Перевод: со всех языков на английский

с английского на все языки

тем+больше

  • 61 более чем

    1. any more than

    это скорее хороший, чем плохойit is rather good than bad

    иначе, чем это установлено вышеother than as stated above

    2. more than

    легче сказать, чем сделатьeasier said than done

    чем больше, тем веселее;the more the merrier

    чем больше, тем веселееthe more the merrier

    чем больше …, тем больше — the more … the more

    3. more then

    не позже чем через час, в течение часаwithin the hour

    чем меньше слов, тем лучшеthe less said the better

    что случилось; в чем делоwhat's the matter

    Русско-английский большой базовый словарь > более чем

  • 62 больш&

    Авиация и космонавтика. Русско-английский словарь > больш&

  • 63 значительно быстрее чем

    чем больше, тем лучшеthe more the better

    чем раньше, тем лучшеthe sooner the better

    что случилось; в чем делоwhat's the matter

    чем больше …, тем больше — the more … the more

    чем больше, тем веселееthe more the merrier

    Русско-английский большой базовый словарь > значительно быстрее чем

  • 64 меньше чем

    что случилось; в чем делоwhat's the matter

    чем больше …, тем больше — the more … the more

    чем больше, тем веселееthe more the merrier

    чем больше, тем веселее;the more the merrier

    Русско-английский большой базовый словарь > меньше чем

  • 65 независимо как или чем

    чем больше, тем лучшеthe more the better

    чем больше …, тем больше — the more … the more

    чем больше, тем веселееthe more the merrier

    Русско-английский большой базовый словарь > независимо как или чем

  • 66 конденсатор (электрический)

    1. capacitor

     

    конденсатор
    Элемент электрической цепи, предназначенный для использования его электрической емкости.
    [ ГОСТ Р 52002-2003]

    конденсатор
    По ГОСТ 19880-74
    [ ГОСТ 21415-75]


    конденсатор
    емкость1)
    -
    [IEV number 151-13-28]

    EN

    capacitor
    two-terminal device characterized essentially by its capacitance
    [IEV number 151-13-28]

    FR

    condensateur, m
    bipôle caractérisé essentiellement par la grandeur capacité
    [IEV number 151-13-28]

    1) Нельзя применять термин емкость для обозначения компонента. Конденсатор, это компонент. Емкость, это параметр конденсатора. Точно также нельзя применять термин сопротивление вместо термина резистор.
    [Интент]


    Конденсатор — это устройство, которое состоит из двух проводников, разделенных диэлектриком. Конденсатор, если к нему приложено напряжение, способен накапливать электрический заряд (заряжаться) и отдавать его (разряжаться). В пространстве между проводниками, которые могут иметь любую форму, при заряде конденсатора образуется электрическое поле. Заряд конденсатора тем больше, чем больше его емкость и приложенное к его проводникам напряжение. Емкость конденсатора, в свою очередь, тем больше, чем больше внутренняя поверхность проводников, образующих конденсатор, и чем меньше расстояние между этими проводниками.

    Пространство между проводниками заполнено диэлектриком, т.е. материалом, обладающим высокими изоляционными свойствами или, можно сказать, очень низкой электропроводностью. К таким материалам относятся, например, воздух, конденсаторная бумага, керамика, синтетическая пленка. Диэлектрик, применяемый в конденсаторах, должен обладать высокой электрической прочностью, т.е. сохранять свои изолирующие свойства при высоком напряжении и небольшой толщине (10-15 мкм). Качество диэлектрика для конденсаторов тем выше, чем выше его диэлектрическая проницаемость, т.е. способность аккумулировать электрический заряд. Например, относительная диэлектрическая проницаемость конденсаторной бумаги, пропитанной маслом, составляет 3,5—4, а полистирольной пленки — 2,5—2,7.

    Таким образом, емкость конденсатора, измеряемая в микрофарадах (мкФ), составляет С = eS · 10-6/d, где e — диэлектрическая проницаемость, Ф/м; S — площадь поверхности обкладок (проводников) конденсатора, м2; d — расстояние между обкладками (толщина диэлектрика, разделяющего эти обкладки), м · 10-6.
    [ http://www.energocon.com/pages/id1243.html]

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > конденсатор (электрический)

  • 67 DOUBT

    Русско-английский словарь пословиц и поговорок > DOUBT

  • 68 KNOW

    • All that we know is that we know nothing - Я знаю, что я ничего не знаю (Я)
    • Christ knows - Один Бог знает (O)
    • God knows /and (but) he won't tell/ - Один Бог знает (O)
    • God only knows - Один Бог знает (O)
    • Goodness (Heaven, Hell, Lord, Who) knows - Один Бог знает (O)
    • He who knows most knows best how little he knows - Чем больше знаешь, тем больше сомневаешься (4)
    • It takes one to know one - Рыбак рыбака видит издалека (P)
    • Knowing is power - Знание - сила (3)
    • More you know, the more you know what you don't know (The) - Чем больше знаешь, тем больше сомневаешься (4)
    • One never knows what a day may bring forth - Никто не знает, что его ожидает (H)

    Русско-английский словарь пословиц и поговорок > KNOW

  • 69 WANT

    • Limit your wants by your wealth - По одежке протягивай ножки (П)
    • More one has, the more one wants (The) - Чем больше ешь, тем больше хочется (4)
    • More you have, the more you want (The) - Аппетит приходит во время еды (A)
    • Want makes us acquainted with strange bedfellows - В нужде с кем ни поведешься (B)

    Русско-английский словарь пословиц и поговорок > WANT

  • 70 горизонт планирования

    1. planning time-frame
    2. planning horizon

     

    горизонт планирования
    Количество времени, на которое план простирается в будущее. Для главного календарного плана, он обычно устанавливается таким образом, чтобы охватить минимум общую длительность цикла плюс время для учета размеров партий нижележащих компонент и изменений мощности основных рабочих центров или ключевых поставщиков. Для более долгосрочных планов горизонт планирования должен быть достаточно продолжительным, чтобы позволять любое необходимое наращивание мощности.
    [ http://www.abc.org.ru/gloss.html]

    горизонт планирования
    период планирования
    плановый горизонт

    Срок, на который составляется план или программа. Для планов (программ) различного назначения Г.п. принимаются разными, само определение оптимального Г.п. может быть предметом специальной научной задачи. Например, при централизованном планировании экономики крупные изменения народнохозяйственных пропорций (структурные сдвиги) возможны только в долгосрочном плане: даже пятилетка во многом предопределена тем «наследством», которое ей досталось, — заделами строительства, введенными в предыдущей пятилетке предприятиями и т.д. Горизонт долгосрочного плана должен быть достаточным, чтобы выявить сравнительную эффективность (см. Эффективность экономических решений) всех осуществимых в ближайшее будущее время мероприятий. Это даст наиболее надежные ориентиры при его составлении. В системе «Планирование, программирование, финансирование», применяемой в США, Великобритании и др. странах, часть плановых задач имеет годовой горизонт, а часть рассчитана на более долгое время реализации. Во внутрифирменном планировании чем крупнее фирма, тем большее место отводится долгосрочным задачам: смене поколений выпускаемой продукции, инвестиционным проектам, перестройке структур управления. Чем ближе горизонт плана или программы, тем больший приоритет в них получают текущие потребности и тем больше они связаны существующими условиями и ограничениями рыночной ситуации; наоборот, с увеличением периода планирования больше внимания уделяется возможностям удовлетворения перспективных потребностей экономической системы, общества, фирмы — в зависимости от объекта планирования. Экономико-математическое моделирование, как правило, исходит из трех уровней Г.п.: долгосрочного, среднесрочного и краткосрочного, для каждого из которых строятся свои, специфические (по учитываемым экономическим явлениям и математическому аппарату) модели. Однако среди ученых нет единства в понимании критериев такого подразделения; различны и конкретные временные рамки этих периодов (например, разные авторы называют среднесрочными планы на 5, 10 и даже 15 лет, а программы российского правительства, регулярно принимаемые с 1995 году как «среднесрочные», рассчитаны всего на три года.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > горизонт планирования

  • 71 информация (в кибернетике)

    1. information

     

    информация (в кибернетике)
    Основное понятие кибернетики, точно так же экономическая И. — основное понятие экономической кибернетики. Определений этого термина много, они сложны и противоречивы. Причина этого, очевидно, в том, что И. как явлением занимается много разных наук, и кибернетика лишь самая молодая из них. И. — предмет изучения таких наук, как наука об управлении, математическая статистика, генетика, теория средств массовой И. (печать, радио, телевидение), информатика (1), занимающаяся проблемами научно-технической И., и т.д. Наконец, последнее время большой интерес к проблемам И. проявляют философы: они склонны рассматривать И. как одно из основных универсальных свойств материи, связанное с понятием отражения. При всех трактовках понятия И., она предполагает существование двух объектов: источника И. и потребителя (получателя) И. Передача И. от одного к другому происходит с помощью сигналов, которые, вообще говоря, могут не иметь никакой физической связи с ее смыслом: эта связь определяется соглашением. Например, удар в вечевой колокол означал, что надо собираться на площадь, но тем, кто не знал об этом порядке, он не сообщал никакой И. В ситуации с вечевым колоколом человек, участвующий в соглашении о смысле сигнала, знает, что в данный момент могут быть две альтернативы: вечевое собрание состоится или не состоится. Или, выражаясь языком теории И., неопределенное событие «вече» имеет два исхода. Принятый сигнал приводит к уменьшению неопределенности: человек теперь знает, что событие «вече» имеет только один исход — оно состоится. Однако, если было заранее известно, что вече состоится в таком-то часу, колокол ничего нового не сообщил. Отсюда вытекает, что, чем менее вероятно (т.е. более неожиданно) сообщение, тем больше И. оно содержит, и наоборот, чем больше вероятность исхода до совершения события, тем меньше И. содержит сигнал. Примерно такие рассуждения привели в 40-х годах XX в. к возникновению статистической, или «классической«, теории И., которая определяет понятие И. через меру уменьшения неопределенности знания о свершении какого-либо события (такая мера была названа энтропией). У истоков этой науки стояли Н.Винер, К.Шеннон и советские ученые А.Н.Колмогоров, В.А.Котельников и др. Им удалось вывести математические закономерности измерения количества И., а отсюда и такие понятия, как пропускная способность канала И., емкость запоминающих И. устройств и т.п., что послужило мощным стимулом к развитию кибернетики как науки и электронно-вычислительной техники, как применения достижений кибернетики на практике. Что касается определения ценности, полезности И. для получателя, то здесь еще много нерешенного, неясного. Если исходить из потребностей экономического управления и, следовательно, экономической кибернетики, то И. можно определить как все те сведения, знания, сообщения, которые помогают решить ту или иную задачу управления (т.е. уменьшить неопределенность ее исходов). Тогда открываются и некоторые возможности для оценки И.: она тем полезнее, ценнее, чем скорее или с меньшими затратами приводит к решению задачи. Понятие И. близко понятию «данные«. Однако между ними есть различие: данные — это сигналы, из которых еще надо извлечь И. Обработка данных есть процесс приведения их к пригодному для этого виду. Процесс их передачи от источника к потребителю и восприятия в качестве И. может рассматриваться как прохождение трех фильтров: 1) физического, или статистического (чисто количественное ограничение по пропускной способности канала, независимо от содержания данных, т.е. с точки зрения синтактики); 2) семантического (отбор тех данных, которые могут быть поняты получателем, т.е. соответствуют тезаурусу его знаний); 3) прагматического (отбор среди понятых сведений тех, которые полезны для решения данной задачи). Это хорошо показано на схеме, взятой из книги Е.Г.Ясина об экономической информации (см. рис. И.8). Соответственно, выделяются три аспекта изучения проблем И. — синтаксический, семантический и прагматический. По содержанию И. подразделяется на общественно-политическую, социально-экономическую (в том числе экономическую И.), научно-техническую и т.д. Вообще же классификаций И. много, они строятся по различным основаниям. Как правило, из-за близости понятий точно так же строятся и классификации данных. Например, И. подразделяется на статическую (постоянную) и динамическую (переменную), и данные при этом — на постоянные и на переменные. Другое деление — первичная, производная, выходная И.: так же классифицируются данные. Третье деление — И. управляющая и осведомляющая. Четвертое — избыточная, полезная и ложная. Пятое — полная (сплошная) и выборочная. См. также Банк данных, Данные, Выборочная информация, Избыточная информация, Обработка данных, Прагматический аспект информации, Релевантная информация, Сбор данных, Семантический аспект информации Теория информации, Экономическая информация, Экономическая семиотика, Энтропия. Рис. И 8. Процесс передачи и восприятия информации Д — данные; I — физический фильтр (канал связи), 1 — статистическая информация, а — статистический шум; II — семантический фильтр (тезаурус), 2 — семантическая информация, б - семантический шум; III — прагматический фильтр, 3 — прагматическая информация; в — прагматический шум (ненужная, например,. избыточная информация). И — используемая информация.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > информация (в кибернетике)

  • 72 анализ кривых IS-LM

    1. IS-LM analysis

     

    анализ кривых IS-LM
    Разработанный Дж. Хиксом и А. Хансеном метод исследования условий одновременного равновесия на рынке товаров и денежном рынке в стране. Кривая IS (I- investment, инвестиции, S — savings, сбережения) отражает равновесие на рынке товаров: чем больше сберегается, тем больше инвестиций ( и следовательно больше возможностей роста производства), но тем ниже спрос на товары, поскольку у потребителей остается меньше денег. Правда, последнее время, в связи с усовершенствованием модели, здесь рассматривается, с одной стороны, уровень реального процента r, с другой — национальный доход Y, но название самой модели традиционно сохранилось. Кривая IS показывает, что если реальная ставка процента повышается, то для того, чтобы сохранить равновесие на рынке товаров, их производство должно сокращаться. Все точки IS являются такими комбинациями Y и r, при которых рынок товаров находится в равновесии. Кривая LM (сокращение от liquidity demand, спрос на ликвидные активы, т.е. спрос на деньги, и money supply, предложение денег) отражает, соответственно, возможные комбинации спроса на деньги и предложения денег, обеспечивающие равновесие на денежном рынке. В каждой ее точке спрос на деньги, определяемый уровнем реальной процентной ставки r, равен задаваемому экзогенно (под влиянием денежной политики государства) предложению денег. Таким образом, пересечение кривых IS и LM, помещенных на один график, где абсцисса — объем производства, объем национального дохода Y, а ордината — реальная ставка процента r, выявляет точку макроэкономического равновесия как результат условий, складывающихся и на товарном, и на денежном рынках. Отношение это крайне упрощено, ибо не учитывает внутренние причины создания таких условий, а также вероятностный характер монетарной (денежной) системы. Рис.А.3 Кривые IS и LM
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > анализ кривых IS-LM

  • 73 критерий оптимальности

    1. optimum criterion
    2. optimality criterion
    3. criterion of optimality

     

    критерий оптимальности
    Наиболее существенный признак оценок, определяющих условия достижения цели какой-либо деятельности; К.о. стремится к экстремальному значению
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    критерий оптимальности
    Фундаментальное понятие современной экономики (которая переняла его из математического программирования и математической теории управления); применительно к той или иной экономической системе это один из возможных критериев (признаков) ее качества, а именно — тот признак, по которому функционирование системы признается наилучшим из возможных (в данных объективных условиях) вариантов ее функционирования. Применительно к конкретным экономическим решениям К.о. — показатель, выражающий предельную меру экономического эффекта от принимаемого решения для сравнительной оценки возможных решений (альтернатив) и выбора наилучшего из них. Это может быть, например, максимум прибыли, минимум затрат, кратчайшее время достижения цели и т.д. К.о. — важнейший компонент любой оптимальной экономико-математической модели. Чем больше (если нас интересует максимум) или чем меньше (если нужен минимум) показатель критерия, тем больше удовлетворяет нас решение задачи. Если решается задача составления хозяйственного плана, то это означает, что выбран наилучший, оптимальный план: все остальные варианты н е м о г у т дать столь же удовлетворительного результата. Если решается, например, задача исследования операций по организации строительства завода, то это означает, что выбраны наилучшая очередность работ, наиболее рациональное распределение сил и ресурсов и т.д., а все другие варианты приведут к более поздним срокам пуска завода. К.о. носит обычно количественный характер, т.е. он применяется для того, чтобы качественный признак плана, выражаемый соотношением «лучше — хуже», переводить в количественно определенное «больше — меньше». Но применяются и порядковые критерии. В последнем случае определяется лишь то, что один вариант лучше или хуже других, но не выясняется, насколько именно. В экономико-математических задачах критерию оптимальности соответствует математическая форма — целевая функция, экстремальное значение которой (см. Экстремум), характеризует предельно достижимую эффективность моделируемого объекта (т.е. наилучшие в заданном отношении структуру, состояние, траекторию развития). Другим возможным выражением К.о. является шкала (оценок полезности, ранжирования предпочтений и т.д.). В реальной практике планирования К.о. не может и не должен носить жесткого однозначного характера. Оперируя с ним, следует иметь в виду такие факторы, как вероятное изменение условий, возникновение новых возможностей реализации плана, а также новых задач. Приходится поэтому поступаться величиной критериального показателя ради гибкости плана и его надежности. Это достигается как формальными, так и неформальными методами. На схеме к статье «Экономическая система» (рис. Э.2) стрелка W имеет направление, соответствующее движению в сторону лучшего качества результатов функционирования экономической системы, т.е. в сторону лучшего удовлетворения общества в материальных благах. Упорядоченность точек шкалы W (и соответственно шкал V1, …, Vn) принято формализовать с помощью целевой функции F(w), которая отождествляется с К.о. Упорядочение точек шкалы W, как и точек шкал V есть субъективный акт. Оно может строиться в зависимости от того, что понимается под целью данной экономической системы, но с учетом ее реальных возможностей (объективная основа) и качества управления системой (субъективная основа). Способы упорядочения различны: а) установление цели внешним по отношению к данной экономической системе или иным обладающим соответствующими правами субъектом управления; б) согласование тем или иным способом шкал предпочтения самостоятельных субъектов управления (социальных групп, организаций и т.д.), принимающих решения исходя из своих интересов: компромисс, правило большинства и другие понятия группового (социального) выбора. Возможна классификация критериев оптимальности: а) по уровню общности: глобальный критерий оптимального развития в масштабе Земли, социально-экономический критерий, народнохозяйственный критерий, а также «глобальный» и локальные критерии оптимальности в частных системах моделей; б) по временному аспекту: статические и динамические (среди последних — оценивающие развитие от неоптимального к оптимальному состоянию и развитие как смену оптимальных состояний), текущие и финишные; критерии быстродействия (т.е. времени достижения цели); в) по способам формирования критериев — нормативные, социолого-статистические, компромиссные, унитарные и т.д.; г) по типу применяемых измерителей — полезностные, стоимостные, натуральные и др.; д) по способам использования критериев — практические, теоретические, политико-пропагандистские; е) по математической формализации — скалярные и векторные критерии, аддитивные и мультипликативные, интегральные критерии — во временном аспекте и интегральные — в пространственном аспекте и др. Таковы лишь наметки классификации К.о., однако предстоит еще немало сделать для ее отработки, унификации и стандартизации.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > критерий оптимальности

  • 74 ЧЕМ

    Большой русско-английский фразеологический словарь > ЧЕМ

  • 75 ЧЁМ

    Большой русско-английский фразеологический словарь > ЧЁМ

  • 76 программируемый логический контроллер

    1. storage-programmable logic controller
    2. Programmable Logic Controller
    3. programmable controller
    4. PLC

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Русско-английский словарь нормативно-технической терминологии > программируемый логический контроллер

  • 77 FAR

    Русско-английский словарь пословиц и поговорок > FAR

  • 78 выбор на основе информации

    1. informed choice

     

    выбор на основе информации
    Решение о покупке, принимаемое покупателем на основе подробного ознакомления с информацией о товаре. Такой выбор свойственен определенной категории покупателей, однако практически каждому потребителю необходимо какое-то количество информации о товаре. Объем информации зависит от степени осознанного риска (см. perceived risk) – чем больше риск, тем больше покупателю нужно информации. Производители должны учитывать этот фактор. Обычно технически сложные и дорогие товары снабжаются подробными инструкциями. Производитель, тем не менее, не должен переусердствовать. Существует категория потребителей, которую может напугать слишком обильная информация о товаре, и они могут счесть, что товар, например, крайне сложен в использовании.
    [ http://www.lexikon.ru/rekl/a_eng.html]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > выбор на основе информации

  • 79 неметаллические включения

    1. nonmetalic inclusions

     

    неметаллические включения
    Инородные образования в жидких и тв. металлах и сплавах — хим. соединения металлов с неметаллами. Н. в. классифицируют по хим., минералогам, составу, происхождению. По хим. составу н. в. подразделяют на: алюминатные (осн. составляющая — Аl2О3); карбидные (Fe3C, Мn3С, СrС2); карбонитридные [Ti(C,N), Nb(C,N)]; нитридные (TiN, AlN, ZrN, Cr2N); оксидные (FeO, MnO, Cr2O3, Si02, Al2O3, MgO); силикатные (2СаО • SiO2, 2MnO-SiO2); сульфидные (FeS, MnS, CaS); оксисульфидные (MnS • MnO, FeS • FeO, CaS • FeO); фосфидные (Fe3P, MnP2).
    По происхождению н. в. делятся на экзогенные, вносимые в металл извне шихтой, ферросплавами, огнеупорами, и эндогенные, образующ. в металле по ходу плавки, разливки, кристаллизации и в результате превращений в тв. фазе, взаимодействия металла со шлаком, огнеупорами, газ. фазой, с примесями, содержащими О, S, N, с раскислителями, легир. добавками. По способу образования н. в. разделяют на первичные, образующ. в жидком металле; вторичные, образующ. при кристаллизации; третичные, выделяющ. в тв. р-ре в результате рекристаллизации, диффузии, старения и т.п. Кол-во и размеры н. в. в металлах и сплавах зависят от способа произ-ва, методов рафинирования. Обычные стали и сплавы содержат 0,01-0,02 мас. % н. в., стали и сплавы, выплавл. в вакуумных печах, < 0,005 %, а наиб, чистые металлы, получ. методами э.-л. плавки и зонной очистки, <0,001 %. Крупные н. в. имеют размеры > 100 мкм, ср. 5-200 мкм, мелкие < 5 мкм. Н. в. отрицат. влияют на предел усталости, кач-во поверхности, свариваемость, обрабатываемость металла. Скопления н. в. и отдельные крупные н. в. служат концентраторами напряжений и вызывают разрушения при напряжениях < о, осн. металла. Мелкие и округлые н. в. менее опасны, чем пластинчатые или пленочные. Прочные и хрупкие н. в. оказывают более отриц. воздействие, чем пластичные. От наличия н. в. зависят длительная прочность жаропрочных сплавов при повышенных темп-рах, пределы пластичности и прочности. Н. в. образуют на поверхности металлич. изделий локальные гальванич. элементы (развитие электро-хим. коррозии при работе в корроз. средах), способствуют появлению усталостных трещин и микровыкрашиванию.
    В литой стали н. в. присутствуют в виде глобулей и кристаллов, в кованой и катаной стали - в виде строчек, нитей, ориентиров, в направлении деформации. Глобулярные н. в. образуются из легкоплавких вещ-в, в первую очередь из железистых силикатов на основе соединений типа FeO • MnO. Тугоплавкие оксиды, нитриды, карбиды образуют н. в. в видеограненных кристаллов — оксиды Сг, Al, Zr, шпинели и т.п.
    Интенсивность образования зародышей н. в. тем больше, чем меньше межфазное натяжение на границе металл—н. в., чем выше степень пересыщения, металла взаимодейств, элементами, напр, раскислителя с О, Сг и N. При образовании оксидных н. в. в них преимуществ, переходят компоненты, имеющие повыш. сродство к О и вызывающие наиб. снижение поверхн. натяжения на границе с исх. фазой. Легче зарождаются н. в. на готовых поверхностях раздела. Чем меньше угол смачивания н. в. подложки, тем больше возможность зарождения мелких н. в.
    Удаление н. в. может происходить естеств. всплыванием к поверхности раздела металл-шлак и переходом в шлак при перемешивании ванны, либо в результате термич. диссоциации. При вакуумной плавке н. в. могут восстанавливаться углеродом:
    МеО + [С] = СО + Me.
    Методы оценки н. в. разделяются на металлографич., хим. и др. Для выделения н. в. из металла применяют кислотный метод: с помощью кислот растворяют металлич. основу. Метод замещения состоит в том, что с помощью Hg или Си переводят металлич. составляющую в р-р их солей. При использовании галоидных методов образцы обрабатывают в струе Сl, образуя Сl-соединения металла; сульфиды, карбиды, фосфиды, нитриды хлорируются и уносятся в токе газа, а оксидные н. в. остаются без изменения. Электролитич. методы состоят в анодном р-рении металлич. основы; нер-ряющиеся н. в. изолируют спец. мембранами. Выделенные н. в. взвешивают, определяют их масс, содержание в металле и проводят хим. анализ состава н. в.
    Металлографич. оценку н. в. проводят на шлифах сравн. с эталонными шкалами включений определ. вида, загрязненность оценивают по баллам. Металлографич. метод используют и для кол-венного определ. н. в. с использ. автоматич. эл-нных оптич. счетчиков. Природу и состав н. в. определяют петрографич. методами и с помощью лазерного микрозонда. Фаз. состав и кристаллич. структуру н. в. определяют рентг.-структурными методами.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > неметаллические включения

  • 80 оптимальная партия изделий (запускаемых в производство)

    1. optimal batch

     

    оптимальная партия изделий (запускаемых в производство)
    Та, при которой затраты в расчете на одно изделие минимальны. При решении задачи выбора оптимальной партии принимается, что себестоимость складывается из трех компонент: прямых переменных затрат на изготовление одного изделия — они остаются неизменными при изменении размера партии, и поэтому при расчете можно ими пренебречь; затрат на хранение запасов — в расчете на единицу изделий они постоянны, а абсолютная сумма расходов изменяется пропорционально величине запаса (прямая I на рис. 0.6); затрат на переналадку оборудования, его простои при смене партии — эти затраты независимы от размера партии, но в расчете на единицу деталей уменьшаются при увеличении размера партии (кривая II на рис. 0.6.). Следовательно, чем больше размер партии, тем меньше затраты на переналадку, но тем больше затраты на запасы незавершенного производства (результат этого сочетания показан на кривой III). Оптимум, очевидно, находится в точке минимума кривой III. В простейших случаях найти его можно прямым счетом, однако, в реальных условиях производства это возможно лишь с применением методов математического программирования. Один из них состоит в следующем: формулируется, исходя из указанных соображений, функция издержек на производство и хранение деталей; найдя, далее, первую производную, приравнивают ее нулю. В найденной точке функция затрат y = f (x) достигает минимума. Полученная формула имеет практическое значение. (В этой формуле x0 — размер оптимальной партии, D — общая (годовая) потребность в деталях данного вида, s — расходы на подготовку оборудования к новой партии, q — расходы на хранение одной детали.) Рис. О.6 Оптимальная партия изделий
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > оптимальная партия изделий (запускаемых в производство)

См. также в других словарях:

  • чем далее в спор, тем больше слов — чем дальше в лес, тем больше дров (чем далее в спор, тем больше слов) Ср. Единственное дело их было лганье... но... чем дальше в лес, тем больше дров. С каждым днем талант лганья стал в них... в несомненно бо/льших размерах. Гл. Успенский. Новые… …   Большой толково-фразеологический словарь Михельсона

  • чем дальше в лес, тем больше дров(чем далее в спор, тем больше слов) — Ср. Единственное дело их было лганье... но... чем дальше в лес, тем больше дров. С каждым днем талант лганья стал в них... в несомненно бо/льших размерах. Гл. Успенский. Новые времена. Три письма. 2. Ср. Не уйти ли нам за добра ума отсюда? видно …   Большой толково-фразеологический словарь Михельсона

  • Чем больше я узнаю людей, тем больше мне нравятся собаки — Слова немецкого поэта Генриха Гейне (1797 1856). Видимо, этот афоризм послужил мотивом, на который русский поэт А. Федотов написал стихотворение «Охота», часто звучавшее в конце XIX начале XX в. на литературных вечерах. Это стихотворение… …   Словарь крылатых слов и выражений

  • Чем больше перемен, тем больше все остается по-старому — С французского: Plus ca change, plus с est la тёте chose. Автор выражения французский писатель и журналист Альфонс Жан Карр (1808 1890). Он его сформулировал в издаваемом им журнале «Осы» (январь, 1849) и повторил в сочинении «Путешествие вокруг… …   Словарь крылатых слов и выражений

  • Чем больше я пью, тем больше у меня трясутся руки; — чем больше трясутся руки, тем больше я проливаю и, следовательно, меньше пью. Таким образом, чем больше я пью тем меньше я пью. Такая вот своеобразная логика в оправдание пристрастия к спиртному; закон зависимости потребления спиртного от… …   Словарь народной фразеологии

  • Чем меньше женщину мы любим, / Тем больше нравимся мы ей — Неточная цитата из романа в стихах «Евгений Онегин» (1823 1831) А. С. Пушкина (1799 1837) (гл. 4, строфа 7): Чем меньше женщину мы любим, Тем легче нравимся мы ей И тем ее вернее губим Средь обольстительных сетей. Разврат, бывало, хладнокровный… …   Словарь крылатых слов и выражений

  • Чем дальше влез, тем больше интерес — (от посл. Чем дальше в лес, тем больше дров чем дальше развиваются события, тем больше возникает трудностей; влез звучит как в лес ) исходное знач …   Живая речь. Словарь разговорных выражений

  • Чем дальше в лес, тем больше партизан — (от посл. Чем дальше в лес, тем больше дров чем дальше развиваются события, тем больше возникает трудностей; влез звучит как в лес ) исходное знач …   Живая речь. Словарь разговорных выражений

  • ЧЕМ ДАЛЬШЕ // ВЛЕЗ, ТЕМ БОЛЬШЕ ИНТЕРЕС / В ЛЕС, ТЕМ БОЛЬШЕ ПАРТИЗАН — посл. перед.: Чем дальше в лес, тем больше дров. Чем бы дитя ни тешилось, лишь бы не факалось посл. перед., макар.: Чем бы дитя ни тешилось, лишь бы не плакало., англ.: to fuck заниматься любовью …   Толковый словарь современных разговорных фразеологизмов и присловий

  • Чем больше ешь, тем больше остается. — (раки и орехи). См. ПИЩА …   В.И. Даль. Пословицы русского народа

  • Чем больше кошку гладишь, тем больше она горб подымает. — Чем больше кошку гладишь, тем больше она горб подымает. См. ПРИЧУДА …   В.И. Даль. Пословицы русского народа

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»