
    Further Reading
    W.Felkin, 1867, History of Machine-Wrought Hosiery and Lace Manufacture (provides an account of Deverill's patent).
    C.Singer (ed.), 1958, A History of'Technology, Vol. V, Oxford: Clarendon Press (a modern account).
    T.K.Derry and T.I.Williams, 1960, A Short History of Technology from the Earliest
    Times to AD 1900, Oxford.
    RLH

    Biographical history of technology > Deverill, Hooton

  • 24 Möller, Anton

    SUBJECT AREA: Textiles
    [br]
    fl. c. 1580 Danzig, Poland
    [br]
    Polish may have been involved with the invention of the ribbon loom.
    [br]
    Around 1586, Anton Möller related that he saw in Danzig a loom on which four to six pieces of ribbon could be woven at once. Some accounts say he may have invented this loom, which required no skill to use beyond the working of a bar. The city council was afraid that a great many workers might be reduced to begging because of this invention, so they had it suppressed and the inventor strangled or drowned. It seems to have been in use in London c. 1616 and at Leiden in Holland by 1620, but its spread was handicapped both by popular rioting and by restrictive legislation. By 1621 the capacity of the loom had been increased to twenty-four ribbons, and it was later increased to fifty. It made its appearance in Lancashire around 1680 and the way the shuttles were operated could have given John Kay the inspiration for his flying shuttle.
    [br]
    Further Reading
    A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London (includes a good description and illustration of the invention).
    to AD 1900, Oxford; C.Singer (ed.), 1957, A History of Technology, Vol. III, Oxford: Clarendon Press (both provide brief accounts of the introduction of the ribbon loom).
    RLH

    Biographical history of technology > Möller, Anton

  • 25 Poniatoff, Alexander Mathew

    [br]
    b. 25 March 1892 Kazan District, Russia
    d. 24 October 1980
    [br]
    Russian (naturalized American in 1932) electrical engineer responsible for the development of the professional tape recorder and the first commercially-successful video tape recorder (VTR).
    [br]
    Poniatoff was educated at the University of Kazan, the Imperial College in Moscow, and the Technische Hochschule in Karlsruhe, gaining degrees in mechanical and electrical engineering. He was in Germany when the First World War broke out, but he managed to escape back to Russia, where he served as an Air Force pilot with the Imperial Russian Navy. During the Russian Revolution he was a pilot with the White Russian Forces, and escaped into China in 1920; there he found work as an assistant engineer in the Shanghai Power Company. In 1927 he immigrated to the USA, becoming a US citizen in 1932. He obtained a post in the research and development department of the General Electric Company in Schenectady, New York, and later at Dalmo Victor, San Carlos, California. During the Second World War he was involved in the development of airborne radar for the US Navy.
    In 1944, taking his initials to form the title, Poniatoff founded the AMPEX Corporation to manufacture components for the airborne radar developed at General Electric, but in 1946 he turned to the production of audio tape recorders developed from the German wartime Telefunken Magnetophon machine (the first tape recorder in the truest sense). In this he was supported by the entertainer Bing Crosby, who needed high-quality replay facilities for broadcasting purposes, and in 1947 he was able to offer a professional-quality product and the business prospered.
    With the rapid post-war boom in television broadcasting in the USA, a need soon arose for a video recorder to provide "time-shifting" of live TV programmes between the different US time zones. Many companies therefore endeavoured to produce a video tape recorder (VTR) using the same single-track, fixed-head, longitudinal-scan system used for audio, but the very much higher bandwidth required involved an unacceptably high tape-speed. AMPEX attempted to solve the problem by using twelve parallel tracks and a machine was demonstrated in 1952, but it proved unsatisfactory.
    The development team, which included Charles Ginsburg and Ray Dolby, then devised a four-head transverse-scan system in which a quadruplex head rotating at 14,400 rpm was made to scan across the width of a 2 in. (5 cm) tape with a tape-to-head speed of the order of 160 ft/sec (about 110 mph; 49 m/sec or 176 km/h) but with a longitudinal tape speed of only 15 in./sec (0.38 m/sec). In this way, acceptable picture quality was obtained with an acceptable tape consumption. Following a public demonstration on 14 April 1956, commercial produc-tion of studio-quality machines began to revolutionize the production and distribution of TV programmes, and the perfecting of time-base correctors which could stabilize the signal timing to a few nanoseconds made colour VTRs a practical proposition. However, AMPEX did not rest on its laurels and in the face of emerging competition from helical scan machines, where the tracks are laid diagonally on the tape, the company was able to demonstrate its own helical machine in 1957. Another development was the Videofile system, in which 250,000 pages of facsimile could be recorded on a single tape, offering a new means of archiving information. By 1986, quadruplex VTRs were obsolete, but Poniatoff's role in making television recording possible deserves a place in history.
    Poniatoff was President of AMPEX Corporation until 1955 and then became Chairman of the Board, a position he held until 1970.
    [br]
    Further Reading
    A.Abrahamson, 1953, "A short history of television recording", Part I, JSMPTE 64:73; 1973, Part II, Journal of the Society of Motion Picture and Television Engineers, 82:188 (provides a fuller background).
    Audio Biographies, 1961, ed. G.A.Briggs, Wharfedale Wireless Works, pp. 255–61 (contains a few personal details about Poniatoff's escape from Germany to join the Russian Navy).
    E.Larsen, 1971, A History of Invention.
    Charles Ginsburg, 1981, "The horse or the cowboy. Getting television on tape", Journal of the Royal Television Society 18:11 (a brief account of the AMPEX VTR story).
    KF / GB-N

    Biographical history of technology > Poniatoff, Alexander Mathew

  • 26 Savery, Thomas

    [br]
    b. c. 1650 probably Shilston, near Modbury, Devonshire, England
    d. c. 15 May 1715 London, England
    [br]
    English inventor of a partially successful steam-driven pump for raising water.
    [br]
    Little is known of the early years of Savery's life and no trace has been found that he served in the Army, so the title "Captain" is thought to refer to some mining appointment, probably in the West of England. He may have been involved in the Glorious Revolution of 1688, for later he was well known to William of Orange. From 1705 to 1714 he was Treasurer for Sick and Wounded Seamen, and in 1714 he was appointed Surveyor of the Water Works at Hampton Court, a post he held until his death the following year. He was interested in mechanical devices; amongst his early contrivances was a clock.
    He was the most prolific inventor of his day, applying for seven patents, including one in 1649, for polishing plate glass which may have been used. His idea for 1697 for propelling ships with paddle-wheels driven by a capstan was a failure, although regarded highly by the King, and was published in his first book, Navigation Improved (1698). He tried to patent a new type of floating mill in 1707, and an idea in 1710 for baking sea coal or other fuel in an oven to make it clean and pure.
    His most famous invention, however, was the one patented in 1698 "for raising water by the impellent force of fire" that Savery said would drain mines or low-lying land, raise water to supply towns or houses, and provide a source of water for turning mills through a water-wheel. Basically it consisted of a receiver which was first filled with steam and then cooled to create a vacuum by having water poured over the outside. The water to be pumped was drawn into the receiver from a lower sump, and then high-pressure steam was readmitted to force the water up a pipe to a higher level. It was demonstrated to the King and the Royal Society and achieved some success, for a few were installed in the London area and a manufactory set up at Salisbury Court in London. He published a book, The Miner's Friend, about his engine in 1702, but although he made considerable improvements, due to excessive fuel consumption and materials which could not withstand the steam pressures involved, no engines were installed in mines as Savery had hoped. His patent was extended in 1699 until 1733 so that it covered the atmospheric engine of Thomas Newcomen who was forced to join Savery and his other partners to construct this much more practical engine.
    [br]
    Principal Honours and Distinctions
    FRS 1706.
    Bibliography
    1698, Navigation Improved.
    1702, The Miner's Friend.
    Further Reading
    The entry in the Dictionary of National Biography (1897, Vol. L, London: Smith Elder \& Co.) has been partially superseded by more recent research. The Transactions of the Newcomen Society contain various papers; for example, Rhys Jenkins, 1922–3, "Savery, Newcomen and the early history of the steam engine", Vol. 3; A.Stowers, 1961–2, "Thomas Newcomen's first steam engine 250 years ago and the initial development of steam power", Vol. 34; A.Smith, 1977–8, "Steam and the city: the committee of proprietors of the invention for raising water by fire", 1715–1735, Vol. 49; and J.S.P.Buckland, 1977–8, "Thomas Savery, his steam engine workshop of 1702", Vol. 49. Brief accounts may be found in H.W. Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press, and R.L. Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press. There is another biography in T.I. Williams (ed.), 1969, A Biographical Dictionary of Scientists, London: A. \& C.Black.
    RLH

    Biographical history of technology > Savery, Thomas

  • 27 Stumpf, Johann

    [br]
    fl. c. 1900 Germany
    [br]
    German inventor of a successful design of uniflow steam engine.
    [br]
    In 1869 Stumpf was commissioned by the Pope Manufacturing Company of Hertford, Connecticut, to set up two triple-expansion, vertical, Corliss pumping engines. He tried to simplify this complicated system and started research with the internal combustion engine and the steam turbine particularly as his models. The construction of steam turbines in several stages where the steam passed through in a unidirectional flow was being pursued at that time, and Stumpf wondered whether it would be possible to raise the efficiency of a reciprocating steam engine to the same thermal level as the turbine by the use of the uniflow principle.
    Stumpf began to investigate these principles without studying the work of earlier pioneers like L.J. Todd, which he later thought would have led him astray. It was not until 1908, when he was Professor at the Institute of Technology in Berlin- Charlottenburg, that he patented his successful "una-flow" steam engine. In that year he took out six British patents for improvements in details on his original one Stumpf fully realized the thermal advantages of compressing the residual steam and was able to evolve systems of coping with excessive compression when starting. He also placed steam-jackets around the ends of the cylinder. Stumpf's first engine was built in 1908 by the Erste B runner Maschinenfabrik-Gesellschaft, and licences were taken out by many other manufacturers, including those in Britain and the USA. His engine was developed into the most economical type of reciprocating steam engine.
    [br]
    Bibliography
    1912, The Una-Flow Steam Engine, Munich: R. Oldenbourg (his own account of the una-flow engine).
    Further Reading
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press; R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (both discuss Stumpf's engine).
    H.J.Braun, "The National Association of German-American Technologists and technology transfer between Germany and the United States, 1844–1930", History of Technology 8 (provides details of Stumpf's earlier work).
    RLH

    Biographical history of technology > Stumpf, Johann

  • 28 краткий журнал

    1) Computers: short history
    2) SAP.tech. short log

    Универсальный русско-английский словарь > краткий журнал

  • 29 Adamson, Daniel

    [br]
    b. 1818 Shildon, Co. Durham, England
    d. January 1890 Didsbury, Manchester, England
    [br]
    English mechanical engineer, pioneer in the use of steel for boilers, which enabled higher pressures to be introduced; pioneer in the use of triple-and quadruple-expansion mill engines.
    [br]
    Adamson was apprenticed between 1835 and 1841 to Timothy Hackworth, then Locomotive Superintendent on the Stockton \& Darlington Railway. After this he was appointed Draughtsman, then Superintendent Engineer, at that railway's locomotive works until in 1847 he became Manager of Shildon Works. In 1850 he resigned and moved to act as General Manager of Heaton Foundry, Stockport. In the following year he commenced business on his own at Newton Moor Iron Works near Manchester, where he built up his business as an iron-founder and boilermaker. By 1872 this works had become too small and he moved to a 4 acre (1.6 hectare) site at Hyde Junction, Dukinfield. There he employed 600 men making steel boilers, heavy machinery including mill engines fitted with the American Wheelock valve gear, hydraulic plant and general millwrighting. His success was based on his early recognition of the importance of using high-pressure steam and steel instead of wrought iron. In 1852 he patented his type of flanged seam for the firetubes of Lancashire boilers, which prevented these tubes cracking through expansion. In 1862 he patented the fabrication of boilers by drilling rivet holes instead of punching them and also by drilling the holes through two plates held together in their assembly positions. He had started to use steel for some boilers he made for railway locomotives in 1857, and in 1860, only four years after Bessemer's patent, he built six mill engine boilers from steel for Platt Bros, Oldham. He solved the problems of using this new material, and by his death had made c.2,800 steel boilers with pressures up to 250 psi (17.6 kg/cm2).
    He was a pioneer in the general introduction of steel and in 1863–4 was a partner in establishing the Yorkshire Iron and Steel Works at Penistone. This was the first works to depend entirely upon Bessemer steel for engineering purposes and was later sold at a large profit to Charles Cammell \& Co., Sheffield. When he started this works, he also patented improvements both to the Bessemer converters and to the engines which provided their blast. In 1870 he helped to turn Lincolnshire into an important ironmaking area by erecting the North Lincolnshire Ironworks. He was also a shareholder in ironworks in South Wales and Cumberland.
    He contributed to the development of the stationary steam engine, for as early as 1855 he built one to run with a pressure of 150 psi (10.5 kg/cm) that worked quite satisfactorily. He reheated the steam between the cylinders of compound engines and then in 1861–2 patented a triple-expansion engine, followed in 1873 by a quadruple-expansion one to further economize steam. In 1858 he developed improved machinery for testing tensile strength and compressive resistance of materials, and in the same year patents for hydraulic lifting jacks and riveting machines were obtained.
    He was a founding member of the Iron and Steel Institute and became its President in 1888 when it visited Manchester. The previous year he had been President of the Institution of Civil Engineers when he was presented with the Bessemer Gold Medal. He was a constant contributor at the meetings of these associations as well as those of the Institution of Mechanical Engineers. He did not live to see the opening of one of his final achievements, the Manchester Ship Canal. He was the one man who, by his indomitable energy and skill at public speaking, roused the enthusiasm of the people in Manchester for this project and he made it a really practical proposition in the face of strong opposition.
    [br]
    Principal Honours and Distinctions
    President, Institution of Civil Engineers 1887.
    President, Iron and Steel Institute 1888. Institution of Civil Engineers Bessemer Gold Medal 1887.
    Further Reading
    Obituary, Engineer 69:56.
    Obituary, Engineering 49:66–8.
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press (provides an illustration of Adamson's flanged seam for boilers).
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (covers the development of the triple-expansion engine).
    RLH

    Biographical history of technology > Adamson, Daniel

  • 30 Branca, Giovanni de

    [br]
    b. 1571 Italy
    d. 1640 Italy
    [br]
    Italian architect who proposed what has been suggested as an early turbine, using a jet of steam to turn a wheel.
    [br]
    Branca practised architecture at Loretto. In 1629 he published Le Machine: volume nuovo et di molto artificio, in which he described various mechanisms. One was the application of rolls for working copper, lead or the precious metals gold and silver. The rolls were powered by a form of smokejack with the gases from the fire passing up a long tube forming a chimney which, through gearing, turned the rolls. Another device used a jet of steam from a boiler issuing from a mouthpiece shaped like the head of a person to impinge upon blades around the circumference of a horizontal wheel, connected through triple reduction gearing to drop stamps, for pounding drugs. This was a form of impulse turbine and has been claimed as the first machine worked by steam to do a particular operation since Heron's temple doors.
    [br]
    Further Reading
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press (includes a description and picture of the turbine).
    C.Singer (ed.), 1957, A History of Technology, Vols III and IV, Oxford University Press (provides notes on Branca).
    RLH

    Biographical history of technology > Branca, Giovanni de

  • 31 Girard, Philippe de

    SUBJECT AREA: Textiles
    [br]
    b. 1775 France
    d. 1845
    [br]
    French developer of a successful flax-heckling machine for the preparation of fibres for power-spinning.
    [br]
    Early drawing and spinning processes failed to give linen yarn the requisite fineness and homogeneity. In 1810 Napoleon offered a prize of a million francs for a successful flax-spinning machine as part of his policy of stimulating the French textile industries. Spurred on by this offer, Girard suggested three improvements. He was too late to win the prize, but his ideas were patented in England in 1814, although not under his own name. He proposed that the fibres should be soaked in a very hot alkaline solution both before drawing and immediately before they went to the spindles. The actual drawing was to be done by passing the dried material through combs or gills that moved alternately; gill drawing was taken up in England in 1816. His method of wet spinning was never a commercial success, but his processes were adopted in part and developed in Britain and spread to Austria, Poland and France, for his ideas were essentially good and produced a superior product. The successful power-spinning of linen thread from flax depended primarily upon the initial processes of heckling and drawing. The heckling of the bundles or stricks of flax, so as to separate the long fibres of "line" from the shorter ones of "tow", was extremely difficult to mechanize, for each strick had to be combed on both sides in turn and then in the reverse direction. It was to this problem that Girard next turned his attention, inventing a successful machine in 1832 that subsequently was improved in England. The strick was placed between two vertical sheets of combs that moved opposite to each other, depositing the tow upon a revolving cylinder covered with a brush at the bottom of the machine, while the holder from which the strick was suspended moved up and down so as to help the teeth to penetrate deeper into the flax. The tow was removed from the cylinder at the bottom of the machine and taken away to be spun like cotton. The long line fibres were removed from the top of the machine and required further processing if the yarn was to be uniform.
    When N.L.Sadi Carnot's book Réflexions sur la puissance motrice du feu, was published in 1824, Girard made a favourable report on it.
    [br]
    Further Reading
    M.Daumas (ed.), 1968, Histoire générale des techniques, Vol. III: L'Expansion du
    Machinisme, Paris.
    C.Singer (ed.), 1958, A History of'Technology, Vol. IV, Oxford: Clarendon Press. T.K.Derry and T.I.Williams, 1960, A Short History of Technology from the Earliest
    Times to AD 1900, Oxford.
    W.A.McCutcheon, 1966–7, "Water power in the North of Ireland", Transactions of the Newcomen Society 39 (discusses the spinning of flax and mentions Girard).
    RLH

    Biographical history of technology > Girard, Philippe de

  • 32 Heilmann, Josué (Joshua)

    SUBJECT AREA: Textiles
    [br]
    b. 1796 Alsace
    d. 1848
    [br]
    Alsatian inventor of the first machine for combing cotton.
    [br]
    Josué Heilmann, of Mulhouse, was awarded 5,000 francs offered by the cotton spinners of Alsace for a machine that would comb cotton. It was a process not hitherto applied to this fibre and, when perfected, enabled finer, smoother and more lustrous yarns to be spun. The important feature of Heilmann's method was to use a grip or nip to hold the end of the sliver that was being combed. Two or more combs passed through the protruding fibres to comb them thoroughly, and a brush cylinder and knife cleared away the noils. The combed section was passed forward so that the part held in the nip could then be combed. The combed fibres were joined up with the length already finished. Heilmann obtained a British patent in 1846, but no machines were put to work until 1851. Six firms of cotton spinners in Lancashire paid £30,000 for the cotton-combing rights and Marshall's of Leeds paid £20,000 for the rights to comb flax. Heilmann's machine was used on the European continent for combing silk as well as flax, wool and cotton, so it proved to be very versatile. Priority of his patent was challenged in England because Lister had patented a combing machine with a gripper or nip in 1843; in 1852 the parties went to litigation and cross-suits were instituted. While Heilmann obtained a verdict of infringement against Lister for certain things, Lister also obtained one against Heilmann for other matters. After this outcome, Heilmann's patent was bought on speculation by Messrs Akroyd and Titus Salt for £30,000, but was afterwards resold to Lister for the same amount. In this way Lister was able to exploit his own patent through suppressing Heilmann's.
    [br]
    Bibliography
    1846, British patent no. 11,103 (cotton-combing machine).
    Further Reading
    For descriptions of his combing machine see: W.English, 1969, The Textile Industry, London; T.K.Derry and T.I.Williams, 1960, A Short History of Technology from the Earliest Times to AD 1900, Oxford; and C.Singer (ed.), 1958, A History of Technology, Vol.
    IV, Oxford: Clarendon Press.
    RLH

    Biographical history of technology > Heilmann, Josué (Joshua)

  • 33 Hoe, Richard March

    SUBJECT AREA: Paper and printing
    [br]
    b. 12 September 1812 New York, USA
    d. 7 June 1886 Florence, Italy
    [br]
    American inventor of the rotary printing press.
    [br]
    He was the son of Robert Hoe, a printer who improved the cylinder press invented by David Napier. At the age of 15 he entered his father's business, taking full control of it three years later. Newspaper publishers demanded ever-increasing speeds of output from the printing press, and Hoe was one of those who realized that the speed was limited by the reciprocating action of the flat-bed machine. In 1846 he constructed a rotary press in which a central cylinder carried the type and flat sheets of paper were fed to smaller impression cylinders ranged around it. This kind of press, with four impression cylinders, was first used to print the Philadelphia Public Ledger in 1847, and was able to print 8,000 papers per hour. Such presses reigned supreme for newspaper printing in many countries for twenty-five years: in 1857, for example, The Times had a ten-feeder machine making 20,000 impressions per hour. Even so, the quest for speed, now limited by the single-sheet feed, continued. William Bullock (1813–67) introduced continuous roll or web feed for the Philadelphia Inquirer in 1865, and the next year The Times followed suit with the web-fed Walter press. In 1871 Hoe devised a machine that combined all the advantages of the existing machines, producing a rotary, web, perfecting (printing on both sides of the paper at once) machine, first used in the office of the New York Tribune. Ten years later the Hoe Company devised a folding machine to fold the copies as they came off the press: the modern newspaper printing press had arrived. In addition to his contributions to the printing industry, Hoe was a good employer, arranging free evening classes and other welfare services for his apprentices.
    [br]
    Further Reading
    R.Hoe, 1902, A Short History of the Printing Press, New York. S.D.Tucker, A History of K.Hoe \& Co. New York.
    LRD

    Biographical history of technology > Hoe, Richard March

  • 34 Hornblower, Jonathan

    [br]
    b. 1753 Cornwall (?), England
    d. 1815 Penryn, Cornwall, England
    [br]
    English mining engineer who patented an early form of compound steam engine.
    [br]
    Jonathan came from a family with an engineering tradition: his grandfather Joseph had worked under Thomas Newcomen. Jonathan was the sixth child in a family of thirteen whose names all began with "J". In 1781 he was living at Penryn, Cornwall and described himself as a plumber, brazier and engineer. As early as 1776, when he wished to amuse himself by making a small st-eam engine, he wanted to make something new and wondered if the steam would perform more than one operation in an engine. This was the foundation for his compound engine. He worked on engines in Cornwall, and in 1778 was Engineer at the Ting Tang mine where he helped Boulton \& Watt erect one of their engines. He was granted a patent in 1781 and in that year tried a large-scale experiment by connecting together two engines at Wheal Maid. Very soon John Winwood, a partner in a firm of iron founders at Bristol, acquired a share in the patent, and in 1782 an engine was erected in a colliery at Radstock, Somerset. This was probably not very successful, but a second was erected in the same area. Hornblower claimed greater economy from his engines, but steam pressures at that time were not high enough to produce really efficient compound engines. Between 1790 and 1794 ten engines with his two-cylinder arrangement were erected in Cornwall, and this threatened Boulton \& Watt's near monopoly. At first the steam was condensed by a surface condenser in the bottom of the second, larger cylinder, but this did not prove very successful and later a water jet was used. Although Boulton \& Watt proceeded against the owners of these engines for infringement of their patent, they did not take Jonathan Hornblower to court. He tried a method of packing the piston rod by a steam gland in 1781 and his work as an engineer must have been quite successful, for he left a considerable fortune on his death.
    [br]
    Bibliography
    1781, British patent no. 1,298 (compound steam engine).
    Further Reading
    R.Jenkins, 1979–80, "Jonathan Hornblower and the compound engine", Transactions of the Newcomen Society 11.
    J.Tann, 1979–80, "Mr Hornblower and his crew, steam engine pirates in the late 18th century", Transactions of the Newcomen Society 51.
    J.Farey, 1827, A Treatise on the Steam Engine, Historical, Practical and Descriptive, reprinted 1971, Newton Abbot: David \& Charles (an almost contemporary account of the compound engine).
    D.S.L.Cardwell, 1971, From Watt to Clausius. The Rise of Thermo dynamics in the Early Industrial Age, London: Heinemann.
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press.
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press.
    RLH

    Biographical history of technology > Hornblower, Jonathan

  • 35 Todd, Leonard Jennett

    [br]
    fl. 1885 London, England
    [br]
    English (?) patentee of steam engines incorporating the uniflow principle.
    [br]
    In a uniflow system, the steam enters a steam engine cylinder at one end, pushes the pistons along, and exhausts through a ring of ports at the centre of the cylinder that are uncovered by movement of the piston. The piston is returned by steam then entering the other end of the cylinder, moving the piston arrangement back, and again making its exit through the central ports. This gave the thermodynamic advantage of the cylinder ends remaining hot and the centre colder with reheating the ends of the cylinder through compression of the residual steam. The principle was first patented by Jacob Perkins in England in 1827 and was tried in America in 1856.
    Little is known about Todd. The addresses given in his patent specifications show that he was living first at South Hornsey and then Stoke Newington, both in Middlesex (now in London). No obituary notices have been traced. He took out a patent in 1885 for a "terminal exhaust engine" and followed this with two more in 1886 and 1887. His aim was to "produce a double acting steam engine which shall work more efficiently, which shall produce and maintain within itself an improved gradation of temperature extending from each of its two Hot Inlets to its common central Cold Outlet". His later patents show the problems he faced with finding suitable valve gears and the compression developing during the return stroke of the piston. It was this last problem, particularly when starting a condensing engine, that probably defeated him through excessive compression pressures. There is some evidence that he hoped to apply his engines to railway locomotives.
    [br]
    Bibliography
    1885, British patent no. 7,301 (terminal exhaust engine). 1886, British patent no. 2,132.
    1887, British patent no. 6,666.
    Further Reading
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (provides the fullest discussion of his patents). H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press.
    J.Stumpf, 1912, The Una-Flow Steam Engine, Munich: R.Oldenbourg.
    RLH

    Biographical history of technology > Todd, Leonard Jennett

  • 36 약사

    n. short history, chemist

    Korean-English dictionary > 약사

  • 37 courtly

    ['kɔːtlɪ]
    прил.
    Syn:
    2) тонкий, утончённый; аристократический ( о манерах)

    His manners were genial, and even courtly. (J. R. Green, Short History of the English People, 1874) — Его манеры были изумительны, даже аристократичны.

    Syn:
    3) раболепный, угодливый, подобострастный
    Syn:

    Англо-русский современный словарь > courtly

  • 38 box on the ear

    пощечина; см. тж. box smb.'s ear

    She met the insolence of Essex with a box on the ear. (J. R. Green, ‘A Short History of the English People’, ch. VII) — В ответ на наглость Эссекса Елизавета дала ему пощечину.

    Large English-Russian phrasebook > box on the ear

  • 39 pride of place

    1) охот. уст. большая высота (на которую поднимается хищная птица, прежде чем броситься на свою добычу) [шекспировское выражение; см. цитату]

    Old Man: "On Tuesday last A falcon towering in her pride of place Was by a mousing owl hawk'd at and kill'd. " (W. Shakespeare, ‘Macbeth’, act II, sc. 4) — Старик: "Прошлый вторник Взлетевший гордо сокол был настигнут Совой, мышей ловящей, и убит." (перевод М. Лозинского)

    2) высокое положение; почётное место

    Ambition - what is the good of pride of place when you cannot appear there? (H. G. Wells, ‘The Invisible Man’, ch. 23) — Но что в высоком звании, если обладатель его вынужден скрываться?

    Among these novelties a certain pride of place must be given to ‘Quentin Durward’ (1823), which deals with the France of Louis XI, for in that novel he captured the attention of Europe. (B. Evans, ‘A Short History of English Literature’, ch. X) — Среди литературных новинок того времени особое место занимает "Квентин Дорвард" (1823). Этот роман, в котором описывается Франция эпохи Людовика XI, привлек внимание всей Европы.

    Although space research and supersonic transports received due prominence at the Show, there is no doubt that pride of place must go to the jet lift vertical take off and landing aircraft. (‘Aircraft Engineering’) — Хотя на Парижской авиационной выставке уделяется должное внимание космическим исследованиям и сверхзвуковым самолетам, почетное место, без сомнения, принадлежит реактивным летательным аппаратам с вертикальным взлетом и посадкой.

    3) упоённость собственным положением; высокомерие

    He lapsed into reverie with the vision of his career, persuading himself that it was ardour for Christianity which spurred him on, and not pride of place. (Th. Hardy, ‘A Tragedy of Two Ambitions’, ch. II) — Он размечтался о своей карьере, стараясь убедить себя, что его стимулом является рвение христианина, а не гордость от сознания своего высокого положения.

    Large English-Russian phrasebook > pride of place

  • 40 Bain, Alexander

    [br]
    b. October 1810 Watten, Scotland
    d. 2 January 1877 Kirkintilloch, Scotland
    [br]
    Scottish inventor and entrepreneur who laid the foundations of electrical horology and designed an electromagnetic means of transmitting images (facsimile).
    [br]
    Alexander Bain was born into a crofting family in a remote part of Scotland. He was apprenticed to a watchmaker in Wick and during that time he was strongly influenced by a lecture on "Heat, sound and electricity" that he heard in nearby Thurso. This lecture induced him to take up a position in Clerkenwell in London, working as a journeyman clockmaker, where he was able to further his knowledge of electricity by attending lectures at the Adelaide Gallery and the Polytechnic Institution. His thoughts naturally turned to the application of electricity to clockmaking, and despite a bitter dispute with Charles Wheatstone over priority he was granted the first British patent for an electric clock. This patent, taken out on 11 January 1841, described a mechanism for an electric clock, in which an oscillating component of the clock operated a mechanical switch that initiated an electromagnetic pulse to maintain the regular, periodic motion. This principle was used in his master clock, produced in 1845. On 12 December of the same year, he patented a means of using electricity to control the operation of steam railway engines via a steam-valve. His earliest patent was particularly far-sighted and anticipated most of the developments in electrical horology that occurred during the nineteenth century. He proposed the use of electricity not only to drive clocks but also to distribute time over a distance by correcting the hands of mechanical clocks, synchronizing pendulums and using slave dials (here he was anticipated by Steinheil). However, he was less successful in putting these ideas into practice, and his electric clocks proved to be unreliable. Early electric clocks had two weaknesses: the battery; and the switching mechanism that fed the current to the electromagnets. Bain's earth battery, patented in 1843, overcame the first defect by providing a reasonably constant current to drive his clocks, but unlike Hipp he failed to produce a reliable switch.
    The application of Bain's numerous patents for electric telegraphy was more successful, and he derived most of his income from these. They included a patent of 12 December 1843 for a form of fax machine, a chemical telegraph that could be used for the transmission of text and of images (facsimile). At the receiver, signals were passed through a moving band of paper impregnated with a solution of ammonium nitrate and potassium ferrocyanide. For text, Morse code signals were used, and because the system could respond to signals faster than those generated by hand, perforated paper tape was used to transmit the messages; in a trial between Paris and Lille, 282 words were transmitted in less than one minute. In 1865 the Abbé Caselli, a French engineer, introduced a commercial fax service between Paris and Lyons, based on Bain's device. Bain also used the idea of perforated tape to operate musical wind instruments automatically. Bain squandered a great deal of money on litigation, initially with Wheatstone and then with Morse in the USA. Although his inventions were acknowledged, Bain appears to have received no honours, but when towards the end of his life he fell upon hard times, influential persons in 1873 secured for him a Civil List Pension of £80 per annum and the Royal Society gave him £150.
    [br]
    Bibliography
    1841, British patent no. 8,783; 1843, British patent no. 9,745; 1845, British patent no.
    10,838; 1847, British patent no. 11,584; 1852, British patent no. 14,146 (all for electric clocks).
    1852, A Short History of the Electric Clocks with Explanation of Their Principles and
    Mechanism and Instruction for Their Management and Regulation, London; reprinted 1973, introd. W.Hackmann, London: Turner \& Devereux (as the title implies, this pamphlet was probably intended for the purchasers of his clocks).
    Further Reading
    The best account of Bain's life and work is in papers by C.A.Aked in Antiquarian Horology: "Electricity, magnetism and clocks" (1971) 7: 398–415; "Alexander Bain, the father of electrical horology" (1974) 9:51–63; "An early electric turret clock" (1975) 7:428–42. These papers were reprinted together (1976) in A Conspectus of Electrical Timekeeping, Monograph No. 12, Antiquarian Horological Society: Tilehurst.
    J.Finlaison, 1834, An Account of Some Remarkable Applications of the Electric Fluid to the Useful Arts by Alexander Bain, London (a contemporary account between Wheatstone and Bain over the invention of the electric clock).
    J.Munro, 1891, Heroes of the Telegraph, Religious Tract Society.
    J.Malster \& M.J.Bowden, 1976, "Facsimile. A Review", Radio \&Electronic Engineer 46:55.
    D.J.Weaver, 1982, Electrical Clocks and Watches, Newnes.
    T.Hunkin, 1993, "Just give me the fax", New Scientist (13 February):33–7 (provides details of Bain's and later fax devices).
    DV / KF

    Biographical history of technology > Bain, Alexander

См. также в других словарях:

  • A Short History of the World — Infobox Book name = A Short History of the World author = Geoffrey Blainey subject = General history publisher = Penguin Books pub date = 2000 media type = Hard cover pages = 669 isbn = 0 670 88036 1 A Short History of the World is a general… …   Wikipedia

  • A Short History of Nearly Everything — Infobox Book name = A Short History of Nearly Everything author = Bill Bryson publisher = Black Swan (UK);Broadway Books (US) language = English genre = Non fiction release date = 2003 media type = Print (Hardcover, Paperback) isbn = 0 7679 0817… …   Wikipedia

  • A Short History of Pakistan — Note : This article is about an academic publication. For details on the actual history of Pakistan see History of Pakistan Infobox Book name = A Short History of Pakistan title orig = translator = image caption = author = Ishtiaq Hussain Qureshi …   Wikipedia

  • A Short History of Progress — is a book length essay penned by Ronald Wright and published in 2004. It was originally read by the author as a series of hour long Massey Lectures given in each of five different cities across Canada and broadcast on the CBC Radio program, Ideas …   Wikipedia

  • A Short History of Indians in Canada — is a collection of short stories by Thomas King, published by HarperCollins in 2005. Although the majority of the stories deal with issues surrounding First Nations people, the topics and styles are quite diverse. The book won the McNally… …   Wikipedia

  • A Short History of Tractors in Ukrainian — Infobox Book | name = A Short History of Tractors in Ukrainian title orig = translator = image caption = First edition cover author = Marina Lewycka cover artist = country = United Kingdom language = English series = genre = Comedy novel… …   Wikipedia

  • A Short History of Chinese Philosophy — (1948) by Feng Youlan is a short version of his classic 1934 book A History of Chinese Philosophy …   Wikipedia

  • A Short History of a Small Place — infobox Book | name = A Short History of a Small Place title orig = translator = image caption = author = T. R. Pearson illustrator = cover artist = country = United States language = English series = genre = Novel publisher = Simon Schuster pub… …   Wikipedia

  • A Short History of the Future — is a book by W. Warren Wagar which was first published in 1989 and underwent two substantive revisions (1992 1999). As the book is told as a narrative history of the next 200 years (from the vantage point of the year 2200), the first version… …   Wikipedia

  • A Short History of the Confederate States of America — is a memoir written by Jefferson Davis, completed shortly before his death in 1889. Davis wrote most of this book while staying at Beauvoir along the Mississippi Gulf Coast near Biloxi, Mississippi. The book is much less a Davis memoir than an… …   Wikipedia

  • History of the Netherlands — This article is part of a series Early History …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»