Перевод: со всех языков на английский

с английского на все языки

электрическая+система

  • 101 заземляющее устройство

    1. grounding device
    2. grounding conductor (US)
    3. grounding arrangement (US)
    4. earthing system, grounding system (USA)
    5. earthing system (deprecated)
    6. earthing device
    7. earthing arrangement
    8. earth network

     

    заземляющее устройство
    совокупность заземлителя и заземляющих проводников
    [ПУЭ]

    заземляющее устройство
    Нрк. система заземления
    Совокупность всех электрических соединений и устройств, обеспечивающих заземление системы, установки и оборудования
    [ ГОСТ Р МЭК 60050-826-2009]

    заземляющее устройство
    Совокупность всех электрических соединений и устройств, включенных в заземление системы или установки, или оборудования.
    [ ГОСТ Р МЭК 60050-195-2005]

    заземляющее устройство
    Система проводников и конструкций, обеспечивающих защитное и рабочее заземление; в него входят заземляющие проводники и магистрали, спуски от конструкций, контуры заземления и рельсовая сеть, включая узлы присоединения к ним.
    [Инструкция по заземлению устройств электроснабжения на электрифицированных железных дорогах]

    EN

    earthing arrangement
    all the electric connections and devices involved in the earthing of a system, an installation and equipment
    Source: 604-04-02 MOD
    [IEV number 195-02-20]

    FR

    installation de mise à la terre
    ensemble des liaisons électriques et dispositifs mis en oeuvre dans la mise à la terre d'un réseau, d'une installation ou d'un matériel
    Source: 604-04-02 MOD
    [IEV number 195-02-20]

    0637

    Рис. ABB
    Система ТТ

    1 - заземляемая точка;
    2 - заземляющий проводник (earthing conductor);
    3 - заземлитель (заземляющий электрод);
    4 - открытая проводящая часть (exposed-conductive-part);
    5 - заземляющее устройство (earthing arrangement) электроустановки;
    6 - заземляющее устройство нейтрали;
    7 - источник питания;
    8 - однофазная нагрузка;
    RA - сопротивление заземляющего устройства электроустановки;
    RB - сопротивление заземляющего устройства нейтрали;

    Недопустимые, нерекомендуемые

    Тематики

    EN

    DE

    FR

    49 заземляющее устройство

    Совокупность электрически соединенных заземлителя и заземляющих проводников

    604-04-02*

    de Erdungsanlage

    en earthing system, grounding system (USA)

    fr installation de mise à la terre

    Источник: ГОСТ 24291-90: Электрическая часть электростанции и электрической сети. Термины и определения оригинал документа

    заземляющее устройство

    (Нрк. система заземления)

    (earthing arrangement

    grounding arrangement (US)

    earthing system (deprecated)):

    Совокупность всех электрических соединений и устройств, обеспечивающих заземление системы, установки и оборудования.

    826-13-07

    [195-02-02]

    заземляющий проводник

    (earthing conductor

    grounding conductor (US)

    earth conductor (deprecated)):

    Проводник, создающий проводящую цепь или часть проводящей цепи между данной точкой

    системы или установки, или оборудования и заземляющим электродом или заземлителем.

    826-13-14

    [195-02-30 ИЗМ]

    уравнивание потенциалов

    (equipotential bonding):

    Выполнение электрических соединений между проводящими частями для обеспечения эквипотенциальности.

    826-13-22

    [195-02-09]

    РЕМ-проводник

    (РЕМ conductor):

    Проводник, совмещающий функции защитного заземляющего проводника и среднего проводника.

    826-13-29

    [195-02-16]


    Источник: ГОСТ Р МЭК 60050-826-2009: Установки электрические. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > заземляющее устройство

  • 102 повреждение

    1. fault
    2. failure
    3. damage
    4. breakdown

     

    повреждение
    Неспособность машины выполнять заданную функцию.
    Примечание 1
    Неисправность, отказ в работе машины является результатом ее повреждения.
    Примечание 2
    Повреждение является событием в отличие от неисправности и отказа, которые являются состоянием.
    Примечание 3
    Рассматриваемое понятие не распространяется на программное обеспечение (см. МЭС 191-04-01
    [ ГОСТ Р ИСО 12100-1:2007]

    повреждение

    Событие, заключающееся в нарушении исправного состояния объекта при сохранении работоспособного состояния.
    [ ГОСТ 27.002-89]
    [ОСТ 45.153-99]
    [СТО Газпром РД 2.5-141-2005]

    повреждение

    По ГОСТ 13377-75
    [ ГОСТ 24166-80]

    EN

    damage
    any change in visual appearance or alteration of mechanical integrity
    [IEC 60571, ed. 2.0 (1998-02)]

    damage
    degradation of a component leading to penetration by acid or moisture
    [IEC 62662, ed. 1.0 (2010-08)]

    FR

    détérioration
    tout changement dans l’aspect ou toute altération de l’intégrité mécanique
    [IEC 60571, ed. 2.0 (1998-02)]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

    2.3 повреждение (damage): Любое сглаживание, видоизменение рельефа тиснения или образование дырок на поверхности имитатора кожи, достигающих по ширине не менее 5 мм.

    Примечание - Там, где повреждение происходит в виде отдельных пятен, ширина каждого пятна суммируется на любом горизонтальном участке.

    Источник: ГОСТ Р ИСО 9185-2007: Система стандартов безопасности труда. Одежда специальная защитная. Метод оценки стойкости к выплеску расплавленного металла оригинал документа

    3.7.2 повреждение (fault): Повреждение любого элемента, разделения, изоляции или соединения между элементами, не являющимися по настоящему стандарту не повреждаемыми, от которых зависит искробезопасность цепи.

    Источник: ГОСТ Р 52350.11-2005: Электрооборудование для взрывоопасных газовых сред. Часть 11. Искробезопасная электрическая цепь "I" оригинал документа

    повреждение (damage): Событие, заключающееся в нарушении исправного состояния объекта при сохранении работоспособного состояния

    [ ГОСТ 27.002-89, статья 3.2].

    Источник: ГОСТ Р 52527-2006: Установки газотурбинные. Надежность, готовность, эксплуатационная технологичность и безопасность оригинал документа

    3.2. Повреждение

    Damage

    Событие, заключающееся в нарушении исправного состояния объекта при сохранении работоспособного состояния

    Источник: ГОСТ 27.002-89: Надежность в технике. Основные понятия. Термины и определения оригинал документа

    3.32 повреждение (failure): Неспособность машины выполнять заданную функцию.

    Примечание 1 - Неисправность, отказ в работе машины является результатом ее повреждения.

    Примечание 2 - Повреждение является событием в отличие от неисправности и отказа, которые являются состоянием.

    Примечание 3 - Рассматриваемое понятие не распространяется на программное обеспечение (см. МЭС 191-04-01 [11]).

    Источник: ГОСТ Р ИСО 12100-1-2007: Безопасность машин. Основные понятия, общие принципы конструирования. Часть 1. Основные термины, методология оригинал документа

    Русско-английский словарь нормативно-технической терминологии > повреждение

  • 103 безопасное сверхнизкое напряжение

    1. safety extra-low voltage - SELV
    2. safety extra-low voltage
    3. safe overlower voltage

     

    безопасное сверхнизкое напряжение
    Напряжение, не превышающее 42 В между проводниками и между проводниками и землей; при этом напряжение холостого хода не превышает 50 В. Если безопасное сверхнизкое напряжение получают от сети питания, оно должно поступать через безопасный разделительный трансформатор или преобразователь с раздельными обмотками, изоляция которых соответствует требованиям к двойной или усиленной изоляции.
    Примечания.

    1. Установленные предельные значения напряжений основаны на предположении, что безопасный разделительный трансформатор работает при своем номинальном напряжении.
    2. Безопасный разделительный трансформатор 1) известен также как SELV.

    [ ГОСТ Р 52161. 1-2004 ( МЭК 60335-1: 2001)]

    1)  Должно быть безопасное сверхнизкое напряжение
    [Интент]

    безопасное сверхнизкое напряжение
    Напряжение в цепи, электрически отделенной от питающей сети безопасным разделительным трансформатором, не превышающее 50 В переменного тока или 50√2 В пульсирующего постоянного тока между проводниками или между любым проводником и землей
    [ ГОСТ 30030-93]

     

    safety extra-low voltage
    voltage not exceeding 42 V between conductors and between conductors and earth, the no-load voltage not exceeding 50 V
    When safety extra-low voltage is obtained from the supply mains, it is to be through a safety isolating transformer or a convertor with separate windings, the insulation of which complies with double insulation or reinforced insulation requirements.
    NOTE 1 - The voltage limits specified are based on the assumption that the safety isolating transformer is supplied at its rated voltage.
    NOTE 2  - Safety extra-low voltage is also known as SELV.
    [IEC 60335-1, ed. 4.0 (2001-05)]

    FR

    très basse tension de sécurité
    tension ne dépassant pas 42 V entre conducteurs et entre conducteurs et terre, la tension à vide ne dépassant pas 50 V.
    Si une très basse tension de sécurité est obtenue à partir du réseau d’alimentation, elle doit être fournie par l'intermédiaire d'un transformateur de sécurité ou d'un convertisseur à enroulements séparés, dont l'isolation répond aux prescriptions de la double isolation ou de l'isolation renforcée.
    NOTE 1 - Les limites prescrites pour la tension sont établies en supposant que le transformateur de sécurité est alimenté sous sa tension assignée.
    NOTE 2 - La très basse tension de sécurité est également appelée TBTS.
    [IEC 60335-1, ed. 4.0 (2001-05)]

    Тематики

    EN

    FR

    3.22 безопасное сверхнизкое напряжение (safety extra-low voltage - SELV): Система со сверхнизким напряжением (обычно не более 50 В переменного тока или 120 В постоянного тока без пульсации), которая электрически изолирована от земли и от других систем таким образом, что единичное повреждение не может вызвать электрический удар.

    Примечание - Система 50 В без заземления - это система SELV.

    Источник: ГОСТ Р 52350.11-2005: Электрооборудование для взрывоопасных газовых сред. Часть 11. Искробезопасная электрическая цепь "I" оригинал документа

    3.5.2 безопасное сверхнизкое напряжение (safety extra-low voltage): Напряжение, не превышающее 42 В между проводниками и между проводниками и землей при напряжении холостого хода, не превышающем 50 В. Безопасное сверхнизкое напряжение, получаемое от сети, должно поступать через безопасный разделительный трансформатор или преобразователь с раздельными обмотками, изоляция которого соответствует требованиям к двойной или усиленной изоляции.

    Источник: ГОСТ Р МЭК 60745-1-2005: Машины ручные электрические. Безопасность и методы испытаний. Часть 1. Общие требования оригинал документа

    3.45 безопасное сверхнизкое напряжение (safety extra-low voltage): Номинальное напряжение, не превышающее 42 В между проводниками и между проводниками и землей, при этом напряжение холостого хода не превышает 50 В. Если безопасное сверхнизкое напряжение получают от сети, то оно должно поступать через безопасный разделительный трансформатор или преобразователь с раздельными обмотками, изоляция которых соответствует требованиям к двойной или усиленной изоляции.

    Источник: ГОСТ Р МЭК 60745-1-2009: Машины ручные электрические. Безопасность и методы испытаний. Часть 1. Общие требования оригинал документа

    3.5.2 безопасное сверхнизкое напряжение (safety extra-low voltage): Напряжение, не превышающее 42 В между проводниками и между проводниками и землей при напряжении холостого хода, не превышающем 50 В. Безопасное сверхнизкое напряжение, получаемое от сети, должно поступать через безопасный разделительный трансформатор или преобразователь с раздельными обмотками, изоляция которого соответствует требованиям к двойной или усиленной изоляции.

    Источник: ГОСТ IEC 60745-1-2011: Машины ручные электрические. Безопасность и методы испытаний. Часть 1. Общие требования

    3.4.2 безопасное сверхнизкое напряжение (safety extra-low voltage): Напряжение, не превышающее 42 В между проводниками и между проводниками и землей; при этом напряжение холостого хода не превышает 50 В.

    Если безопасное сверхнизкое напряжение получают от сети питания, оно должно поступать через безопасный разделительный трансформатор или преобразователь с раздельными обмотками, изоляция которых соответствует требованиям к двойной или усиленной изоляции.

    Примечания

    1 Установленные предельные значения напряжений основаны на предположении, что безопасный разделительный трансформатор работает при своем номинальном напряжении.

    Источник: ГОСТ Р 52161.1-2004: Безопасность бытовых и аналогичных электрических приборов. Часть 1. Общие требования оригинал документа

    Русско-английский словарь нормативно-технической терминологии > безопасное сверхнизкое напряжение

  • 104 заземляющий проводник

    1. grounding conductor (US)
    2. ground conductor (USA)
    3. ground busbar
    4. earthing conductor
    5. earth conductor, ground conductor
    6. earth conductor
    7. -

     

    заземляющий проводник
    Проводник, соединяющий заземляемую часть (точку) с заземлителем.
    [ПУЭ]

    заземляющий проводник
    Проводник, обеспечивающий путь тока или часть пути тока между данной точкой системы или установки или оборудования и заземляющим электродом (заземлителем)
    [IEV number 461-06-19]

    заземляющий проводник
    Проводник, создающий проводящую цепь или часть проводящей цепи между данной точкой системы или установки, или оборудования и заземляющим электродом или заземлителем.
    Примечание - В электроустановке здания данной точкой является, как правило, главная заземляющая шина, и заземляющий проводник присоединяет эту точку к заземляющему электроду или к заземлителю.
    [ ГОСТ Р МЭК 60050-826-2009]

    Неизолированные части заземляющих проводников, которые находятся в земле, рассматривают в качестве части заземляющего устройства (826-13-04)
    [ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]

    заземляющий проводник (провод)

    Проводник, осуществляющий металлическую связь с заземляемой конструкцией и контуром заземления (рельсом).
    [Инструкция по заземлению устройств электроснабжения на электрифицированных железных дорогах]

    EN

    earth conductor
    ground conductor (USA)

    conductor of low impedance which provides an electrical connection between a given point in equipment (an installation or system) and an earth electrode
    Source: 604-04-06
    [IEV number 461-06-19]


    earthing conductor
    grounding conductor (US)
    earth conductor (deprecated)
    conductor which provides a conductive path, or part of the conductive path, between a given point in a system or in an installation or in equipment and an earth electrode or an earth-electrode network
    NOTE – In the electrical installation of a building, the given point is usually the main earthing terminal, and the earthing conductor connects this point to the earth electrode or the earth-electrode network.
    Source: 195-02-03 MOD
    [IEV number 826-13-12]

    FR

    conducteur de terre
    conducteur de faible impédance assurant une connexion électrique entre un point d'un appareil, d'une installation ou d'un réseau et une électrode de terre
    Source: 604-04-06
    [IEV number 461-06-19]


    conducteur de (mise à la) terre, m
    conducteur assurant un chemin conducteur ou une partie du chemin conducteur, entre un point donné d'un réseau, d'une installation, ou d'un matériel et une prise de terre ou un réseau de prises de terre
    NOTE – Dans l'installation électrique d'un bâtiment, le point donné est habituellement la borne principale de terre et le conducteur de mise à la terre relie ce point et la prise de terre ou le réseau de prises de terre.
    Source: 195-02-03 MOD
    [IEV number 826-13-12]

    0637

    Рис. ABB
    Система ТТ
    1 - заземляемая точка;
    2 - заземляющий проводник (earthing conductor);
    3 - заземлитель (заземляющий электрод);
    4 - открытая проводящая часть (exposed-conductive-part);
    5 - заземляющее устройство (earthing arrangement) электроустановки;
    6 - заземляющее устройство нейтрали;
    7 - источник питания;
    8 - однофазная нагрузка;
    RA - сопротивление заземляющего устройства электроустановки;
    RB - сопротивление заземляющего устройства нейтрали;

    Тематики

    EN

    DE

    • Erdungsleiter, m

    FR

    48 заземляющий проводник

    Проводник, соединяющий заземляемые части с заземлителем

    604-04-06*

    de Erdungsleitung

    en earth conductor, ground conductor

    fr conducteur de terre

    Источник: ГОСТ 24291-90: Электрическая часть электростанции и электрической сети. Термины и определения оригинал документа

    заземляющий проводник

    (earthing conductor

    grounding conductor (US)

    earth conductor (deprecated)):

    Проводник, создающий проводящую цепь или часть проводящей цепи между данной точкой

    системы или установки, или оборудования и заземляющим электродом или заземлителем.

    826-13-14

    [195-02-30 ИЗМ]

    уравнивание потенциалов

    (equipotential bonding):

    Выполнение электрических соединений между проводящими частями для обеспечения эквипотенциальности.

    826-13-22

    [195-02-09]

    РЕМ-проводник

    (РЕМ conductor):

    Проводник, совмещающий функции защитного заземляющего проводника и среднего проводника.

    826-13-29

    [195-02-16]

    совмещенная система уравнивания потенциалов

    (common equipotential bonding system common bonding network; CBN):

    Система уравнивания потенциалов, обеспечивающая одновременно защитное уравнивание потенциалов и функциональное уравнивание потенциалов.

    826-14-03


    Источник: ГОСТ Р МЭК 60050-826-2009: Установки электрические. Термины и определения оригинал документа

    3.2.13. заземляющий проводник [earthing conductor; grounding conductor (US)]: Проводник, создающий электрическую цепь или ее часть между данной точкой системы, или электроустановки, или оборудования с заземлителем (заземляющим электродом).

    (МЭК 195-02-03).

    Источник: ГОСТ Р МЭК 60519-1-2005: Безопасность электротермического оборудования. Часть 1. Общие требования оригинал документа

    3.11 Заземляющий проводник - защитный проводник, соединяющий заземляемые части электроустановки с заземлителем.

    Источник: ГОСТ Р 50571.1-93: Электроустановки зданий. Основные положения оригинал документа

    3.11 Заземляющий проводник - защитный проводник, соединяющий заземляемые части электроустановки с заземлителем.

    Источник: ГОСТ 30331.1-95: Электроустановки зданий. Основные положения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > заземляющий проводник

  • 105 защитное сверхнизкое напряжение

    1. protective extra-low voltage - PELV

    3.19 защитное сверхнизкое напряжение (protective extra-low voltage - PELV): Система со сверхнизким напряжением, которая не изолирована электрически от земли, но в других отношениях удовлетворяет требованиям к SELV.

    Примечание - Система 50 В с заземлением с ответвлениями в средней точке - это система PELV.

    Источник: ГОСТ Р 52350.11-2005: Электрооборудование для взрывоопасных газовых сред. Часть 11. Искробезопасная электрическая цепь "I" оригинал документа

    Русско-английский словарь нормативно-технической терминологии > защитное сверхнизкое напряжение

  • 106 сеть


    net
    (плетеная или выполненная из гибких элементов)
    - (система, совокупность эл. цепей) — circuitry
    совокупность цепей, обеспечивающих связь внутри системы или между системами, — а complex of circuits describing interconnection within or between systems.
    - (совокупность агрегатов и соединительных цепей)system
    power, pwr
    - (электрическая цепь)circuit (crct)
    - аэродромного питания (внутрисамолетная)external power system
    - аэродромовairfield network
    - большого тока (магистральная)mains
    сеть от источника питания до цру (рис. 91).
    -, бортовая электрическая — aircraft electrical system
    -, грузовая — cargo net
    для закрепления грузов в грузовом отсеке, — the cargo net is used to fasten the cargo items in the cargo compartment.
    -, дренажная (слив) — drainage lines
    -, дренажная (сообщения с атмосферой) — vent lines
    - канала автопилота (эл. цепи) — autopilot circuitry
    - канала крена (рыскания, тангажа) — roll (yaw, pitch) circuitry
    -, магистральная (эл. питательная) — mains
    - маршрутовroute network
    - на авар. питание — emer pwr in use
    - на аккумулятор питание эпетрической системы ла от бортового аккумулятора. — battery power in use (ватт pwr in use), battery power available (ватт pwr avail)
    ватт position of ехт pwr/batt switch
    ватт in use
    ехт pwr in use /avail/
    при включении наземного эпектропитания загорается табло — with the external power supply connected the ext pwr in use light is on.
    ехт pwr not in use
    - наземных радиостанцийnetwork of radio stations

    the system employs signals from the network of omega navigation stations.
    - на основной источник питания (сеть питается от осн. источника) — circuit on primary power source (crct on prim pwr)
    - на резервный источник питания — circuit on standby /alternate/ power source (crct on alt pwr)
    - на трансформатор (сеть питается от трансформатора)circuit on transformer (crct on xfmr)
    xfmr
    xfmr in use /avail/
    - на шину (no i)circuit on bus (i)
    сеть питается от шины noi — the circuit is fed from bus i.
    ехт pwr in use
    - переменного (постоянного) тока, бортовая — aircraft ас (do electrical system
    - питания (эл.) — power (supply, feed) circuit
    -, питательная (эл.) — mains, supply mains
    сеть, служащая для подвода электроэнергии от источника к распределительным устройствам (шинам) (рис. 91). — conductors conveying power from а generating source to а distribution bus.
    -, питательная магистральная — series mains
    сеть, в которой все ру включаются в одну магистраль последовательно друг за другом. — conductors connecting the distribution busses in series.
    - питательная, радиальная (эл.) — radial mains
    сеть, в которой все распределительные устройства подключаются к шине генератора параллельно идущим проводам. — conductors connecting the distribution busses to а generator bus in parallel.
    - (1) при питании от генератоpa (no i). — circuit (1) on (no. i) generator power, circuit (i) powered by generator (no. i), (crct i on gen. i)
    - радиомаяков — radio beacon /station / network
    -, развязывающая — decoupling circuit
    -, распределительная электрическая — electrical load distribution system
    -, электрическая — electrical system
    27 vdc power
    115 vac power
    включать (ставить под напряжение) бортовую эпектрическую с. — turn on aircraft electrical power
    включать бортовую сеть и убедиться, что все аэс включены, — turn on aircraft electrical power and check that all circuit breakers are closed.
    защищать с. (с помощью аэс) — protect the circuit (by circuit breaker)
    работать от с. (напряжением)... вольт — operate at а supply... of volts

    Русско-английский сборник авиационно-технических терминов > сеть

  • 107 опасность

    1. hazard

     

    опасность
    Потенциальный источник нанесения ущерба.
    [ ГОСТ Р 52319-2005( МЭК 61010-1: 2001)]

    опасность
    Потенциальный источник возникновения ущерба.
    [ИСО / МЭК Руководство 51]
    Примечание. Термин включает в себя опасности для людей, действующие в течение коротких промежутков времени (например, пожары и взрывы), а также опасности, имеющие долгосрочное влияние на здоровье людей (например, выделение токсических веществ).
    [ ГОСТ Р МЭК 61508-4-2007]

    опасность

    Потенциальный источник причинения вреда, ущерба здоровью.
    Примечание 1
    Термин «опасность» может быть уточнен в соответствии с причиной его происхождения (например, механическая опасность, электрическая опасность) или характера потенциального повреждения (например, опасность поражения электрическим током, опасность пореза, опасность воздействия токсических веществ, опасность возгорания).
    Примечание 2
    Опасности, рассматриваемые в данном определении:
    -опасности, постоянно присутствующие в процессе использования машины по назначению (например, опасное перемещение подвижных элементов, дуговой разряд в процессе сварки, неудобная поза, вредная для здоровья, шум, высокая температура);
    -опасности, возникающие неожиданно (например, взрыв, опасность раздавливания как следствие непреднамеренного/неожиданного пуска, выбросы как следствие аварии, падение как следствие ускорения/замедления).
    [ ГОСТ Р ИСО 12100-1:2007]

    опасность
    Источник возможных травм или нанесения другого вреда здоровью.
    Примечание - Понятие «опасность» применяют в общем сочетании с другими понятиями, которые связаны с ожидаемыми травмами или другим вредом для здоровья: опасностью удара электрическим током, опасностью раздавливания, опасностью пореза, опасностью отравления и т.д.
    [ГОСТ ЕН 1070-2003]

    опасность
    Ситуация в окружающей природной среде, в которой при определенных условиях (случайного или затерминированного характера) возможно возникновение факторов опасности, способных привести к одному или совокупности из нежелательных последствий для человека и окружающей человека среды.
    Примечание
    Нежелательными последствиям являются: отклонение здоровья человека от среднестатистического значения, т.е. заболевание или даже смерть человека; ухудшение состояния окружающей человека среды, обусловленное нанесением материального или социального ущерба и/или ухудшение качеств природной среды.
    [РД 01.120.00-КТН-228-06]

    опасность
    Возможная причина травмы или нанесения вреда здоровью.
    Примечания.
    1. Термин может быть определен как специальный, например как механическая или электрическая опасности, или источник потенциального вреда (опасности поражения электрическим током, опасности получения пореза, токсичного поражения и пожарной опасности).
    2. Опасность рассматривается:
    - как непрерывно присутствующая во время предусмотренной режимами работы эксплуатации машины (например, передвижение опасных подвижных элементов, рабочие шумы, высокие температуры, электрическая дуга во время сварки, неудобная рабочая поза);
    - или возникающая неожиданно (например, разрушения в результате взрыва, случайных пусков, выбросов и падений при ускорениях или останове).
    [ ГОСТ Р МЭК 60204-1-2007]

    опасность
    Потенциальная возможность возникновения процессов или явлений, способных вызвать поражение людей, наносить материальный ущерб и разрушительно воздействовать на окружающую атмосферу.
    [ ГОСТ Р 12.3.047-98]

    EN

    hazard
    potential source of harm
    [IEC 61010-031, ed. 1.0 (2002-01)]

    hazard
    potential source of harm
    NOTE - In the context of this standard, the term hazard relates only to potential sources of harm to the operator and surroundings (see 1.2.1), and does not include potential sources of harm related to the efficacy of the process.
    [IEC 61010-2-040, ed. 1.0 (2005-04)]

    FR

    danger
    source potentielle de mal
    [IEC 61010-031, ed. 1.0 (2002-01)]

    danger
    source potentielle de mal
    NOTE Dans le cadre de la présente norme, le terme danger est uniquement lié aux sources de dommage potentielles affectant l’opérateur et l’environnement (voir 1.2.1), et n’inclut pas les sources potentielles de dommage liées à l'efficacité du processus.
    [IEC 61010-2-040, ed. 1.0 (2005-04)]

    Тематики

    EN

    DE

    FR

    3.6 опасность (hazard): Потенциальный источник причинения вреда, ущерба здоровью.

    Примечание 1 - Термин «опасность» может быть уточнен в соответствии с причиной его происхождения (например, механическая опасность, электрическая опасность) или характера потенциального повреждения (например, опасность поражения электрическим током, опасность пореза, опасность воздействия токсических веществ, опасность возгорания).

    Примечание 2 - Опасности, рассматриваемые в данном определении:

    - опасности, постоянно присутствующие в процессе использования машины по назначению (например, опасное перемещение подвижных элементов, дуговой разряд в процессе сварки, неудобная поза, вредная для здоровья, шум, высокая температура);

    - опасности, возникающие неожиданно (например, взрыв, опасность раздавливания как следствие непреднамеренного/неожиданного пуска, выбросы как следствие аварии, падение как следствие ускорения/замедления).

    Источник: ГОСТ Р ИСО 12100-1-2007: Безопасность машин. Основные понятия, общие принципы конструирования. Часть 1. Основные термины, методология оригинал документа

    3.9 опасность (hazard): Возможный источник вреда, причиной которого могут быть естественные или техногенные явления, который способен привести к неблагоприятным воздействиям и последствиям.

    Источник: ГОСТ Р 53647.4-2011: Менеджмент непрерывности бизнеса. Руководящие указания по обеспечению готовности к инцидентам и непрерывности деятельности оригинал документа

    3.33 опасность (hazard): Потенциальный источник ущерба.

    Примечание - Термин «опасность» может быть ограничен определением для обозначения источника или природы возможного ущерба (например, опасность поражения электрическим током, опасность разрушения, опасность пореза, опасность отравления токсичными веществами, опасность возгорания, опасность затопления) [33].

    Источник: ГОСТ Р 54110-2010: Водородные генераторы на основе технологий переработки топлива. Часть 1. Безопасность оригинал документа

    3.10 опасность (hazard): Потенциальный источник вреда.

    [ISO/IEC Guide 51:1999, статья 3.5]


    Источник: ГОСТ Р МЭК 60086-4-2009: Батареи первичные. Часть 4. Безопасность литиевых батарей оригинал документа

    3.7 опасность (hazard): Потенциальный источник вреда.

    Примечание - Термин «опасность» может быть уточнен (квалифицирован) по его происхождению или природе ожидаемой опасности (например, опасность поражения электрическим током, опасность разрушения, опасность резаного ранения, токсическая опасность, опасность возгорания, опасность утопления).

    Источник: ГОСТ Р МЭК 60086-5-2009: Батареи первичные. Часть 5. Безопасность батарей с водным электролитом оригинал документа

    3.2 опасность (hazard): Производственный фактор, который может быть причиной вреда или ущерба человеческому здоровью.

    Примечание - Существуют различные общие виды опасностей, например опасности, связанные с механическими и химическими воздействиями; с воздействием низких и высоких температур и/или пламени, биологических агентов, ионизирующего и неионизирующего излучения.

    Некоторые виды опасностей могут в соответствии с обстоятельствами иметь различные источники. Так опасность, связанная с высокими температурами, может быть обусловлена соприкосновением с горячими телами, тепловым излучением и т. д., и для каждого из подобных источников опасности могут существовать различные методики испытаний.

    Некоторые виды одежды были разработаны для защиты от опасностей, связанных с определенными видами работ. Примером таких предметов одежды являются фартуки, защищающие от ручных ножей, брюки для работы с цепными пилами, одежда, защищающая от воздействия химических веществ, сигнальная одежда повышенной видимости и защитное снаряжение для мотоциклистов.

    Источник: ГОСТ Р ЕН 340-2010: Система стандартов безопасности труда. Одежда специальная защитная. Общие технические требования

    3.19 опасность (hazard): Источник потенциального вреда или ситуация с потенциальной возможностью нанесения вреда.

    Источник: ГОСТ Р 51901.10-2009: Менеджмент риска. Процедуры управления пожарным риском на предприятии оригинал документа

    3.1.2 опасность (hazard): Потенциальный источник возникновения ущерба [ИСО/МЭК Руководство 51].

    Примечание - Термин включает в себя опасности для людей, действующие в течение коротких промежутков времени (например, пожары и взрывы), а также опасности, имеющие долгосрочное влияние на здоровье людей (например, выделение токсических веществ).

    Источник: ГОСТ Р МЭК 61508-4-2007: Функциональная безопасность систем электрических, электронных, программируемых электронных, связанных с безопасностью. Часть 4. Термины и определения оригинал документа

    3.27 опасность (hazard): Событие, способное причинить вред здоровью персонала АС, привести к повреждению узлов, оборудования или строительных конструкций. Опасности подразделяются на внутренние и внешние.

    Примечание 1 - Внутренние опасности представляют собой, например, пожар и затопление. Внутренние опасности могут являться последствиями постулированных исходных событий.

    Примечание 2 - Примером внешних опасностей может служить землетрясение или удар молнии.

    Источник: ГОСТ Р МЭК 61513-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Общие требования оригинал документа

    3.6 опасность (hazard): Потенциальный источник возникновения ущерба.

    Примечание - Термин «опасность» может быть конкретизирован в части определения природы опасности или вида ожидаемого ущерба (например, опасность электрического шока, опасность разрушения, травматическая опасность, токсическая опасность, опасность пожара, опасность утонуть.

    [ ГОСТ Р 51898, ст. 3.5].

    Источник: Р 50.1.068-2009: Менеджмент риска. Рекомендации по внедрению. Часть 1. Определение области применения

    3.6 опасность (hazard): Объект, ситуация или действие, которые способны нанести вред человеку в виде травмы или ухудшения состояния здоровья (см. 3.8), или их сочетания.

    Источник: ГОСТ Р 54934-2012: Системы менеджмента безопасности труда и охраны здоровья. Требования оригинал документа

    3.6 опасность (hazard): Источник, ситуация или действие, которые способны нанести вред человеку в виде травмы или ухудшения здоровья (см. 3.8), или их сочетания.

    Источник: ГОСТ Р 54337-2011: Системы менеджмента охраны труда в организациях, выпускающих нанопродукцию. Требования оригинал документа

    3.1.6. опасность (hazard):

    Возможная причина травмы или нанесения вреда здоровью (ИСО/ТО 12100-1, 3.5, MOD) [10].

    Источник: ГОСТ Р МЭК 60519-1-2005: Безопасность электротермического оборудования. Часть 1. Общие требования оригинал документа

    3.4.5 опасность (hazard): Источник потенциального вреда или ситуация, при которой возможен ущерб.

    Источник: ГОСТ Р 54147-2010: Стратегический и инновационный менеджмент. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > опасность

  • 108 трехфазный источник бесперебойного питания (ИБП)

    1. three-phase UPS

     

    трехфазный ИБП
    -
    [Интент]


    Глава 7. Трехфазные ИБП

    ... ИБП большой мощности (начиная примерно с 10 кВА) как правило предназначены для подключения к трехфазной электрической сети. Диапазон мощностей 8-25 кВА – переходный. Для такой мощности делают чисто однофазные ИБП, чисто трехфазные ИБП и ИБП с трехфазным входом и однофазным выходом. Все ИБП, начиная примерно с 30 кВА имеют трехфазный вход и трехфазный выход. Трехфазные ИБП имеют и другое преимущество перед однофазными ИБП. Они эффективно разгружают нейтральный провод от гармоник тока и способствуют более безопасной и надежной работе больших компьютерных систем. Эти вопросы рассмотрены в разделе "Особенности трехфазных источников бесперебойного питания" главы 8. Трехфазные ИБП строятся обычно по схеме с двойным преобразованием энергии. Поэтому в этой главе мы будем рассматривать только эту схему, несмотря на то, что имеются трехфазные ИБП, построенные по схеме, похожей на ИБП, взаимодействующий с сетью.

    Схема трехфазного ИБП с двойным преобразованием энергии приведена на рисунке 18.

    4929
    Рис.18. Трехфазный ИБП с двойным преобразованием энергии

    Как видно, этот ИБП не имеет почти никаких отличий на уровне блок-схемы, за исключением наличия трех фаз. Для того, чтобы увидеть отличия от однофазного ИБП с двойным преобразованием, нам придется (почти впервые в этой книге) несколько подробнее рассмотреть элементы ИБП. Мы будем проводить это рассмотрение, ориентируясь на традиционную технологию. В некоторых случаях будут отмечаться схемные особенности, позволяющие улучшить характеристики.

    Выпрямитель

    Слева на рис 18. – входная электрическая сеть. Она включает пять проводов: три фазных, нейтраль и землю. Между сетью и ИБП – предохранители (плавкие или автоматические). Они позволяют защитить сеть от аварии ИБП. Выпрямитель в этой схеме – регулируемый тиристорный. Управляющая им схема изменяет время (долю периода синусоиды), в течение которого тиристоры открыты, т.е. выпрямляют сетевое напряжение. Чем большая мощность нужна для работы ИБП, тем дольше открыты тиристоры. Если батарея ИБП заряжена, на выходе выпрямителя поддерживается стабилизированное напряжение постоянного тока, независимо от нвеличины напряжения в сети и мощности нагрузки. Если батарея требует зарядки, то выпрямитель регулирует напряжение так, чтобы в батарею тек ток заданной величины.

    Такой выпрямитель называется шести-импульсным, потому, что за полный цикл трехфазной электрической сети он выпрямляет 6 полупериодов сингусоиды (по два в каждой из фаз). Поэтому в цепи постоянного тока возникает 6 импульсов тока (и напряжения) за каждый цикл трехфазной сети. Кроме того, во входной электрической сети также возникают 6 импульсов тока, которые могут вызвать гармонические искажения сетевого напряжения. Конденсатор в цепи постоянного тока служит для уменьшения пульсаций напряжения на аккумуляторах. Это нужно для полной зарядки батареи без протекания через аккумуляторы вредных импульсных токов. Иногда к конденсатору добавляется еще и дроссель, образующий совместно с конденсатором L-C фильтр.

    Коммутационный дроссель ДР уменьшает импульсные токи, возникающие при открытии тиристоров и служит для уменьшения искажений, вносимых выпрямителем в электрическую сеть. Для еще большего снижения искажений, вносимых в сеть, особенно для ИБП большой мощности (более 80-150 кВА) часто применяют 12-импульсные выпрямители. Т.е. за каждый цикл трехфазной сети на входе и выходе выпрямителя возникают 12 импульсов тока. За счет удвоения числа импульсов тока, удается примерно вдвое уменьшить их амплитуду. Это полезно и для аккумуляторов и для электрической сети.

    Двенадцати-импульсный выпрямитель фактически состоит из двух 6-импульсных выпрямителей. На вход второго выпрямителя (он изображен ниже на рис. 18) подается трехфазное напряжение, прошедшее через трансформатор, сдвигающий фазу на 30 градусов.

    В настоящее время применяются также и другие схемы выпрямителей трехфазных ИБП. Например схема с пассивным (диодным) выпрямителем и преобразователем напряжения постоянного тока, применение которого позволяет приблизить потребляемый ток к синусоидальному.

    Наиболее современным считается транзисторный выпрямитель, регулируемый высокочастотной схемой широтно-импульсной модуляции (ШИМ). Применение такого выпрямителя позволяет сделать ток потребления ИБП синусоидальным и совершенно отказаться от 12-импульсных выпрямителей с трансформатором.

    Батарея

    Для формирования батареи трехфазных ИБП (как и в однофазных ИБП) применяются герметичные свинцовые аккумуляторы. Обычно это самые распространенные модели аккумуляторов с расчетным сроком службы 5 лет. Иногда используются и более дорогие аккумуляторы с большими сроками службы. В некоторых трехфазных ИБП пользователю предлагается фиксированный набор батарей или батарейных шкафов, рассчитанных на различное время работы на автономном режиме. Покупая ИБП других фирм, пользователь может более или менее свободно выбирать батарею своего ИБП (включая ее емкость, тип и количество элементов). В некоторых случаях батарея устанавливается в корпус ИБП, но в большинстве случаев, особенно при большой мощности ИБП, она устанавливается в отдельном корпусе, а иногда и в отдельном помещении.

    Инвертор

    Как и в ИБП малой мощности, в трехфазных ИБП применяются транзисторные инверторы, управляемые схемой широтно-импульсной модуляции (ШИМ). Некоторые ИБП с трехфазным выходом имеют два инвертора. Их выходы подключены к трансформаторам, сдвигающим фазу выходных напряжений. Даже в случае применения относительно низкочастоной ШИМ, такая схема совместно с применением фильтра переменного тока, построенного на трансформаторе и конденсаторах, позволяет обеспечить очень малый коэффициент гармонических искажений на выходе ИБП (до 3% на линейной нагрузке). Применение двух инверторов увеличивает надежность ИБП, поскольку даже при выходе из строя силовых транзисторов одного из инверторов, другой инвертор обеспечит работу нагрузки, пусть даже при большем коэффициенте гармонических искажений.

    В последнее время, по мере развития технологии силовых полупроводников, начали применяться более высокочастотные транзисторы. Частота ШИМ может составлять 4 и более кГц. Это позволяет уменьшить гармонические искажения выходного напряжения и отказаться от применения второго инвертора. В хороших ИБП существуют несколько уровней защиты инвертора от перегрузки. При небольших перегрузках инвертор может уменьшать выходное напряжение (пытаясь снизить ток, проходящий через силовые полупроводники). Если перегрузка очень велика (например нагрузка составляет более 125% номинальной), ИБП начинает отсчет времени работы в условиях перегрузки и через некоторое время (зависящее от степени перегрузки – от долей секунды до минут) переключается на работу через статический байпас. В случае большой перегрузки или короткого замыкания, переключение на статический байпас происходит сразу.

    Некоторые современные высококлассные ИБП (с высокочакстотной ШИМ) имеют две цепи регулирования выходного напряжения. Первая из них осуществляет регулирование среднеквадратичного (действующего) значения напряжения, независимо для каждой из фаз. Вторая цепь измеряет мгновенные значения выходного напряжения и сравнивает их с хранящейся в памяти блока управления ИБП идеальной синусоидой. Если мгновенное значение напряжения отклонилось от соотвествующего "идеального" значения, то вырабатывается корректирующий импульс и форма синусоиды выходного напряжения исправляется. Наличие второй цепи обратной связи позволяет обеспечить малые искажения формы выходного напряжения даже при нелинейных нагрузках.

    Статический байпас

    Блок статического байпаса состоит из двух трехфазных (при трехфазном выходе) тиристорных переключателей: статического выключателя инвертора (на схеме – СВИ) и статического выключателя байпаса (СВБ). При нормальной работе ИБП (от сети или от батареи) статический выключатель инвертора замкнут, а статический выключатель байпаса разомкнут. Во время значительных перегрузок или выхода из строя инвертора замкнут статический переключатель байпаса, переключатель инвертора разомкнут. В момент переключения оба статических переключателя на очень короткое время замкнуты. Это позволяет обеспечить безразрывное питание нагрузки.

    Каждая модель ИБП имеет свою логику управления и, соответственно, свой набор условий срабатывания статических переключателей. При покупке ИБП бывает полезно узнать эту логику и понять, насколько она соответствует вашей технологии работы. В частности хорошие ИБП сконструированы так, чтобы даже если байпас недоступен (т.е. отсутствует синхронизация инвертора и байпаса – см. главу 6) в любом случае постараться обеспечить электроснабжение нагрузки, пусть даже за счет уменьшения напряжения на выходе инвертора.

    Статический байпас ИБП с трехфазным входом и однофазным выходом имеет особенность. Нагрузка, распределенная на входе ИБП по трем фазным проводам, на выходе имеет только два провода: один фазный и нейтральный. Статический байпас тоже конечно однофазный, и синхронизация напряжения инвертора производится относительно одной из фаз трехфазной сети (любой, по выбору пользователя). Вся цепь, подводящая напряжение к входу статического байпаса должна выдерживать втрое больший ток, чем входной кабель выпрямителя ИБП. В ряде случаев это может вызвать трудности с проводкой.

    Сервисный байпас

    Трехфазные ИБП имеют большую мощность и обычно устанавливаются в местах действительно критичных к электропитанию. Поэтому в случае выхода из строя какого-либо элемента ИБП или необходимости проведения регламентных работ (например замены батареи), в большинстве случае нельзя просто выключить ИБП или поставить на его место другой. Нужно в любой ситуации обеспечить электропитание нагрузки. Для этих ситуаций у всех трехфазных ИБП имеется сервисный байпас. Он представляет собой ручной переключатель (иногда как-то заблокированный, чтобы его нельзя было включить по ошибке), позволяющий переключить нагрузку на питание непосредственно от сети. У большинства ИБП для переключения на сервисный байпас существует специальная процедура (определенная последовательность действий), которая позволяет обеспечит непрерывность питания при переключениях.

    Режимы работы трехфазного ИБП с двойным преобразованием

    Трехфазный ИБП может работать на четырех режимах работы.

    • При нормальной работе нагрузка питается по цепи выпрямитель-инвертор стабилизированным напряжением, отфильтрованным от импульсов и шумов за счет двойного преобразования энергии.
    • Работа от батареи. На это режим ИБП переходит в случае, если напряжение на выходе ИБП становится таким маленьким, что выпрямитель оказывается не в состоянии питать инвертор требуемым током, или выпрямитель не может питать инвертор по другой причине, например из-за поломки. Продолжительность работы ИБП от батареи зависит от емкости и заряда батареи, а также от нагрузки ИБП.
    • Когда какой-нибудь инвертор выходит из строя или испытывает перегрузку, ИБП безразрывно переходит на режим работы через статический байпас. Нагрузка питается просто от сети через вход статического байпаса, который может совпадать или не совпадать со входом выпрямителя ИБП.
    • Если требуется обслуживание ИБП, например для замены батареи, то ИБП переключают на сервисный байпас. Нагрузка питается от сети, а все цепи ИБП, кроме входного выключателя сервисного байпаса и выходных выключателей отделены от сети и от нагрузки. Режим работы на сервисном байпасе не является обязательным для небольших однофазных ИБП с двойным преобразованием. Трехфазный ИБП без сервисного байпаса немыслим.

    Надежность

    Трехфазные ИБП обычно предназначаются для непрерывной круглосуточной работы. Работа нагрузки должна обеспечиваться практически при любых сбоях питания. Поэтому к надежности трехфазных ИБП предъявляются очень высокие требования. Вот некоторые приемы, с помощью которых производители трехфазных ИБП могут увеличивать надежность своей продукции. Применение разделительных трансформаторов на входе и/или выходе ИБП увеличивает устойчивость ИБП к скачкам напряжения и нагрузки. Входной дроссель не только обеспечивает "мягкий запуск", но и защищает ИБП (и, в конечном счете, нагрузку) от очень быстрых изменений (скачков) напряжения.

    Обычно фирма выпускает целый ряд ИБП разной мощности. В двух или трех "соседних по мощности" ИБП этого ряда часто используются одни и те же полупроводники. Если это так, то менее мощный из этих двух или трех ИБП имеет запас по предельному току, и поэтому несколько более надежен. Некоторые трехфазные ИБП имеют повышенную надежность за счет резервирования каких-либо своих цепей. Так, например, могут резервироваться: схема управления (микропроцессор + платы "жесткой логики"), цепи управления силовыми полупроводниками и сами силовые полупроводники. Батарея, как часть ИБП тоже вносит свой вклад в надежность прибора. Если у ИБП имеется возможность гибкого выбора батареи, то можно выбрать более надежный вариант (батарея более известного производителя, с меньшим числом соединений).

    Преобразователи частоты

    Частота напряжения переменного тока в электрических сетях разных стран не обязательно одинакова. В большинстве стран (в том числе и в России) распространена частота 50 Гц. В некоторых странах (например в США) частота переменного напряжения равна 60 Гц. Если вы купили оборудование, рассчитанное на работу в американской электрической сети (110 В, 60 Гц), то вы должны каким-то образом приспособить к нему нашу электрическую сеть. Преобразование напряжения не является проблемой, для этого есть трансформаторы. Если оборудование оснащено импульсным блоком питания, то оно не чувствительно к частоте и его можно использовать в сети с частотой 50 Гц. Если же в состав оборудования входят синхронные электродвигатели или иное чувствительное к частоте оборудование, вам нужен преобразователь частоты. ИБП с двойным преобразованием энергии представляет собой почти готовый преобразователь частоты.

    В самом деле, ведь выпрямитель этого ИБП может в принципе работать на одной частоте, а инвертор выдавать на своем выходе другую. Есть только одно принципиальное ограничение: невозможность синхронизации инвертора с линией статического байпаса из-за разных частот на входе и выходе. Это делает преобразователь частоты несколько менее надежным, чем сам по себе ИБП с двойным преобразованием. Другая особенность: преобразователь частоты должен иметь мощность, соответствующую максимальному возможному току нагрузки, включая все стартовые и аварийные забросы, ведь у преобразователя частоты нет статического байпаса, на который система могла бы переключиться при перегрузке.

    Для изготовления преобразователя частоты из трехфазного ИБП нужно разорвать цепь синхронизации, убрать статический байпас (или, вернее, не заказывать его при поставке) и настроить инвертор ИБП на работу на частоте 60 Гц. Для большинства трехфазных ИБП это не представляет проблемы, и преобразователь частоты может быть заказан просто при поставке.

    ИБП с горячим резервированием

    В некоторых случаях надежности даже самых лучших ИБП недостаточно. Так бывает, когда сбои питания просто недопустимы из-за необратимых последствий или очень больших потерь. Обычно в таких случаях в технике применяют дублирование или многократное резервирование блоков, от которых зависит надежность системы. Есть такая возможность и для трехфазных источников бесперебойного питания. Даже если в конструкцию ИБП стандартно не заложено резервирование узлов, большинство трехфазных ИБП допускают резервирование на более высоком уровне. Резервируется целиком ИБП. Простейшим случаем резервирования ИБП является использование двух обычных серийных ИБП в схеме, в которой один ИБП подключен к входу байпаса другого ИБП.

    4930

    Рис. 19а. Последовательное соединение двух трехфазных ИБП

    На рисунке 19а приведена схема двух последовательно соединенным трехфазных ИБП. Для упрощения на рисунке приведена, так называемая, однолинейная схема, на которой трем проводам трехфазной системы переменного тока соответствует одна линия. Однолинейные схемы часто применяются в случаях, когда особенности трехфазной сети не накладывают отпечаток на свойства рассматриваемого прибора. Оба ИБП постоянно работают. Основной ИБП питает нагрузку, а вспомогательный ИБП работает на холостом ходу. В случае выхода из строя основного ИБП, нагрузка питается не от статического байпаса, как в обычном ИБП, а от вспомогательного ИБП. Только при выходе из строя второго ИБП, нагрузка переключается на работу от статического байпаса.

    Система из двух последовательно соединенных ИБП может работать на шести основных режимах.

    А. Нормальная работа. Выпрямители 1 и 2 питают инверторы 1 и 2 и, при необходимости заряжают батареи 1 и 2. Инвертор 1 подключен к нагрузке (статический выключатель инвертора 1 замкнут) и питает ее стабилизированным и защищенным от сбоев напряжением. Инвертор 2 работает на холостом ходу и готов "подхватить" нагрузку, если инвертор 1 выйдет из строя. Оба статических выключателя байпаса разомкнуты.

    Для обычного ИБП с двойным преобразованием на режиме работы от сети допустим (при сохранении гарантированного питания) только один сбой в системе. Этим сбоем может быть либо выход из строя элемента ИБП (например инвертора) или сбой электрической сети.

    Для двух последовательно соединенных ИБП с на этом режиме работы допустимы два сбоя в системе: выход из строя какого-либо элемента основного ИБП и сбой электрической сети. Даже при последовательном или одновременном возникновении двух сбоев питание нагрузки будет продолжаться от источника гарантированного питания.

    Б. Работа от батареи 1. Выпрямитель 1 не может питать инвертор и батарею. Чаще всего это происходит из-за отключения напряжения в электрической сети, но причиной может быть и выход из строя выпрямителя. Состояние инвертора 2 в этом случае зависит от работы выпрямителя 2. Если выпрямитель 2 работает (например он подключен к другой электрической сети или он исправен, в отличие от выпрямителя 1), то инвертор 2 также может работать, но работать на холостом ходу, т.к. он "не знает", что с первым ИБП системы что-то случилось. После исчерпания заряда батареи 1, инвертор 1 отключится и система постарается найти другой источник электроснабжения нагрузки. Им, вероятно, окажется инвертор2. Тогда система перейдет к другому режиму работы.

    Если в основном ИБП возникает еще одна неисправность, или батарея 1 полностью разряжается, то система переключается на работу от вспомогательного ИБП.

    Таким образом даже при двух сбоях: неисправности основного ИБП и сбое сети нагрузка продолжает питаться от источника гарантированного питания.

    В. Работа от инвертора 2. В этом случае инвертор 1 не работает (из-за выхода из строя или полного разряда батареи1). СВИ1 разомкнут, СВБ1 замкнут, СВИ2 замкнут и инвертор 2 питает нагрузку. Выпрямитель 2, если в сети есть напряжение, а сам выпрямитель исправен, питает инвертор и батарею.

    На этом режиме работы допустим один сбой в системе: сбой электрической сети. При возникновении второго сбоя в системе (выходе из строя какого-либо элемента вспомогательного ИБП) электропитание нагрузки не прерывается, но нагрузка питается уже не от источника гарантированного питания, а через статический байпас, т.е. попросту от сети.

    Г. Работа от батареи 2. Наиболее часто такая ситуация может возникнуть после отключения напряжения в сети и полного разряда батареи 1. Можно придумать и более экзотическую последовательность событий. Но в любом случае, инвертор 2 питает нагругку, питаясь, в свою очередь, от батареи. Инвертор 1 в этом случае отключен. Выпрямитель 1, скорее всего, тоже не работает (хотя он может работать, если он исправен и в сети есть напряжение).

    После разряда батареи 2 система переключится на работу от статического байпаса (если в сети есть нормальное напряжение) или обесточит нагрузку.

    Д. Работа через статический байпас. В случае выхода из строя обоих инверторов, статические переключатели СВИ1 и СВИ2 размыкаются, а статические переключатели СВБ1 и СВБ2 замыкаются. Нагрузка начинает питаться от электрической сети.

    Переход системы к работе через статический байпас происходит при перегрузке системы, полном разряде всех батарей или в случае выхода из строя двух инверторов.

    На этом режиме работы выпрямители, если они исправны, подзаряжают батареи. Инверторы не работают. Нагрузка питается через статический байпас.

    Переключение системы на работу через статический байпас происходит без прерывания питания нагрузки: при необходимости переключения сначала замыкается тиристорный переключатель статического байпаса, и только затем размыкается тиристорный переключатель на выходе того инвертора, от которого нагрузка питалась перед переключением.

    Е. Ручной (сервисный) байпас. Если ИБП вышел из строя, а ответственную нагрузку нельзя обесточить, то оба ИБП системы с соблюдением специальной процедуры (которая обеспечивает безразрыное переключение) переключают на ручной байпас. после этого можно производить ремонт ИБП.

    Преимуществом рассмотренной системы с последовательным соединением двух ИБП является простота. Не нужны никакие дополнительные элементы, каждый из ИБП работает в своем штатном режиме. С точки зрения надежности, эта схема совсем не плоха:- в ней нет никакой лишней, (связанной с резервированием) электроники, соответственно и меньше узлов, которые могут выйти из строя.

    Однако у такого соединения ИБП есть и недостатки. Вот некоторые из них.
     

    1. Покупая такую систему, вы покупаете второй байпас (на нашей схеме – он первый – СВБ1), который, вообще говоря, не нужен – ведь все необходимые переключения могут быть произведены и без него.
    2. Весь второй ИБП выполняет только одну функцию – резервирование. Он потребляет электроэнергию, работая на холостом ходу и вообще не делает ничего полезного (разумеется за исключением того времени, когда первый ИБП отказывается питать нагрузку). Некоторые производители предлагают "готовые" системы ИБП с горячим резервированием. Это значит, что вы покупаете систему, специально (еще на заводе) испытанную в режиме с горячим резервированием. Схема такой системы приведена на рис. 19б.

    4931

    Рис.19б. Трехфазный ИБП с горячим резервированием

    Принципиальных отличий от схемы с последовательным соединением ИБП немного.

    1. У второго ИБП отсутствует байпас.
    2. Для синхронизации между инвертором 2 и байпасом появляется специальный информационный кабель между ИБП (на рисунке не показан). Поэтому такой ИБП с горячим резервированием может работать на тех же шести режимах работы, что и система с последовательным подключением двух ИБП. Преимущество "готового" ИБП с резервированием, пожалуй только одно – он испытан на заводе-производителе в той же комплектации, в которой будет эксплуатироваться.

    Для расмотренных схем с резервированием иногда применяют одно важное упрощение системы. Ведь можно отказаться от резервирования аккумуляторной батареи, сохранив резервирование всей силовой электроники. В этом случае оба ИБП будут работать от одной батареи (оба выпрямителя будут ее заряжать, а оба инвертора питаться от нее в случае сбоя электрической сети). Применение схемы с общей бетареей позволяет сэкономить значительную сумму – стоимость батареи.

    Недостатков у схемы с общей батареей много:

    1. Не все ИБП могут работать с общей батареей.
    2. Батарея, как и другие элементы ИБП обладает конечной надежностью. Выход из строя одного аккумулятора или потеря контакта в одном соединении могут сделать всю системы ИБП с горячим резервирование бесполезной.
    3. В случае выхода из строя одного выпрямителя, общая батарея может быть выведена из строя. Этот последний недостаток, на мой взгляд, является решающим для общей рекомендации – не применять схемы с общей батареей.


    Параллельная работа нескольких ИБП

    Как вы могли заметить, в случае горячего резервирования, ИБП резервируется не целиком. Байпас остается общим для обоих ИБП. Существует другая возможность резервирования на уровне ИБП – параллельная работа нескольких ИБП. Входы и выходы нескольких ИБП подключаются к общим входным и выходным шинам. Каждый ИБП сохраняет все свои элементы (иногда кроме сервисного байпаса). Поэтому выход из строя статического байпаса для такой системы просто мелкая неприятность.

    На рисунке 20 приведена схема параллельной работы нескольких ИБП.

    4932

    Рис.20. Параллельная работа ИБП

    На рисунке приведена схема параллельной системы с раздельными сервисными байпасами. Схема система с общим байпасом вполне ясна и без чертежа. Ее особенностью является то, что для переключения системы в целом на сервисный байпас нужно управлять одним переключателем вместо нескольких. На рисунке предполагается, что между ИБП 1 и ИБП N Могут располагаться другие ИБП. Разные производителю (и для разных моделей) устанавливают свои максимальные количества параллеьно работающих ИБП. Насколько мне известно, эта величина изменяется от 2 до 8. Все ИБП параллельной системы работают на общую нагрузку. Суммарная мощность параллельной системы равна произведению мощности одного ИБП на количество ИБП в системе. Таким образом параллельная работа нескольких ИБП может применяться (и в основном применяется) не столько для увеличения надежности системы бесперебойного питания, но для увеличения ее мощности.

    Рассмотрим режимы работы параллельной системы

    Нормальная работа (работа от сети). Надежность

    Когда в сети есть напряжение, достаточное для нормальной работы, выпрямители всех ИБП преобразуют переменное напряжение сети в постоянное, заряжая батареи и питая инверторы.

    Инверторы, в свою очередь, преобразуют постоянное напряжение в переменное и питают нагрузку. Специальная управляющая электроника параллельной системы следит за равномерным распределением нагрузки между ИБП. В некоторых ИБП распределение нагрузки между ИБП производится без использования специальной параллельной электроники. Такие приборы выпускаются "готовыми к параллельной работе", и для использования их в параллельной системе достаточно установить плату синхронизации. Есть и ИБП, работающие параллельго без специальной электроники. В таком случае количество параллельно работающих ИБП – не более двух. В рассматриваемом режиме работы в системе допустимо несколько сбоев. Их количество зависит от числа ИБП в системе и действующей нагрузки.

    Пусть в системе 3 ИБП мощностью по 100 кВА, а нагрузка равна 90 кВА. При таком соотношении числа ИБП и их мощностей в системе допустимы следующие сбои.

    Сбой питания (исчезновение напряжения в сети)

    Выход из строя любого из инверторов, скажем для определенности, инвертора 1. Нагрузка распределяется между двумя другими ИБП. Если в сети есть напряжение, все выпрямители системы работают.

    Выход из строя инвертора 2. Нагрузка питается от инвертора 3, поскольку мощность, потребляемая нагрузкой меньше мощности одного ИБП. Если в сети есть напряжение, все выпрямители системы продолжают работать.

    Выход из строя инвертора 3. Система переключается на работу через статический байпас. Нагрузка питается напрямую от сети. При наличии в сети нормального напряжения, все выпрямители работают и продолжают заряжать батареи. При любом последующем сбое (поломке статического байпаса или сбое сети) питание нагрузки прекращается. Для того, чтобы параллельная система допускала большое число сбоев, система должна быть сильно недогружена и должна включать большое число ИБП. Например, если нагрузка в приведенном выше примере будет составлять 250 кВА, то система допускает только один сбой: сбой сети или поломку инвертора. В отношении количества допустимых сбоев такая система эквивалентна одиночному ИБП. Это, кстати, не значит, что надежность такой параллельной системы будет такая же, как у одиночного ИБП. Она будет ниже, поскольку параллельная система намного сложнее одиночного ИБП и (при почти предельной нагрузке) не имеет дополнительного резервирования, компенсирующего эту сложность.

    Вопрос надежности параллельной системы ИБП не может быть решен однозначно. Надежность зависит от большого числа параметров: количества ИБП в системе (причем увеличение количества ИБП до бесконечности снижает надежность – система становится слишком сложной и сложно управляемой – впрочем максимальное количество параллельно работающих модулей для известных мне ИБП не превышает 8), нагрузки системы (т.е. соотношения номинальной суммарной мощности системы и действующей нагрузки), примененной схемы параллельной работы (т.е. есть ли в системе специальная электроника для обеспечения распределения нагрузки по ИБП), технологии работы предприятия. Таким образом, если единственной целью является увеличение надежности системы, то следует серьезно рассмотреть возможность использование ИБП с горячим резервированием – его надежность не зависит от обстоятельств и в силу относительной простоты схемы практически всегда выше надежности параллельной системы.

    Недогруженная система из нескольких параллельно работающих ИБП, которая способна реализвать описанную выше логику управления, часто также называется параллельной системой с резервированием.

    Работа с частичной нагрузкой

    Если нагрузка параллельной системы такова, что с ней может справиться меньшее, чем есть в системе количество ИБП, то инверторы "лишних" ИБП могут быть отключены. В некоторых ИБП такая логика управления подразумевается по умолчанию, а другие модели вообще лишены возможности работы в таком режиме. Инверторы, оставшиеся включенными, питают нагрузку. Коэффициент полезного действия системы при этом несколько возрастает. Обычно в этом режиме работы предусматривается некоторая избыточность, т.е. количестов работающих инверторов больше, чем необходимо для питания нагрузки. Тем самым обеспечивается резервирование. Все выпрямители системы продолжают работать, включая выпрямители тех ИБП, инверторы которых отключены.

    Работа от батареи

    В случае исчезновения напряжения в электрической сети, параллельная система переходит на работу от батареи. Все выпрямители системы не работают, инверторы питают нагрузку, получая энергию от батареи. В этом режиме работы (естественно) отсутствует напряжение в электрической сети, которое при нормальной работе было для ИБП не только источником энергии, но и источником сигнала синхронизации выходного напряжения. Поэтому функцию синхронизации берет на себя специальная параллельная электроника или выходная цепь ИБП, специально ориентированная на поддержание выходной частоты и фазы в соответствии с частотой и фазой выходного напряжения параллельно работающего ИБП.

    Выход из строя выпрямителя

    Это режим, при котором вышли из строя один или несколько выпрямителей. ИБП, выпрямители которых вышли из строя, продолжают питать нагрузку, расходуя заряд своей батареи. Они выдает сигнал "неисправность выпрямителя". Остальные ИБП продолжают работать нормально. После того, как заряд разряжающихся батарей будет полностью исчерпан, все зависит от соотношения мощности нагрузки и суммарной мощности ИБП с исправными выпрямителями. Если нагрузка не превышает перегрузочной способности этих ИБП, то питание нагрузки продолжится (если у системы остался значительный запас мощности, то в этом режиме работы допустимо еще несколько сбоев системы). В случае, если нагрузка ИБП превышает перегрузочную способность оставшихся ИБП, то система переходит к режиму работы через статический байпас.

    Выход из строя инвертора

    Если оставшиеся в работоспособном состоянии инверторы могут питать нагрузку, то нагрузка продолжает работать, питаясь от них. Если мощности работоспособных инверторов недостаточно, система переходит в режим работы от статического байпаса. Выпрямители всех ИБП могут заряжать батареи, или ИБП с неисправными инверторами могут быть полностью отключены для выполнения ремонта.

    Работа от статического байпаса

    Если суммарной мощности всех исправных инверторов параллельной системы не достаточно для поддержания работы нагрузки, система переходит к работе через статический байпас. Статические переключатели всех инверторов разомкнуты (исправные инверторы могут продолжать работать). Если нагрузка уменьшается, например в результате отключения части оборудования, параллельная система автоматически переключается на нормальный режим работы.

    В случае одиночного ИБП с двойным преобразованием работа через статический байпас является практически последней возможностью поддержания работы нагрузки. В самом деле, ведь достаточно выхода из строя статического переключателя, и нагрузка будет обесточена. При работе параллельной системы через статический байпас допустимо некоторое количество сбоев системы. Статический байпас способен выдерживать намного больший ток, чем инвертор. Поэтому даже в случае выхода из строя одного или нескольких статических переключателей, нагрузка возможно не будет обесточена, если суммарный допустимый ток оставшихся работоспособными статических переключателей окажется достаточен для работы. Конкретное количество допустимых сбоев системы в этом режиме работы зависит от числа ИБП в системе, допустимого тока статического переключателя и величины нагрузки.

    Сервисный байпас

    Если нужно провести с параллельной системой ремонтные или регламентные работы, то система может быть отключена от нагрузки с помощью ручного переключателя сервисного байпаса. Нагрузка питается от сети, все элементы параллельной системы ИБП, кроме батарей, обесточены. Как и в случае системы с горячим резервированием, возможен вариант одного общего внешнего сервисного байпаса или нескольких сервисных байпасов, встроенных в отдельные ИБП. В последнем случае при использовании сервисного байпаса нужно иметь в виду соотношение номинального тока сервисного байпаса и действующей мощности нагрузки. Другими словами, нужно включить столько сервисных байпасов, чтобы нагрузка не превышала их суммарный номинальных ток.
    [ http://www.ask-r.ru/info/library/ups_without_secret_7.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > трехфазный источник бесперебойного питания (ИБП)

  • 109 влияющая величина

    1. interferent
    2. influencing quantity
    3. influence variable
    4. influence quantity
    5. influence factors

     

    влияющая величина
    Величина, измерение которой не предусмотрено данным средством измерений, но оказывающая влияние на результаты измерений величины, для которой предназначено средство измерений (ОСТ 45.159-2000.1 Термины и определения (Минсвязи России)).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    3.4 влияющая величина (influence variable): Переменная, влияющая на соотношение между истинными значениями исследуемой характеристики качества воздуха и соответствующими результатами измерений (например, на свободный член или угловой коэффициент градуировочной характеристики, или на степень разброса результатов измерений относительно градуировочной характеристики).

    Источник: ГОСТ Р ИСО 9169-2006: Качество воздуха. Определение характеристик методик выполнения измерений оригинал документа

    3.5.1 влияющая величина (influencing quantity): Любая воздействующая величина, способная изменить определенное функционирование УЗО.

    Источник: ГОСТ Р МЭК 60755-2012: Общие требования к защитным устройствам, управляемым дифференциальным (остаточным) током оригинал документа

    3.24 влияющая величина (influence quantity): Величина, которая не представляет собой объект измерения, но ее изменение влияет на отношение между показанием и результатом измерения. (См. стандарт [11], статья 3.1.14.)

    Примечание - Влияющая величина может быть внешней или внутренней по отношению к измерительной аппаратуре. Изменение значения одной влияющей величины в пределах ее диапазона измерения может влиять на погрешность, обусловленную воздействием другой влияющей величины. Измеряемая величина или ее параметр может непосредственно воздействовать как влияющая величина. Например, для вольтметра изменение значения измеряемого напряжения может приводить к дополнительной погрешности из-за нелинейности или изменение частоты напряжения может также вызывать дополнительную погрешность.

    Источник: ГОСТ Р 54127-1-2010: Сети электрические распределительные низковольтные напряжением до 1000 В переменного тока и 1500 В постоянного тока. Электробезопасность. Аппаратура для испытания, измерения или контроля средств защиты. Часть 1. Общие требования оригинал документа

    влияющая величина (influence quantity): Величина, которая не является измеряемой, но оказывает влияние на результат измерений.

    [Международный словарь [1]]

    (Например, температура или уровень влажности наблюдаются или записываются в момент измерений).

    Источник: ГОСТ Р 8.726-2010: Государственная система обеспечения единства измерений. Датчики весоизмерительные. Общие технические требования. Методы испытаний оригинал документа

    3.13 влияющая величина (influence quantity): Величина, которая не представляет собой объект измерения, но влияет на результат измерения.

    Примечания

    1. Влияющая величина может быть как внешним, так и внутренним фактором в отношении газоанализатора.

    2. Когда значение одной из влияющих величин изменяется в пределах своего диапазона, может возникнуть погрешность из-за другой влияющей величины.

    3. Измеряемая величина или параметры ее состояния могут быть самостоятельно действующими влияющими величинами. Например, для инфракрасного анализатора водяного пара парциальное давление водяного пара влияет на спектр поглощения так, что длинная ячейка при низком парциальном давлении воды не может моделироваться короткой ячейкой с более высоким парциальным давлением.

    Источник: ГОСТ Р МЭК 61207-1-2009: Газоанализаторы. Выражение эксплуатационных характеристик. Часть 1. Общие положения оригинал документа

    3.12 влияющая величина (influence quantity): Любая величина, которая может оказать влияние на рабочие характеристики СИ.

    Примечание - Влияющая величина обычно является внешним фактором, воздействующим на СИ.

    Источник: ГОСТ Р 51317.4.30-2008: Электрическая энергия. Совместимость технических средств электромагнитная. Методы измерений показателей качества электрической энергии оригинал документа

    3.1.34 влияющая величина (influence quantity): Величина, не являющаяся объектом измерения, но влияющая на значение измеряемой величины или показания измерительной аппаратуры [МЭК 359,4.8].

    Примечание - Влияющая величина может быть внешней или внутренней по отношению к измерительной аппаратуре. Когда значение одной влияющей величины изменяется в пределах ее диапазона измерения, это может влиять на погрешность, обусловленную воздействием другой влияющей величины. Измеряемая величина или ее параметр могут сами воздействовать как влияющая величина. Например, для вольтметра значение измеряемого напряжения может приводить к дополнительной погрешности из-за нелинейности, или частота напряжения может также вызывать дополнительную погрешность.

    Источник: ГОСТ Р МЭК 61557-1-2005: Сети электрические распределительные низковольтные напряжением до 1000 В переменного тока и 1500 В постоянного тока. Электробезопасность. Аппаратура для испытания, измерения или контроля средств защиты. Часть 1. Общие требования оригинал документа

    4.6 влияющая величина (influence factors): Величина, не являющаяся измеряемой, но оказывающая влияние на значение измеряемой величины или показания теплосчетчика.

    Источник: ГОСТ Р ЕН 1434-1-2011: Теплосчетчики. Часть 1. Общие требования

    Русско-английский словарь нормативно-технической терминологии > влияющая величина

  • 110 замыкание

    1. make
    2. locking
    3. closure
    4. closing operation
    5. closing

     

    замыкание

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    замыкание
    -
    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    Тематики

    • электросвязь, основные понятия
    • электротехника, основные понятия

    EN

    Русско-английский словарь нормативно-технической терминологии > замыкание

  • 111 канал

    1. channel
    2. - 1

     

    канал
    Элемент или группа элементов, которые независимо выполняют функцию.
    Пример
    Двухканальная (или дуальная) конфигурация - это такая конфигурация, в которой два канала независимо выполняют одну и ту же функцию.
    Примечания
    1 В число элементов канала могут входить модули ввода/вывода, логическая система, датчики и оконечные элементы.
    2 Термин допускается использовать для описания полных систем или частей системы (например, датчиков или оконечных элементов).
    [ ГОСТ Р МЭК 61508-4-2007]

    канал
    В кибернетике — устройство для передачи информации, рассматриваемое абстрактно, независимо от его физической природы (подобно тому, например, как геометрия рассматривает объемы тел, отвлекаясь от материала, из которого они изготовлены). Общей характеристикой для К. связи, для устройства в ЭВМ, называемого мультиплексным К., для К. обратной связи абстрактной кибернетической системы и т.д. является именно их способность передавать информацию. На эту способность оказывают влияние «шумы» или «помехи«. См. Возмущение (возмущающее воздействие). Идеальным К. считается такой, в котором помехи либо отсутствуют, либо они пренебрежимо малы.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    3.6 канал (channel): Совокупность взаимосвязанных компонентов внутри системы, имеющая один выход. Канал теряет свою идентичность тогда, когда сигналы на единственном выходе сочетаются с сигналами от других каналов, например, от канала контроля или канала активизации защиты.

    [Глоссарий МАГАТЭ NS-G-1.3]

    Источник: ГОСТ Р МЭК 60880-2010: Атомные электростанции. Системы контроля и управления, важные для безопасности. Программное обеспечение компьютерных систем, выполняющих функции категории А оригинал документа

    3.3.8 канал (channel): Элемент или группа элементов, которые независимо выполняют функцию.

    ПРИМЕР - Двухканальная (или дуальная) конфигурация - это такая конфигурация, в которой два канала независимо выполняют одну и туже функцию.

    Примечания

    1. В число элементов канала могут входить модули ввода/вывода, логическая система (см. 3.4.5), датчики и оконечные элементы.

    2. Термин допускается использовать для описания полных систем или частей системы (например, датчиков или оконечных элементов).

    Источник: ГОСТ Р МЭК 61508-4-2007: Функциональная безопасность систем электрических, электронных, программируемых электронных, связанных с безопасностью. Часть 4. Термины и определения оригинал документа

    3.5 канал (channel): Ряд взаимосвязанных компонентов внутри системы, которые формируют один выходной сигнал. Канал теряет свою индивидуальность, если его выходные сигналы сочетаются с сигналами от другого канала, например, канала контроля или канала безопасности.

    Источник: ГОСТ Р МЭК 61513-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Общие требования оригинал документа

    3.4 канал (channel): Совокупность взаимосвязанных элементов в системе, которая выдает один выходной сигнал. Канал теряет свою идентичность, когда сигналы одного выхода объединяются с сигналами, поступающими от других каналов (например, от контрольно-измерительного канала или канала обслуживания устройств безопасности).

    [Глоссарий безопасности МАГАТЭ, Версия 2.0,2006]

    Источник: ГОСТ Р МЭК 62385-2012: Атомные станции. Контроль и управление, важные для безопасности. Методы оценки рабочих характеристик измерительных каналов систем безопасности оригинал документа

    Канал - 1) протяженное открытое сооружение, расположенное в выемке или насыпи, предназначенное для безнапорного пропуска воды; 2) закрытое подземное протяженное сооружение высотой менее 2 м до выступающих конструкций, предназначенное для прокладки коммуникаций (кабелей, трубопроводов и т.д.).

    Источник: СТО 36554501-008-2007: Обеспечение сохранности подземных водонесущих коммуникаций при строительстве (реконструкции) подземных и заглубленных объектов

    3.1 канал (channel): Индивидуальный тракт передачи измерительной информации в средстве измерений.

    Примечание - «Канал» и «фаза» не одно и то же. Канал напряжения определяется разностью потенциалов между двумя проводниками. Понятие «фаза» относится к отдельному проводнику. В многофазных системах канал может быть между двумя фазами или между фазой и нейтралью, или между фазой и землей, или между нейтралью и землей.

    Источник: ГОСТ Р 51317.4.30-2008: Электрическая энергия. Совместимость технических средств электромагнитная. Методы измерений показателей качества электрической энергии оригинал документа

    Русско-английский словарь нормативно-технической терминологии > канал

  • 112 Производные единицы Международной системы единиц (СИ), применяемые при полевых геофизических исследованиях

    1. rad

    Производные единицы Международной системы единиц (СИ),

    Таблица Б.1

    Наименование величины

    Единица величины

    Наименование

    Обозначение

    Выражение через основные единицы СИ

    международное

    русское

    Плоский угол

    радиан

    rad

    рад

    м × м-1 = 1

    Телесный угол

    стерадиан

    sr

    cp

    м2 × м-2 = 1

    Площадь

    квадратный метр

    m2

    m2

    м2

    Объем

    кубический метр

    m3

    m3

    м3

    Скорость

    метр в секунду

    m/s

    м/с

    м × с-1

    Ускорение

    метр в секунду в квадрате

    m/s2

    м/с2

    м × с-2

    Частота

    герц

    Hz

    Гц

    с × с-1

    Сила

    ньютон

    N

    H

    м × кг × с-2

    Плотность

    килограмм на кубический метр

    kg/m3

    кг/м3

    кг × м-3

    Давление

    паскаль

    Pa

    Па

    м-1 × кг × с2

    Энергия, работа, количество теплоты

    джоуль

    J

    Дж

    м2 кг с-2

    Теплоемкость

    джоуль на кельвин

    J/K

    Дж/К

    м2 × кг × с-2 × К-1

    Мощность

    ватт

    W

    Вт

    м2 × кг × с-2

    Электрический заряд, количество электричества

    кулон

    С

    Кл

    с × А

    Электрическое напряжение, электродвижущая сила

    вольт

    V

    В

    м2 × кг × с-3 × А-1

    Электрическая емкость

    фарад

    F

    Ф

    м-2 × кг-1 × с4 × А2

    Электрическое сопротивление

    Ом

    Q

    Ом

    м2 × кг × с-3 × А-2

    Электрическая проводимость

    сименс

    S

    См

    м-2 × кг-1 × с3 × А2

    Поток магнитной индукции, магнитный поток

    вебер

    Wb

    Вб

    м2 × кг × с-2 × А-1

    Плотность магнитного потока

    тесла

    T

    Тл

    кг × с-2 × А-1

    Индуктивность, взаимная индуктивность

    генри

    H

    Гн

    м2 × кг × с-2 × А-2

    Температура Цельсия

    градус Цельсия

    °c

    °С

    К

    Источник: ГОСТ Р 8.738-2011: Государственная система обеспечения единства измерений. Полевые геофизические исследования. Единицы измеряемых величин оригинал документа

    Русско-английский словарь нормативно-технической терминологии > Производные единицы Международной системы единиц (СИ), применяемые при полевых геофизических исследованиях

  • 113 изоляция

    1. insulation
    2. containment

     

    электрическая изоляция
    изоляция

    Часть электротехнического устройства, электрически разделяющая его узлы и (или) детали.
    [ ГОСТ 21515-76]

    изоляция
    -
    [IEV number 151-15-41]

    изоляция
    -
    [IEV number 151-15-42]

    EN

    insulation (1)
    all the materials and parts used to insulate conductive elements of a device
    [IEV number 151-15-41]

    insulation (2)
    set of properties which characterize the ability of an insulation to provide its function
    NOTE – Examples of relevant properties are: resistance, breakdown voltage.
    Source: 151-15-41
    [IEV number 151-15-42]

    FR

    isolation, f
    ensemble des matériaux et parties utilisés pour isoler des éléments conducteurs d'un dispositif
    [IEV number 151-15-41]

    isolement, m
    ensemble des propriétés qui caractérisent l’aptitude d’une isolation à assurer sa fonction
    NOTE – Des exemples de propriétés pertinentes sont la résistance, la tension de claquage.
    [IEV number 151-15-42]

    Примечание - Изоляция может быть твердой, жидкой или газообразной (например, воздух), или представлять собой любую комбинацию указанных состояний.
    [ ГОСТ Р МЭК 61140-2000]

    п робой изоляции

    ГОСТ 2933-83

    п ерекрытие по поверхности изоляции

    ГОСТ 2933-83

    Испытание изоляции полным испытательным напряжением

    ГОСТ 2933-83

    Тематики

    Синонимы

    Сопутствующие термины

    EN

    DE

    FR

    2.40 изоляция (containment): Состояние, достигаемое в изолирующем устройстве (2.118) с высокой степенью разделения между процессом и оператором (2.98).

    [ИСО 14644-7:2004, статья 3.6]

    Источник: ГОСТ Р ИСО 14644-6-2010: Чистые помещения и связанные с ними контролируемые среды. Часть 6. Термины оригинал документа

    Русско-английский словарь нормативно-технической терминологии > изоляция

  • 114 бортовой источник энергии

    1. on board energy source

    3.12 бортовой источник энергии (on board energy source): Составная часть силовой установки, включающая, как минимум, накопитель (накопители) энергии, а также, возможно, в некоторых случаях преобразователь (преобразователи), трансмиссию (трансмиссии), вспомогательные устройства. Бортовой источник энергии снабжает силовой привод энергией для создания тягового усилия.

    Примеры

    1 В ТС с электрической тягой ( электромобиле) бортовой источник энергии может состоять из следующих компонентов:

    - накопитель: электрохимическая аккумуляторная батарея;

    - система передачи энергии: бортовая силовая электрическая сеть;

    - вспомогательное оборудование: система регулирования температурного режима батареи, бортовое устройство зарядки батареи, система электрической защиты.

    2 В гибридном ТС с силовой установкой последовательного типа необратимый источник энергии может состоять из следующих компонентов:

    - накопитель: бензобак;

    - система передачи энергии: двигатель- генераторная установка ( ДГУ), включающая двигатель внутреннего сгорания, генератор и электрический преобразователь;

    - вспомогательное оборудование: электронные контроллеры и система охлаждения.

    Источник: ГОСТ Р ЕН 1986-2-2011: Автомобили с электрической тягой. Измерение энергетических характеристик. Часть 2. Гибридные транспортные средства

    Русско-английский словарь нормативно-технической терминологии > бортовой источник энергии

  • 115 заземлитель

    1. rod
    2. grounding rod
    3. ground lead
    4. earth electrode, ground electrode (USA)
    5. -

     

    заземлитель
    Проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду.
    [ПУЭ]

    заземлитель
    Устройство в виде металлической трубы, стержня пластины или полосы, заглубленной в грунт для электрического соединения с землёй
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    заземлитель
    Устройство, состоящее из одного или нескольких электродов, погруженных в грунт и имеющее низкое переходное сопротивление для токов, стекающих в землю.
    [ОСТ 45.121-97]

    заземлитель
    Металлический проводник или группа проводников любой формы, находящихся в непосредственном соприкосновении с землей и предназначенных для создания с ней электрического контакта определенного сопротивления.
    [ ГОСТ Р 50889-96]

    0637

    Рис. ABB
    Система ТТ

    1 - заземляемая точка;
    2 - заземляющий проводник (earthing conductor);
    3 - заземлитель (заземляющий электрод);
    4 - открытая проводящая часть (exposed-conductive-part);
    5 - заземляющее устройство (earthing arrangement) электроустановки;
    6 - заземляющее устройство нейтрали;
    7 - источник питания;
    8 - однофазная нагрузка;
    RA - сопротивление заземляющего устройства электроустановки;
    RB - сопротивление заземляющего устройства нейтрали;

    Тематики

    EN

    DE

    FR

    47 заземлитель

    Проводник [электрод] или совокупность электрически соединенных между собой проводников, находящихся в надежном соприкосновении с землей или ее эквивалентом

    604-04-03

    de Erder

    en earth electrode, ground electrode (USA)

    fr electrode de terre, prise de terre

    Источник: ГОСТ 24291-90: Электрическая часть электростанции и электрической сети. Термины и определения оригинал документа

    3.12 Заземлитель - проводник (электрод) или совокупность электрически соединенных между собой проводников, находящихся в контакте с землей или ее эквивалентом, например, с неизолированным от земли водоемом.

    Источник: ГОСТ Р 50571.1-93: Электроустановки зданий. Основные положения оригинал документа

    3.12 Заземлитель - проводник (электрод) или совокупность электрически соединенных между собой проводников, находящихся в контакте с землей или ее эквивалентом, например с не изолированным от земли водоемом.

    Источник: ГОСТ 30331.1-95: Электроустановки зданий. Основные положения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > заземлитель

  • 116 НКУ с устройствами ограничения воздействия внутренней дуги

    1. assembly equipped with devices limiting internal arc effects

     

    НКУ с устройствами ограничения воздействия внутренней дуги
    -
    [Интент]

    Параллельные тексты EN-RU

    Assemblies equipped with devices limiting internal arc effects (active protection)

    A design philosophy which is completely different from that just considered consists in guaranteeing the resistance to internal arcing by installing devices limiting the arc.

    The approaches in that direction can be of two different types:
    • limiting the destructive effects of the arc, once it has occured, by means of arc detectors
    • limiting the destructive effects of the arc, once it has occured, by means of overpressure detectors.

    The first possibility consists in installing in the assembly arc detectors which sense the light flux associated with the electric arc phenomenon.

    Once the arc has been detected, these devices send an opening signal to the incoming circuit-breaker, thus guaranteeing tripping times of the order of 1-2 ms, therefore shorter than those proper of the circuit-breaker.

    The operating logic of an arc detector is the following: the occurrence of an arc inside the switchboard is detected by the arc detector because an intense light radiation is associated with this phenomenon.

    The arcing control system detects the event and sends a tripping signal to the circuit-breaker.

    All the above with trip times of a few milliseconds and supplanting the tripping of the CB overcurrent relay which, for example, could be delayed due to current selectivity questions.

    Figure 1 shows the possible positions where this device can be installed inside a switchboard.

    The ideal solution is that which provides the installation of at least one detector for each column, with the consequent reduction to a minimum of the length of the optical fibers carrying the signal.

    In order to prevent from an unwanted tripping caused by light sources indepent of the arc (lamps, solar radiation etc.), an additional current sensor is often positioned at the incoming of the main circuit-breaker.

    Only in the event of an arc, both the incoming sensor which detects an “anomalous” current due to the arc fault as well as the sensor detecting the light radiation as sociated with the arc enable the system to intervene and allow the consequent opening of the circuit-breaker.

    The second possibility consists in installing overpressure sensors inside the switchboard.

    As previously described, the overpressure wave is one of the other effects occurring inside an assembly in case of arcing.

    As a consequence it is possible to install some pressure sensors which are able to signal the pressure peak associated with the arc ignition with a delay of about 10-15 ms.

    The signal operates on the supply circuit-breaker without waiting for the trip times of the selectivity protections to elapse, which are necessarily longer.

    Such a system does not need any electronic processing device, since it acts directly on the tripping coil of the supply circuit-breaker.

    Obviously it is essential that the device is set at fixed trip thresholds.

    When an established internal overpressure is reached, the arc detector intervenes.

    However, it is not easy to define in advance the value of overpressure generated by an arc fault inside a switchboard.

    [ABB]

    НКУ с устройствами ограничения воздействия внутренней дуги (активная защита)

    Для решения этой задачи используются совершенно другие, отличающиеся от ранее рассмотренных, принципы, заключающиеся в том, что противодействие внутренней дуге обеспечивается применением устройств, ограничивающих саму дугу.

    Существует два типа решения проблемы в этом направлении:
    • ограничение разрушающего воздействия дуги после того, как ее обнаружат специальные устройства
    • ограничение разрушающего воздействия дуги после того, как специальные устройства обнаружат возникновение избыточного давления.

    В первом случае в НКУ устанавливают устройства обнаружения дуги, реагирующие на световой поток, сопровождающий явление электрической дуги.

    При обнаружении дуги данные устройства посылают сигнал управления на размыкание вводного автоматического выключателя. Гарантируемое время реакции составляет 1-2 мс, что меньше времени срабатывания автоматического выключателя.

    Логика работы устройства обнаружения дуги следующая: Дуга, возникшая внутри НКУ, обнаруживается датчиком, реагирующим на интенсивное световое излучение, которым сопровождается горение дуги.

    Обнаружив дугу, система управления посылает сигнал автоматическому выключателю.

    Время срабатывания датчика и системы управления составляет несколько миллисекунд, что меньше времени срабатывания автоматического выключателя, осуществляющего защиту от сверхтока, который обычно для обеспечения требуемой селективности срабатывает с задержкой.

    На рис. 1 показаны места возможной установки устройства защиты внутри НКУ.

    Идеальным решением является установка, по крайней мере, одного устройства защиты в каждый шкаф многошкафного НКУ.

    Это позволит до минимума сократить длину оптоволоконных кабелей передачи сигнала.

    Для предотвращения ложного срабатывания от других источников света (т. е. не от дуги), например, таких как лампы, солнечное излучение и т. п., дополнительно в главной цепи вводного автоматического выключателя устанавливают датчик тока.

    Только при наличии двух событий, а именно: срабатывания датчика света и обнаружения аномального увеличения тока, система управления считает, что возникла электрическая дуга и подает команду на отключение вводного автоматического выключателя.

    Второе решение заключается в установке внутри НКУ датчика избыточного давления.

    Как было описано ранее, одним из характерных проявлений электрической дуги, возникшей внутри НКУ, является ударная волна.

    Это означает, что можно установить несколько датчиков давления, задачей которых является обнаружение импульса давления (с задержкой 10…15 мс), обусловленного зажиганием дуги.

    Сигнал от датчиков давления поступает на вводной автоматический выключатель, который срабатывает без задержки на обеспечение селективности.

    Такая система не нуждается в электронном устройстве обработки информации, поскольку воздействует непосредственно на независимый расцепитель автоматического выключателя.

    Вполне понятно, что такое устройство имеет фиксированный порог срабатывания.

    Датчик-реле дуги сработает, как только будет достигнуто заданное значение избыточного давления.

    Следует иметь в виду, что не так легко заранее определить значение избыточного давления, которое будет создано при зажигании дуги внутри НКУ.

    [Перевод Интент]

    Тематики

    • НКУ (шкафы, пульты,...)

    EN

    Русско-английский словарь нормативно-технической терминологии > НКУ с устройствами ограничения воздействия внутренней дуги

  • 117 основная частота

    1. principal frequency
    2. fundamental frequency
    3. first harmonic

     

    основная частота
    первая гармоника

    Низшая собственная частота колебательной системы.
    Единица измерения
    Гц
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    основная частота

    Частота в спектре, полученном путем преобразования Фурье функции времени, относительно которой рассматриваются все частоты спектра.
    В случае возможного риска неопределенности при определении основной частоты данная частота должна быть определена с учетом числа полюсов и скорости вращения синхронного генератора (генераторов), питающего систему электроснабжения.
    [ ГОСТ Р 51317.4.30-2008 (МЭК 61000-4-30:2008)]

    EN

    fundamental frequency
    frequency in the spectrum obtained from a Fourier transform of a time function, to which all the frequencies of the spectrum are referred
    NOTE In case of any remaining risk of ambiguity, the fundamental frequency may be derived from the number of poles and speed of rotation of the synchronous generator(s) feeding the system
    [IEC 61000-4-30, ed. 2.0 (2008-10)]

    FR

    fréquence fondamentale
    fréquence du spectre obtenue à partir d’une transformée de Fourier d’une fonction temporelle, servant de référence à toutes les autres fréquences du spectre
    NOTE S’il subsiste un risque d’ambiguïté, la fréquence fondamentale peut être déterminée à partir du nombre de pôles et de la vitesse de rotation du ou des générateurs synchrones alimentant le réseau.
    [IEC 61000-4-30, ed. 2.0 (2008-10)]

    Тематики

    Синонимы

    EN

    FR

    3.7 основная частота (principal frequency): Заданная частота калибратора, установленная в руководстве по эксплуатации как базовая.

    Примечание - Основную частоту обязательно используют для подтверждения соответствия акустического калибратора требованиям настоящего стандарта.

    Источник: ГОСТ Р МЭК 60942-2009: Калибраторы акустические. Технические требования и требования к испытаниям оригинал документа

    3.9 основная частота (fundamental frequency): Частота в спектре, полученном путем преобразования Фурье функции времени, относительно которой рассматриваются все частоты спектра.

    В случае возможного риска неопределенности при определении основной частоты данная частота должна быть определена с учетом числа полюсов и скорости вращения синхронного генератора (генераторов), питающего систему электроснабжения.

    Источник: ГОСТ Р 51317.4.30-2008: Электрическая энергия. Совместимость технических средств электромагнитная. Методы измерений показателей качества электрической энергии оригинал документа

    Русско-английский словарь нормативно-технической терминологии > основная частота

  • 118 плавкий предохранитель

    1. thermal fuse
    2. SF
    3. safety plug
    4. safety fuse
    5. safety cutoff
    6. protective fuse
    7. plug fuse
    8. fusible switch
    9. fusible plug
    10. fusible cutout
    11. fuse switch
    12. fuse
    13. fu
    14. electric fuse
    15. cutoff

     

    плавкий предохранитель
    Коммутационный аппарат, который посредством плавления одного или нескольких своих специально спроектированных и калиброванных элементов размыкает цепь, в которую он включен, и отключает ток, когда он превышает заданную величину в течение достаточного времени. Плавкий предохранитель содержит все части, образующие укомплектованный аппарат.
    МЭК 60050(441-18-01).
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    плавкий предохранитель
    Аппарат, который вследствие расплавления одного или нескольких специально спроектированных и рассчитанных элементов размыкает цепь, в которую он включен, отключая ток, превышающий заданное значение в течение достаточно продолжительного времени. В состав плавкого предохранителя входят все части, образующие аппарат в комплекте
    [ ГОСТ Р 50339. 0-2003 ( МЭК 60269-1-98)]

    предохранитель
    Коммутационный электрический аппарат, предназначенный для отключения защищаемой цепи посредством разрушения специально предусмотренных для этого токоведущих частей под действием тока, превышающего определенную величину.
    [ ГОСТ 17703-72]

    предохранитель
    Устройство для разрыва электрических цепей при силе тока, превышающей допустимое значение
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    EN

    fuse
    a device that by the fusing of one or more of its specially designed and proportioned components, opens the circuit in which it is inserted by breaking the current when this exceeds a given value for a sufficient time. The fuse comprises all the parts that form the complete device
    [IEV number 441-18-01 ]

    FR

    fusible
    coupe-circuit à fusibles

    appareil dont la fonction est d'ouvrir par la fusion d'un ou de plusieurs de ses éléments conçus et calibrés à cet effet le circuit dans lequel il est inséré en coupant le courant lorsque celui-ci dépasse pendant un temps suffisant une valeur donnée. Le fusible comprend toutes les parties qui constituent l'appareil complet
    [IEV number 441-18-01 ]

    Настоящий стандарт распространяется на плавкие предохранители на номинальный ток от 2 до 2500 А, номинальное напряжение переменного тока до 1000 В и постоянного тока до 1200 В, устанавливаемые в комплектные устройства и предназначенные для защиты при перегрузках и коротких замыканиях силовых и вспомогательных цепей электроустановок промышленных предприятий, общественных и жилых зданий, изготовляемые для нужд народного хозяйства и экспорта и номинальное напряжение до 3000 В для защиты полупроводниковых устройств.

    3.2.14. Предохранители должны быть сконструированы таким образом, чтобы отключать электрическую цепь при токах отключения в пределах: от условного тока плавления — для предохранителей с плавкими вставками типов g и gR или от наименьшего тока отключения, установленного в стандартах или технических условиях на предохранители конкретных серий и типов, для предохранителей с плавкими вставками типов а и aR — до наибольшего тока отключения
    [ ГОСТ 17242-86]

    ... токи, при которых проводят испытания, предназначенные для проверки способности данного плавкого предохранителя срабатывать удовлетворительно в диапазоне малых сверхтоков.
    [ ГОСТ Р 50339.0-2003]

    ... Если неисправность заканчивается срабатыванием плавкого предохранителя или если плавкий предохранитель не срабатывает примерно в течение 1 с, то...
    [ ГОСТ Р 52319-2005]

    ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ И ХАРАКТЕНИСТИКИ ПРЕДОХРАНИТЕЛЕЙ
    (взято из ГОСТ 17242-86)

    • Для держателя (или основания) предохранителя:
      • номинальное напряжение;
      • номинальный ток;
      • род тока и номинальная частота для переменного тока;
      • допустимые потери мощности;
      • число полюсов, если их более одного.
    • Для плавкой вставки:
      • номинальное напряжение;
      • номинальный ток;
      • род тока и номинальная частота для переменного тока;
      • потери мощности;
      • время-токовые характеристики с указанием коэффициентов K1 и K2 для плавких вставок типа а;
      • перегрузочная способность;
      • диапазон токов отключения;
      • наибольшая отключающая способность;
      • наименьший ток отключения для плавких вставок типа а;
      • характеристика пропускаемого тока;
      • характеристики интегралов Джоуля;
      • перенапряжение и характеристика перенапряжения для плавких вставок типов aR и gR;
      • условия селективности (при необходимости);
      • электрическое сопротивление плавкой вставки в холодном состоянии (допускается указать в рабочих чертежах, утвержденных в установленном порядке).
    • Для предохранителя:
      • степень защиты по ГОСТ 14255—69;
      • номинальное напряжение, номинальный ток и коммутационная способность свободных контактов (при их наличии).

    Параллельные тексты EN-RU

    Check to make sure that fuse F1 on power supply module V is not fused.

    If the fuse is defective, it should not be replaced without determining the cause of failure.

    If a fuse is replaced without eliminating the problem, there is the danger that the damage will spread.

    [Schneider Electric]

    Убедитесь в исправности предохранителя F1 в модуле питания V.

    Если предохранитель оказался неисправным, то прежде чем заменить его необходимо установить причину возникновения неисправности.

    Замена предохранителя без выяснения причины его срабатывания может привести к повторению срабатывания.


    [Перевод Интент]

    High voltage system may embrace a fuse.
    Note that a fuse may not be manually adjusted as the circuit breaker relay does so the fuse choice for the appropriate purpose/circuit adaptation is deemed most important.

    [LS Industrial Systems]

    Высоковольтная система < электропитания> может содержать предохранители.
    Обратите внимание! Предохранитель нельзя настроить, как это можно сделать с расцепителем автоматического выключателя. Поэтому предохранитель необходимо выбрать так, чтобы он как можно точнее соотвествовал конкретным условиям защиты аппарата или участка цепи.

    [Перевод Интент]


     

    Тематики

    Классификация

    >>>

    Обобщающие термины

    Действия

    Синонимы

    EN

    DE

    FR

    3.1 плавкий предохранитель (fuse): Устройство, которое за счет расплавления одной или нескольких его деталей, имеющих определенную конструкцию и размеры, размыкает цепь, в которую оно включено, прерывая ток, если он превышает заданное значение в течение определенного времени. Предохранитель включает в себя все детали, образующие готовые изделия.

    Источник: ГОСТ Р МЭК 60127-1-2005: Миниатюрные плавкие предохранители. Часть 1. Терминология для миниатюрных плавких предохранителей и общие требования к миниатюрным плавким вставкам оригинал документа

    3.1.3 плавкий предохранитель (fuse): Коммутационный аппарат, который вследствие расплавления одного или более специально спроектированных и калиброванных элементов размыкает цепь, в которую он включен, и отключает ток, когда тот превышает заданную величину в течение достаточного времени.

    [МЭС 441-18-01]

    Источник: ГОСТ Р 50345-2010: Аппаратура малогабаритная электрическая. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения. Часть 1. Автоматические выключатели для переменного тока оригинал документа

    3.3.3 плавкий предохранитель (fuse): Коммутационный аппарат, который посредством плавления одного или нескольких своих специально спроектированных и калиброванных элементов размыкает цепь, в которую он включен, и отключает ток, когда тот превышает заданное значение в течение определенного времени. Плавкий предохранитель содержит все части, образующие укомплектованный аппарат.

    [МЭС 441-18-01] [1]

    Источник: ГОСТ Р 51327.1-2010: Выключатели автоматические, управляемые дифференциальным током, бытового и аналогичного назначения со встроенной защитой от сверхтоков. Часть 1. Общие требования и методы испытаний оригинал документа

    3.2.4 плавкий предохранитель (fuse): Коммутационный аппарат, размыкающий цепь (посредством плавления одного или нескольких своих специально спроектированных и калиброванных элементов), в которую он включен, и отключает ток, когда он превышает заданную величину в течение достаточного времени. Плавкий предохранитель содержит все части, образующие укомплектованный аппарат.

    МЭК 60050(441-18-01)]

    Источник: ГОСТ Р 51731-2010: Контакторы электромеханические бытового и аналогичного назначения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > плавкий предохранитель

  • 119 фильтр

    1. filter

     

    фильтр
    Устройство или сооружение для разделения, сгущения или осветления неоднородной системы, содержащей твёрдую или жидкую фазы, пропусканием сквозь пористую перегородку - фильтрующий слой
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    фильтр
    Однородный слой материала, обычно более высокого атомного номера, чем материал образца, располагаемый между источником излучения и пленкой в целях повышенного поглощения более мягкого излучения
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    фильтр
    Электрическая схема, пропускающая сигналы в определенной полосе частот и ослабляющая сигналы на всех других частотах
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    фильтр
    Электронный узел, пропускающий сигналы в определенной полосе частот и задерживающий остальные сигналы
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    фильтр
    (в анализе временных рядов) - математико-статистический прием, формула для «отсеивания» из временного ряда вариаций, ненужных для целей исследования. Так, Ф., который устраняет сезонные или случайные колебания, оставляя для анализа тренд (или, например, длительные экономические циклы), можно назвать низкочастотным Ф. Высокочастотный же, наоборот, выделяет во временном ряде кратковременные колебания.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    • виды (методы) и технология неразр. контроля
    • фильтрование, центрифугирование, сепарирование
    • экономика

    EN

    DE

    FR

    3.4 фильтр (filter): Аппарат для разделения или удаления загрязнителей из сжатого воздуха или потока газа.

    Источник: ГОСТ Р ИСО 12500-1-2009: Фильтры сжатого воздуха. Методы испытаний. Часть 1. Масла в виде аэрозолей оригинал документа

    3.7 фильтр (filter): Аппарат для разделения или удаления загрязнителей из сжатого воздуха или потока газа.

    Источник: ГОСТ Р ИСО 12500-2-2009: Фильтры сжатого воздуха. Методы испытаний. Часть 2. Пары масел оригинал документа

    Русско-английский словарь нормативно-технической терминологии > фильтр

  • 120 опасная зона

    1. hazardous area
    2. hazard zone
    3. dangerous zone
    4. danger zone

     

    опасная зона
    зона риска

    Пространство внутри машины или вокруг нее, в котором человек может подвергаться риску травмирования или причинения другого вреда здоровью
    [ ГОСТ Р ИСО 12100-1:2007]

    опасная зона

    Зона внутри и (или) вокруг машины, в которой человек подвергается риску травмирования или нанесения другого вреда здоровью.
    Примечание
    Опасности, которые вызывают риск в соответствии с этим определением:
    - либо постоянно действующие при предназначенном использовании машины (опасное движение ее подвижных частей, электрическая дуга при сварке и т.д.);
    - либо возникающие неожиданно (неожиданный пуск и т.д.).
    [ГОСТ ЕН 1070-2003]

    опасная зона
    Пространство, в котором возможно воздействие на работающего опасного и (или) вредного производственных факторов
    [ ГОСТ 12.0.002-80]

    опасная зона
    "Опасная зона" обозначает любую зону внутри и/или вокруг машинного оборудования, в которой находящиеся возле этого оборудования лица могут подвергнуть риску свое здоровье и безопасность.
    [Директива 98/37/ЕЭС по машинному оборудованию]

    опасная зона
    Зона внутри машины и (или) оборудования или вокруг них, в которой персонал подвергается риску получения травм или нанесения другого вреда здоровью, связанного с эксплуатацией машины и (или) оборудования.
    [Технический регламент о безопасности машин и оборудования]

    EN

    danger zone
    ‘danger zone’ means any zone within and/or around machinery in which an exposed person is subject to a risk to his health or safety;
    [DIRECTIVE 98/37/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL]

    Тематики

    Синонимы

    EN

    DE

    FR

    10 Опасная зона

    D. Gefährdungsbereich

    E. Dangerous zone

    F. Zone dangereuse

    Пространство, в котором возможно воздействие на работающего опасного и (или) вредного производственных факторов

    Источник: ГОСТ 12.0.002-80: Система стандартов безопасности труда. Термины и определения оригинал документа

    3.34 опасная зона (hazardous area): Зона, в которой присутствует или может присутствовать взрывоопасная газовая среда в количествах, требующих принятия специальных мер предосторожности и применения специального оборудования [35].

    Источник: ГОСТ Р 54110-2010: Водородные генераторы на основе технологий переработки топлива. Часть 1. Безопасность оригинал документа

    3.4.6 опасная зона (hazard zone): Любая зона внутри или около оборудования, в которой физическое лицо подвергается риску поражения или нанесения вреда здоровью.

    Источник: ГОСТ Р 54147-2010: Стратегический и инновационный менеджмент. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > опасная зона

См. также в других словарях:

  • электрическая система — 3.1.8 электрическая система (electrical system): Система, включающая в себя элементы, работающие от низковольтных источников напряжения. Источник: ГОСТ Р МЭК 62305 2 2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска ор …   Словарь-справочник терминов нормативно-технической документации

  • электрическая система зажигания — электрическая система Часть электрооборудования двигателя, обеспечивающая преобразование и передачу энергии источника питания к горючей смеси для ее воспламенения. [ГОСТ 22606 77] Тематики системы зажигания авиационных двигателей Синонимы… …   Справочник технического переводчика

  • электрическая система рекуперативного торможения категории А — Электрическая система рекуперативного торможения, не являющаяся частью системы рабочего тормоза. [ГОСТ Р 41.13 Н 99] Тематики автотранспортная техника …   Справочник технического переводчика

  • электрическая система рекуперативного торможения — Система торможения, допускающая использование приводного электродвигателя (электродвигателей) транспортного средства для преобразования кинетической энергии транспортного средства в электроэнергию в процессе замедления. [ГОСТ Р 41.13 Н 99]… …   Справочник технического переводчика

  • Электрическая система зажигания — в ГТД составная часть электрооборудования ГТД, предназначенная для воспламенения топливно воздушной смеси в его основной и форсажной камерах сгорания. По функциональному назначению Э. с. з. являются пусковыми, поскольку с их помощью… …   Энциклопедия техники

  • Электрическая система запуска — По ГОСТ 20846 82 Источник …   Словарь-справочник терминов нормативно-технической документации

  • электрическая система — электрическая программируемая электронная система Система для управления, защиты или мониторинга, основанная на использовании одного или нескольких электрических (Е) устройств, включая все элементы системы, такие как источники питания, датчики и… …   Справочник технического переводчика

  • электрическая система — Электрическая часть энергетической системы …   Политехнический терминологический толковый словарь

  • электрическая система рекуперативного торможения — 2.20.1 электрическая система рекуперативного торможения: Система торможения, допускающая использование приводного (приводных) двигателя (двигателей) транспортного средства для преобразования кинетической энергии транспортного средства в… …   Словарь-справочник терминов нормативно-технической документации

  • электрическая система рекуперативного торможения категории А — 2.20.3 электрическая система рекуперативного торможения категории А: Электрическая система рекуперативного торможения, не являющаяся частью системы рабочего тормоза. Источник …   Словарь-справочник терминов нормативно-технической документации

  • электрическая система управления, связанная с обеспечением безопасности — 3.2.19 электрическая система управления, связанная с обеспечением безопасности; SRECS (safety related electrical control system, SRECS): Электрическая часть системы управления, обеспечивающая безопасную работу станка, сбои в которой могут… …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»