Перевод: с русского на английский

с английского на русский

элемент+тока

  • 21 жидкостный элемент

    1. wet cell

     

    жидкостный элемент
    Первичный элемент, в котором водный электролит находится в подвижном состоянии.
    [ ГОСТ 15596-82]

    Тематики

    Классификация

    >>>

    EN

    Русско-английский словарь нормативно-технической терминологии > жидкостный элемент

  • 22 источник вытекающего тока

    General subject: current source (разновидность источников тока, которые включены между положительной линией питания и нагрузкой; регулировочный элемент обычно представляет собой биполярный p-n-p транзистор или полевой p-канальный))

    Универсальный русско-английский словарь > источник вытекающего тока

  • 23 гальванический элемент

    комбинация разных электродов, соединенных последовательно с ионным проводником; гальванический элемент является электрохимическим источником электрического тока

    Терминологический словарь "Металлы" > гальванический элемент

  • 24 буферный элемент (аккумулятор)

    1. buffer cell

     

    буферный элемент (аккумулятор)

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > буферный элемент (аккумулятор)

  • 25 (гальванический) элемент

    Универсальный русско-английский словарь > (гальванический) элемент

  • 26 вторичный источник тока

    Универсальный русско-английский словарь > вторичный источник тока

  • 27 первичный источник тока

    1) Engineering: element (гальванический), primary cell, primary-cell battery
    2) Makarov: cell, primary cell (единичный элемент), primary-cell battery (батарея)

    Универсальный русско-английский словарь > первичный источник тока

  • 28 гальванический элемент первичный химический источник тока

    Solar energy: cell

    Универсальный русско-английский словарь > гальванический элемент первичный химический источник тока

  • 29 логический элемент на переключателях тока

    Универсальный русско-английский словарь > логический элемент на переключателях тока

  • 30 солнечный элемент переменного тока

    Универсальный русско-английский словарь > солнечный элемент переменного тока

  • 31 электрохимический элемент с круговым катодным коллектором тока

    Универсальный русско-английский словарь > электрохимический элемент с круговым катодным коллектором тока

  • 32 quasisolid electrolyte cell

    элемент с квазитвёрдым электролитом (квазитвёрдый гель на основе полиметилметакрилата для химических источников тока с литиевым анодом)

    Англо-русский словарь промышленной и научной лексики > quasisolid electrolyte cell

  • 33 spirally wound cell

    элемент рулонного типа; источник тока рулонного типа

    Англо-русский словарь промышленной и научной лексики > spirally wound cell

  • 34 Спектральный метод определения никеля, алюминия, магния, марганца, кобальта, олова, меди и циркония в ниобии

    1. NiO
    2. MgO
    3. CuO

    4.2. Спектральный метод определения никеля, алюминия, магния, марганца, кобальта, олова, меди и циркония в ниобии

    Спектральному методу предшествует перевод анализируемой пробы в пятиокись ниобия.

    Метод основан на измерении интенсивности линий элементов примесей в спектре, полученном при испарении пятиокиси ниобия в смеси с графитовым порошком и хлористым натрием из канала графитового электрода в дуге постоянного тока.

    Массовую долю примесей в ниобии (табл. 4) определяют по градуировочным графикам, построенным в координатах: логарифм отношения интенсивности линии определяемого элемента и интенсивности фона (x004.gif) - логарифм концентрации определяемого элемента (lg C).

    4.2.1. Аппаратура, материалы и реактивы

    Спектрограф дифракционный типа ДФС-13 с решеткой 600 и 1200 штр/мм и трехлинзовой системой освещения щели или аналогичный прибор (фотоэлектрический прибор типа МФС). Допускается использовать спектрограф ДФС-8 с решеткой 1800 штрихов.

    Генератор дуговой типа ДГ-2 с дополнительным реостатом или генератор аналогичного типа.

    Выпрямитель 250 - 300 В, 30 - 50 А.

    Микрофотометр нерегистрирующий типа МФ-2 или аналогичного типа.

    Таблица 4

    Определяемая примесь

    Массовая доля примеси, %

    Никель

    1∙10-3 - 2∙10-2

    Алюминий

    5∙10-4 - 1∙10-2

    Магний

    1∙10-3 - 2∙10-3

    Марганец

    5∙10-4 - 5∙10-3

    Кобальт

    5∙10-4 - 3∙10-2

    Олово

    1∙10-3 - 1∙10-2

    Медь

    3∙10-3 - 5∙10-2

    Цирконий

    1∙10-3 - 2∙10-2

    Спектропроектор типа ПС-18, СП-2 или аналогичного типа.

    Весы аналитические.

    Весы торсионные типа ВТ-500.

    Ступка и пестик из органического стекла.

    Бокс из органического стекла.

    Электропечь муфельная с терморегулятором на температуру до 900 °С.

    Чашки платиновые.

    Станок для заточки графитовых электродов.

    Электроды графитовые, выточенные из графитовых стержней ОС. Ч. 7 - 3 диаметром 6 мм, заточенные на усеченный конус с площадкой диаметром 1,5 мм.

    Электроды графитовые, выточенные из графитовых стержней ОС. Ч. 7 - 3 диаметром 6 мм, с каналом глубиной 5 мм, внешний диаметр - 3,0 мм, внутренний диаметр - 2,0 мм, длина заточенной части - 6 мм.

    Порошок графитовый ОС. Ч. 8 - 4 по ГОСТ 23463-79.

    Фотопластинки спектрографические марок СПЭС и СП-2, размером 9´12/1,2 или 13´18/1,2, обеспечивающие нормальное почернение аналитических линий и близлежащего фона в спектре.

    Лампа инфракрасная ИКЗ-500 с регулятором напряжения РНО-250-0,5 или аналогичным.

    Спирт этиловый ректификованный по ГОСТ 18300-72, дважды перегнанный в кварцевом приборе.

    Никеля окись черная по ГОСТ 4331-78, ч.

    Алюминия окись безводная для спектрального анализа, х. ч.

    Магния окись по ГОСТ 4526-75, ч. д. а.

    Марганца (IV) окись по ГОСТ 4470-79, ч. д. а.

    Кобальта (II - III) окись по ГОСТ 4467-79, ч. или ч. д. а.

    Олова двуокись, ч. д. а.

    Циркония двуокись по ГОСТ 21907-76.

    Меди (II) окись по ГОСТ 16539-79.

    Натрий хлористый ОС. Ч. 6 - 1.

    Ниобия пятиокись, в которой содержание определяемых элементов не превышает установленной для метода нижней границы диапазона определяемых массовых долей.

    Проявитель:

    метол........................................................................................ 2,2 г

    натрий сернистокислый безводный по ГОСТ 195-77......... 96 г

    гидрохинон по ГОСТ 19627-74............................................. 8,8 г

    натрий углекислый по ГОСТ 83-79...................................... 48 г

    калий бромистый по ГОСТ 4160-74..................................... 5 г

    вода........................................................................................... до 1000 см3.

    Фиксаж:

    тиосульфат натрия кристаллический по СТ СЭВ 223-75... 300 г

    аммоний хлористый по ГОСТ 3773-72................................ 20 г

    вода........................................................................................... до 1000 см3.

    4.2.2. Приготовление буферной смеси

    Буферную смесь, состоящую из 90 % угольного порошка и 10 % хлористого натрия готовят, смешивая 0,9000 г угольного порошка и 0,1000 г хлористого натрия с 20 см3 спирта в течение 30 мин и высушивая под инфракрасной лампой.

    4.2.3. Приготовление образцов сравнения (ОС)

    Основной образец сравнения, содержащий по 1 % никеля, алюминия, магния, марганца, кобальта, олова, циркония и меди, готовят механическим истиранием и перемешиванием буферной смеси с окислами соответствующих металлов.

    Навески массой 0,0141 г окиси никеля, 0,0189 г окиси алюминия, 0,0186 г окиси магния, 0,0158 г окиси марганца (IV) 0,0136 г (II - III)-окиси кобальта, 0,0127 г двуокиси олова, 0,0125 г окиси меди и 0,0140 г двуокиси циркония помещают в ступке из органического стекла и добавляют 0,8818 г буферной смеси. Смесь тщательно перемешивают, добавляя спирт для поддержания смеси в кашицеобразном состоянии, в течение 1 ч и высушивают под инфракрасной лампой до постоянной массы.

    Последовательным разбавлением основного образца сравнения буферной смесью готовят серию образцов сравнения (ОС) с убывающей концентрацией определяемых элементов. Содержание каждой из определяемых примесей (в процентах на содержание металла в металлическом ниобии) и вводимые в смесь навески буферной смеси и разбавляемого образца приведены в табл. 5.

    Образцы сравнения хранят в полиэтиленовых банках с крышками.

    Таблица 5

    Обозначение образца

    Массовая доля каждой из определяемых примесей, %

    Масса навески, г

    буферной смеси

    разбавляемого образца

    ОС 1

    1∙10-1

    3,3930

    0,3770 (основной образец)

    ОС 2

    5∙10-2

    1,7700

    1,7700 (ОС 1)

    ОС 3

    2∙10-2

    2,3100

    1,5400 (ОС 2)

    ОС 4

    1∙10-2

    1,8500

    1,8500 (ОС 3)

    ОС 5

    5∙10-3

    1,7000

    1,7000 (ОС 4)

    ОС 6

    2∙10-3

    2,1000

    1,4000 (ОС 5)

    ОС 7

    1∙10-3

    1,5000

    1,5000 (ОС 6)

    ОС 8

    5∙10-4

    1,0000

    1,0000 (ОС 7)

    4.1.2 - 4.2.3. (Измененная редакция, Изм. № 1).

    4.2.4. Проведение анализа

    4.2.4.1. Перевод металлического ниобия в пятиокись ниобия

    Пробу металлического ниобия 1 - 3 г помещают в платиновую чашку и прокаливают в муфельной печи при температуре 800 - 900 °С в течение 2 ч. Полученную пятиокись ниобия в виде белого порошка охлаждают в эксикаторе, помещают в пакет из кальки к передают на спектральный анализ.

    4.2.4.2. Определение никеля, алюминия, магния, марганца, кобальта, олова, меди и циркония

    Пробы и образцы сравнения готовят в боксе. Для этого 100 мг пробы и 100 мг буферной смеси или 100 мг образца сравнения и 100 мг пятиокиси ниобия тщательно растирают в плексигласовой ступке в течение 5 мин. Подготовленную пробу или образец сравнения набивают в каналы трех графитовых электродов, предварительно обожженных в дуге постоянного тока при 7 А в течение 5 с.

    Электроды устанавливают в штатив в вертикальном положении. Верхним электродом служит графитовый стержень, заточенный на конус. Между электродами зажигают дугу постоянного тока силой 7 А с последующим повышением (в течение 20 с) до 15 А. Электрод с пробой включен анодом.

    Во избежание выброса материала из кратера электродов, ток включают при сомкнутых электродах с их последующим разведением, величина которого контролируется по проекции на промежуточной диафрагме. Время экспозиции - 120 с, промежуточная диафрагма - 5 мм.

    Спектры в области длин волн 2500 - 3500 нм фотографируют с помощью спектрографа ДФС-13 с решеткой 600 штр/мм, используя трехлинзовую систему освещения щели на фотопластинку тип II чув. 15 ед., ширина щели спектрографа 15 мкм.

    4.2.4.3. Определение меди

    Пробу, приготовленную по п. 4.2.4.2, помещают в канал графитового электрода. Электрод с пробой или образцом сравнения служит анодом (нижний электрод). Верхним электродом является графитовый электрод, заточенный на конус. Между электродами зажигают дугу постоянного тока. В первые 15 с сила тока - 5 А, последующие 1 мин 45 с - 15 А. Полная экспозиция 120 с. Спектры фотографируют на спектрографе ДФС-13 с решеткой 1200 штр/мм с трехлинзовой осветительной системой. Фотопластинка типа ЭС чув. 9. Промежуточная диафрагма 0,8 мм. Шкалу длин волн устанавливают на 320 нм. Ширина щели спектрографа 15 мкм. Во время экспозиции расстояние между электродами поддерживают равным 3 мм.

    Спектр каждой пробы и каждого образца сравнения регистрируют на фотопластинке по три раза. Экспонированные пластинки проявляют, промывают водой, фиксируют, окончательно промывают и сушат.

    4.2.4.1 - 4.2.4.3. (Измененная редакция, Изм. № 1).

    4.2.4.4. Обработка результатов

    В каждой спектрограмме фотометрируют почернения аналитической линии определяемого элемента Sл+ф (табл. 6) и близлежащего фона Sф и вычисляют разность почернений DS = Sл+a - Sф.

    Таблица 6

    Определяемый элемент

    Длина волны аналитической линии, нм

    Алюминий

    309,2

    Магний

    279,5

    Марганец

    279,4

    Медь

    327,4

    Олово

    284,0

    Цирконий

    339,2

    Никель

    300,2

    Кобальт

    304,4

    По трем параллельным значениям DS1, DS2, DS3, полученным по трем спектрограммам, снятым для каждого образца, находят среднее арифметическое результатов x006.gif.

    От полученных средних значений x008.gif переходят к значениям x009.gif с помощью таблиц, приведенных в приложении к ГОСТ 13637.1-77.

    Используя значения lg C и x010.gif для образцов сравнения, строят градуировочный график в координатах x011.gif, lg C. По этому графику по значениям x012.gif для пробы определяют содержание примеси в пробе.

    Разность наибольших и наименьших из результатов трех параллельных и результатов двух анализов с доверительной вероятностью Р = 0,95 не должна превышать величин допускаемых расхождений, приведенных в табл. 7.

    Таблица 7

    Определяемый элемент

    Массовая доля, %

    Допускаемое расхождение, %

    параллельных определений

    результатов анализов

    Алюминий

    0,0005

    0,005

    0,01

    0,0003

    0,003

    0,006

    0,0002

    0,002

    0,004

    Цирконий

    0,001

    0,005

    0,01

    0,0006

    0,003

    0,005

    0,0004

    0,002

    0,003

    Магний

    0,001

    0,005

    0,01

    0,0006

    0,004

    0,006

    0,0001

    0,003

    0,004

    Марганец

    0,0005

    0,005

    0,01

    0,0003

    0,003

    0,006

    0,0002

    0,002

    0,004

    Медь

    0,005

    0,01

    0,06

    0,003

    0,003

    0,006

    0,02

    0,002

    0,002

    0,003

    0,01

    0,002

    Олово

    0,001

    0,005

    0,01

    0,0006

    0,003

    0,005

    0,0004

    0,002

    0,003

    Никель

    0,001

    0,005

    0,001

    0,0006

    0,003

    0,005

    0,0004

    0,002

    0,003

    Кобальт

    0,0005

    0,005

    0,01

    0,0003

    0,003

    0,005

    0,0002

    0,002

    0,003

    Допускаемые расхождения для промежуточных содержаний рассчитывают методом линейной интерполяции.

    4.2.4.5. Контроль правильности результатов

    Правильность результатов анализа серии проб контролируют для каждой определенной примеси при переходе к новому комплекту образцов сравнения, С этой целью для одной и той же пробы, содержащей определенную примесь в контролируемом диапазоне концентраций с использованием старого и нового комплектов образцов сравнения, получают четыре результата анализа и вычисляют средние арифметические значения. Затем находят разность большего и меньшего значений. Результаты анализа считают правильными, если указанная разность не превышает допускаемых расхождений результатов двух анализов пробы по содержанию определяемой примеси.

    Контроль правильности проводят для каждого интервала между ближайшими по содержанию образцами сравнения по мере поступления на анализ соответствующих проб.

    4.3. Массовую долю тантала, титана, кремния, железа, вольфрама, молибдена определяют по ГОСТ 18385.1-79 - ГОСТ 18385.4-79 или спектральными методами (пп. 4.3.1 - 4.3.3), кислорода и водорода - по ГОСТ 22720.1-77, азота - по ГОСТ 22720.1-77 или ГОСТ 22720.4-77.

    Допускается применять другие методы анализа примесей, по точности не уступающие указанным.

    При разногласиях в оценке химического состава его определяют по ГОСТ 18385.1-79 - ГОСТ 18385.4-79, ГОСТ 22720.1-77, ГОСТ 22720.1-77 и ГОСТ 22720.4-77.

    Массовую долю углерода определяют по ГОСТ 22720.3-77. Кроме анализатора АН-160, допускается использовать приборы АН-7529 и АН-7560.

    4.2.4.4. - 4.3. (Измененная редакция, Изм. № 1).

    4.3.1. Спектральный метод определения примесей титана, кремния, железа, никеля, алюминия, магния, марганца, олова, меди, циркония, при массовой доле каждой примеси от 0,001 до 0,02.

    Метод основан на возбуждении дугой постоянного тока и фотографической регистрации спектров образцов сравнения и спектров анализируемого материала, превращенного в оксиды прокаливанием, с последующим определением массовой доли примесей по градуировочным графикам, построенным в координатах: логарифм отношения интенсивности линии определяемого элемента к интенсивности фона lg(Iл/Iф) - логарифм массовой доли определяемого элемента lg C.

    Относительное среднее квадратическое отклонение, характеризующее сходимость результатов параллельных определений, при массовой доле каждой примеси 0,001 % составляет 0,15, при массовой доле каждой примеси 0,02 % - 0,11.

    Суммарная погрешность результата анализа с доверительной вероятностью Р = 0,95 при массовой доле примеси 0,00100 % не должна превышать ± 0,00023 % абс, при массовой доле примеси 0,0200 % - ± 0,0033 % абс.

    4.3.1.1. Аппаратура, материалы и реактивы

    Спектрограф ДФС-13 с решеткой 1200 штр/мм или аналогичный.

    Источник постоянного тока УГЭ, или ВАС-275-100, или аналогичный.

    Микроденситометр МД-100, или микрофотометр МФ-2, или аналогичный.

    Спектропроектор типа ПС-18, или ДСП-2, или аналогичный.

    Весы аналитические с погрешностью взвешивания не более 0,0002 г.

    Весы торсионные ВТ-500 или аналогичные с погрешностью взвешивания не более 0,002 г.

    Печь муфельная с терморегулятором, на температуру от 400 до 1100 °С.

    Шкаф сушильный типа СНОД 3.5.3.5.3.5./3М или аналогичный.

    Станок для заточки графитовых электродов.

    Ступки и пестики из оргстекла.

    Чашки платиновые по ГОСТ 6563-75.

    Фотопластинки спектральные: диапозитивные, СП-2, СП-ЭС, обеспечивающие в условиях анализа нормальные почернения аналитических линий и близлежащего фона в спектре.

    Порошок графитовый ос. ч. 8 - 4 по ГОСТ 23463-79 или аналогичный, обеспечивающий чистоту по определяемым примесям. Нижние электроды, выточенные из графитовых стержней ос. ч. 7 - 3 диаметром 6 мм, имеющие размеры, мм:

    высота заточенной части....................... 10

    диаметр заточенной части.................... 4,0

    глубина кратера...................................... 3,8

    диаметр кратера..................................... 2,5

    Верхние электроды из графитовых стержней ос. ч. 7 - 3 диаметром 6 мм, заточенные на усеченный конус с площадкой диаметром 1,5 мм, высотой заточенной конической части 4 мм.

    Натрий фтористый, ос. ч. 7 - 3.

    Ниобия пятиокись для оптического стекловарения, ос. ч. 7 - 3.

    Титана (IV) двуокись, ос. ч. 7 - 3.

    Кремния (IV) двуокись по ГОСТ 9428-73, ч. д. а.

    Железа (III) окись, ос. ч. 2 - 4.

    Никеля (II) закись, ч. д. а.

    Алюминия (III) окись, х. ч.

    Магния (II), ч. д. а.

    Марганца (IV) окись, ос. ч. 9 - 2.

    Олова (IV) окись, ч. д. а.

    Меди (II) окись (гранулированная) по ГОСТ 16539-79.

    Циркония (IV) двуокись, ос. ч. 6 - 2.

    Спирт этиловый ректификованный по ГОСТ 18300-87.

    Лак идитоловый, 1 %-ный спиртовый раствор.

    Метол по ГОСТ 25664-83.

    Гидрохинон по ГОСТ 19627-74.

    Натрий сернистокислый (сульфит) по ГОСТ 195-77.

    Натрий углекислый по ГОСТ 83-79.

    Калий бромистый по ГОСТ 4160-74.

    Натрия тиосульфат кристаллический по ГОСТ 244-76.

    Калий сернистокислый пиро (метабисульфит).

    Вода дистиллированная по ГОСТ 6709-72.

    Проявитель, готовят следующим образом: 2 г метола, 52 г сульфита натрия, 10 г гидрохинона, 40 г углекислого натрия, 5 г бромистого калия растворяют в воде, в указанной последовательности доводят объем раствора водой до 1000 см3, перемешивают и фильтруют.

    Фиксаж, готовят следующим образом: 250 г тиосульфата натрия и 25 г метабисульфита калия растворяют в указанной последовательности в 750 - 800 см3 воды, доводят объем раствора водой до 1000 см3, перемешивают и фильтруют.

    Допускается применять проявитель и фиксаж, рекомендованные для применяемых фотопластинок.

    Основная смесь, представляющая собой механическую смесь оксида ниобия и оксидов определяемых элементов с массовой долей каждой примеси 1 % в расчете на содержание металла в смеси металлов. Для ее приготовления каждый препарат оксида помещают в отдельную чашку, прокаливают в течение 90 мин в муфельной печи при температурах, указанных в табл. 7, охлаждают в эксикаторе и берут навески, указанные в табл. 7а. Переносят в ступку сначала приблизительно одну четвертую часть навески пятиокиси ниобия, затем полностью навески оксидов всех элементов-примесей и тщательно растирают смесь в ступке в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. Затем в ту же ступку переносят оставшуюся часть навески пятиокиси ниобия и опять тщательно растирают смесь в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. После этого смесь сушат в сушильном шкафу, а затем прокаливают при температуре (400 ± 20) °С в течение 60 мин и охлаждают в эксикаторе.

    Промежуточная смесь и рабочие образцы сравнения (РОС1 - РОС4); готовят, смешивая указанные в табл. 7б массы пятиокиси ниобия, основной смеси, промежуточной смеси и рабочего образца сравнения РОС2. Перед взятием навесок пятиокись ниобия прокаливают 90 мин при (950 ± 20) °С, а ОС, ПС и РОС2 - при температуре (400 ± 20) °С в течение 60 мин и охлаждают в эксикаторе. Смешивают тщательным растиранием в ступке в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. После этого смесь сушат в сушильном шкафу, прокаливают при температуре (400 ± 20) °С в течение 60 мин и охлаждают в эксикаторе.

    Буферная смесь 95 % графитового порошка и 5 % фтористого натрия. Навески помещают в ступку и тщательно растирают в течение 30 мин.

    4.3.1.2. Проведение анализа

    Навеску порошка металлического ниобия массой 0,5 г помещают в платиновую чашку, прокаливают в муфельной печи при температуре 800 - 850 °С в течение 2 ч и охлаждают в эксикаторе. Переносят в ступку и смешивают с буферной смесью в соотношении 2:1 (по массе), помещают в пакет из кальки.

    Каждый из рабочих образцов сравнения РОС1 - РОС4 также смешивают с буферной смесью в соотношении 2:1 (по массе).

    Верхние и нижние электроды обжигают в дуге переменного тока при силе тока 10 А в течение 10 с.

    Каждой из полученных смесей (смесь, полученная из навески пробы, и полученные из РОС1 - РОС4) плотно заполняют кратеры шести нижних электродов неоднократным погружением электродов в пакет со смесью. После этого в каждый нижний электрод помещают 2 капли спиртового раствора идитолового лака. Подсушивают электроды в сушильном шкафу при температуре 80 - 90 °С в течение (15 ± 1) мин.

    В кассету спектрографа помещают:

    в коротковолновую область спектра - диапозитивную фотопластинку;

    в длинноволновую - фотопластинку марки СП-2.

    Нижний электрод (с материалом пробы или с материалом рабочего образца сравнения) включают анодом дуги постоянного тока. Спектры фотографируют при следующих условиях:

    сила тока................................................ 10 ± 0,5 А

    межэлектродный промежуток............. 2 мм

    экспозиция............................................. (40 ± 3) с

    щель спектрографа................................ (0,020 ± 0,001) мм

    промежуточная диафрагма.................. (5,0 ± 0,1) мм

    деление шкалы длин волн.................... (303,0 ± 2,5) нм

    Фотографируют по три раза спектр каждого рабочего образца сравнения и по три раза спектр каждой пробы, используя для каждого образца сравнения (или пробы) три из шести нижних электродов. Затем фотографирование спектров повторяют, используя оставшиеся три заполненных пробой (образцом сравнения) нижних электрода.

    Экспонированные фотопластинки проявляют, промывают водой, фиксируют, окончательно промывают водой и сушат.

    4.3.1.3. Обработка результатов

    В каждой фотопластинке фотометрируют почернения аналитических линий определяемого элемента Sл+ф(табл. 7в) и близлежащего фона Sф и вычисляют разность почернений DS = Sл+ф - Sф.

    По трем значениям DS1, DS2, DS3, полученным из трех спектрограмм, снятым для каждого образца на одной фотопластинке, находят среднее арифметическое DS. От полученных значений DS переходят к значениям lg(Iл/Iф) с помощью таблиц, приведенных в ГОСТ 13637.1-77.

    Таблица 7а

    Наименование препарата

    Формула

    Температура прокаливания перед взвешиванием, °С (пред. откл. ± 20 °С)

    Масса навески прокаленного препарата оксида, г

    Коэффициент пересчета массы металла на массу оксида

    Масса металла в навеске оксида, г

    Массовая доля металла в смеси металлов, %

    Пятиокись ниобия

    Nb2O5

    950

    10,2996

    1,4305

    7,2000

    90

    Двуокись титана

    TiO2

    1100

    0,1334

    1,6680

    0,0800

    1

    Двуокись кремния

    SiO2

    1100

    0,1711

    2,1393

    0,0800

    1

    Окись железа

    Fe2O3

    800

    0,1144

    1,4297

    0,0800

    1

    Закись никеля

    NiO

    600

    0,1018

    1,2725

    0,0800

    1

    Окись алюминия

    Al2O3

    1100

    0,1512

    1,8895

    0,0800

    1

    Окись магния

    MgO

    1100

    0,1327

    1,6583

    0,0800

    1

    Окись марганца

    MnO2

    400

    0,1266

    1,5825

    0,0800

    1

    Окись олова

    SnO2

    600

    0,1016

    1,2696

    0,0800

    1

    Окись меди

    CuO

    700

    0,1001

    1,2518

    0,0800

    1

    Двуокись циркония

    ZrO2

    1100

    0,1081

    1,3508

    0,0800

    1

    11,5406

    8,0000

    100

    Используя значения lg C (где С - массовая доля определяемой примеси по табл. 7б) и полученные по первой фотопластинке значения lg(Iл/Iф) для рабочих образцов сравнения РОС1 - РОС4, строят градуировочный график в координатах lgC, lg(Iл/Iф). По этому графику, используя полученное по той же фотопластинке значение lg(Iл/Iф) для пробы, определяют массовую долю примеси в пробе - первый из двух результатов параллельных определений данной примеси.

    Таблица 7б

    Обозначение образца

    Массовая доля каждой примеси в расчете на содержание металла в смеси металлов, %

    Масса навески, г

    Суммарная масса смеси оксидов, содержащая 8 г металла, г

    прокаленного препарата пятиокиси ниобия

    разбавляемого образца (в скобках приведено его обозначение)

    Промежуточная смесь

    0,100

    10,2996

    1,1541 (ОС)

    11,4537

    РОС1

    0,020

    9,1552

    2,2907 (ПС)

    11,4459

    РОС2

    0,009

    10,4140

    1,0308 (ПС)

    11,4443

    POС4

    0,004

    10,1726

    1,2716 (РОС2)

    11,4442

    РОС3

    0,003

    11,1007

    0,3436 (ПС)

    11,4443

    Таблица 7в

    Определяемый элемент

    Аналитическая линия, нм

    Магний

    285,21

    Кремний

    288,16

    Марганец

    294,92

    Никель

    300,25

    Железо

    302,06

    Титан

    307,86

    Алюминий

    308,22

    Цирконий

    316,60

    Олово

    317,50

    Медь

    327,47

    Результат второго параллельного определения получают таким же образом по второй пластинке.

    Разность большего и меньшего результатов параллельных определений с доверительной вероятностью Р = 0,95 не должна превышать допускаемого расхождения, указанного в табл. 7г.

    Таблица 7г

    Массовая доля примеси, %

    Абсолютное допускаемое расхождение двух результатов параллельных определений, %

    0,0010

    0,0004

    0,020

    0,006

    Допускаемое расхождение для промежуточных значений массовой доли примеси, не указанных в таблице, находят методом линейного интерполирования.

    Если этот норматив удовлетворяется, вычисляют результат анализа - среднее арифметическое результатов двух параллельных определений.

    4.3.1.4. Контроль правильности результатов - по п. 4.2.4.5.

    4.3.2. Спектральный метод определения примесей вольфрама, молибдена и кобальта при массовой доле каждой примеси от 0,001 до 0,01 %

    Метод основан на возбуждении дугой постоянного тока и фотографической регистрации спектров образцов сравнения и анализируемого материала, превращенного в оксиды прокаливанием, с. последующим определением массовой доли примесей по градуировочным графикам.

    Относительное среднее квадратическое отклонение, характеризующее сходимость результатов параллельных определений каждой примеси, составляет 0,17 - при массовой доле примеси и 0,10 - при массовой доле примеси 0,005 - 0,010 %.

    4.3.2.1. Аппаратура, материалы и реактивы

    Спектрограф ДФС-13 с решеткой 600 штр/мм или аналогичный.

    Источник постоянного тока ВАС-275-100 или аналогичный.

    Микрофотометр МФ-2 или аналогичный.

    Спектропроектор ДСП-2 или аналогичный.

    Шкаф сушильный типа СНОД 3.5.3.5.3.5/3М или аналогичный.

    Весы аналитические с погрешностью взвешивания не более 0,0002 г.

    Весы торсионные ВТ-500 или аналогичные.

    Печь муфельная с терморегулятором на температуру от 400 до 1000 °С.

    Электроплитки с закрытой спиралью и покрытием, исключающим загрязнение определяемыми элементами.

    Станок для заточки графитовых электродов.

    Ступки и пестики из оргстекла.

    Чашки платиновые по ГОСТ 6563-75.

    Эксикаторы.

    Фотопластинки формата 9´12 см спектральные тип II и ЭС или аналогичные, обеспечивающие в условиях анализа нормальные почернения аналитических линий и фона в спектре.

    Нижние электроды типа «рюмка», выточенные из графитовых стержней ос. ч. 7 - 3 диаметром 6 мм, имеющие размеры, мм:

    высота «рюмки»...................... 5

    глубина кратера...................... 3

    диаметр кратера...................... 4

    диаметр шейки........................ 3,5

    высота шейки.......................... 3,5

    Верхние электроды - стержни диаметром 6 мм из графита ос. ч. 7 - 3, заточенные на цилиндр диаметром 4 мм.

    Кислота соляная по ГОСТ 14261-77, ос. ч.

    Ниобия пятиокись, ос. ч. 7 - 3, в спектре которой в условиях анализа отсутствуют аналитические линии определяемых примесей.

    Вольфрама (VI) окись, ч. д. а.

    Молибдена (IV) окись, ч. д. а.

    Кобальта (II, III) окись по ГОСТ 4467-79.

    Сурьмы (III) окись, х. ч.

    Свинец хлористый.

    Калий сернокислый, ос. ч. 6 - 4.

    Спирт этиловый ректификованный по ГОСТ 18300-87.

    Метол по ГОСТ 25664-83.

    Гидрохинон по ГОСТ 5644-75.

    Натрий сернистокислый (сульфит) по ГОСТ 195-77.

    Калий бромистый по ГОСТ 4160-74, ч. д. а.

    Натрий углекислый по ГОСТ 83-79, ч. д. а.

    Натрия тиосульфат кристаллический по ГОСТ 244-76.

    Калий сернистокислый пиро (метабисульфит).

    Вода дистиллированная по ГОСТ 6709-72.

    Посуда химическая термостойкая: стаканы вместимостью на 100, 500 и 1000 см3, воронки.

    Проявитель, готовят следующим образом: 2 г метола, 52 г сульфита натрия, 10 г гидрохинона, 40 г углекислого натрия, 5 г бромистого калия растворяют в воде в указанной последовательности, доводят объем раствора водой до 1000 см3, перемешивают и фильтруют.

    Фиксаж, готовят следующим образом: 250 г тиосульфата натрия и 25 г метабисульфита калия растворяют в указанной последовательности в 750 - 800 см3 воды, доводят объем раствора водой до 1000 см3, перемешивают и фильтруют.

    Допускается применять проявитель и фиксаж, рекомендованные для применяемых фотопластинок.

    Буферная смесь, готовят следующим образом: тщательно растирают в ступке 7,4900 г хлористого свинца, 2,5000 г сернокислого калия, 0,0100 г окиси сурьмы. Время истирания на виброистирателе 40 - 50 мин, вручную - 90 - 120 мин.

    Основная смесь, представляющая собой механическую смесь оксидов ниобия и определяемых примесей с массовой долей каждой примеси 1 % в расчете на содержание металла в смеси металлов. Для приготовления смеси каждый препарат оксидов помещают в отдельную чашку, прокаливают в течение 90 мин в муфельной печи при температурах, указанных в табл. 7д, охлаждают в эксикаторе и берут навески, указанные в табл. 7д. Переносят в ступку сначала приблизительно 1/4 часть навески пятиокиси ниобия, затем полностью навески оксидов всех примесей и тщательно растирают смесь в ступке в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. Затем в ту же ступку переносят оставшуюся часть навески пятиокиси ниобия и опять тщательно растирают смесь в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. После этого смесь сушат в сушильном шкафу, затем прокаливают при температуре (400 ± 20) °C в течение 60 мин и охлаждают в эксикаторе.

    Промежуточную смесь и рабочие образцы сравнения (РОС1 - РОС4) готовят, смешивая указанные в табл. 7е навески пятиокиси ниобия, основной смеси, промежуточной смеси и рабочего образца сравнения РОС1. Перед взятием навесок пятиокись ниобия прокаливают 90 мин при (950 ± 20) °С, а ОС, ПС и РОС1 - при температуре (400 ± 20) °С в течение 60 мин; охлаждают в эксикаторе. Смешивают тщательным растиранием в ступке в течение 90 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. После этого смесь сушат в сушильном шкафу, прокалива

    Таблица 7д

    Наименование препарата

    Формула

    Температура прокаливания перед взвешиванием, °С

    Масса навески прокаленного препарата оксида, г

    Коэффициент пересчета массы металла на массу оксида

    Масса металла в навеске оксида, г

    Массовая доля металла в смеси металлов, %

    Пятиокись ниобия

    Nb2O5

    900 - 1000

    13,8759

    1,4305

    9,7000

    97

    Трехокись вольфрама

    WO3

    650

    0,1261

    1,2611

    0,1000

    1

    Трехокись молибдена

    MoO3

    450 - 500

    0,1500

    1,5003

    0,1000

    1

    Окись кобальта

    Со2О3

    800

    0,1407

    1,4072

    0,1000

    1

    14,2927

    10,0000

    100

    находят значения lg(Iл/Iф), пользуясь таблицами по ГОСТ 13637-77. Используя значения lg C ( где С - массовая доля вольфрама по табл. 7е) и полученные по первой фотопластинке значения lg(Iл/Iф) для рабочих образцов сравнения РОС1 - РОС4, строят градуировочный график в координатах lgC, lg(Iл/Iф). Поэтому графику, используя полученные по той же фотопластинке значения lg(Iл/Iф) для пробы, определяют массовую долю вольфрама в пробе - первый из двух результатов параллельных определений. Результат второго параллельного определения вольфрама получают таким же образом по второй фотопластинке.

    При определении молибдена и кобальта для каждого из трех спектров (пробы или образца сравнения), снятых на одной фотопластинке, находят значение DS = Sл - Scи вычисляют среднее арифметическое трех значений - значение x014.gif. По полученным значениям DS для образцов сравнения строят градуировочный график в координатах lgC, DS, где С - массовая доля определяемого элемента в образцах сравнения согласно табл. 7. По этому графику, используя полученные по той же фотопластинке значения DS для пробы, определяют массовую долю определяемого элемента в пробе - первый из двух результатов параллельных определений. Результат второго параллельного определения получают таким же образом по второй фотопластинке.

    Таблица 7е

    Обозначение образца

    Массовая доля каждой из определяемых примесей, в расчете на содержание металла в смеси металлов, %

    Масса навески, г

    Суммарная масса смеси оксидов, содержащая 10 г металлов, г

    прокаленного препарата пятиокиси ниобия

    разбавляемого образца (в скобках приведено его обозначение)

    ПС

    0,100

    12,8745

    1,4293 (ПС)

    14,3038

    РОС1

    0,010

    12,8745

    1,4301 (ПС)

    14,3049

    РОС2

    0,004

    13,7328

    0,5722 (ПС)

    14,3050

    РОС3

    0,002

    14,0189

    0,2861 (ПС)

    14,3050

    РОС4

    0,001

    12,8745

    1,4305 (РОС1)

    14,3050

    Разность большего и меньшего результатов параллельных определений элемента с доверительной вероятностью Р = 0,95 не должна превышать допускаемого расхождения, приведенного в табл. 7ж и табл. 7з.

    Если этот норматив удовлетворяется, вычисляют результат анализа - среднее арифметическое двух результатов параллельных определений.

    Таблица 7ж

    Массовая доля примеси, %

    Абсолютное допускаемое расхождение двух результатов параллельных определений, %

    0,0010

    0,0005

    0,0050

    0,0014

    0,0100

    0,0028

    Допускаемые расхождения для промежуточных значений массовой доли примеси, не указанных в таблице, находят методом линейной интерполяции.

    4.3.2.4. Контроль правильности результатов - по п. 4.2.4.5.

    4.3.3. Экстракционно-фотометрический метод определения тантала (от 0,02 до 0,10 %)

    Метод основан на измерении оптической плотности толуольного экстракта фтортанталата бриллиантового зеленого.

    4.3.3.1. Аппаратура, материалы и реактивы

    Весы аналитические.

    Таблица 7з

    Определяемый элемент

    Аналитическая линия, нм

    Интервал определяемых значений массовой доли, %

    Вольфрам

    400,87

    От 0,001 до 0,01

    Молибден

    319,40

    » 0,001 » 0,004

    320,88

    » 0,001 » 0,01

    Кобальт

    340,51

    » 0,001 » 0,004

    345,35

    » 0,001 » 0,01

    Плитка электрическая лабораторная с закрытой спиралью мощностью 3 кВт.

    Центрифуга лабораторная, марки ЦЛК-1 или аналогичная.

    Колориметр фотоэлектрический концентрационный КФК-2 или аналогичный.

    Пипетки 1-2-2; 2-2-5; 2-2-10; 2-2-20; 2-2-25; 2-2-50; 6-2-10 по ГОСТ 20292-74.

    Цилиндры 1-500; 1-2000 по ГОСТ 1770-74.

    Бюретки 6-2-5; 1-2-100 по ГОСТ 20292-74.

    Колбы 2-100-2; 2-200-2; 2-500-2 по ГОСТ 1770-741

    Стакан В-1-100 ТС по ГОСТ 25336-82.

    Стакан фторопластовый с носиком вместимостью 100 см3.

    Банка БН-0,5, по ГОСТ 17000-71.

    Бидон БДЦ-5,0 по ГОСТ 17000-71.

    Пробки из пластмассы по ГОСТ 1770-74.

    Цилиндры из полиэтилена вместимостью 60 см3.

    Пробирки центрифужные из полиэтилена вместимостью 10 см3.

    Пипетки из полиэтилена вместимостью 10 см3.

    Кислота серная по ГОСТ 4204-77, х. ч. раствор 5 моль/дм3 и 1,4 моль/дм3.

    Кислота азотная по ГОСТ 4461-77, х. ч.

    Кислота фтористоводородная по ГОСТ 10484-78, х. ч., раствор 7,5 моль/дм3.

    Раствор для отмывки экстрактов с концентрациями серной кислоты 1,18 моль/дм3 и фтористоводородной кислоты 0,98 моль/дм3. Для приготовления 5 дм3 раствора в полиэтиленовый бидон помещают 245 см3 раствора фтористоводородной кислоты 20 моль/дм3, 1175 см3 раствора серной кислоты 5 моль/дм3, 3580 см3 дистиллированной воды и перемешивают в течение 30 - 40 с.

    Бриллиантовый зеленый, ч., раствор 3 г/дм3, готовят растворением 3 г красителя в 1 дм3 воды на холоду в течение 1 ч при перемешивании с помощью электромеханической мешалки.

    Толуол по ГОСТ 5789-78, ч. д. а.

    Ацетон по ГОСТ 2603-79, ч. д. а.

    Аммоний сернокислый по ГОСТ 3769-78, х. ч.

    Порошок танталовый (высокой чистоты), с массовой долей тантала не менее 99,5 %.

    Вода дистиллированная по ГОСТ 6709-72.

    4.3.3.2. Подготовка к измерению

    4.3.3.2.1. Приготовление основного раствора и рабочих растворов

    Основной раствор пятиокиси тантала 0,200 г/дм3: навеску металлического порошка тантала 0,0819 г, взвешенную с погрешностью ± 0,0005 г, помещают во фторопластовый стакан, добавляют полиэтиленовой пипеткой 5,0 см3 концентрированной фтористоводородной кислоты, 0,5 см3 азотной кислоты, нагревают на плитке до полного растворения навески и упаривают до объема 1 - 2 см3. Раствор переводят в мерную колбу вместимостью 500 см3, в которую предварительно помещают 250 см3 дистиллированной воды, доводят до метки и перемешивают в течение 30 - 40 с. Приготовленный раствор хранят в полиэтиленовой посуде.

    Рабочие растворы пятиокиси тантала 2,0 и 20,0 мкг/см3 отбирают пипеткой 2,0 и 20,0 см3 основного раствора в мерные колбы вместимостью 200 см3, добавляют 56,0 см3 раствора серной кислоты 5 моль/дм3, доводят водой до метки и перемешивают в течение 30 - 40 с.

    4.3.3.2.2. Построение градуировочного графика

    В полиэтиленовые ампулы помещают из бюретки 2,0; 4,0; 6,0; 8,0; 10,0 см3 рабочего раствора 2,0 мкг/см3 и 1,0; 2,0; 3,0; 4,0; 5,0 см3 рабочего раствора 20,0 мкг/см3. Доводят раствором серной кислоты концентрации 1,4 моль/дм3 (2,8 н) до 10,0 см3, добавляют полиэтиленовой пипеткой 1,5 см3 раствора фтористоводородной кислоты 7,5 моль/дм3, 25,0 см3 толуола, добавляют из бюретки 11,0 см3 раствора бриллиантового зеленого и встряхивают в течение 60 с на электромеханическом встряхивателе или вручную. После расслаивания фаз в течение 60 - 90 с 10 см3 экстракта помещают в центрифужную пробирку и центрифугируют в течение 3 мин со скоростью 3000 мин-1.

    Оптическую плотность измеряют на КФК-2 в кюветах с толщиной слоя поглощения 5,0 мм в интервале 20 - 100 мкг пятиокиси тантала и 30,0 мм в интервале 4 - 20 мкг пятиокиси тантала при λmax = (590 ± 10) нм. В качестве раствора сравнения применяют толуол.

    Одновременно через все стадии проводят два параллельных контрольных опыта. Оптическая плотность контрольного опыта не должна превышать 0,03 в кювете 30 мм и 0,005 - в кювете 5 мм. По полученным данным строят два градуировочных графика.

    4.3.3.3. Проведение измерений

    Пробу массой 0,1000 г, взвешенную с погрешностью не более 0,0005 г, помещают во фторопластовый стакан, добавляют полиэтиленовой пипеткой 10 см3 концентрированной фтористоводородной кислоты, затем пипеткой 2,0 см3 азотной кислоты и 8,0 см3 концентрированной серной кислоты, нагревают на плитке до начала выделения паров серной кислоты, затем продолжают нагрев еще 2 - 3 мин. Стаканы охлаждают до температуры (25 ± 5) °С, добавляют 3,0 г сульфата аммония, разбавляют водой до 10 см3 и переводят в мерную колбу вместимостью 100 см3, доводят водой до метки и перемешивают 30 - 40 с.

    Аликвотную часть полученного раствора, содержащую 4 - 100 мкг пятиокиси тантала, помещают в полиэтиленовый цилиндр вместимостью 60 см3, доводят раствором серной кислоты концентрации 5 моль/дм3 до 10,0 см3, добавляют 1,5 см3 раствора фтористоводородной кислоты концентрации 7,5 моль/дм3 и оставляют на 8 - 10 мин. Далее добавляют пипеткой 25,0 см3 толуола, 11,0 см3 раствора бриллиантового зеленого и производят экстракцию, как описано в п. 4.3.3.2. После расслаивания фазы разделяют и экстракт в количестве 20 - 25 см3 отмывают. Добавляют 10,5 см3 раствора для отмывки (полиэтиленовой пипеткой), 10,0 см3 раствора бриллиантового зеленого из бюретки и встряхивают, как описано в п. 4.3.3.2. После расслаивания фазы разделяют и экстракт в количестве не менее 16,0 см3 вновь подвергают операции отмывки. После расслаивания фаз 10 см3 экстракта помещают в центрифужную пробирку и центрифугируют в течение 3 мин со скоростью 3000 об/мин.

    Оптическую плотность экстракта измеряют на КФК-2, как описано в п. 4.3.3.2.2. В закрытых полиэтиленовых пробирках экстракты стабильны в течение 4 ч. Допускается проведение экстракции и отмывки экстрактов одновременно в шестнадцати пробирках. Массу пятиокиси тантала определяют по градуировочному графику.

    4.3.3.4. Обработка результатов

    Массовую долю тантала (X) в процентах вычисляют по формуле

    x016.gif

    где m - масса пятиокиси тантала, найденная по градуировочному графику, мкг;

    m1- масса навески пробы, г;

    a - аликвотная часть раствора, отбираемая для экстракции, см3;

    V - объем мерной колбы, равный 100 см3;

    1,221 - коэффициент пересчета.

    За результат измерений принимают среднее арифметическое результатов двух параллельных определений.

    Допускаемые расхождения результатов двух параллельных определений не должны превышать значений допускаемых расхождений, приведенных в табл. 7и.

    4.3.3.5. Контроль правильности анализа

    Контроль правильности анализа проводят методом добавок.

    Суммарная массовая доля тантала в пробе с добавкой должна быть не меньше утроенного значения нижней границы определяемых массовых долей и не больше верхней границы определяемых массовых долей.

    Таблица 7и

    Массовая доля тантала, %

    Допускаемые расхождения, %

    0,02

    0,01

    0,05

    0,01

    0,10

    0,02

    Суммарное содержание тантала 1) в пробе с добавкой в процентах вычисляют по формуле

    x018.gif

    где Хан - массовая доля тантала в пробе, %;

    m1- масса тантала, введенная с добавкой, мкг;

    m2- масса навески пробы, г.

    Анализ считают правильным (Р = 0,95), если разность большей и меньшей из двух величин Х1и результата анализа пробы с добавкой не превышает

    x020.gif

    где d1- допускаемое расхождение между результатами двух параллельных определений в пробе без добавки;

    d2- допускаемое расхождение между результатами двух параллельных определений в пробе с добавкой.

    4.3.1 - 4.3.3.5. (Введены дополнительно, Изм. № 1).

    Источник: ГОСТ 26252-84: Порошок ниобиевый. Технические условия оригинал документа

    Русско-английский словарь нормативно-технической терминологии > Спектральный метод определения никеля, алюминия, магния, марганца, кобальта, олова, меди и циркония в ниобии

  • 35 аккумулятор

    1. storage battery (US)
    2. secondary cell
    3. rechargeable battery
    4. electric power storage
    5. chargeable cell
    6. cell
    7. battery
    8. Akkumulator
    9. accumulator unit
    10. accumulator

     

    аккумулятор
    Гальванический элемент, предназначенный для многократного разряда за счет восстановления емкости путем заряда электрическим током.
    [ ГОСТ 15596-82]

    аккумулятор
    элемент

    Совокупность электродов и электролита, образующая основу устройства аккумуляторной батареи.
    [Инструкция по эксплуатации стационарных свинцово-кислотных аккумуляторных батарей в составе ЭПУ на объектах ВСС России. Москва 1998 г.]

    Электрическим аккумулятором называют химический источник тока, который обладает способностью накапливать (аккумулировать) электрическую энергию и отдавать ее по мере надобности. При заряде аккумуляторы подключают к постороннему источнику постоянного тока.
    Потребляемая ими электрическая энергия преобразуется в химическую, которая может сохраняться и легко переходить в электрическую энергию при разряде аккумулятора. Израсходованные при разряде аккумулятора активные вещества легко восстанавливаются при следующем заряде. Заряд и разряд аккумуляторов можно производить сотни раз, в то время как первичные элементы разряжаются только один раз. В этом заключается их принципиальное отличие от первичных элементов.
    Для питания устройств связи на железнодорожном транспорте получили распространение свинцовые и щелочные (никель-железные или никель-кадмиевые) аккумуляторы. В стационарных электропитающих установках широко используются свинцовые аккумуляторы, имеющие высокий КПД. и незначительное снижение напряжения при разряде. Щелочные аккумуляторы имеют меньшей КПД. и большее изменение напряжения при разряде, но обладают высокой механической прочностью. Поэтому их обычно применяют в качестве переносных или временных источников питания аппаратуры.
    [ http://static.scbist.com/scb/konspekt/98_AK.pdf]

    Тематики

    Классификация

    >>>

    EN

    DE

    8. Аккумулятор

    Akkumulator

    Гальванический элемент, предназначенный для многократного разряда за счет восстановления емкости путем заряда электрическим током

    Источник: ГОСТ 15596-82: Источники тока химические. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > аккумулятор

  • 36 релейная защита

    1. RP
    2. relaying
    3. relay protection
    4. protective relaying
    5. protection relay
    6. protection

     

    защита
    Совокупность устройств, предназначенных для обнаружения повреждений или других анормальных режимов в энергосистеме, отключения повреждения, прекращения анормальных режимов и подачи команд или сигналов.
    Примечания:
    1) Термин «защита» является общим термином для устройств защиты или систем защиты.
    2) Термин «защита» может употребляться для описания защиты целой энергосистемы или защиты отдельной установки в энергосистеме, например: защита трансформатора, защита линии, защита генератора.
    3) Защита не включает в себя оборудование установки энергосистемы, предназначенное, например, для ограничения перенапряжений в энергосистеме. Однако, она включает в себя оборудование, предназначенное для управления отклонениями напряжения или частоты в энергосистеме, такое как оборудование для автоматического управления реакторами для автоматической разгрузки и т.п.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    релейная защита

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    релейная защита

    релейная защита электрических систем
    Совокупность устройств (или отдельное устройство), содержащая реле и способная реагировать на короткие замыкания (КЗ) в различных элементах электрической системы — автоматически выявлять и отключать поврежденный участок. В ряде случаев Р. з. может реагировать и на др. нарушения нормального режима работы системы (например, на повышение тока, напряжения) — включать сигнализацию или (реже) отключать соответствующий элемент системы. КЗ — основной вид повреждений в электрических системах как по частоте возникновения, так и по масштабам отрицательных последствий. При КЗ наступает резкое и неравномерное понижение напряжения в системе и значительное увеличение тока в отдельных её элементах, что в конечном счёте может привести к прекращению электроснабжения потребителей и разрушению оборудования. Применение Р. з. сводит вредные последствия КЗ к минимуму.

    Р. з. срабатывает при изменениях определённых электрических величин. Чаще всего встречается Р. з., реагирующая на повышение тока (токовая защита). Нередко в качестве воздействующей величины используют напряжение. Применяют также Р. з., реагирующую на снижение отношения напряжения к току, которое пропорционально расстоянию (дистанции) от Р. з. до места КЗ (дистанционная защита). Обычно устройства Р. з. изолированы от системы; информация об электрических величинах поступает на них от измерительных трансформаторов тока или напряжения либо от др. измерительных преобразователей.

    Как правило, каждый элемент электрической системы (генератор, трансформатор, линию электропередачи и т.д.) оборудуют отдельными устройствами Р. з. Защита системы в целом обеспечивается комплексной селективной Р. з., при этом отключение поврежденного элемента осуществляется вполне определённым устройством Р. з., а остальные устройства, получая информацию о КЗ, не срабатывают. Такая Р. з. должна срабатывать при КЗ, внутренних по отношению к защищаемому элементу, не срабатывать при внешних, а также не срабатывать в отсутствии КЗ.

    Селективность (избирательность) Р. з. характеризуется протяжённостью зоны срабатывания защиты (при КЗ в пределах этой зоны Р. з. срабатывает с заданным быстродействием) и видами режимов работы системы, при которых предусматривается её несрабатывание. В зависимости от уровня селективности при внешних КЗ принято делить Р. з. на абсолютно селективные, не срабатывающие при любых внешних КЗ, относительно селективные, срабатывание которых при внешних КЗ предусмотрено только в случае отказа защиты или выключателя смежного поврежденного элемента, и неселективные, срабатывание которых допускается (в целях упрощения) при внешних КЗ в границах некоторой зоны. Наиболее распространены относительно селективные Р. з. Любая Р. з. должна удовлетворять требованиям устойчивости функционирования, характеризующейся совершенством способов "распознавания" защитой режима работы электрической системы, и надёжности функционирования, определяющейся в первую очередь отсутствием отказов устройств Р. з.

    Один из простейших путей достижения селективности Р. з. (обычно токовых и дистанционных) — применение реле, в которых между моментом возникновения требования о срабатывании реле и завершением процесса срабатывания проходит строго определённый промежуток времени, называется выдержкой времени (см. Реле времени).

    4608


    На рис. 1 показаны схема участка радиальной электрической сети с односторонним питанием (при котором ток к месту КЗ идёт с одной стороны), оснащенного относительно селективной Р. з., и соответствующие выдержки времени. Устройства Р. з. 1 и 2 имеют по три ступени, каждая из которых настроена на определённые значения входного сигнала т. о., что выдержка времени этих устройств ступенчато зависит от расстояния до места КЗ. Протяжённость зон, защищаемых отдельными ступенями, и соответствующие им выдержки времени выбираются с таким расчётом, чтобы устройства защиты поврежденных участков сети срабатывали раньше др. устройств. Зону первой ступени Р. з., не имеющей специального замедления срабатывания, приходится принимать несколько меньшей защищаемого участка, поскольку, например, устройство 1 не способно различить КЗ в точках K1 и K2. Последние ступени Р. з. (в Р. з., показанной на рис. 1, — третьи) — резервные, у них часто нет четко ограниченной зоны срабатывания.

    4609

    В сетях, в которых ток к месту КЗ может идти с двух сторон (от разных источников питания или по обходной связи), относительно селективные Р. з. выполняют направленными — срабатывающими только тогда, когда мощность КЗ передаётся через защищаемые элементы в условном направлении от шин ближайшей подстанции в линию. Так, при КЗ в точке К (рис. 2) могут сработать только устройства 1, 3, 4 и 6. При этом устройства 1 и 3 (4 и 6) для обеспечения селективности согласованы между собой по зонам срабатывания и выдержкам времени.

    В ряде случаев — на достаточно мощных генераторах, трансформаторах, линиях напряжением 110 кв и выше — для обеспечения высокого быстродействия Р. з. применяют сравнительно сложные абсолютно селективные защиты. Из них наиболее распространены т. н. продольные защиты, к которым для распознавания КЗ, в конце "своего" и в начале смежного участков подводится информация с разных концов элемента. Так, продольная дифференциальная токовая защита реагирует на геометрическую разность векторов токов на концах элемента. Эта разность при внешнем КЗ теоретически равна нулю, а при внутреннем — току в месте КЗ. В защитах др. типов производится сопоставление фаз векторов тока (дифференциально-фазная защита) или направлений потока мощности на концах элемента. К продольным защитам электрических машин и линий длиной примерно до 10 км информация об изменении электрических величин поступает непосредственно по соединительным проводам. На более длинных линиях для передачи такой информации обычно используют ВЧ каналы связи по проводам самой линии, а также УКВ каналы радиосвязи и радиорелейные линии.
    Э. П. Смирнов.
    [БСЭ, 1969-1978]

    НАЗНАЧЕНИЕ РЕЛЕЙНОЙ ЗАЩИТЫ

    В энергетических системах могут возникать повреждения и ненормальные режимы работы электрооборудования электростанций и подстанций, их распределительных устройств, линий электропередачи и электроустановок потребителей электрической энергии.
    Повреждения в большинстве случаев сопровождаются значительным увеличением тока и глубоким понижением напряжения в элементах энергосистемы.
    Повышенный ток выделяет большое количество тепла, вызывающее разрушения в месте повреждения и опасный нагрев неповрежденных линий и оборудования, по которым этот ток проходит.

    Понижение напряжения нарушает нормальную работу потребителей электроэнергии и устойчивость параллельной работы генераторов и энергосистемы в целом.
    Ненормальные режимы обычно приводят к отклонению величин напряжения, тока и частоты от допустимых значений. При понижении частоты и напряжения создается опасность нарушения нормальной работы потребителей и устойчивости энергосистемы, а повышение напряжения и тока угрожает повреждением оборудования и линий электропередачи.
    Таким образом, повреждения нарушают работу энергосистемы и потребителей электроэнергии, а ненормальные режимы создают возможность возникновения повреждений или расстройства работы энергосистемы.

    Для обеспечения нормальной работы энергетической системы и потребителей электроэнергии необходимо возможно быстрее выявлять и отделять место повреждения от неповрежденной сети, восстанавливая таким путем нормальные условия их работы и прекращая разрушения в месте повреждения.
    Опасные последствия ненормальных режимов также можно предотвратить, если своевременно обнаружить отклонение от нормального режима и принять меры к его устранению (например, снизить ток при его возрастании, понизить напряжение при его увеличении и т. д.).

    В связи с этим возникает необходимость в создании и применении автоматических устройств, выполняющих указанные операции и защищающих систему и ее элементы от опасных последствий повреждений и ненормальных режимов.
    Первоначально в качестве подобной защиты применялись плавкие предохранители. Однако по мере роста мощности и напряжения электрических установок и усложнения их схем коммутации такой способ защиты стал недостаточным, в силу чего были созданы защитные устройства, выполняемые при помощи специальных автоматов — реле, получившие название релейной защиты.

    Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная и надежная работа современных энергетических систем. Она осуществляет непрерывный контроль за состоянием и режимом работы всех элементов энергосистемы и реагирует на возникновение повреждений и ненормальных режимов.
    При возникновении повреждений защита выявляет и отключает от системы поврежденный участок, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения.

    При возникновении ненормальных режимов защита выявляет их и в зависимости от характера нарушения производит операции, необходимые для восстановления нормального режима, или подает сигнал дежурному персоналу.
    В современных электрических системах релейная защита тесно связана с электрической автоматикой, предназначенной для быстрого автоматического восстановления нормального режима и питания потребителей.

    К основным устройствам такой автоматики относятся:

    • автоматы повторного включения (АПВ),
    • автоматы включения резервных источников питания и оборудования (АВР),
    • автоматы частотной разгрузки (АЧР).

    [Чернобровов Н. В. Релейная защита. Учебное пособие для техникумов]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > релейная защита

  • 37 устройство защиты от импульсных перенапряжений

    1. voltage surge protector
    2. surge protector
    3. surge protective device
    4. surge protection device
    5. surge offering
    6. SPD

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    3.1.45 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит, по крайней мере, один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.53 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит по крайней мере один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > устройство защиты от импульсных перенапряжений

  • 38 автоматический выключатель

    1. cutout
    2. circuit-breaker
    3. circuit breaker
    4. CB
    5. breaker
    6. automatic switch
    7. automatic cutout
    8. automatic circuit breaker
    9. auto-cutout

     

    автоматический выключатель
    Механический коммутационный аппарат
    1), способный включать, проводить и отключать токи при нормальном состоянии электрической цепи, а также включать, проводить в течение заданного времени и автоматически отключать токи в указанном аномальном состоянии электрической цепи, например, при коротком замыкании.
    (МЭС 441-14-20)
    [ ГОСТ Р 50030. 2-99 ( МЭК 60947-2-98)]

    автоматический выключатель
    -
    [IEV number 442-05-01]

    EN

    circuit breaker
    a mechanical switching device, capable of making, carrying and breaking currents under normal circuit conditions and also making, carrying for a specified time and breaking currents under specified abnormal circuit conditions such as those of short circuit.
    [IEC 62271-100, ed. 2.0 (2008-04)]
    [IEV number 442-05-01]

    circuit breaker

    A device designed to open and close a circuit by nonautomatic means and to open the circuit automatically on a predetermined overcurrent without damage to itself when properly applied within its rating.
    NOTE The automatic opening means can be integral, direct acting with the circuit breaker, or remote from the circuit breaker.
    Adjustable (as applied to circuit breakers). A qualifying term indicating that the circuit breaker can be set to trip at various values of current, time, or both within a predetermined range. Instantaneous-trip (as applied to circuit breakers). A qualifying term indicating that no delay is purposely introduced in the tripping action of the circuit breaker.
    Inverse-time (as applied to circuit breakers). A qualifying term indicating a delay is purposely introduced in the tripping action of the circuit breaker, which delay decreases as the magnitude of the current increases.
    Nonadjustable (as applied to circuit breakers). A qualifying term indicating that the circuit breaker does not have any adjustment to alter the value of current at which it will trip or the time required for its operation.
    Setting (of a circuit breaker). The value of current, time, or both at which an adjustable circuit breaker is set to trip.
    [National Electrical Cod]

    FR

    disjoncteur
    appareil mécanique de connexion capable d’établir, de supporter et d’interrompre des courants dans les conditions normales du circuit, ainsi que d’établir, de supporter pendant une durée spécifiée et d’in- terrompre des courants dans des conditions anormales spécifiées du circuit telles que celles du court-circuit.
    [IEC 62271-100, ed. 2.0 (2008-04)]
    [IEV number 442-05-01]

      1)  Должно быть контактный коммутационный аппарат
    [Интент] 
    КЛАССИФИКАЦИЯ

      0067 Автоматические выключатели ABB   0068 Модульные автоматические выключатели
    1. НЕКОТОРЫЕ СВЕДЕНИЯ ОБ АВТОМАТИЧЕСКИХ ВЫКЛЮЧАТЕЛЯХ Автоматический выключатель — это электрический аппарат, который автоматически отключает (и тем самым защищает) электрическую цепь при возникновении в ней аномального режима. Режим становится аномальным, когда в цепи начинает недопустимо изменяться (т. е. увеличиваться или уменьшаться относительно номинального значения) ток или напряжение.
    Другими словами (более "инженерно") можно сказать, что автоматический выключатель защищает от токов короткого замыкания и токов перегрузки отходящую от него питающую линию, например, кабель и приемник(и) электрической энергии (осветительную сеть, розетки, электродвигатель и т. п.).
    Как правило, автоматический выключатель может применятся также для нечастого (несколько раз в сутки) включения и отключения защищаемых электроприемников (защищаемой нагрузки).

    [Интент]
    Выключатель предназначен для проведения тока в нормальном режиме и отключения тока при коротких замыканиях, перегрузках, недопустимых снижениях напряжения, а также до 30 оперативных включений и отключений электрических цепей в сутки и рассчитан для эксплуатации в электроустановках с номинальным рабочим напряжением до 660 В переменного тока частоты 50 и 60 Гц и до 440 В постоянного тока.
    [
    Типовая фраза из российской технической документации] 2. ПРИНЦИП ДЕЙСТВИЯ Для защиты цепи от короткого замыкания применяется автоматический выключатель с электромагнитным расцепителем.

     

    1 - Пружина (в данном случае во взведенном положении растянута)
    2 - Главный контакт автоматического выключателя
    3 - Удерживающее устройство
    4 - Электромагнитный расцепитель;
    5 - Сердечник
    6 - Катушка
    7 - Контактные зажимы автоматического выключателя

    Автоматический выключатель устроен таким образом, что сначала необходимо взвести пружину и только после этого его можно включить. У многих автоматических выключателей для взвода пружины необходимо перевести ручку вниз. После этого ручку переводят вверх. При этом замыкаются главные контакты.
    На рисунке показан один полюс автоматического выключателя во включенном положении: пружина 1 взведена, а главный контакт 2 замкнут.
    Как только в защищаемой цепи возникнет короткое замыкание, ток, протекающий через соответствующий полюс автоматического выключателя, многократно возрастет. В катушке 6 сразу же возникнет сильное магнитное поле. Сердечник 5 втянется в катушку и освободит удерживающее устройство. Под действием пружины 1 главный контакт 2 разомкнется, в результате чего автоматический выключатель отключит и тем самым защитит цепь, в которой возникло короткое замыкание. Такое срабатывание автоматического выключателя происходит практически мгновенно (за сотые доли секунды).

    Для защиты цепи от тока перегрузки применяют автоматические выключатели с тепловым расцепителем. 

     

    1 - Пружина (в данном случае во взведенном положении растянута)
    2 - Главный контакт автоматического выключателя
    3 - Удерживающее устройство
    4 - Тепловой расцепитель
    5 - Биметаллическая пластина
    6 - Нагревательный элемент
    7 - Контактные зажимы автоматического выключателя

    Принцип действия такой же как и в первом случае, с той лишь разницей, что удерживающее устройство 3 освобождается под действием биметаллической пластины 5, которая изгибается от тепла, выделяемого нагревательным элементом 6. Количество тепла определяется током, протекающим через защищаемую цепь.
    [Интент]

    Недопустимые, нерекомендуемые

    Тематики

    Классификация

    >>>

    Обобщающие термины

    Действия

    EN

    DE

    FR

    Смотри также

    3.3.4 автоматический выключатель (circuit-breaker): Контактный коммутационный аппарат, способный включать, проводить и отключать токи при нормальных условиях в цепи, а также включать, проводить в течение установленного времени и отключать (автоматически) при указанных аномальных условиях в цепи, таких, как короткое замыкание.

    [МЭС 441-14-20] [1]

    Источник: ГОСТ Р 51327.1-2010: Выключатели автоматические, управляемые дифференциальным током, бытового и аналогичного назначения со встроенной защитой от сверхтоков. Часть 1. Общие требования и методы испытаний оригинал документа

    3.2.5 автоматический выключатель (circuit-breaker): Контактный коммутационный аппарат, способный включать, проводить и отключать токи при нормальных условиях в цепи, а также включать, проводить в течение установленного нормированного времени и отключать токи при указанных ненормальных условиях в цепи, таких как короткое замыкание.

    [МЭК 60050(441-14-20)]

    Источник: ГОСТ Р 51731-2010: Контакторы электромеханические бытового и аналогичного назначения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > автоматический выключатель

  • 39 фаза

    1. phase

     

    фаза
    Проводник, пучок проводников, ввод, обмотка или иной элемент многофазной системы переменного тока, являющийся токоведущим при нормальном режиме работы.
    [ ГОСТ 24291-90

    фаза электрической сети
    фаза
    Название провода, пучка проводов, вывода, обмотки или иного элемента многофазной системы переменного тока, являющегося токоведущим при нормальной работе
    [ОСТ 45.55-99]

    фаза
    Часть многофазной системы электрических цепей, в которой может протекать один из электрических токов многофазной системы электрических токов.
    [ ГОСТ Р 52002-2003]

    EN

    phase
    the designation of any conductor, bundle of conductors, terminal, winding or any other element of a polyphase system, which is intended to be energized under normal use
    [IEV number 601-03-09]

    FR

    phase
    désignation d'un conducteur, d'un faisceau de conducteurs, de bornes, d'enroulements ou de tout autre élément d'un réseau polyphasé et susceptible d'être sous tension en service normal
    [IEV number 601-03-09]

    Тематики

    EN

    DE

    FR

    15 фаза

    Проводник, пучок проводников, ввод, обмотка или иной элемент многофазной системы переменного тока, являющийся токоведущим при нормальном режиме работы

    601-03-09

    de Aussenleiter

    en phase

    fr phase

    Источник: ГОСТ 24291-90: Электрическая часть электростанции и электрической сети. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > фаза

  • 40 шина (в электротехнике)

    1. wire
    2. strip
    3. strap
    4. power busbar
    5. line
    6. busbar
    7. bus rod
    8. bus line
    9. bus lead

     

    шина
    Проводник с низким сопротивлением, к которому можно подсоединить несколько отдельных электрических цепей.
    Примечание — Термин «шина» не включает в себя геометрическую форму, габариты или размеры проводника.
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]
    [ ГОСТ Р МЭК 61439.1-2013]

    шина
    Конструктивный элемент низковольтного комплектного устройства (НКУ).
    Такой конструктивный элемент предназначен для того, чтобы к нему можно было легко присоединить отдельные электрические цепи (другие шины, отдельные проводники). Такие шины могут иметь различную конструкцию, геометрическую форму и размеры.
    [Интент]

    шинопровод шина
    Медная, алюминиевая, реже стальная полоса, служащая для присоединения кабелей электрогенераторов, трансформаторов и т.д. к проводам питающей сети
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    общая шина
    -
    [IEV number 151-12-30]

    шина
    -
    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    EN

    busbar
    low-impedance conductor to which several electric circuits can be connected at separate points
    NOTE – In many cases, the busbar consists of a bar.
    [IEV number 151-12-30]

    busbar
    An electrical conductor that makes a common connection between several circuits. Sometimes, electrical wire cannot accommodate high-current applications, and electricity must be conducted using a more substantial busbar — a thick bar of solid metal (usually copper or aluminum). Busbars are uninsulated, but are physically supported by insulators. They are used in electrical substations to connect incoming and outgoing transmission lines and transformers; in a power plant to connect the generator and the main transformers; in industry, to feed large amounts of electricity to equipment used in the aluminum smelting process, for example, or to distribute electricity in large buildings
    [ABB. Glossary of technical terms. 2010]

    FR

    barre omnibus, f
    conducteur de faible impédance auquel peuvent être reliés plusieurs circuits électriques en des points séparés
    NOTE – Dans de nombreux cas, une barre omnibus est constituée d’une barre.
    [IEV number 151-12-30]

     

    0079_1

    1. Сборные шины
    2. Распределительные шины

      2. Проводник прямоугольного сечения из меди, предназначенный для электротехнических целей
    (см. ГОСТ 434-78).

    Поставляется в бухтах, а также в полосах длиной не менее 2,5 м; По существу, это просто проволока прямоугольного сечения. В указанном ГОСТе и в технической документации, в которой она применяется, обязательно указываются размеры этой проволоки. Например, "Шина ШММ 8,00х40,00 ГОСТ 434-78" 0308
     

     

    шина
    Пруток прямоугольного сечения, применяемый в электротехнике в качестве проводника тока, изготовляемый прессованием или волочением.
    [ ГОСТ 25501-82]

    Тематики

    Действия

    • расположение шин «на ребро» [ПУЭ]
    • расположение шин «плашмя» [ПУЭ]

    Сопутствующие термины

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > шина (в электротехнике)

См. также в других словарях:

  • элемент тока — Векторная величина, равная произведению электрического тока проводимости вдоль линейного проводника и бесконечно малого отрезка этого проводника. [ГОСТ Р 52002 2003] EN current element at a given point of a filiform tube of current, vector… …   Справочник технического переводчика

  • Элемент системы автоматического управления или регулирования — Составная часть схемы, которая имеет единую конструкцию, разъемное соединение, выполняет в изделии одну или несколько определенных функций (усиление, преобразование, генерирование, формирование сигналов) и требует проверки на стенде или в… …   Словарь-справочник терминов нормативно-технической документации

  • ЭЛЕМЕНТ — (лат. elementum первоначальное вещество, стихия). 1) простое или не разлагаемое тело, как напр, серебро, медь, азот и пр. 2) малые частицы, из которых состоит тело. 3) начальное вещество, стихия. Словарь иностранных слов, вошедших в состав… …   Словарь иностранных слов русского языка

  • элемент — а, м. élément m., нем. Element <лат. elementum стихия, первоначальное вещество. 1. У древнегреческих философов материалистов одна из составных частей природы (огонь, вода, воздух, земля), лежащих в основе всех вещей, явлений; стихия. БАС 1.… …   Исторический словарь галлицизмов русского языка

  • ЭЛЕМЕНТ — элемента, м. [латин. elementum, первонач. одна из четырех стихий мира: огонь, земля, вода или воздух]. 1. Составная часть чего н. Разложить что н. на элементы. Классовые элементы общества. Отдельные элементы населения. Сочувствующие элементы… …   Толковый словарь Ушакова

  • Элемент (электрического) тока — векторная величина, равная произведению электрического тока проводимости вдоль линейного проводника и бесконечно малого отрезка этого проводника... Источник: ЭЛЕКТРОТЕХНИКА . ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОНЯТИЙ. ГОСТ Р 52002 2003 (утв.… …   Официальная терминология

  • Элемент Лекланше — Элемент Лекланше, названный по имени его изобретателя Ж. Лекланше (1865 г.), является самым известным первичным элементом (батарея одноразового использования), который сегодня широко используется в радио, часах, фонариках и т. д.… …   Википедия

  • ЭЛЕМЕНТ ГАЛЬВАНИЧЕСКИЙ — источник тока, в к ром электр. энергия получается за счет химической. Э. г. состоит из двух различных металл. пластин электродов или полюсов (в нек рых элементах одну пластину берут угольную), погруженных в раствор проводящей ток жидкости… …   Технический железнодорожный словарь

  • элемент кабельного изделия — Любая конструктивная часть кабельного изделия. [ГОСТ 15845 80] Параллельные тексты EN RU conductor (of a cable) part of a cable which has the specific function of carrying current [IEV number 461 01 01] токопроводящая жила Элемент кабельного… …   Справочник технического переводчика

  • элемент с неводным электролитом — Первичный элемент, в котором в качестве электролита применены жидкие неводные растворы. [ГОСТ 15596 82] Тематики источники тока химические Классификация >>> …   Справочник технического переводчика

  • элемент с твердым электролитом — Первичный элемент, электролит которого состоит из ионопроводящих твердых материалов. [ГОСТ 15596 82] Тематики источники тока химические Классификация >>> …   Справочник технического переводчика

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»