Перевод: со всех языков на английский

с английского на все языки

HMSO

  • 1 HMSO

    HMSO (Imprenta del Gobierno Británico)

    Ex: The major government cataloging agencies such as the Government Printing Office (GPO) and Her Majesty's Stationery Office (HMSO) have until very recently used the same procedures.

    Spanish-English dictionary > HMSO

  • 2 HMSO (Imprenta del Gobierno Británico)

    Ex. The major government cataloging agencies such as the Government Printing Office (GPO) and Her Majesty's Stationery Office (HMSO) have until very recently used the same procedures.

    Spanish-English dictionary > HMSO (Imprenta del Gobierno Británico)

  • 3 supervisar

    v.
    to supervise.
    * * *
    1 to supervise
    * * *
    verb
    to supervise, oversee
    * * *
    * * *
    verbo transitivo to supervise
    * * *
    = monitor, oversee, supervise, superintend, overlook.
    Ex. Ideally it should be possible to include some form of student assessment or to monitor the student's progress.
    Ex. Nevertheless, checking and proofreading must be overseen by the editor.
    Ex. The deputy librarian or deputy director's duties are to take the place of the director in his absence, to organize the general routine of the library, to supervise the staff and to deal with matters such as interviews, appointments and resignations.
    Ex. However, Her Majesty's Stationery Office (HMSO) retains responsibility for managing and superintending such official documents.
    Ex. Her work essentially involves overlooking the operations of the group a and some of its subsidiaries.
    * * *
    verbo transitivo to supervise
    * * *
    = monitor, oversee, supervise, superintend, overlook.

    Ex: Ideally it should be possible to include some form of student assessment or to monitor the student's progress.

    Ex: Nevertheless, checking and proofreading must be overseen by the editor.
    Ex: The deputy librarian or deputy director's duties are to take the place of the director in his absence, to organize the general routine of the library, to supervise the staff and to deal with matters such as interviews, appointments and resignations.
    Ex: However, Her Majesty's Stationery Office (HMSO) retains responsibility for managing and superintending such official documents.
    Ex: Her work essentially involves overlooking the operations of the group a and some of its subsidiaries.

    * * *
    supervisar [A1 ]
    vt
    to supervise
    * * *

     

    supervisar ( conjugate supervisar) verbo transitivo
    to supervise
    supervisar verbo transitivo to supervise, oversee
    ' supervisar' also found in these entries:
    English:
    oversee
    - supervise
    - over
    - steward
    - superintend
    * * *
    to supervise
    * * *
    v/t supervise
    * * *
    : to supervise, to oversee
    * * *
    supervisar vb to supervise

    Spanish-English dictionary > supervisar

  • 4 Her Majesty's Stationary Office

    Law: HMSO

    Универсальный русско-английский словарь > Her Majesty's Stationary Office

  • 5 His Majesty's Stationary Office

    Law: HMSO

    Универсальный русско-английский словарь > His Majesty's Stationary Office

  • 6 INE

    m.
    organization that publishes official statistics about Spain; similar HMSO (British).
    * * *
    SM ABR Esp
    = Instituto Nacional de Estadística
    * * *
    /ˈine/
    (en Esp) = Instituto Nacional de Estadística
    * * *
    = organization that publishes official statistics about Spain
    * * *
    m abr (= Instituto Nacional de Estadística) Spanish National Statistics Office

    Spanish-English dictionary > INE

  • 7 Barry, Sir Charles

    [br]
    b. 23 May 1795 Westminster, London, England
    d. 12 May 1860 Clapham, London, England
    [br]
    English architect who was a leader in the field between the years 1830 and 1860.
    [br]
    Barry was typical of the outstanding architects of this time. His work was eclectic, and he suited the style—whether Gothic or classical—to the commission and utilized the then-traditional materials and methods of construction. He is best known as architect of the new Palace of Westminster; he won the competition to rebuild it after the disastrous fire of the old palace in 1834. Bearing this in mind in the rebuilding, Barry utilized that characteristic nineteenth-century material, iron for joists and roofing plates.
    [br]
    Principal Honours and Distinctions
    Knighted 1852. Member of the Royal Academy; the Royal Society; the Academies of St Luke, Rome; St Petersburg (and others); and the American Institute of Architects. RIBA Gold Medal 1850.
    Further Reading
    Marcus Whiffen, The Architecture of Sir Charles Barry in Manchester and Neighbourhood, Royal Manchester Institution.
    H.M.Port (ed.), 1976, The Houses of Parliament, Yale University Press.
    H.M.Colvin (ed.), The History of the King's Works, Vol. 6, HMSO.
    DY

    Biographical history of technology > Barry, Sir Charles

  • 8 Butler, Edward

    [br]
    b. 1863
    d. 1940
    [br]
    English motoring pioneer, designer of a motor tricycle.
    [br]
    In 1884 Butler patented a design for a motor tricycle that was shown that year at the Stanley Cycle Show and in the following year at the Inventions Exhibition. In 1887 he patented his "Petrol-tricycle", which was built the following year. The cycle was steered through its two front wheels, while it was driven through its single rear wheel. The motor, which was directly connected to the rear wheel hub by means of overhung cranks, consisted of a pair of water-cooled 2 1/4 in. (57 mm) bore cylinders with an 8 in. (203 mm) stroke working on the Clerk two-stroke cycle. Ignition was by electric spark produced by a wiper breaking contact with the piston, adopted from Butler's own design of electrostatic ignition machine; this was later replaced by a Ruhmkorff coil and a battery. There was insufficient power with direct drive and the low engine speed of c.100 rpm, producing a road speed of approximately 12 mph (19 km/h), so Butler redesigned the engine with a 6 3/4 in. (171 mm) stroke and a four-stroke cycle with an epicyclic reduction gear drive of 4:1 and later 6:1 ratio which could run at 600 rpm. The combination of restrictive speed-limit laws and shortsightedness of his backers prevented development, despite successful road demonstrations. Interest was non-existent by 1895, and the following year this first English internal combustion engined motorcycle was broken up for the scrap value of some 163 lb (74 kg) of copper and brass contained in its structure.
    [br]
    Further Reading
    C.F.Caunter, 1982, Motor Cycles, 3rd edn, London: HMSO/Science Museum.
    IMcN

    Biographical history of technology > Butler, Edward

  • 9 Ferranti, Sebastian Ziani de

    [br]
    b. 9 April 1864 Liverpool, England
    d. 13 January 1930 Zurich, Switzerland
    [br]
    English manufacturing engineer and inventor, a pioneer and early advocate of high-voltage alternating-current electric-power systems.
    [br]
    Ferranti, who had taken an interest in electrical and mechanical devices from an early age, was educated at St Augustine's College in Ramsgate and for a short time attended evening classes at University College, London. Rather than pursue an academic career, Ferranti, who had intense practical interests, found employment in 1881 with the Siemens Company (see Werner von Siemens) in their experimental department. There he had the opportunity to superintend the installation of electric-lighting plants in various parts of the country. Becoming acquainted with Alfred Thomson, an engineer, Ferranti entered into a short-lived partnership with him to manufacture the Ferranti alternator. This generator, with a unique zig-zag armature, had an efficiency exceeding that of all its rivals. Finding that Sir William Thomson had invented a similar machine, Ferranti formed a company with him to combine the inventions and produce the Ferranti- Thomson machine. For this the Hammond Electric Light and Power Company obtained the sole selling rights.
    In 1885 the Grosvenor Gallery Electricity Supply Corporation was having serious problems with its Gaulard and Gibbs series distribution system. Ferranti, when consulted, reviewed the design and recommended transformers connected across constant-potential mains. In the following year, at the age of 22, he was appointed Engineer to the company and introduced the pattern of electricity supply that was eventually adopted universally. Ambitious plans by Ferranti for London envisaged the location of a generating station of unprecedented size at Deptford, about eight miles (13 km) from the city, a departure from the previous practice of placing stations within the area to be supplied. For this venture the London Electricity Supply Corporation was formed. Ferranti's bold decision to bring the supply from Deptford at the hitherto unheard-of pressure of 10,000 volts required him to design suitable cables, transformers and generators. Ferranti planned generators with 10,000 hp (7,460 kW)engines, but these were abandoned at an advanced stage of construction. Financial difficulties were caused in part when a Board of Trade enquiry in 1889 reduced the area that the company was able to supply. In spite of this adverse situation the enterprise continued on a reduced scale. Leaving the London Electricity Supply Corporation in 1892, Ferranti again started his own business, manufacturing electrical plant. He conceived the use of wax-impregnated paper-insulated cables for high voltages, which formed a landmark in the history of cable development. This method of flexible-cable manufacture was used almost exclusively until synthetic materials became available. In 1892 Ferranti obtained a patent which set out the advantages to be gained by adopting sector-shaped conductors in multi-core cables. This was to be fundamental to the future design and development of such cables.
    A total of 176 patents were taken out by S.Z. de Ferranti. His varied and numerous inventions included a successful mercury-motor energy meter and improvements to textile-yarn produc-tion. A transmission-line phenomenon where the open-circuit voltage at the receiving end of a long line is greater than the sending voltage was named the Ferranti Effect after him.
    [br]
    Principal Honours and Distinctions
    FRS 1927. President, Institution of Electrical Engineers 1910 and 1911. Institution of Electrical Engineers Faraday Medal 1924.
    Bibliography
    18 July 1882, British patent no. 3,419 (Ferranti's first alternator).
    13 December 1892, British patent no. 22,923 (shaped conductors of multi-core cables). 1929, "Electricity in the service of man", Journal of the Institution of Electrical Engineers 67: 125–30.
    Further Reading
    G.Z.de Ferranti and R. Ince, 1934, The Life and Letters of Sebastian Ziani de Ferranti, London.
    A.Ridding, 1964, S.Z.de Ferranti. Pioneer of Electric Power, London: Science Museum and HMSO (a concise biography).
    R.H.Parsons, 1939, Early Days of the Power Station Industry, Cambridge, pp. 21–41.
    GW

    Biographical history of technology > Ferranti, Sebastian Ziani de

  • 10 Hopkinson, John

    [br]
    b. 27 July 1849 Manchester, England
    d. 27 August 1898 Petite Dent de Veisivi, Switzerland
    [br]
    English mathematician and electrical engineer who laid the foundations of electrical machine design.
    [br]
    After attending Owens College, Manchester, Hopkinson was admitted to Trinity College, Cambridge, in 1867 to read for the Mathematical Tripos. An appointment in 1872 with the lighthouse department of the Chance Optical Works in Birmingham directed his attention to electrical engineering. His most noteworthy contribution to lighthouse engineering was an optical system to produce flashing lights that distinguished between individual beacons. His extensive researches on the dielectric properties of glass were recognized when he was elected to a Fellowship of the Royal Society at the age of 29. Moving to London in 1877 he became established as a consulting engineer at a time when electricity supply was about to begin on a commercial scale. During the remainder of his life, Hopkinson's researches resulted in fundamental contributions to electrical engineering practice, dynamo design and alternating current machine theory. In making a critical study of the Edison dynamo he developed the principle of the magnetic circuit, a concept also arrived at by Gisbert Kapp around the same time. Hopkinson's improvement of the Edison dynamo by reducing the length of the field magnets almost doubled its output. In 1890, in addition to-his consulting practice, Hopkinson accepted a post as the first Professor of Electrical Engineering and Head of the Siemens laboratory recently established at King's College, London. Although he was not involved in lecturing, the position gave him the necessary facilities and staff and student assistance to continue his researches. Hopkinson was consulted on many proposals for electric traction and electricity supply, including schemes in London, Manchester, Liverpool and Leeds. He also advised Mather and Platt when they were acting as contractors for the locomotives and generating plant for the City and South London tube railway. As early as 1882 he considered that an ideal method of charging for the supply of electricity should be based on a two-part tariff, with a charge related to maximum demand together with a charge for energy supplied. Hopkinson was one the foremost expert witnesses of his day in patent actions and was himself the patentee of over forty inventions, of which the three-wire system of distribution and the series-parallel connection of traction motors were his most successful. Jointly with his brother Edward, John Hopkinson communicated the outcome of his investigations to the Royal Society in a paper entitled "Dynamo Electric Machinery" in 1886. In this he also described the later widely used "back to back" test for determining the characteristics of two identical machines. His interest in electrical machines led him to more fundamental research on magnetic materials, including the phenomenon of recalescence and the disappearance of magnetism at a well-defined temperature. For his work on the magnetic properties of iron, in 1890 he was awarded the Royal Society Royal Medal. He was a member of the Alpine Club and a pioneer of rock climbing in Britain; he died, together with three of his children, in a climbing accident.
    [br]
    Principal Honours and Distinctions
    FRS 1878. Royal Society Royal Medal 1890. President, Institution of Electrical Engineers 1890 and 1896.
    Bibliography
    7 July 1881, British patent no. 2,989 (series-parallel control of traction motors). 27 July 1882, British patent no. 3,576 (three-wire distribution).
    1901, Original Papers by the Late J.Hopkinson, with a Memoir, ed. B.Hopkinson, 2 vols, Cambridge.
    Further Reading
    J.Greig, 1970, John Hopkinson Electrical Engineer, London: Science Museum and HMSO (an authoritative account).
    —1950, "John Hopkinson 1849–1898", Engineering 169:34–7, 62–4.
    GW

    Biographical history of technology > Hopkinson, John

  • 11 Lundstrom, Johan E.

    [br]
    fl. c. 1855 Sweden
    [br]
    Swedish scientist credited with the invention of the safety match, first produced in 1855.
    [br]
    Lundstrom's safety match replaced the friction match, popularly called the "strike-anywhere" match because all the ingredients for ignition were contained in the match head so that any abrasive surface would suffice for striking. These matches ignited easily, in fact too readily, so causing numerous accidents.
    It was Professor Anton von Schrötter's discovery of amorphous red phosphorus in 1845 that led to the invention of Lundstrom's safety match. The substance was much less dangerous to handle than the yellow phosphorus that was earlier in use and which had so badly damaged the health of match-factory workers who had to handle it.
    In Lundstrom's safety match the chemical constituents for ignition were divided between the match head and the striking surface of the matchbox, so markedly reducing the chances of spontaneous combustion. Lundstrom's patent mixtures were: Match-head: 32 parts potassium nitrate, 12 parts potassium bichromate, 32 parts red lead, 24 parts sulphide of antimony.
    Rubbing Surface: 8 parts red phosphorous, 9 parts sulphide of antimony.
    [br]
    Further Reading
    W.T.O'Dea, 1964, Making Fire, London: Science Museum, HMSO (illustrated booklet).
    See also the Bryant \& May permanent exhibition in the Domestic Appliances Gallery of the Science Museum, London.
    DY

    Biographical history of technology > Lundstrom, Johan E.

  • 12 Macmillan, Kirkpatrick

    SUBJECT AREA: Land transport
    [br]
    b. 1810
    d. 1878
    [br]
    Scottish inventor and builder of the first pedal-operated bicycle.
    [br]
    Macmillan was the blacksmith at the village of Courthill, Dumfriesshire, Scotland. Before 1839, bicycles were of the draisienne or hobby-horse type, which were propelled by the rider's feet pushing alternately on the ground. Macmillan was the first to appreciate that two wheels placed in line could be balanced while being propelled by means of treadles and cranks fitted to one of the axles. His machine, completed in 1839, had wooden wheels shod with iron tyres, and a curved wooden frame which was forked to take the rear axle; the front, steering wheel was carried in an iron fork. The axles ran in brass bearings. Cranks were keyed to the rear axle which was driven by rods connected to two swinging arms; these were pivotted from the frame near the pivot of the front fork, and had foot treadles at their lower ends. Macmillan frequently rode this machine the 22.5 km (14 miles) from Courthill to Dumfries. In 1842 he was fined five shillings at the Gorbals Police Court for knocking over a child at the end of a 64 km (40 mile) ride from Courthill to Glasgow.
    Although several people copied Macmillan's machine over the next twenty years and it anticipated the rear-driven safety bicycle by some forty years, it did not prove popular.
    [br]
    Further Reading
    C.F.Caunter, 1955, The History and Development of Cycles, London: HMSO.
    IMcN

    Biographical history of technology > Macmillan, Kirkpatrick

  • 13 Michaux, Pierre

    SUBJECT AREA: Land transport
    [br]
    b. 1813
    d. 1883
    [br]
    French bicycle maker and developer, in partnership with his son Ernest (1849– 89).
    [br]
    Pierre Michaux has been variously described as a cabinet-maker, a locksmith and a carriage-repairer. He probably combined all these occupations. He had a workshop near the Champs Elysées in Paris in 1861 where he set up a business in the manufacture of bicycles. His machines, which became known as Michaulines, were largely built of wood but had the great advantage over the draisienne that the rider's feet rested on a pair of pedals connected to the axle of the front wheel. In the late 1850s solid rubber tyres were added to the wheels. In 1865 Michaux et Cie built about four hundred Michaulines. By 1866–7 they had developed a new model with a wrought-iron frame and a larger front wheel. This machine was shown at the World Exhibition held in Paris in 1867 and the company received many orders, including one from the invalid Napoleon III. The Prince Imperial also had a Michauline. Late in the 1860s the Olivier brothers invested 100,000 francs in Michaux et Cie, allowing the firm to move to a 2 1/2-acre (1-he-care) factory near the Arc de Triomphe. Soon afterwards, Michaux père accepted a 200,000 franc payment and left the firm, which continued to flourish. In the early 1870s the Olivier brothers were building as many as two hundred machines each day. By 1870 they employed 500 workers using fifty-seven forges. There were in addition about sixty other bicycle makers in Paris and fifteen in provincial France.
    The 1867 Michauline had a metal backbone and a lever-shoe brake; the saddle was mounted on a single leaf spring; slotted cranks allowed the effective crank length to be adjusted; and the machine weighed 59 lb (27 kg).
    [br]
    Further Reading
    Science Museum, 1955, Cycles: History and Development, London: HMSO. J.McGunn, 1987, On Tour Bicycle: An Illustrated History of Cycling, London: John Murray.
    IMcN

    Biographical history of technology > Michaux, Pierre

  • 14 Sauerbrun, Charles de, Baron von Drais

    SUBJECT AREA: Land transport
    [br]
    b. 1785
    d. 1851
    [br]
    German popularizer of the first form of manumotive vehicle, the hobby-horse.
    [br]
    An engineer and agriculturalist who had to travel long distances over rough country, he evolved an improved design of velocipede. The original device appears to have been first shown in the gardens of the Palais Royal by the comte de Sivrac in 1791, a small wooden "horse" fitted with two wheels and propelled by the rider's legs thrusting alternately against the ground. It was not possible to turn the front wheel to steer the machine, a small variation from the straight being obtained by the rider leaning sideways. It is not known if de Sivrac was the inventor of the machine: it is likely that it had been in existence, probably as a child's toy, for a number of years. Its original name was the celerifière, but it was renamed the velocifère in 1793. The Baron's Draisienne was an improvement on this primitive machine; it had a triangulated wooden frame, an upholstered seat, a rear luggage seat and an armrest which took the thrust of the rider as he or she pushed against the ground. Furthermore, it was steerable. In some models there was a cordoperated brake and a prop stand, and the seat height could be adjusted. At least one machine was fitted with a milometer. Drais began limited manufacture and launched a long marketing and patenting campaign, part of which involved sending advertising letters to leading figures, including a number of kings.
    The Draisienne was first shown in public in April 1817: a ladies' version became available in 1819. Von Drais took out a patent in Baden on 12 January 1818 and followed with a French patent on 17 February. Three-and four-wheeled versions became available so the two men could take the ladies for a jaunt.
    Drais left his agricultural and forestry work and devoted his full time to the "Running Machine" business. Soon copies were being made and sold in Italy, Germany and Austria. In London, a Denis Johnson took out a patent in December 1818 for a "pedestrian curricle" which was soon nicknamed the dandy horse.
    [br]
    Further Reading
    C.A.Caunter, 1955, Cycles: History and Development, London: Science Museum and HMSO.
    IMcN

    Biographical history of technology > Sauerbrun, Charles de, Baron von Drais

  • 15 Stanier, Sir William Arthur

    [br]
    b. 27 May 1876 Swindon, England
    d. 27 September 1965 London, England
    [br]
    English Chief Mechanical Engineer of the London Midland \& Scottish Railway, the locomotive stock of which he modernized most effectively.
    [br]
    Stanier's career started when he was Office Boy at the Great Western Railway's Swindon works. He was taken on as a pupil in 1892 and steady promotion elevated him to Works Manager in 1920, under Chief Mechanical Engineer George Churchward. In 1923 he became Principal Assistant to Churchward's successor, C.B.Collett. In 1932, at the age of 56 and after some forty years' service with the Great Western Railway (GWR), W.A.Stanier was appointed Chief Mechanical Engineer of the London Midland \& Scottish Railway (LMS). This, the largest British railway, had been formed by the amalgamation in 1923 of several long-established railways, including the London \& North Western and the Midland, that had strong and disparate traditions in locomotive design. A coherent and comprehensive policy had still to emerge; Stanier did, however, inherit a policy of reducing the number of types of locomotives, in the interest of economy, by the withdrawal and replacement of small classes, which had originated with constituent companies.
    Initially as replacements, Stanier brought in to the LMS a series of highly successful standard locomotives; this practice may be considered a development of that of G.J.Churchward on the GWR. Notably, these new locomotives included: the class 5, mixed-traffic 4–6–0; the 8F heavy-freight 2–8–0; and the "Duchess" 4–6–2 for express passenger trains. Stanier also built, in 1935, a steam-turbine-driven 4–6–2, which became the only steam-turbine locomotive in Britain to have an extended career in regular service, although the economies it provided were insufficient for more of the type to be built. From 1932–3 onwards, and initially as part of a programme to economize on shunting costs by producing a single-manned locomotive, the LMS started to develop diesel shunting locomotives. Stanier delegated much of the responsibility for these to C.E.Fairburn. From 1939 diesel-electric shunting locomotives were being built in quantity for the LMS: this was the first instance of adoption of diesel power on a large scale by a British main-line railway. In a remarkably short time, Stanier transformed LMS locomotive stock, formerly the most backward of the principal British railways, to the point at which it was second to none. He was seconded to the Government as Scientific Advisor to the Ministry of Production in 1942, and retired two years later.
    [br]
    Principal Honours and Distinctions
    Knighted 1943. FRS 1944. President, Institution of Mechanical Engineers 1941.
    Bibliography
    1955, "George Jackson Churchward", Transactions of the Newcomen Society 30 (Stanier provides a unique view of the life and work of his former chief).
    Further Reading
    O.S.Nock, 1964, Sir William Stanier, An Engineering Biography, Shepperton: Ian Allan (a full-length biography).
    John Bellwood and David Jenkinson, 1976, Oresley and Stanier. A Centenary Tribute, London: HMSO (a comparative account).
    C.Hamilton Ellis, 1970, London Midland \& Scottish, Shepperton: Ian Allan.
    PJGR

    Biographical history of technology > Stanier, Sir William Arthur

  • 16 Tainter, Charles Sumner

    SUBJECT AREA: Recording
    [br]
    b. 1854
    d. 1940
    [br]
    American scientific instrument maker, co-developer of practical cylinder recording.
    [br]
    He manufactured "philosophical devices" in Cambridge, Massachusetts, and was approached by Alexander Graham Bell in connection with the construction of toys using sound recordings. A more formal co-operation was agreed, and after Bell's receipt of the French Volta prize in 1880 he financed the Volta Laboratory Association in Washington, DC. He founded this in 1881 together with a cousin and Tainter to develop a practical sound-recording and -reproducing system. Another area that was developed was the transmission of sound by means of modulated light and reception via a selenium cell.
    The advances in sound recording and reproduction were very positive, and T.A. Edison was approached in mid-1885 in order to establish co-operation in the further development of a cylinder instrument. In early 1886 the Volta Graphophone Company was incorporated in Virginia, and an experimental laboratory was established in Washington, DC. The investors were connected with the secretarial services at the House of Representatives and needed the development for increasing efficiency in debate reporting. In mid-1887 Edison, against the advice of his collaborators, declined co-operation and went ahead on his own. There is no doubt that Tainter's skill in developing functional equipment and the speed with which he was able to work in the crucial years provoked other developments in the field, in particular the perfection of the Edison phonograph and the development of the disc record by Berliner.
    [br]
    Bibliography
    Tainter's patents were numerous; those on sound recording were the most important, because they incorporated so many fundamental ideas, and included US patent no. 341, 214 (with C.A.Bell), and US patent no. 375, 579 (a complete dictation outfit).
    Further Reading
    V.K.Chew, 1981, Talking Machines, London: Science Museum and HMSO, pp. 9–12 (provides a good overview, not only of Tainter's contribution, but also of early sound recording and reproduction).
    GB-N

    Biographical history of technology > Tainter, Charles Sumner

  • 17 Wheatstone, Sir Charles

    SUBJECT AREA: Telecommunications
    [br]
    b. 1802 near Gloucester, England
    d. 19 October 1875 Paris, France
    [br]
    English physicist, pioneer of electric telegraphy.
    [br]
    Wheatstone's family moved to London when he was 4 years old. He was educated at various schools in London and excelled in physics and mathematics. He qualified for a French prize but forfeited it because he was too shy to recite a speech in French at the prize-giving.
    An uncle, also called Charles Wheatstone, has a musical instrument manufacturing business where young Charles went to work. He was fascinated by the science of music, but did not enjoy business life. After the uncle's death, Charles and his brother William took over the business. Charles developed and patented the concertina, which the firm assembled from parts made by "outworkers". He devoted much of his time to studying the physics of sound and mechanism of sound transmission through solids. He sent speech and music over considerable distances through solid rods and stretched wires, and envisaged communication at a distance. He concluded, however, that electrical methods were more promising.
    In 1834 Wheatstone was appointed Professor of Experimental Philosophy—a part-time posi-tion—in the new King's College, London, which gave him some research facilities. He conducted experiments with a telegraph system using several miles of wire in the college corridors. Jointly with William Fothergill Cooke, in 1837 he obtained the first patent for a practical electric telegraph, and much of the remainder of his life was devoted to its improvement. In 1843 he gave a paper to the Royal Society surveying the state of electrical measurements and drew attention to a bridge circuit known ever since as the "Wheatstone bridge", although he clearly attributed it to S.H.Christie. Wheatstone devised the "ABC" telegraph, for use on private lines by anyone who could read, and a high-speed automatic telegraph which was adopted by the Post Office and used for many years. He also worked on the French and Belgian telegraph systems; he died when taken ill on a business visit to Paris.
    [br]
    Further Reading
    B.Bowers, 1975, Sir Charles Wheatstone FRS, London: HMSO.
    BB

    Biographical history of technology > Wheatstone, Sir Charles

См. также в других словарях:

  • HMSO — His/Her Majesty s Stationery Office a British government organization which prints government documents, books etc →↑GPO, the …   Dictionary of contemporary English

  • HMSO — ► ABBREVIATION ▪ (in the UK) Her or His Majesty s Stationery Office, which publishes government documents and legislation …   English terms dictionary

  • HMSO — Das 1786 eingerichtete Her Majesty s Stationery Office, abgekürzt HMSO, war bis 2005 ein britischer Staatsverlag und mitverantwortlich für das Crown copyright, das Urheberrecht für Veröffentlichungen des britischen Staates. Letztere Aufgabe wird… …   Deutsch Wikipedia

  • HMSO — abbr. Her or His Majesty s Stationery Office. * * * abbrev (His or) Her Majesty s Stationery Office (now replaced by ↑OPSI) * * * H.M.S.O. or HMSO (no periods), 1. Her Majesty s Stationery Office. 2. His Majesty s Stationery Office. * * * HMSO… …   Useful english dictionary

  • HMSO — ➡ HM Stationery Office. * * * …   Universalium

  • HMSO — Her Majesty s Stationary Office (Governmental » Police) …   Abbreviations dictionary

  • HMSO — Her Majesty s Stationery Office is responsible for administering crown copyright. HM Customs & Revenue Glossary …   Financial and business terms

  • HMSO — abbreviation (in the UK) Her or His Majesty s Stationery Office, which publishes government documents and legislation …   English new terms dictionary

  • HMSO — abbr. Her (or His) Majesty s Stationery Office …   Dictionary of abbreviations

  • HMSO — Formerly, Abbreviation for Her Majesty s Stationery Office …   Big dictionary of business and management

  • Office of Public Sector Information — The Office of Public Sector Information (OPSI) is the body responsible for the operation of Her Majesty s Stationery Office (usually abbreviated as HMSO) and of other public information services of the United Kingdom. OPSI is part of The National …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»