Перевод: с английского на русский

с русского на английский

стоимость+срока+службы

  • 21 depreciation allocations

    1. амортизационные отчисления (амортизационные расходы)
    2. амортизационные отчисления

     

    амортизационные отчисления

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    амортизационные отчисления
    амортизационные расходы
    Денежные суммы, соответствующие частям стоимости основных фондов (внеоборотных активов), постепенно переносимым, по мере их использования в производстве, на стоимость производимого с их помощью продукта. Начисляются по установленным нормам амортизации, как правило, в процентах к балансовой стоимости материальных и нематериальных внеоборотных активов (не амортизируются земля и др. природные ресурсы). По истечении нормативного срока службы активов амортизация не начисляется. Суммы начисленной амортизации, как и другие расходы, связанные с производством и реализацией, согласно главе 25 Налогового кодекса РФ, вычитаются из доходов предприятия для расчета налогооблагаемой прибыли.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

     

    амортизационные отчисления (амортизационные расходы)
    Денежные суммы, соответствующие частям стоимости основных фондов внеоборотных активов, постепенно переносимым, по мере их использования в производстве, на стоимость производимого с их помощью продукта. Начисляются по установленным нормам амортизации, как правило, в процентах к балансовой стоимости материальных и нематериальных внеоборотных активов (не амортизируются земля и др. природные ресурсы). По истечении нормативного срока службы активов амортизация не начисляется. Суммы начисленной амортизации, как и другие расходы, связанные с производством и реализацией, согласно главе 25 Налогового кодекса РФ, вычитаются из доходов предприятия для расчета налогооблагаемой прибыли.
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > depreciation allocations

  • 22 scrap value

    1. скраповая стоимость

     

    скраповая стоимость
    Стоимость, которую актив с ограниченным сроком службы будет иметь в конце своего предсказуемого срока службы (согласно данным на момент, когда актив был приобретен или предоставлен лицом, осуществляющим ликвидацию).См. Утилизационная стоимость.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > scrap value

  • 23 cost of utilization salvage value

    1. утилизационная стоимость

     

    утилизационная стоимость
    Один из типов стоимости (по версии МСО) - стоимость объекта имущества (за исключением земельного участка), когда он рассматривается как совокупность содержащихся в нем материалов для продажи, а не для продолжения его использования без дополнительного ремонта и усовершенствования. Эта стоимость может как включать, так и не включать затраты реализации. В последнем случае она может совпадать с чистой стоимостью реализации. Это ожидаемая стоимость актива в конце его экономического срока службы.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > cost of utilization salvage value

  • 24 the

    abandon the takeoff
    прекращать взлет
    abeam the left pilot position
    на левом траверзе
    abeam the right pilot position
    на правом траверзе
    abort the flight
    прерывать полет
    abort the takeoff
    прерывать взлет
    above the glide slope
    выше глиссады
    absorb the shock energy
    поглощать энергию удара
    accelerate the rotor
    раскручивать ротор
    accelerate to the speed
    разгонять до скорости
    adhere to the flight plan
    придерживаться плана полета
    adhere to the track
    придерживаться заданного курса
    adjust the cable
    регулировать трос
    adjust the compass
    устранять девиацию компаса
    adjust the engine
    регулировать двигатель до заданных параметров
    adjust the heading
    корректировать курс
    advice to follow the controller's advance
    выполнять указание диспетчера
    affect the regularity
    влиять на регулярность
    affect the safety
    влиять на безопасность
    align the aircraft
    устанавливать воздушное судно
    align the aircraft with the center line
    устанавливать воздушное судно по оси
    align the aircraft with the runway
    устанавливать воздушное судно по оси ВПП
    alter the heading
    менять курс
    amplify the signal
    усиливать сигнал
    apparent drift of the gyro
    кажущийся уход гироскопа
    apply the brake
    применять тормоз
    approach the beam
    приближаться к лучу
    approve the limitations
    утверждать ограничения
    approve the tariff
    утверждать тариф
    area of coverage of the forecasts
    район обеспечения прогнозами
    arrest the development of the stall
    препятствовать сваливанию
    arrive over the aerodrome
    прибывать в зону аэродрома
    assess the damage
    определять стоимость повреждения
    assess the distance
    оценивать расстояние
    assess the suitability
    оценивать пригодность
    assume the control
    брать управление на себя
    attain the power
    достигать заданной мощности
    attain the speed
    развивать заданную скорость
    at the end of
    в конце цикла
    at the end of segment
    в конце участка
    (полета) at the end of stroke
    в конце хода
    (поршня) at the ground level
    на уровне земли
    at the start of cycle
    в начале цикла
    at the start of segment
    в начале участка
    (полета) avoid the obstacle
    избегать столкновения с препятствием
    backward movement of the stick
    взятие ручки на себя
    balance the aircraft
    балансировать воздушное судно
    balance the control surface
    балансировать поверхность управления
    balance the propeller
    балансировать воздушный винт
    bear on the accident
    иметь отношение к происшествию
    before the turbine
    перед турбиной
    below the glide slope
    ниже глиссады
    below the landing minima
    ниже посадочного минимума
    bend the cotterpin ends
    загибать усики шплинта
    be off the track
    уклоняться от заданного курса
    be on the level on the hour
    занимать эшелон по нулям
    block the brake
    ставить на тормоз
    boundary of the area
    граница зоны
    brake the propeller
    стопорить воздушный винт
    break the journey
    прерывать полет
    bring the aircraft back
    возвращать воздушное судно
    bring the aircraft out
    выводить воздушное судно из крена
    by altering the heading
    путем изменения курса
    cage the gyroscope
    арретировать гироскоп
    calibrate the compass
    списывать девиацию компаса
    calibrate the indicator
    тарировать прибор
    calibrate the system
    тарировать систему
    calibrate the tank
    тарировать бак
    cancel the drift
    парировать снос
    cancel the flight
    отменять полет
    cancel the forecast
    аннулировать сообщенный прогноз
    cancel the signal
    прекращать подачу сигнала
    capture the beam
    захватывать луч
    carry out a circuit of the aerodrome
    выполнять круг полета над аэродромом
    carry out the flight
    выполнять полет
    center the autopilot
    центрировать автопилот
    center the wiper
    центрировать щетку
    change the frequency
    изменять частоту
    change the pitch
    изменять шаг
    change the track
    изменять линию пути
    check the reading
    проверять показания
    chop the power
    внезапно изменять режим
    circle the aerodrome
    летать по кругу над аэродромом
    clean the aircraft
    убирать механизацию крыла воздушного судна
    clean up the crack
    зачищать трещину
    clearance of the aircraft
    разрешение воздушному судну
    clearance over the threshold
    безопасная высота пролета порога
    clear for the left-hand turn
    давать разрешение на левый разворот
    clear the aircraft
    давать разрешение воздушному судну
    clear the obstacle
    устранять препятствие
    clear the point
    пролетать над заданной точкой
    clear the runway
    освобождать ВПП
    climb on the course
    набирать высоту при полете по курсу
    close the buckets
    закрывать створки
    close the circuit
    замыкать цепь
    close the flight
    заканчивать регистрацию на рейс
    come clear of the ground
    отрываться от земли
    commence the flight
    начинать полет
    commence the landing procedure
    начинать посадку
    compare the readings
    сравнивать показания
    compensate the compass
    устранять девиацию компаса
    compensate the error
    списывать девиацию
    compile the accident report
    составлять отчет об авиационном происшествии
    complete the circuit
    закольцовывать
    complete the flight
    завершать полет
    complete the flight plan
    составлять план полета
    complete the turn
    завершать разворот
    compute the visual range
    вычислять дальность видимости
    conditions beyond the experience
    условия, по сложности превосходящие квалификацию пилота
    conditions on the route
    условия по заданному маршруту
    considering the obstacles
    учет препятствий
    construct the procedure
    разрабатывать схему
    containerize the cargo
    упаковывать груз в контейнере
    continue operating on the fuel reserve
    продолжать полет на аэронавигационном запасе топлива
    continue the flight
    продолжать полет
    continue the takeoff
    продолжать взлет
    contribute towards the safety
    способствовать повышению безопасности
    control the aircraft
    управлять воздушным судном
    control the pitch
    управлять шагом
    convert the frequency
    преобразовывать частоту
    convey the information
    передавать информацию
    correct the trouble
    устранять отказ
    correspond with the operating minima
    соответствовать эксплуатационному минимуму
    counteract the rotor torque
    уравновешивать крутящий момент несущего винта
    coverage of the chart
    картографируемый район
    cover the route
    пробегать по полному маршруту
    crosscheck the readings
    сверять показания
    cross the airway
    пересекать авиатрассу
    data on the performance
    координаты характеристики
    decelerate in the flight
    гасить скорость в полете
    decelerate the aircraft to
    снижать скорость воздушного судна до
    decrease the deviation
    уменьшать величину отклонения от курса
    decrease the pitch
    уменьшать шаг
    decrease the speed
    уменьшать скорость
    de-energize the bus
    обесточивать шину
    define the failure
    определять причины отказа
    deflate the tire
    ослаблять давление в пневматике
    deflect the control surface
    отклонять поверхность управления
    (напр. элерон) delay the turn
    затягивать разворот
    delimit the runway
    обозначать границы ВПП
    delimit the taxiway
    обозначать границы рулежной дорожки
    delineate the runway
    очерчивать границы ВПП
    delineate the taxiway
    обозначать размеры рулежной дорожки
    deliver the baggage
    доставлять багаж
    deliver the clearance
    передавать разрешение
    denote the obstacle
    обозначать препятствие
    denoting the obstacle
    обозначение препятствия
    depart from the rules
    отступать от установленных правил
    departure from the standards
    отклонение от установленных стандартов
    depress the pedal
    нажимать на педаль
    detach the load
    отцеплять груз
    detach the wing
    отстыковывать крыло
    determinate the cause
    устанавливать причину
    determine amount of the error
    определять величину девиации
    determine the delay
    устанавливать время задержки
    determine the extent of damage
    определять степень повреждения
    determine the friction
    определять величину сцепления
    determine the sign of deviation
    определять знак девиации
    detract from the safety
    снижать безопасность
    development of the stall
    процесс сваливания
    deviate from the flight plan
    отклоняться от плана полета
    deviate from the glide slope
    отклоняться от глиссады
    deviate from the heading
    отклоняться от заданного курса
    deviation from the course
    отклонение от заданного курса
    deviation from the level flight
    отклонение от линии горизонтального полета
    discharge the cargo
    снимать груз в контейнере
    disclose the fares
    опубликовывать тарифы
    discontinue the takeoff
    прекращать взлет
    disengage the autopilot
    выключать автопилот
    displace the center-of-gravity
    изменять центровку
    disregard the indicator
    пренебрегать показаниями прибора
    disseminate the forecast
    распространять прогноз
    drain the tank
    сливать из бака
    draw the conclusion
    подготавливать заключение
    drift off the course
    сносить с курса
    drift off the heading
    уходить с заданного курса
    drop the nose
    сваливаться на нос
    duck below the glide path
    резко снижаться относительно глиссады
    ease the aircraft on
    выравнивать воздушное судно
    effect adversely the strength
    нарушать прочность
    (напр. фюзеляжа) elevation of the strip
    превышение летной полосы
    eliminate the cause of
    устранять причину
    eliminate the hazard
    устранять опасную ситуацию
    eliminate the ice formation
    устранять обледенение
    eliminate the source of danger
    устранять источник опасности
    (для воздушного движения) enable the aircraft to
    давать воздушному судну право
    endanger the aircraft
    создавать опасность для воздушного судна
    endange the safety
    угрожать безопасности
    endorse the license
    делать отметку в свидетельстве
    energize the bus
    подавать электропитание на шину
    enforce rules of the air
    обеспечивать соблюдение правил полетов
    engage the autopilot
    включать автопилот
    ensure the adequate provisions
    обеспечивать соответствующие меры предосторожности
    enter the aircraft
    заносить воздушное судно в реестр
    enter the aircraft stand
    заруливать на место стоянки воздушного судна
    enter the airway
    выходить на авиатрассу
    enter the final approach track
    выходить на посадочную прямую
    enter the spin
    входить в штопор
    enter the tariff into force
    утверждать тарифную ставку
    enter the traffic circuit
    входить в круг движения
    enter the turn
    входить в разворот
    entry into the aerodrome zone
    вход в зону аэродрома
    entry into the flare
    входить в этап выравнивания
    erection of the gyro
    восстановление гироскопа
    establish the characteristics
    устанавливать характеристики
    establish the flight conditions
    устанавливать режим полета
    establish the procedure
    устанавливать порядок
    exceeding the stalling angle
    выход на закритический угол атаки
    exceed the stop
    преодолевать упор
    execute the manoeuvre
    выполнять маневр
    execute the turn
    выполнять разворот
    expedite the clearance
    ускорять оформление
    express the altitude
    четко указывать высоту
    extend the agreement
    продлевать срок действия соглашения
    extend the landing gear
    выпускать шасси
    extend the legs
    выпускать шасси
    extreme aft the center-of-gravity
    предельная задняя центровка
    extreme forward the center-of-gravity
    предельная передняя центровка
    eye height over the threshold
    уровень положения глаз над порогом ВПП
    fail into the spin
    срываться в штопор
    fail to follow the procedure
    не выполнять установленную схему
    fail to observe the limitations
    не соблюдать установленные ограничения
    fail to provide the manuals
    не обеспечивать соответствующими инструкциями
    fall into the spin
    срываться в штопор
    feather the propeller
    ставить воздушный винт во флюгерное положение
    file the flight plan
    регистрировать план полета
    first freedom of the air
    первая степень свободы воздуха
    flight inbound the station
    полет в направлении на станцию
    flight outbound the station
    полет в направлении от станции
    flight over the high seas
    полет над открытым морем
    flight under the rules
    полет по установленным правилам
    fly above the weather
    летать над верхней кромкой облаков
    fly at the altitude
    летать на заданной высоте
    fly into the sun
    летать против солнца
    fly into the wind
    летать против ветра
    fly on the autopilot
    летать на автопилоте
    fly on the course
    летать по курсу
    fly on the heading
    летать по курсу
    fly the aircraft
    1. управлять самолетом
    2. пилотировать воздушное судно fly the beam
    лететь по лучу
    fly the circle
    летать по кругу
    fly the glide-slope beam
    летать по глиссадному лучу
    fly the great circle
    летать по ортодромии
    fly the heading
    выполнять полет по курсу
    fly the rhumb line
    летать по локсодромии
    fly under the autopilot
    пилотировать при помощи автопилота
    fly under the supervision of
    летать под контролем
    focus the light
    фокусировать фару
    follow the beam
    выдерживать направление по лучу
    follow the glide slope
    выдерживать глиссаду
    follow up the aircraft
    сопровождать воздушное судно
    forfeit the reservation
    лишать брони
    freedom of the air
    степень свободы воздуха
    fuel the tank
    заправлять бак топливом
    fulfil the conditions
    выполнять условия
    gain the air supremacy
    завоевывать господство в воздухе
    gain the altitude
    набирать заданную высоту
    gain the glide path
    входить в глиссаду
    gain the power
    достигать заданной мощность
    gain the speed
    развивать заданную скорость
    gather the speed
    наращивать скорость
    get into the aerodrome
    приземляться на аэродроме
    get on the course
    выходить на заданный курс
    get the height
    набирать заданную высоту
    give the way
    уступать трассу
    go out of the spin
    выходить из штопора
    govern the application
    регулировать применение
    govern the flight
    управлять ходом полета
    govern the operation
    руководить эксплуатацией
    grade of the pilot licence
    класс пилотского свидетельства
    guard the frequency
    прослушивать частоту
    handle the baggage
    обслуживать багаж
    handle the flight controls
    оперировать органами управления полетом
    have the runway in sight
    четко видеть ВПП
    head the aircraft into wind
    направлять воздушное судно против ветра
    hold on the heading
    выдерживать на заданном курсе
    hold over the aids
    выполнять полет в зоне ожидания
    hold over the beacon
    выполнять полет в режиме ожидания над аэродромом
    hold the aircraft on the heading
    выдерживать воздушное судно на заданном курсе
    hold the brake
    удерживать тормоза
    hold the heading on the compass
    выдерживать курс по компасу
    hold the position
    ожидать на месте
    hold the speed accurately
    точно выдерживать скорость
    hover at the height of
    зависать на высоте
    hovering in the ground effect
    висение в зоне влияния земли
    identify the aerodrome from the air
    опознавать аэродром с воздуха
    identify the aircraft
    опознавать воздушное судно
    identify the center line
    обозначать осевую линию
    impair the operation
    нарушать работу
    impair the safety
    снижать безопасность
    impose the limitations
    налагать ограничения
    in computing the fuel
    при расчете количества топлива
    in conformity with the specifications
    в соответствии с техническими условиями
    increase a camber of the profile
    увеличивать кривизну профиля
    increase the pitch
    увеличивать шаг
    increase the speed
    увеличивать скорость
    indicate the location from the air
    определять местоположение с воздуха
    inherent in the aircraft
    свойственный воздушному судну
    initiate the turn
    входить в разворот
    install in the aircraft
    устанавливать на борту воздушного судна
    install on the aircraft
    монтировать на воздушном судне
    intercept the beam
    выходить на ось луча
    intercept the glide slope
    захватывать луч глиссады
    International Relations Department of the Ministry of Civil Aviation
    Управление внешних сношений Министерства гражданской авиации
    interpretation of the signal
    расшифровка сигнала
    in the case of delay
    в случае задержки
    in the event of a mishap
    в случае происшествия
    in the event of malfunction
    в случая отказа
    introduction of the corrections
    ввод поправок
    issue the certificate
    выдавать сертификат
    jeopardize the flight
    подвергать полет опасности
    judge the safety
    оценивать степень опасности
    keep clear of the aircraft
    держаться на безопасном расстоянии от воздушного судна
    keep out of the way
    не занимать трассу
    keep tab on the fleet
    вести учет парка
    keep the aircraft on
    выдерживать воздушное судно
    keep the altitude
    выдерживать заданную высоту
    keep the ball centered
    держать шарик в центре
    keep the pace
    выдерживать дистанцию
    keep to the minima
    устанавливать минимум
    kick off the drift
    парировать снос
    kill the landing speed
    гасить посадочную скорость
    landing off the aerodrome
    посадка вне аэродрома
    land into the wind
    выполнять посадку против ветра
    land the aircraft
    приземлять воздушное судно
    latch the pitch stop
    устанавливать на упор шага
    (лопасти воздушного винта) latch the propeller flight stop
    ставить воздушный винт на полетный упор
    lateral the center-of-gravity
    поперечная центровка
    lay the route
    прокладывать маршрут
    lead in the aircraft
    заруливать воздушное судно
    lead out the aircraft
    выруливать воздушное судно
    leave the airspace
    покидать данное воздушное пространство
    leave the altitude
    уходить с заданной высоты
    leave the plane
    выходить из самолета
    leave the runway
    освобождать ВПП
    level the aircraft out
    выравнивать воздушное судно
    lie beyond the range
    находиться вне заданного предела
    line up the aircraft
    выруливать воздушное судно на исполнительный старт
    load the gear
    загружать редуктор
    load the generator
    нагружать генератор
    load the structure
    нагружать конструкцию
    lock the landing gear
    ставить шасси на замки
    lock the landing gear down
    ставить шасси на замок выпущенного положения
    lock the landing gear up
    ставить шасси на замок убранного положения
    lock the legs
    устанавливать шасси на замки выпущенного положения
    longitudinal the center-of-gravity
    продольная центровка
    lose the altitude
    терять высоту
    lose the speed
    терять заданную скорость
    loss the control
    терять управление
    lower the landing gear
    выпускать шасси
    lower the legs
    выпускать шасси
    lower the nose wheel
    опускать носовое колесо
    maintain the aircraft at readiness to
    держать воздушное судно готовым
    maintain the altitude
    выдерживать заданную высоту
    maintain the course
    выдерживать заданный курс
    maintain the flight level
    выдерживать заданный эшелон полета
    maintain the flight procedure
    выдерживать установленный порядок полетов
    maintain the flight watch
    выдерживать заданный график полета
    maintain the flying speed
    выдерживать требуемую скорость полета
    maintain the heading
    выдерживать заданный курс
    maintain the parameter
    выдерживать заданный параметр
    make a complaint against the company
    подавать жалобу на компанию
    make the aircraft airborne
    отрывать воздушное судно от земли
    make the course change
    изменять курс
    make the reservation
    забронировать место
    manipulate the flight controls
    оперировать органами управления полетом
    mark the obstacle
    маркировать препятствие
    mean scale of the chart
    средний масштаб карты
    meet the airworthiness standards
    удовлетворять нормам летной годности
    meet the conditions
    выполнять требования
    meet the specifications
    соблюдать технические условия
    misjudge the distance
    неправильно оценивать расстояние
    modify the flight plan
    уточнять план полета
    monitor the flight
    следить за полетом
    monitor the frequency
    контролировать заданную частоту
    moor the aircraft
    швартовать воздушное судно
    mount on the frame
    монтировать на шпангоуте
    move off from the rest
    страгивать с места
    move the blades to higher
    утяжелять воздушный винт
    move the pedal forward
    давать педаль вперед
    name-code of the route
    кодирование названия маршрута
    neglect the indicator
    не учитывать показания прибора
    note the instrument readings
    отмечать показания приборов
    note the time
    засекать время
    observe the conditions
    соблюдать условия
    observe the instruments
    следить за показаниями приборов
    observe the readings
    наблюдать за показаниями
    obtain the correct path
    выходить на заданную траекторию
    obtain the flying speed
    набирать заданную скорость полета
    obtain the forecast
    получать прогноз
    offer the capacity
    предлагать объем загрузки
    off-load the pump
    разгружать насос
    on the base leg
    выполнил третий разворот
    on the beam
    в зоне действия луча
    on the cross-wind leg
    выполнил первый разворот
    on the down-wind leg
    выполнил второй разворот
    on the eastbound leg
    на участке маршрута в восточном направлении
    on the final leg
    выполнил четвертый разворот
    on the left base leg
    подхожу к четвертому с левым разворотом
    on the speed
    на скорости
    on the upwind leg
    вхожу в круг
    open the buckets
    открывать створки
    open the circuit
    размыкать цепь
    open the door inward outward
    открывать люк внутрь наружу
    operate from the aerodrome
    выполнять полеты с аэродрома
    operate under the conditions
    эксплуатировать в заданных условиях
    overcome the obstacle
    преодолевать препятствие
    overcome the spring force
    преодолевать усилие пружины
    overflying the runway
    пролет над ВПП
    overpower the autopilot
    пересиливать автопилот
    overrun the runway
    выкатываться за пределы ВПП
    overshoot capture of the glide slope
    поздний захват глиссадного луча
    over the territory
    над территорией
    over the top
    над верхней границей облаков
    over the wing
    над крылом
    park in the baggage
    сдавать в багаж
    participation in the investigation
    участие в расследовании
    passing over the runway
    пролет над ВПП
    pass the signal
    пропускать сигнал
    past the turbine
    за турбиной
    perform the service bulletin
    выполнять доработку по бюллетеню
    pick up the signal
    фиксировать сигнал
    pick up the speed
    развивать заданную скорость
    pilot on the controls
    пилот, управляющий воздушным судном
    pitch the nose downward
    опускать нос
    place the aircraft
    устанавливать воздушное судно
    place the flaps in
    устанавливать закрылки
    plane of symmetry of the aeroplane
    плоскость симметрии самолета
    plot the aircraft
    засекать воздушное судно
    potential hazard to the safe
    потенциальная угроза безопасности
    power the bus
    включать шину
    present the minimum hazard
    представлять минимальную опасность
    preserve the clearance
    сохранять запас высоты
    pressurize the bearing
    уплотнять опору подачей давления
    produce the signal
    выдавать сигнал
    profitability over the route
    эффективность маршрута
    prolongation of the rating
    продление срока действия квалификационной отметки
    properly identify the aircraft
    точно опознавать воздушное судно
    protect the circuit
    защищать цепь
    prove the system
    испытывать систему
    pull out of the spin
    выводить из штопора
    pull the aircraft out of
    брать штурвал на себя
    pull the control column back
    брать штурвал на себя
    pull the control stick back
    брать ручку управления на себя
    pull up the helicopter
    резко увеличивать подъемную силу вертолета
    puncture the tire
    прокалывать покрышку
    push the aircraft back
    буксировать воздушное судно хвостом вперед
    push the aircraft down
    снижать высоту полета воздушного судна
    push the control column
    отдавать штурвал от себя
    push the control stick
    отдавать ручку управления от себя
    put into the spin
    вводить в штопор
    put on the course
    выходить на заданный курс
    put the aircraft into production
    запускать воздушное судно в производство
    put the aircraft on the course
    выводить воздушное судно на заданный курс
    put the aircraft over
    переводить воздушное судно в горизонтальный полет
    raise the landing gear
    убирать шасси
    reach the altitude
    занимать заданную высоту
    reach the flight level
    занимать заданный эшелон полета
    reach the glide path
    входить в зону глиссады
    reach the speed
    достигать заданных оборотов
    reach the stalling angle
    выходить на критический угол
    read the drift angle
    отсчитывать угол сноса
    read the instruments
    считывать показания приборов
    receive the signal
    принимать сигнал
    record the readings
    регистрировать показания
    recover from the spin
    выходить из штопора
    recover from the turn
    выходить из разворота
    recovery from the manoeuvre
    выход из маневра
    recovery from the stall
    вывод из режима сваливания
    recovery from the turn
    выход из разворота
    rectify the compass
    устранять девиацию компаса
    reduce the hazard
    уменьшать опасность
    reestablish the track
    восстанавливать заданную линию пути
    regain the glide path
    возвращаться на глиссаду
    regain the speed
    восстанавливать скорость
    regain the track
    возвращаться на заданный курс
    register the aircraft
    регистрировать воздушное судно
    release the aircraft
    прекращать контроль воздушного судна
    release the landing gear
    снимать шасси с замков убранного положения
    release the landing gear lock
    снимать шасси с замка
    release the load
    сбрасывать груз
    release the uplock
    открывать замок убранного положения
    relocate the plane's trim
    восстанавливать балансировку самолета
    remedy the defect
    устранять дефект
    remedy the trouble
    устранять отказ
    remove the aircraft
    удалять воздушное судно
    remove the crack
    выбирать трещину
    remove the tangle
    распутывать
    render the certificate
    передавать сертификат
    renew the license
    возобновлять действие свидетельства или лицензии
    renew the rating
    возобновлять действие квалификационной отметки
    replan the flight
    измерять маршрут полета
    report reaching the altitude
    докладывать о занятии заданной высоты
    report reaching the flight level
    докладывать о занятии заданного эшелона полета
    report the heading
    сообщать курс
    reset the gyroscope
    восстанавливать гироскоп
    restart the engine in flight
    запускать двигатель в полете
    restore the system
    восстанавливать работу системы
    restrict the operations
    накладывать ограничения на полеты
    resume the flight
    возобновлять полет
    resume the journey
    возобновлять полет
    retain the lever
    фиксировать рукоятку
    retract the landing gear
    убирать шасси
    return the aircraft to service
    допускать воздушное судно к дальнейшей эксплуатации
    reverse the propeller
    переводить винт на отрицательную тягу
    roll in the aircraft
    вводить воздушное судно в крен
    roll into the turn
    входить в разворот
    roll left on the heading
    выходить на курс с левым разворотом
    roll on the aircraft
    выполнять этап пробега воздушного судна
    roll on the course
    выводить на заданный курс
    roll out of the turn
    выходить из разворота
    roll out on the heading
    выходить на заданный курс
    roll out the aircraft
    выводить воздушное судно из крена
    roll right on the heading
    выходить на курс с правым разворотом
    rotate the aircraft
    отрывать переднюю опору шасси воздушного судна
    rotate the bogie
    запрокидывать тележку
    rules of the air
    правила полетов
    run fluid through the system
    прогонять систему
    run off the runway
    выкатываться за пределы ВПП
    run out the landing gear
    выпускать шасси
    schedule the performances
    задавать характеристики
    seat the brush
    притирать щетку
    second freedom of the air
    вторая степень свободы воздуха
    secure the mishap site
    обеспечивать охрану места происшествия
    select the course
    выбирать курс
    select the flight route
    выбирать маршрут полета
    select the frequency
    выбирать частоту
    select the heading
    задавать курс
    select the mode
    выбирать режим
    select the track angle
    задавать путевой угол
    separate the aircraft
    эшелонировать воздушное судно
    serve out the service life
    вырабатывать срок службы
    set at the desired angle
    устанавливать на требуемый угол
    set the course
    устанавливать курс
    set the flaps at
    устанавливать закрылки
    set the heading
    устанавливать курс
    set the propeller pitch
    устанавливать шаг воздушного винта
    set the throttle lever
    устанавливать сектор газа
    set up the speed
    задавать определенную скорость
    shift the center-of-gravity
    смещать центровку
    shop out the skin
    вырубать обшивку
    simulate the instruments responses
    имитировать показания приборов
    slacken the cable
    ослаблять натяжение троса
    slave the gyroscope
    согласовывать гироскоп
    smooth on the heading
    плавно выводить на заданный курс
    smooth out the crack
    удалять трещину
    smooth out the dent
    выправлять вмятину
    smooth the signal
    сглаживать сигнал
    space the aircraft
    определять зону полета воздушного судна
    spin the gyro rotor
    раскручивать ротор гироскопа
    state instituting the investigation
    государство, назначающее расследование
    (авиационного происшествия) state submitting the report
    государство, представляющее отчет
    (об авиационном происшествии) steady airflow about the wing
    установившееся обтекание крыла воздушным потоком
    steer the aircraft
    управлять воздушным судном
    stop the crack propagation
    предотвращать развитие трещины
    stop the leakage
    устранять течь
    submit the flight plan
    представлять план полета
    substitute the aircraft
    заменять воздушное судно
    supervision approved by the State
    надзор, установленный государством
    supply the signal
    подавать сигнал
    swing the compass
    списывать девиацию компаса
    swing the door open
    открывать створку
    switch to the autopilot
    переходить на управление с помощью автопилота
    switch to the proper tank
    включать подачу топлива из бака с помощью электрического крана
    takeoff into the wind
    взлетать против ветра
    take off power to the shaft
    отбирать мощность на вал
    take over the control
    брать управление на себя
    take the bearing
    брать заданный пеленг
    take the energy from
    отбирать энергию
    take the readings
    считывать показания
    take the taxiway
    занимать рулежную дорожку
    take up the backlash
    устранять люфт
    take up the position
    выходить на заданную высоту
    tap air from the compressor
    отбирать воздух от компрессора
    terminate the agreement
    прекращать действие соглашения
    terminate the control
    прекращать диспетчерское обслуживание
    terminate the flight
    завершать полет
    test in the wind tunnel
    продувать в аэродинамической трубе
    test the system
    испытывать систему
    the aircraft under command
    управляемое воздушное судно
    the route to be flown
    намеченный маршрут полета
    the route to be followed
    установленный маршрут полета
    the runway is clear
    ВПП свободна
    the runway is not clear
    ВПП занята
    the search is terminated
    поиск прекращен
    through on the same flight
    транзитом тем же рейсом
    throughout the service life
    на протяжении всего срока службы
    tighten the turn
    уменьшать радиус разворота
    time in the air
    налет часов
    time the valves
    регулировать газораспределение
    titl of the gyro
    завал гироскопа
    to define the airspace
    определять границы воздушного пространства
    transfer the control
    передавать диспетчерское управление другому пункту
    transit to the climb speed
    переходить к скорости набора высоты
    trim the aircraft
    балансировать воздушное судно
    turn into the wind
    разворачивать против ветра
    turn off the system
    выключать систему
    turn on the system
    включать систему
    turn the proper tank on
    включать подачу топлива из бока с помощью механического крана
    unarm the system
    отключать состояние готовности системы
    uncage the gyroscope
    разарретировать гироскоп
    unfeather the propeller
    выводить воздушный винт из флюгерного положения
    unlatch the landing gear
    снимать шасси с замков
    unlatch the pitch stop
    снимать с упора шага
    (лопасти воздушного винта) unstall the aircraft
    выводить воздушное судно из сваливания на крыло
    unstick the aircraft
    отрывать воздушное судно от земли
    uplift the freight
    принимать груз на борт
    violate the law
    нарушать установленный порядок
    wander off the course
    сбиваться с курса
    warn the aircraft
    предупреждать воздушное судно
    wind the generator
    наматывать обмотку генератора
    with decrease in the altitude
    со снижением высоты
    withdraw from the agreement
    выходить из соглашения
    with increase in the altitude
    с набором высоты
    within the frame of
    в пределах
    within the range
    в заданном диапазоне
    withstand the load
    выдерживать нагрузку
    work on the aircraft
    выполнять работу на воздушном судне
    write down the readings
    фиксировать показания

    English-Russian aviation dictionary > the

  • 25 depreciation accounting

    1. начисление амортизации

     

    начисление амортизации
    Экономический механизм, фиксирующий постепенный перенос износа основных средств и нематериальных активов на реализуемый готовый продукт, в результате чего их первоначальная стоимость распределяется во времени в течение полного срока их службы. Размер начислений рассчитывается как произведение стоимости оборудования, капитальных объектов на соответствующие нормы амортизации. По истечении установленного срока службы актива начисление прекращается, даже если актив продолжает использоваться. В мировой практике применяются три основные способа Н.а.: равномерный или линейный, уменьшающегося остатка, ускоренный. См. Амортизация основных фондов (по версии РСБУ)
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > depreciation accounting

  • 26 zero salvage value

    The old machine is being depreciated toward a zero salvage value. — Старый станок амортизируется до достижения нулевой ликвидационной стоимости.

    See:
    * * *

    Англо-русский экономический словарь > zero salvage value

  • 27 life-cycle cost

    2) Военный термин: затраты по жизненному циклу (системы), стоимость производства, установки и эксплуатации, стоимость (предмета техники) с учётом его срока службы (расходов на обслуживание и ремонт)

    Универсальный англо-русский словарь > life-cycle cost

  • 28 remote maintenance

    1. дистанционное техническое обслуживание

     

    дистанционное техническое обслуживание
    Техническое обслуживание объекта, проводимое под управлением персонала без его непосредственного присутствия.
    [ОСТ 45.152-99 ]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    Service from afar

    Дистанционный сервис

    ABB’s Remote Service concept is revolutionizing the robotics industry

    Разработанная АББ концепция дистанционного обслуживания Remote Service революционизирует робототехнику

    ABB robots are found in industrial applications everywhere – lifting, packing, grinding and welding, to name a few. Robust and tireless, they work around the clock and are critical to a company’s productivity. Thus, keeping these robots in top shape is essential – any failure can lead to serious output consequences. But what happens when a robot malfunctions?

    Роботы АББ используются во всех отраслях промышленности для перемещения грузов, упаковки, шлифовки, сварки – всего и не перечислить. Надежные и неутомимые работники, способные трудиться день и ночь, они представляют большую ценность для владельца. Поэтому очень важно поддерживать их в надлежащей состоянии, ведь любой отказ может иметь серьезные последствия. Но что делать, если робот все-таки сломался?

    ABB’s new Remote Service concept holds the answer: This approach enables a malfunctioning robot to alarm for help itself. An ABB service engineer then receives whole diagnostic information via wireless technology, analyzes the data on a Web site and responds with support in just minutes. This unique service is paying off for customers and ABB alike, and in the process is revolutionizing service thinking.

    Ответом на этот вопрос стала новая концепция Remote Service от АББ, согласно которой неисправный робот сам просит о помощи. C помощью беспроводной технологии специалист сервисной службы АББ получает всю необходимую диагностическую информацию, анализирует данные на web-сайте и через считанные минуты выдает рекомендации по устранению отказа. Эта уникальная возможность одинаково ценна как для заказчиков, так и для самой компании АББ. В перспективе она способна в корне изменить весь подход к организации технического обслуживания.

    Every minute of production downtime can have financially disastrous consequences for a company. Traditional reactive service is no longer sufficient since on-site service engineer visits also demand great amounts of time and money. Thus, companies not only require faster help from the service organization when needed but they also want to avoid disturbances in production.

    Каждая минута простоя производства может привести к губительным финансовым последствиям. Традиционная организация сервиса, предусматривающая ликвидацию возникающих неисправностей, становится все менее эффективной, поскольку вызов сервисного инженера на место эксплуатации робота сопряжен с большими затратами времени и денег. Предприятия требуют от сервисной организации не только более быстрого оказания помощи, но и предотвращения возможных сбоев производства.

    In 2006, ABB developed a new approach to better meet customer’s expectations: Using the latest technologies to reach the robots at customer sites around the world, ABB could support them remotely in just minutes, thereby reducing the need for site visits. Thus the new Remote Service concept was quickly brought to fruition and was launched in mid-2007. Statistics show that by using the system the majority of production stoppages can be avoided.

    В 2006 г. компания АББ разработала новый подход к удовлетворению ожиданий своих заказчиков. Использование современных технологий позволяет специалистам АББ получать информацию от роботов из любой точки мира и в считанные минуты оказывать помощь дистанционно, в результате чего сокращается количество выездов на место установки. Запущенная в середине 2007 г. концепция Remote Service быстро себя оправдала. Статистика показывает, что её применение позволило предотвратить большое число остановок производства.

    Reactive maintenance The hardware that makes ABB Remote Service possible consists of a communication unit, which has a function similar to that of an airplane’s so-called black box 1. This “service box” is connected to the robot’s control system and can read and transmit diagnostic information. The unit not only reads critical diagnostic information that enables immediate support in the event of a failure, but also makes it possible to monitor and analyze the robot’s condition, thereby proactively detecting the need for maintenance.

    Устранение возникающих неисправностей Аппаратное устройство, с помощью которого реализуется концепция Remote Service, представляет собой коммуникационный блок, работающий аналогично черному ящику самолета (рис. 1). Этот блок считывает диагностические данные из контроллера робота и передает их по каналу GSM. Считывается не только информация, необходимая для оказания немедленной помощи в случае отказа, но и сведения, позволяющие контролировать и анализировать состояние робота для прогнозирования неисправностей и планирования технического обслуживания.

    If the robot breaks down, the service box immediately stores the status of the robot, its historical data (as log files), and diagnostic parameters such as temperature and power supply. Equipped with a built-in modem and using the GSM network, the box transmits the data to a central server for analysis and presentation on a dedicated Web site. Alerts are automatically sent to the nearest of ABB’s 1,200 robot service engineers who then accesses the detailed data and error log to analyze the problem.

    При поломке робота сервисный блок немедленно сохраняет данные о его состоянии, сведения из рабочего журнала, а также значения диагностических параметров (температура и характеристики питания). Эти данные передаются встроенным GSM-модемом на центральный сервер для анализа и представления на соответствующем web-сайте. Аварийные сообщения автоматически пересылаются ближайшему к месту аварии одному из 1200 сервисных инженеров-робототехников АББ, который получает доступ к детальной информации и журналу аварий для анализа возникшей проблемы.

    A remotely based ABB engineer can then quickly identify the exact fault, offering rapid customer support. For problems that cannot be solved remotely, the service engineer can arrange for quick delivery of spare parts and visit the site to repair the robot. Even if the engineer must make a site visit, service is faster, more efficient and performed to a higher standard than otherwise possible.

    Специалист АББ может дистанционно идентифицировать отказ и оказать быструю помощь заказчику. Если неисправность не может быть устранена дистанционно, сервисный инженер организовывает доставку запасных частей и выезд ремонтной бригады. Даже если необходимо разрешение проблемы на месте, предшествующая дистанционная диагностика позволяет минимизировать объем работ и сократить время простоя.

    Remote Service enables engineers to “talk” to robots remotely and to utilize tools that enable smart, fast and automatic analysis. The system is based on a machine-to-machine (M2M) concept, which works automatically, requiring human input only for analysis and personalized customer recommendations. ABB was recognized for this innovative solution at the M2M United Conference in Chicago in 2008 Factbox.

    Remote Service позволяет инженерам «разговаривать» с роботами на расстоянии и предоставляет в их распоряжение интеллектуальные средства быстрого автоматизированного анализа. Система основана на основе технологии автоматической связи машины с машиной (M2M), где участие человека сводится к анализу данных и выдаче рекомендаций клиенту. В 2008 г. это инновационное решение от АББ получило приз на конференции M2M United Conference в Чикаго (см. вставку).

    Proactive maintenance 
    Remote Service also allows ABB engineers to monitor and detect potential problems in the robot system and opens up new possibilities for proactive maintenance.

    Прогнозирование неисправностей
    Remote Service позволяет инженерам АББ дистанционно контролировать состояние роботов и прогнозировать возможные неисправности, что открывает новые возможности по организации профилактического обслуживания.

    The service box regularly takes condition measurements. By monitoring key parameters over time, Remote Service can identify potential failures and when necessary notify both the end customer and the appropriate ABB engineer. The management and storage of full system backups is a very powerful service to help recover from critical situations caused, for example, by operator errors.

    Сервисный блок регулярно выполняет диагностические измерения. Непрерывно контролируя ключевые параметры, Remote Service может распознать потенциальные опасности и, при необходимости, оповещать владельца оборудования и соответствующего специалиста АББ. Резервирование данных для возможного отката является мощным средством, обеспечивающим восстановление системы в критических ситуациях, например, после ошибки оператора.

    The first Remote Service installation took place in the automotive industry in the United States and quickly proved its value. The motherboard in a robot cabinet overheated and the rise in temperature triggered an alarm via Remote Service. Because of the alarm, engineers were able to replace a faulty fan, preventing a costly production shutdown.

    Первая система Remote Service была установлена на автозаводе в США и очень скоро была оценена по достоинству. Она обнаружила перегрев материнской платы в шкафу управления роботом и передала сигнал о превышении допустимой температуры, благодаря чему инженеры смогли заменить неисправный вентилятор и предотвратить дорогостоящую остановку производства.

    MyRobot: 24-hour remote access

    Having regular access to a robot’s condition data is also essential to achieving lean production. At any time, from any location, customers can verify their robots’ status and access maintenance information and performance reports simply by logging in to ABB’s MyRobot Web site. The service enables customers to easily compare performances, identify bottlenecks or developing issues, and initiate the most

    Сайт MyRobot: круглосуточный дистанционный доступ
    Для того чтобы обеспечить бесперебойное производство, необходимо иметь регулярный доступ к информации о состоянии робота. Зайдя на соответствующую страницу сайта MyRobot компании АББ, заказчики получат все необходимые данные, включая сведения о техническом обслуживании и отчеты о производительности своего робота. Эта услуга позволяет легко сравнивать данные о производительности, обнаруживать возможные проблемы, а также оптимизировать планирование технического обслуживания и модернизации. С помощью MyRobot можно значительно увеличить выпуск продукции и уменьшить количество выбросов.

    Award-winning solution
    In June 2008, the innovative Remote Service solution won the Gold Value Chain award at the M2M United Conference in Chicago. The value chain award honors successful corporate adopters of M2M (machine–to-machine) technology and highlights the process of combining multiple technologies to deliver high-quality services to customers. ABB won in the categoryof Smart Services.

    Приз за удачное решение
    В июне 2008 г. инновационное решение Remote Service получило награду Gold Value Chain (Золотая цепь) на конференции M2M United Conference в Чикаго. «Золотая цепь» присуждается за успешное масштабное внедрение технологии M2M (машина – машина), а также за достижения в объединении различных технологий для предоставления высококачественных услуг заказчикам. АББ одержала победу в номинации «Интеллектуальный сервис».

    Case study: Tetley Tetley GB Ltd is the world’s second-largest manufacturer and distributor of tea. The company’s manufacturing and distribution business is spread across 40 countries and sells over 60 branded tea bags. Tetley’s UK tea production facility in Eaglescliffe, County Durham is the sole producer of Tetley tea bags 2.

    Пример применения: Tetley Компания TetleyGB Ltd является вторым по величине мировым производителем и поставщиком чая. Производственные и торговые филиалы компании имеются в 40 странах, а продукция распространяется под 60 торговыми марками. Чаеразвесочная фабрика в Иглсклифф, графство Дарем, Великобритания – единственный производитель чая Tetley в пакетиках (рис. 2).

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which can help extend the mean time between failures, shorten the time to repair and lower the cost of automated production.

    Предлагаемые АББ контракты на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и общую стоимость автоматизированного производства.

    Robots in the plant’s production line were tripping alarms and delaying the whole production cycle. The spurious alarms resulted in much unnecessary downtime that was spent resetting the robots in the hope that another breakdown could be avoided. Each time an alarm was tripped, several hours of production time was lost. “It was for this reason that we were keen to try out ABB’s Remote Service agreement,” said Colin Trevor, plant maintenance manager.

    Установленные в технологической линии роботы выдавали аварийные сигналы, задерживающие выполнение производственного цикла. Ложные срабатывания вынуждали перезапускать роботов в надежде предотвратить возможные отказы, в результате чего после каждого аварийного сигнала производство останавливалось на несколько часов. «Именно поэтому мы решили попробовать заключить с АББ контракт на дистанционное техническое обслуживание», – сказал Колин Тревор, начальник технической службы фабрики.

    To prevent future disruptions caused by unplanned downtime, Tetley signed an ABB Response Package service agreement, which included installing a service box and system infrastructure into the robot control systems. Using the Remote Service solution, ABB remotely monitors and collects data on the “wear and tear” and productivity of the robotic cells; this data is then shared with the customer and contributes to smooth-running production cycles.

    Для предотвращения ущерба в результате незапланированных простоев Tetley заключила с АББ контракт на комплексное обслуживание Response Package, согласно которому системы управления роботами были дооборудованы сервисными блоками с необходимой инфраструктурой. С помощью Remote Service компания АББ дистанционно собирает данные о наработке, износе и производительности роботизированных модулей. Эти данные предоставляются заказчику для оптимизации загрузки производственного оборудования.

    Higher production uptime
    Since the implementation of Remote Service, Tetley has enjoyed greatly reduced robot downtime, with no further disruptions caused by unforeseen problems. “The Remote Service package has dramatically changed the plant,” said Trevor. “We no longer have breakdown issues throughout the shift, helping us to achieve much longer periods of robot uptime. As we have learned, world-class manufacturing facilities need world-class support packages. Remote monitoring of our robots helps us to maintain machine uptime, prevent costly downtime and ensures my employees can be put to more valuable use.”

    Увеличение полезного времени
    С момента внедрения Remote Service компания Tetley была приятно удивлена резким сокращением простоя роботов и отсутствием незапланированных остановок производства. «Пакет Remote Service резко изменил ситуацию на предприятии», – сказал Тревор. «Мы избавились от простоев роботов и смогли резко увеличить их эксплуатационную готовность. Мы поняли, что для производственного оборудования мирового класса необходим сервисный пакет мирового класса. Дистанционный контроль роботов помогает нам поддерживать их в рабочем состоянии, предотвращать дорогостоящие простои и задействовать наш персонал для выполнения более важных задач».

    Service access
    Remote Service is available worldwide, connecting more than 500 robots. Companies that have up to 30 robots are often good candidates for the Remote Service offering, as they usually have neither the engineers nor the requisite skills to deal with robotics faults themselves. Larger companies are also enthusiastic about Remote Service, as the proactive services will improve the lifetime of their equipment and increase overall production uptime.

    Доступность сервиса
    Сеть Remote Service охватывает более 700 роботов по всему миру. Потенциальными заказчиками Remote Service являются компании, имеющие до 30 роботов, но не имеющие инженеров и техников, способных самостоятельно устранять их неисправности. Интерес к Remote Service проявляют и более крупные компании, поскольку они заинтересованы в увеличении срока службы и эксплуатационной готовности производственного оборудования.

    In today’s competitive environment, business profitability often relies on demanding production schedules that do not always leave time for exhaustive or repeated equipment health checks. ABB’s Remote Service agreements are designed to monitor its customers’ robots to identify when problems are likely to occur and ensure that help is dispatched before the problem can escalate. In over 60 percent of ABB’s service calls, its robots can be brought back online remotely, without further intervention.

    В условиях современной конкуренции окупаемость бизнеса часто зависит от соблюдения жестких графиков производства, не оставляющих времени для полномасштабных или периодических проверок исправности оборудования. Контракт Remote Service предусматривает мониторинг состояния роботов заказчика для прогнозирования возможных неисправностей и принятие мер по их предотвращению. В более чем 60 % случаев для устранения неисправности достаточно дистанционной консультации в сервисной службе АББ, дальнейшего вмешательства не требуется.

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which helps extend the mean time between failures, shorten the time to repair and lower the total cost of ownership. With four new packages available – Support, Response, Maintenance and Warranty, each backed up by ABB’s Remote Service technology – businesses can minimize the impact of unplanned downtime and achieve improved production-line efficiency.

    Компания АББ предлагает гибкий выбор контрактов на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, которые позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и эксплуатационные расходы. Четыре новых пакета на основе технологии Remote Service Support, Response, Maintenance и Warranty – позволяют минимизировать внеплановые простои и значительно повысить эффективность производства.

    The benefits of Remote Sevice are clear: improved availability, fewer service visits, lower maintenance costs and maximized total cost of ownership. This unique service sets ABB apart from its competitors and is the beginning of a revolution in service thinking. It provides ABB with a great opportunity to improve customer access to its expertise and develop more advanced services worldwide.

    Преимущества дистанционного технического обслуживания очевидны: повышенная надежность, уменьшение выездов ремонтных бригад, уменьшение затрат на обслуживание и общих эксплуатационных расходов. Эта уникальная услуга дает компании АББ преимущества над конкурентами и демонстрирует революционный подход к организации сервиса. Благодаря ей компания АББ расширяет доступ заказчиков к опыту своих специалистов и получает возможность более эффективного оказания технической помощи по всему миру.

    Тематики

    • тех. обсл. и ремонт средств электросвязи

    Обобщающие термины

    EN

    Англо-русский словарь нормативно-технической терминологии > remote maintenance

  • 29 remote sevice

    1. дистанционное техническое обслуживание

     

    дистанционное техническое обслуживание
    Техническое обслуживание объекта, проводимое под управлением персонала без его непосредственного присутствия.
    [ОСТ 45.152-99 ]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    Service from afar

    Дистанционный сервис

    ABB’s Remote Service concept is revolutionizing the robotics industry

    Разработанная АББ концепция дистанционного обслуживания Remote Service революционизирует робототехнику

    ABB robots are found in industrial applications everywhere – lifting, packing, grinding and welding, to name a few. Robust and tireless, they work around the clock and are critical to a company’s productivity. Thus, keeping these robots in top shape is essential – any failure can lead to serious output consequences. But what happens when a robot malfunctions?

    Роботы АББ используются во всех отраслях промышленности для перемещения грузов, упаковки, шлифовки, сварки – всего и не перечислить. Надежные и неутомимые работники, способные трудиться день и ночь, они представляют большую ценность для владельца. Поэтому очень важно поддерживать их в надлежащей состоянии, ведь любой отказ может иметь серьезные последствия. Но что делать, если робот все-таки сломался?

    ABB’s new Remote Service concept holds the answer: This approach enables a malfunctioning robot to alarm for help itself. An ABB service engineer then receives whole diagnostic information via wireless technology, analyzes the data on a Web site and responds with support in just minutes. This unique service is paying off for customers and ABB alike, and in the process is revolutionizing service thinking.

    Ответом на этот вопрос стала новая концепция Remote Service от АББ, согласно которой неисправный робот сам просит о помощи. C помощью беспроводной технологии специалист сервисной службы АББ получает всю необходимую диагностическую информацию, анализирует данные на web-сайте и через считанные минуты выдает рекомендации по устранению отказа. Эта уникальная возможность одинаково ценна как для заказчиков, так и для самой компании АББ. В перспективе она способна в корне изменить весь подход к организации технического обслуживания.

    Every minute of production downtime can have financially disastrous consequences for a company. Traditional reactive service is no longer sufficient since on-site service engineer visits also demand great amounts of time and money. Thus, companies not only require faster help from the service organization when needed but they also want to avoid disturbances in production.

    Каждая минута простоя производства может привести к губительным финансовым последствиям. Традиционная организация сервиса, предусматривающая ликвидацию возникающих неисправностей, становится все менее эффективной, поскольку вызов сервисного инженера на место эксплуатации робота сопряжен с большими затратами времени и денег. Предприятия требуют от сервисной организации не только более быстрого оказания помощи, но и предотвращения возможных сбоев производства.

    In 2006, ABB developed a new approach to better meet customer’s expectations: Using the latest technologies to reach the robots at customer sites around the world, ABB could support them remotely in just minutes, thereby reducing the need for site visits. Thus the new Remote Service concept was quickly brought to fruition and was launched in mid-2007. Statistics show that by using the system the majority of production stoppages can be avoided.

    В 2006 г. компания АББ разработала новый подход к удовлетворению ожиданий своих заказчиков. Использование современных технологий позволяет специалистам АББ получать информацию от роботов из любой точки мира и в считанные минуты оказывать помощь дистанционно, в результате чего сокращается количество выездов на место установки. Запущенная в середине 2007 г. концепция Remote Service быстро себя оправдала. Статистика показывает, что её применение позволило предотвратить большое число остановок производства.

    Reactive maintenance The hardware that makes ABB Remote Service possible consists of a communication unit, which has a function similar to that of an airplane’s so-called black box 1. This “service box” is connected to the robot’s control system and can read and transmit diagnostic information. The unit not only reads critical diagnostic information that enables immediate support in the event of a failure, but also makes it possible to monitor and analyze the robot’s condition, thereby proactively detecting the need for maintenance.

    Устранение возникающих неисправностей Аппаратное устройство, с помощью которого реализуется концепция Remote Service, представляет собой коммуникационный блок, работающий аналогично черному ящику самолета (рис. 1). Этот блок считывает диагностические данные из контроллера робота и передает их по каналу GSM. Считывается не только информация, необходимая для оказания немедленной помощи в случае отказа, но и сведения, позволяющие контролировать и анализировать состояние робота для прогнозирования неисправностей и планирования технического обслуживания.

    If the robot breaks down, the service box immediately stores the status of the robot, its historical data (as log files), and diagnostic parameters such as temperature and power supply. Equipped with a built-in modem and using the GSM network, the box transmits the data to a central server for analysis and presentation on a dedicated Web site. Alerts are automatically sent to the nearest of ABB’s 1,200 robot service engineers who then accesses the detailed data and error log to analyze the problem.

    При поломке робота сервисный блок немедленно сохраняет данные о его состоянии, сведения из рабочего журнала, а также значения диагностических параметров (температура и характеристики питания). Эти данные передаются встроенным GSM-модемом на центральный сервер для анализа и представления на соответствующем web-сайте. Аварийные сообщения автоматически пересылаются ближайшему к месту аварии одному из 1200 сервисных инженеров-робототехников АББ, который получает доступ к детальной информации и журналу аварий для анализа возникшей проблемы.

    A remotely based ABB engineer can then quickly identify the exact fault, offering rapid customer support. For problems that cannot be solved remotely, the service engineer can arrange for quick delivery of spare parts and visit the site to repair the robot. Even if the engineer must make a site visit, service is faster, more efficient and performed to a higher standard than otherwise possible.

    Специалист АББ может дистанционно идентифицировать отказ и оказать быструю помощь заказчику. Если неисправность не может быть устранена дистанционно, сервисный инженер организовывает доставку запасных частей и выезд ремонтной бригады. Даже если необходимо разрешение проблемы на месте, предшествующая дистанционная диагностика позволяет минимизировать объем работ и сократить время простоя.

    Remote Service enables engineers to “talk” to robots remotely and to utilize tools that enable smart, fast and automatic analysis. The system is based on a machine-to-machine (M2M) concept, which works automatically, requiring human input only for analysis and personalized customer recommendations. ABB was recognized for this innovative solution at the M2M United Conference in Chicago in 2008 Factbox.

    Remote Service позволяет инженерам «разговаривать» с роботами на расстоянии и предоставляет в их распоряжение интеллектуальные средства быстрого автоматизированного анализа. Система основана на основе технологии автоматической связи машины с машиной (M2M), где участие человека сводится к анализу данных и выдаче рекомендаций клиенту. В 2008 г. это инновационное решение от АББ получило приз на конференции M2M United Conference в Чикаго (см. вставку).

    Proactive maintenance 
    Remote Service also allows ABB engineers to monitor and detect potential problems in the robot system and opens up new possibilities for proactive maintenance.

    Прогнозирование неисправностей
    Remote Service позволяет инженерам АББ дистанционно контролировать состояние роботов и прогнозировать возможные неисправности, что открывает новые возможности по организации профилактического обслуживания.

    The service box regularly takes condition measurements. By monitoring key parameters over time, Remote Service can identify potential failures and when necessary notify both the end customer and the appropriate ABB engineer. The management and storage of full system backups is a very powerful service to help recover from critical situations caused, for example, by operator errors.

    Сервисный блок регулярно выполняет диагностические измерения. Непрерывно контролируя ключевые параметры, Remote Service может распознать потенциальные опасности и, при необходимости, оповещать владельца оборудования и соответствующего специалиста АББ. Резервирование данных для возможного отката является мощным средством, обеспечивающим восстановление системы в критических ситуациях, например, после ошибки оператора.

    The first Remote Service installation took place in the automotive industry in the United States and quickly proved its value. The motherboard in a robot cabinet overheated and the rise in temperature triggered an alarm via Remote Service. Because of the alarm, engineers were able to replace a faulty fan, preventing a costly production shutdown.

    Первая система Remote Service была установлена на автозаводе в США и очень скоро была оценена по достоинству. Она обнаружила перегрев материнской платы в шкафу управления роботом и передала сигнал о превышении допустимой температуры, благодаря чему инженеры смогли заменить неисправный вентилятор и предотвратить дорогостоящую остановку производства.

    MyRobot: 24-hour remote access

    Having regular access to a robot’s condition data is also essential to achieving lean production. At any time, from any location, customers can verify their robots’ status and access maintenance information and performance reports simply by logging in to ABB’s MyRobot Web site. The service enables customers to easily compare performances, identify bottlenecks or developing issues, and initiate the most

    Сайт MyRobot: круглосуточный дистанционный доступ
    Для того чтобы обеспечить бесперебойное производство, необходимо иметь регулярный доступ к информации о состоянии робота. Зайдя на соответствующую страницу сайта MyRobot компании АББ, заказчики получат все необходимые данные, включая сведения о техническом обслуживании и отчеты о производительности своего робота. Эта услуга позволяет легко сравнивать данные о производительности, обнаруживать возможные проблемы, а также оптимизировать планирование технического обслуживания и модернизации. С помощью MyRobot можно значительно увеличить выпуск продукции и уменьшить количество выбросов.

    Award-winning solution
    In June 2008, the innovative Remote Service solution won the Gold Value Chain award at the M2M United Conference in Chicago. The value chain award honors successful corporate adopters of M2M (machine–to-machine) technology and highlights the process of combining multiple technologies to deliver high-quality services to customers. ABB won in the categoryof Smart Services.

    Приз за удачное решение
    В июне 2008 г. инновационное решение Remote Service получило награду Gold Value Chain (Золотая цепь) на конференции M2M United Conference в Чикаго. «Золотая цепь» присуждается за успешное масштабное внедрение технологии M2M (машина – машина), а также за достижения в объединении различных технологий для предоставления высококачественных услуг заказчикам. АББ одержала победу в номинации «Интеллектуальный сервис».

    Case study: Tetley Tetley GB Ltd is the world’s second-largest manufacturer and distributor of tea. The company’s manufacturing and distribution business is spread across 40 countries and sells over 60 branded tea bags. Tetley’s UK tea production facility in Eaglescliffe, County Durham is the sole producer of Tetley tea bags 2.

    Пример применения: Tetley Компания TetleyGB Ltd является вторым по величине мировым производителем и поставщиком чая. Производственные и торговые филиалы компании имеются в 40 странах, а продукция распространяется под 60 торговыми марками. Чаеразвесочная фабрика в Иглсклифф, графство Дарем, Великобритания – единственный производитель чая Tetley в пакетиках (рис. 2).

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which can help extend the mean time between failures, shorten the time to repair and lower the cost of automated production.

    Предлагаемые АББ контракты на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и общую стоимость автоматизированного производства.

    Robots in the plant’s production line were tripping alarms and delaying the whole production cycle. The spurious alarms resulted in much unnecessary downtime that was spent resetting the robots in the hope that another breakdown could be avoided. Each time an alarm was tripped, several hours of production time was lost. “It was for this reason that we were keen to try out ABB’s Remote Service agreement,” said Colin Trevor, plant maintenance manager.

    Установленные в технологической линии роботы выдавали аварийные сигналы, задерживающие выполнение производственного цикла. Ложные срабатывания вынуждали перезапускать роботов в надежде предотвратить возможные отказы, в результате чего после каждого аварийного сигнала производство останавливалось на несколько часов. «Именно поэтому мы решили попробовать заключить с АББ контракт на дистанционное техническое обслуживание», – сказал Колин Тревор, начальник технической службы фабрики.

    To prevent future disruptions caused by unplanned downtime, Tetley signed an ABB Response Package service agreement, which included installing a service box and system infrastructure into the robot control systems. Using the Remote Service solution, ABB remotely monitors and collects data on the “wear and tear” and productivity of the robotic cells; this data is then shared with the customer and contributes to smooth-running production cycles.

    Для предотвращения ущерба в результате незапланированных простоев Tetley заключила с АББ контракт на комплексное обслуживание Response Package, согласно которому системы управления роботами были дооборудованы сервисными блоками с необходимой инфраструктурой. С помощью Remote Service компания АББ дистанционно собирает данные о наработке, износе и производительности роботизированных модулей. Эти данные предоставляются заказчику для оптимизации загрузки производственного оборудования.

    Higher production uptime
    Since the implementation of Remote Service, Tetley has enjoyed greatly reduced robot downtime, with no further disruptions caused by unforeseen problems. “The Remote Service package has dramatically changed the plant,” said Trevor. “We no longer have breakdown issues throughout the shift, helping us to achieve much longer periods of robot uptime. As we have learned, world-class manufacturing facilities need world-class support packages. Remote monitoring of our robots helps us to maintain machine uptime, prevent costly downtime and ensures my employees can be put to more valuable use.”

    Увеличение полезного времени
    С момента внедрения Remote Service компания Tetley была приятно удивлена резким сокращением простоя роботов и отсутствием незапланированных остановок производства. «Пакет Remote Service резко изменил ситуацию на предприятии», – сказал Тревор. «Мы избавились от простоев роботов и смогли резко увеличить их эксплуатационную готовность. Мы поняли, что для производственного оборудования мирового класса необходим сервисный пакет мирового класса. Дистанционный контроль роботов помогает нам поддерживать их в рабочем состоянии, предотвращать дорогостоящие простои и задействовать наш персонал для выполнения более важных задач».

    Service access
    Remote Service is available worldwide, connecting more than 500 robots. Companies that have up to 30 robots are often good candidates for the Remote Service offering, as they usually have neither the engineers nor the requisite skills to deal with robotics faults themselves. Larger companies are also enthusiastic about Remote Service, as the proactive services will improve the lifetime of their equipment and increase overall production uptime.

    Доступность сервиса
    Сеть Remote Service охватывает более 700 роботов по всему миру. Потенциальными заказчиками Remote Service являются компании, имеющие до 30 роботов, но не имеющие инженеров и техников, способных самостоятельно устранять их неисправности. Интерес к Remote Service проявляют и более крупные компании, поскольку они заинтересованы в увеличении срока службы и эксплуатационной готовности производственного оборудования.

    In today’s competitive environment, business profitability often relies on demanding production schedules that do not always leave time for exhaustive or repeated equipment health checks. ABB’s Remote Service agreements are designed to monitor its customers’ robots to identify when problems are likely to occur and ensure that help is dispatched before the problem can escalate. In over 60 percent of ABB’s service calls, its robots can be brought back online remotely, without further intervention.

    В условиях современной конкуренции окупаемость бизнеса часто зависит от соблюдения жестких графиков производства, не оставляющих времени для полномасштабных или периодических проверок исправности оборудования. Контракт Remote Service предусматривает мониторинг состояния роботов заказчика для прогнозирования возможных неисправностей и принятие мер по их предотвращению. В более чем 60 % случаев для устранения неисправности достаточно дистанционной консультации в сервисной службе АББ, дальнейшего вмешательства не требуется.

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which helps extend the mean time between failures, shorten the time to repair and lower the total cost of ownership. With four new packages available – Support, Response, Maintenance and Warranty, each backed up by ABB’s Remote Service technology – businesses can minimize the impact of unplanned downtime and achieve improved production-line efficiency.

    Компания АББ предлагает гибкий выбор контрактов на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, которые позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и эксплуатационные расходы. Четыре новых пакета на основе технологии Remote Service Support, Response, Maintenance и Warranty – позволяют минимизировать внеплановые простои и значительно повысить эффективность производства.

    The benefits of Remote Sevice are clear: improved availability, fewer service visits, lower maintenance costs and maximized total cost of ownership. This unique service sets ABB apart from its competitors and is the beginning of a revolution in service thinking. It provides ABB with a great opportunity to improve customer access to its expertise and develop more advanced services worldwide.

    Преимущества дистанционного технического обслуживания очевидны: повышенная надежность, уменьшение выездов ремонтных бригад, уменьшение затрат на обслуживание и общих эксплуатационных расходов. Эта уникальная услуга дает компании АББ преимущества над конкурентами и демонстрирует революционный подход к организации сервиса. Благодаря ей компания АББ расширяет доступ заказчиков к опыту своих специалистов и получает возможность более эффективного оказания технической помощи по всему миру.

    Тематики

    • тех. обсл. и ремонт средств электросвязи

    Обобщающие термины

    EN

    Англо-русский словарь нормативно-технической терминологии > remote sevice

  • 30 LCC

    1. launch control center - пункт управления пуском;
    2. leaderless chip carrier - носитель микросхемы;
    3. leadless chip carrier - безвыводной кристаллодержатель; безвыводной носитель кристалла;
    4. life cycle cost - стоимость жизненного цикла; стоимость оборудования с учётом срока службы;
    5. local communications complex - комплекс местной связи;
    6. local communications console - пульт управления системой местной связи;
    7. London Chamber of Commerce - Лондонская торговая палата (Великобритания);
    8. low color channel black - канальная сажа с низкой красящей способностью

    Англо-русский словарь технических аббревиатур > LCC

  • 31 off-line UPS

    1. источник бесперебойного питания резервного типа
    2. ИБП с автономным питанием

     

    ИБП с автономным питанием
    Источник электропитания, который в нормальных условиях получает питание от сети, а выпрямитель обеспечивает подзарядку аккумуляторной батарей. При пропадании входного напряжения практически мгновенно включается преобразователь постоянного напряжения в переменное и нагрузка переключается на него. При восстановлении напряжения сети происходит обратное переключение и аккумулятор снова начинает подзаряжаться (см. рис. O-1).

    5209
    Рис. O-1. Структурная схема UPS с автономным питанием:
    1 - переключатель; 2 - выпрямитель; 3 - инвертор; 4 - аккумуляторная батарея

    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

     

    off-line ИБП
    источник бесперебойного питания резервного типа
    источник бесперебойного питания пассивного типа
    источник бесперебойного питания с переключением
    источник бесперебойного питания с режимом работы "вне линии"
    -

    EN

    passive standby UPS
    off-line UPS

    A system, which normally energizes the load directly from the utility mains (see VFD classification by IEC 62040-3). It contains a charger and an Off-Line Inverter. The Inverter is switched ON upon mains outage to supply the load.
    [ http://www.upsonnet.com/UPS-Glossary/]

    0418

    Структурная схема ИБП резервного типа:
    ВФ - входной фильт; СТ - регулирующий стабилизатор; БК - коммутирующее стройство; ЗУ - зарядное устройство; ИНВ - инвертор; АБ - аккумуляторная батарея

    ИБП работает в одном из двух режимом:

    • нормальный режим (режим работы от питающей сети) - питание нагрузки (потребителя) осуществляется напрямую от питающей сети.В более сложных (дорогих) моделях - через входной фильтр ВФ и регулирующий стабилизатор СТ (феррорезонансный трансформатор или автотрансформатор с автоматически переключаемыми отводами). Применение регулирующего стабилизатора позволяет расширить диапазон входного напряжения, при котором не происходит переключение ИБП в автономный (аккумуляторный) режим,
    • автономный (аккумуляторный) режим – питание нагрузки за счет энергии аккумуляторной батареи.

    Переключение из нормального в автономный режим происходит автоматически при исчезновении сетевого напряжения или отклонении параметров сетевого напряжения за пределы до­пустимого диапазона.
    Батарея поддерживает работу нагрузки в течение некоторого времени, которое зависит от потребляемой нагрузкой мощности, емкости аккумуляторной батареи, ее возраста и степени заряда.
    После разряда батареи до предельно низкого уровня, схема управления ИБП подает команду на отключение нагрузки.
    При восстановлении сетевого напряжения автоматически производится обратное переключение в нормальный режим работы (от питающей сети) и начинается заряд аккумуляторной батареи.
    Время переключения обычно составляет 4...12 мс что вполне достаточно для большинства электроприемников с импульсным блоком питания.

    Достоинства:

    Недостатки:

    • большое время переключения (4...12 мс),
    • отсутствие гальванической развязки нагрузки от питающей сети,
    • при отсутствии стабилизатора:
      • отсутствие стабилизации выходного напряжения,
      • переход в автономный (аккумуляторный) режим работы даже при небольших отклонениях параметров питающей сети, что приводит к быстрому сокращению срока службы аккумуляторных батарей. При этом стоимость батарей может составлять до 40 % от общей стоимости ИБП,
    • отсутствие стабилизации частоты выходного напряжения,
    • форма выходного напряжения - ступенчатая или апроксимированная синусоида

    [На основе:

    1. Климов В.П., Портнов А.А., Зуенко В.В. Топологии источников бесперебойного питания переменного тока (ИБП). http://www.tensy.ru/article04.html
    2. http://www.tcs.ru/reviews/?id=345
    3. Тараданов Е. "EAT Engineering" Типы источников бесперебойного питания. http://www.eat-ups.kz/stat1.shtml]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > off-line UPS

  • 32 passive standby UPS

    1. источник бесперебойного питания резервного типа

     

    off-line ИБП
    источник бесперебойного питания резервного типа
    источник бесперебойного питания пассивного типа
    источник бесперебойного питания с переключением
    источник бесперебойного питания с режимом работы "вне линии"
    -

    EN

    passive standby UPS
    off-line UPS

    A system, which normally energizes the load directly from the utility mains (see VFD classification by IEC 62040-3). It contains a charger and an Off-Line Inverter. The Inverter is switched ON upon mains outage to supply the load.
    [ http://www.upsonnet.com/UPS-Glossary/]

    0418

    Структурная схема ИБП резервного типа:
    ВФ - входной фильт; СТ - регулирующий стабилизатор; БК - коммутирующее стройство; ЗУ - зарядное устройство; ИНВ - инвертор; АБ - аккумуляторная батарея

    ИБП работает в одном из двух режимом:

    • нормальный режим (режим работы от питающей сети) - питание нагрузки (потребителя) осуществляется напрямую от питающей сети.В более сложных (дорогих) моделях - через входной фильтр ВФ и регулирующий стабилизатор СТ (феррорезонансный трансформатор или автотрансформатор с автоматически переключаемыми отводами). Применение регулирующего стабилизатора позволяет расширить диапазон входного напряжения, при котором не происходит переключение ИБП в автономный (аккумуляторный) режим,
    • автономный (аккумуляторный) режим – питание нагрузки за счет энергии аккумуляторной батареи.

    Переключение из нормального в автономный режим происходит автоматически при исчезновении сетевого напряжения или отклонении параметров сетевого напряжения за пределы до­пустимого диапазона.
    Батарея поддерживает работу нагрузки в течение некоторого времени, которое зависит от потребляемой нагрузкой мощности, емкости аккумуляторной батареи, ее возраста и степени заряда.
    После разряда батареи до предельно низкого уровня, схема управления ИБП подает команду на отключение нагрузки.
    При восстановлении сетевого напряжения автоматически производится обратное переключение в нормальный режим работы (от питающей сети) и начинается заряд аккумуляторной батареи.
    Время переключения обычно составляет 4...12 мс что вполне достаточно для большинства электроприемников с импульсным блоком питания.

    Достоинства:

    Недостатки:

    • большое время переключения (4...12 мс),
    • отсутствие гальванической развязки нагрузки от питающей сети,
    • при отсутствии стабилизатора:
      • отсутствие стабилизации выходного напряжения,
      • переход в автономный (аккумуляторный) режим работы даже при небольших отклонениях параметров питающей сети, что приводит к быстрому сокращению срока службы аккумуляторных батарей. При этом стоимость батарей может составлять до 40 % от общей стоимости ИБП,
    • отсутствие стабилизации частоты выходного напряжения,
    • форма выходного напряжения - ступенчатая или апроксимированная синусоида

    [На основе:

    1. Климов В.П., Портнов А.А., Зуенко В.В. Топологии источников бесперебойного питания переменного тока (ИБП). http://www.tensy.ru/article04.html
    2. http://www.tcs.ru/reviews/?id=345
    3. Тараданов Е. "EAT Engineering" Типы источников бесперебойного питания. http://www.eat-ups.kz/stat1.shtml]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > passive standby UPS

  • 33 standby UPS

    1. резервный ИБП
    2. источник бесперебойного питания резервного типа

     

    off-line ИБП
    источник бесперебойного питания резервного типа
    источник бесперебойного питания пассивного типа
    источник бесперебойного питания с переключением
    источник бесперебойного питания с режимом работы "вне линии"
    -

    EN

    passive standby UPS
    off-line UPS

    A system, which normally energizes the load directly from the utility mains (see VFD classification by IEC 62040-3). It contains a charger and an Off-Line Inverter. The Inverter is switched ON upon mains outage to supply the load.
    [ http://www.upsonnet.com/UPS-Glossary/]

    0418

    Структурная схема ИБП резервного типа:
    ВФ - входной фильт; СТ - регулирующий стабилизатор; БК - коммутирующее стройство; ЗУ - зарядное устройство; ИНВ - инвертор; АБ - аккумуляторная батарея

    ИБП работает в одном из двух режимом:

    • нормальный режим (режим работы от питающей сети) - питание нагрузки (потребителя) осуществляется напрямую от питающей сети.В более сложных (дорогих) моделях - через входной фильтр ВФ и регулирующий стабилизатор СТ (феррорезонансный трансформатор или автотрансформатор с автоматически переключаемыми отводами). Применение регулирующего стабилизатора позволяет расширить диапазон входного напряжения, при котором не происходит переключение ИБП в автономный (аккумуляторный) режим,
    • автономный (аккумуляторный) режим – питание нагрузки за счет энергии аккумуляторной батареи.

    Переключение из нормального в автономный режим происходит автоматически при исчезновении сетевого напряжения или отклонении параметров сетевого напряжения за пределы до­пустимого диапазона.
    Батарея поддерживает работу нагрузки в течение некоторого времени, которое зависит от потребляемой нагрузкой мощности, емкости аккумуляторной батареи, ее возраста и степени заряда.
    После разряда батареи до предельно низкого уровня, схема управления ИБП подает команду на отключение нагрузки.
    При восстановлении сетевого напряжения автоматически производится обратное переключение в нормальный режим работы (от питающей сети) и начинается заряд аккумуляторной батареи.
    Время переключения обычно составляет 4...12 мс что вполне достаточно для большинства электроприемников с импульсным блоком питания.

    Достоинства:

    Недостатки:

    • большое время переключения (4...12 мс),
    • отсутствие гальванической развязки нагрузки от питающей сети,
    • при отсутствии стабилизатора:
      • отсутствие стабилизации выходного напряжения,
      • переход в автономный (аккумуляторный) режим работы даже при небольших отклонениях параметров питающей сети, что приводит к быстрому сокращению срока службы аккумуляторных батарей. При этом стоимость батарей может составлять до 40 % от общей стоимости ИБП,
    • отсутствие стабилизации частоты выходного напряжения,
    • форма выходного напряжения - ступенчатая или апроксимированная синусоида

    [На основе:

    1. Климов В.П., Портнов А.А., Зуенко В.В. Топологии источников бесперебойного питания переменного тока (ИБП). http://www.tensy.ru/article04.html
    2. http://www.tcs.ru/reviews/?id=345
    3. Тараданов Е. "EAT Engineering" Типы источников бесперебойного питания. http://www.eat-ups.kz/stat1.shtml]

    Тематики

    Синонимы

    EN

     

    резервный ИБП
    ИБП, в котором аккумуляторы подключаются только в критических ситуациях.
    Синоним - off-line UPS.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > standby UPS

  • 34 economic age-life method

    учет метод исчисления экономического возраста-срока службы* (метод исчисления накопленной амортизации, при котором первоначальная стоимость актива умножается на отношение эффективного возраста актива к оценочному сроку полезной службы актива)
    See:

    Англо-русский экономический словарь > economic age-life method

  • 35 modified economic age-life method

    учет модифицированный метод экономического возраста/срока службы* (метод оценки накопленной амортизации, при котором рассчитывается только величина накопленной неустранимой амортизации, для чего отношение между эффективным возрастом актива и сроком его полезной службы умножается на восстановительную стоимость актива за вычетом устранимого износа)
    See:

    Англо-русский экономический словарь > modified economic age-life method

  • 36 betterment

    улучшение: улучшение (усовершенствование, модернизация, ремонт) актива с целью повышения его производительности, продления срока службы; стоимость улучшения актива добавляется к его стоимости для последующей амортизации.

    Англо-русский экономический словарь > betterment

  • 37 overhead

    1. служебный поток (данных)
    2. служебные сигналы или данные
    3. служебная нагрузка, заголовок
    4. накладные расходы
    5. накладные (о расходах)
    6. надземный (о трубопроводе)
    7. надземный
    8. косвенные затраты
    9. дополнение (символа штрихового кода)
    10. долговременная маркировка
    11. головной погон
    12. воздушный (о ЛЭП)
    13. воздушный (о линии)
    14. верхний погон
    15. административно-хозяйственные расходы

     

    верхний погон
    верхний
    головной
    отбираемый с верха (колонны)


    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    Синонимы

    EN

     

    воздушный (о ЛЭП)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    воздушный (о линии)

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    головной погон
    Высоколетучая фракция исходного сырья, отбираемая сверху ректификационной колонны.
    [СТ РК ИСО 1998-1-2004 (ИСО 1998-1:1998, IDT)]

    Тематики

    EN

     

    дополнение (символа штрихового кода)
    Часть символа штрихового кода, дополняющая знаки символа, кодирующие данные, для придания символу установленной структуры, и состоящая из вспомогательных и контрольных знаков символа.
    [ ГОСТ 30721-2000]
    [ ГОСТ Р 51294.3-99]

    Тематики

    EN

    DE

    FR

     

    косвенные затраты
    (ITIL Service Strategy) Затраты на предоставление ИТ-услуги, которые не могут быть полностью отнесены на конкретного заказчика. Например, затраты на общие серверы или лицензии программного обеспечения. Также известны как издержки. См. тж. прямые затраты.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    косвенные затраты
    1. В межотраслевом балансе — затраты, которые входят в данный продукт не непосредственно (как прямые затраты), а через затраты сопряженных отраслей. Например, если точно известно, сколько электроэнергии тратится на изготовление одного автомобиля на заводе, то еще нельзя ответить на простой вопрос: насколько надо увеличить производство электроэнергии в будущем году, чтобы вдвое увеличить выпуск машин? Потому что электроэнергия нужна не только на данном заводе, но и для выпуска проката на металлургическом комбинате, и для выплавки стали, добычи руды, изготовления тех дополнительных автомобилей, которые потребуются для доставки руды. На практике ограничиваются несколькими кругами затрат (их называют К.з. первого, второго, третьего и т.д. порядка, или цикла, или концентра). Поскольку затраты очень высоких порядков абсолютно и относительно невелики, подсчет прерывается на том из них, который позволяет получить хотя и приблизительные, но достаточно надежные результаты. При расчетах МОБ можно обойтись и без отдельного трудоемкого подытоживания К.з. и непосредственно получить коэффициенты полных затрат, а отсюда и все искомые показатели сбалансированного плана. 2. В теории оптимальных оценок К.з. (термин Л.В.Канторовича), или, что то же самое, затраты обратной связи (термин В.В.Новожилова), означают увеличение затрат труда в народном хозяйстве, обусловленное тем, что приращение производства любого продукта уменьшает возможность применения некоторых (лучших) средств труда на других участках народного хозяйства и ведет к использованию на таких участках менее совершенной техники и худших естественных ресурсов (см. подробнее: Дифференциальные затраты народного хозяйства по данному продукту). Ср. Альтернативные издержки, альтернативная стоимость. 3. Связанные с производством продукции расходы, представленные расходами на содержание и эксплуатацию оборудования, зданий, на зарплату вспомогательным рабочим, ИТР и др., которые нельзя прямо отнести на себестоимость данной продукции. Они включаются в себестоимость специальными расчетными методами.
    [ http://slovar-lopatnikov.ru/]

    EN

    indirect cost
    (ITIL Service Strategy) The cost of providing an IT service which cannot be allocated in full to a specific customer – for example, the cost of providing shared servers or software licences. Also known as overhead. See also direct cost.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    Синонимы

    EN

     

    надземный
    верхний
    воздушный
    подвесной


    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    Синонимы

    EN

     

    надземный (о трубопроводе)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    накладные (о расходах)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    накладные расходы

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    накладные расходы
    Расходы на хозяйственное обслуживание производства и управление; являются дополнительными к основным затратам на производство и наряду с ними, по специальным правилам расчета, включаются в полную себестоимость продукции. См. Затраты, Калькулирование методом полного распределения затрат, Коэффициенты списания накладных затрат.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    служебная нагрузка, заголовок
    (МСЭ-T G.707/ Y.1322 МСЭ-T G.709/ Y.1331).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    служебные сигналы или данные
    воздушный
    подвесной
    надземный
    верхний
    дополнительный
    вспомогательный (об операции)


    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

     

    служебный поток (данных)
    заголовок

    Доля пропускной способности системы, расходуемая на передачу служебного (собственного) трафика сети, который в процессе передачи добавляется к полезной информации. См. section ~.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    Синонимы

    EN

    04.02.27 долговременная маркировка [ permanent marking]: Изображение, полученное с помощью интрузивного или неинтрузивного маркирования, которое должно оставаться различимым, как минимум, в течение установленного срока службы изделия.

    Сравнить с терминологической статьей «соединение» по ИСО/МЭК19762-11).

    ______________

    1)Терминологическая статья 04.02.27 не связана с указанной терминологической статьей.

    <2>4 Сокращения

    ECI интерпретация в расширенном канале [extended channel interpretation]

    DPM прямое маркирование изделий [direct part marking]

    BWA коррекция ширины штриха [bar width adjustment]

    BWC компенсация ширины штриха [barwidth compensation]

    CPI число знаков на дюйм [characters per inch]

    PCS сигнал контраста печати [print contrast signal]

    ORM оптический носитель данных [optically readable medium]

    FoV поле обзора [field of view]

    Алфавитный указатель терминов на английском языке

    (n, k)symbology

    04.02.13

    add-on symbol

    03.02.29

    alignment pattern

    04.02.07

    aperture

    02.04.09

    auto discrimination

    02.04.33

    auxiliary character/pattern

    03.01.04

    background

    02.02.05

    bar

    02.01.05

    bar code character

    02.01.09

    bar code density

    03.02.14

    barcode master

    03.02.19

    barcode reader

    02.04.05

    barcode symbol

    02.01.03

    bar height

    02.01.16

    bar-space sequence

    02.01.20

    barwidth

    02.01.17

    barwidth adjustment

    03.02.21

    barwidth compensation

    03.02.22

    barwidth gain/loss

    03.02.23

    barwidth increase

    03.02.24

    barwidth reduction

    03.02.25

    bearer bar

    03.02.11

    binary symbology

    03.01.10

    characters per inch

    03.02.15

    charge-coupled device

    02.04.13

    coded character set

    02.01.08

    column

    04.02.11

    compaction mode

    04.02.15

    composite symbol

    04.02.14

    contact scanner

    02.04.07

    continuous code

    03.01.12

    corner marks

    03.02.20

    data codeword

    04.02.18

    data region

    04.02.17

    decodability

    02.02.28

    decode algorithm

    02.02.01

    defect

    02.02.22

    delineator

    03.02.30

    densitometer

    02.02.18

    depth of field (1)

    02.04.30

    depth of field (2)

    02.04.31

    diffuse reflection

    02.02.09

    direct part marking

    04.02.24

    discrete code

    03.01.13

    dot code

    04.02.05

    effective aperture

    02.04.10

    element

    02.01.14

    erasure

    04.02.21

    error correction codeword

    04.02.19

    error correction level

    04.02.20

    even parity

    03.02.08

    field of view

    02.04.32

    film master

    03.02.18

    finder pattern

    04.02.08

    fixed beam scanner

    02.04.16

    fixed parity

    03.02.10

    fixed pattern

    04.02.03

    flat-bed scanner

    02.04.21

    gloss

    02.02.13

    guard pattern

    03.02.04

    helium neon laser

    02.04.14

    integrated artwork

    03.02.28

    intercharacter gap

    03.01.08

    intrusive marking

    04.02.25

    label printing machine

    02.04.34

    ladder orientation

    03.02.05

    laser engraver

    02.04.35

    latch character

    02.01.24

    linear bar code symbol

    03.01.01

    magnification factor

    03.02.27

    matrix symbology

    04.02.04

    modular symbology

    03.01.11

    module (1)

    02.01.13

    module (2)

    04.02.06

    modulo

    03.02.03

    moving beam scanner

    02.04.15

    multi-row symbology

    04.02.09

    non-intrusive marking

    04.02.26

    odd parity

    03.02.07

    omnidirectional

    03.01.14

    omnidirectional scanner

    02.04.20

    opacity

    02.02.16

    optically readable medium

    02.01.01

    optical throw

    02.04.27

    orientation

    02.04.23

    orientation pattern

    02.01.22

    oscillating mirror scanner

    02.04.19

    overhead

    03.01.03

    overprinting

    02.04.36

    pad character

    04.02.22

    pad codeword

    04.02.23

    permanent marking

    04.02.27

    photometer

    02.02.19

    picket fence orientation

    03.02.06

    pitch

    02.04.26

    pixel

    02.04.37

    print contrast signal

    02.02.20

    printability gauge

    03.02.26

    printability test

    02.02.21

    print quality

    02.02.02

    quiet zone

    02.01.06

    raster

    02.04.18

    raster scanner

    02.04.17

    reading angle

    02.04.22

    reading distance

    02.04.29

    read rate

    02.04.06

    redundancy

    03.01.05

    reference decode algorithm

    02.02.26

    reference threshold

    02.02.27

    reflectance

    02.02.07

    reflectance difference

    02.02.11

    regular reflection

    02.02.08

    resolution

    02.01.15

    row

    04.02.10

    scanner

    02.04.04

    scanning window

    02.04.28

    scan, noun (1)

    02.04.01

    scan, noun (2)

    02.04.03

    scan reflectance profile

    02.02.17

    scan, verb

    02.04.02

    self-checking

    02.01.21

    shift character

    02.01.23

    short read

    03.02.12

    show through

    02.02.12

    single line (beam) scanner

    02.04.11

    skew

    02.04.25

    slot reader

    02.04.12

    speck

    02.02.24

    spectral response

    02.02.10

    spot

    02.02.25

    stacked symbology

    04.02.12

    stop character/pattern

    03.01.02

    structured append

    04.02.16

    substitution error

    03.02.01

    substrate

    02.02.06

    symbol architecture

    02.01.04

    symbol aspect ratio

    02.01.19

    symbol character

    02.01.07

    symbol check character

    03.02.02

    symbol density

    03.02.16

    symbology

    02.01.02

    symbol width

    02.01.18

    tilt

    02.04.24

    transmittance (l)

    02.02.14

    transmittance (2)

    02.02.15

    truncation

    03.02.13

    two-dimensional symbol (1)

    04.02.01

    two-dimensional symbol (2)

    04.02.02

    two-width symbology

    03.01.09

    variable parity encodation

    03.02.09

    verification

    02.02.03

    verifier

    02.02.04

    vertical redundancy

    03.01.06

    void

    02.02.23

    wand

    02.04.08

    wide: narrow ratio

    03.01.07

    X dimension

    02.01.10

    Y dimension

    02.01.11

    Z dimension

    02.01.12

    zero-suppression

    03.02.17

    <2>Приложение ДА1)

    ______________

    1)

    Источник: ГОСТ Р ИСО/МЭК 19762-2-2011: Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 2. Оптические носители данных (ОНД) оригинал документа

    Англо-русский словарь нормативно-технической терминологии > overhead

  • 38 depreciation reserves

    1. амортизационные отчисления

     

    амортизационные отчисления

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    амортизационные отчисления
    амортизационные расходы
    Денежные суммы, соответствующие частям стоимости основных фондов (внеоборотных активов), постепенно переносимым, по мере их использования в производстве, на стоимость производимого с их помощью продукта. Начисляются по установленным нормам амортизации, как правило, в процентах к балансовой стоимости материальных и нематериальных внеоборотных активов (не амортизируются земля и др. природные ресурсы). По истечении нормативного срока службы активов амортизация не начисляется. Суммы начисленной амортизации, как и другие расходы, связанные с производством и реализацией, согласно главе 25 Налогового кодекса РФ, вычитаются из доходов предприятия для расчета налогооблагаемой прибыли.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > depreciation reserves

  • 39 modular data center

    1. модульный центр обработки данных (ЦОД)

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > modular data center

  • 40 residual value

    1. остаточная стоимость
    2. ликвидационная стоимость

     

    ликвидационная стоимость
    1. Стоимость, которая может быть получена в результате ликвидации актива.
    2. Ликвидационной стоимостью объекта оценки признается стоимость объекта оценки в случае, если объект оценки должен быть отчужден в срок меньше обычного срока экспозиции аналогичных объектов (п. 4 Постановление Правительства РФ от 06 07 2001 № 519 «Об утверждении стандартов оценки»).
    [ http://www.lexikon.ru/dict/uprav/index.html]

    ликвидационная стоимость
    Оценка активов предприятия при его ликвидации в случае, если предприятие прекращает свою деятельность в качестве самостоятельного хозяйственного субъекта (напр., при банкротстве, распаде и т.п.). По отдельным активам Л.с. характеризует возможность их продажи по определенной цене при завершении полезного срока их использования на предприятии. В международной практике Л.с. актива это чистая сумма средств, которую компания ожидает получить за актив в конце срока его полезной службы за вычетом ожидаемых затрат на ликвидацию. Л.с. применяется (в отличие от рыночной стоимости) и в случаях, когда объект оценки должен быть продан в срок, меньший обычного срока экспозиции аналогичных объектов.(См. Стандарты оценки, обязательные к применению субъектами оценочной деятельности).
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    остаточная стоимость
    1. Остающаяся стоимость актива в конце установленного периода времени (в этом определении О.с. аналогична скраповой стоимости — см.). 2.Чистая сумма, которую предприятие рассчитывает получить за актив в конце его срока полезной службы после вычета ожидаемых затрат по реализации (МСФО). 3.Стоимость, определяемая путем остаточной оценки. См. Остаточный метод.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > residual value

См. также в других словарях:

  • полная стоимость срока службы — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN total life cycle cost …   Справочник технического переводчика

  • СТОИМОСТЬ ОСНОВНЫХ ФОНДОВ, ПЕРВОНАЧАЛЬНАЯ ПОЛНАЯ — стоимость основных фондов в ценах приобретения, то есть стоимость ввода в действие объектов основных фондов. Выражает фактические денежные расходы на возведение зданий, сооружений и на приобретение, доставку к месту назначения, установку (включая …   Большой экономический словарь

  • Стоимость Основных Средств Первоначальная — стоимость основных средств при их приобретении, получении и складывается из расходов на приобретение, доставку и монтаж оборудования, разработку проектно сметной документации, строительство зданий и сооружений. Основные средства учитываются по… …   Словарь бизнес-терминов

  • СТОИМОСТЬ ОСНОВНЫХ СРЕДСТВ, ПЕРВОНАЧАЛЬНАЯ — стоимость основных средств при их поступлении в хозяйство. Эта стоимость определяется по сумме фактических затрат на приобретение основных средств и на строительство зданий и сооружений хозяйственным способом. Складывается из расходов на… …   Большой экономический словарь

  • стоимость жизненного цикла — 3.11 стоимость жизненного цикла Приведенная (дисконтированная) накопленная сумма всех затрат на специальную деятельность или единицу оборудования в течение жизненного цикла. [ИСО 15663 1] Источник: ГОСТ Р ИСО 26382 2011: Установки когенераторные …   Словарь-справочник терминов нормативно-технической документации

  • Стоимость актива в использовании — (asset value in use) современная (приведенная) стоимость будущих денежных потоков, ожидаемых от продолжения использования актива и его ликвидации в конце срока полезной службы.Отметим: эта дефиниция, относящаяся к финансовой отчетности,… …   Экономико-математический словарь

  • Стоимость в использовании — (Value in use) — показатель Международных стандартов оценки (МСО), максимальная сумма, которую можно возместить в результате продолжающегося владения и, в конечном счете, реализации актива; т.е. сумма, которую можно получить от… …   Экономико-математический словарь

  • СРОК СЛУЖБЫ ОБОРУДОВАНИЯ — – период с начала эксплуатации оборудования (начало амортизационного периода) до его полного физического износа (завершение амортизационного периода). Установление экономически обоснованного срока службы оборудования является объективной… …   Краткий словарь экономиста

  • Скраповая стоимость — (scrap value) стоимость, которую актив с ограниченным сроком службы будет иметь в конце своего предсказуемого срока службы (согласно данным на момент, когда актив был приобретен или предоставлен лицом, осуществляющим ликвидацию).См.… …   Экономико-математический словарь

  • скраповая стоимость — Стоимость, которую актив с ограниченным сроком службы будет иметь в конце своего предсказуемого срока службы (согласно данным на момент, когда актив был приобретен или предоставлен лицом, осуществляющим ликвидацию).См. Утилизационная стоимость.… …   Справочник технического переводчика

  • Нормативный срок службы — 8. Нормативный срок службы D. Normative Schiffe Lebensdauer E. Normative service life of ship F. Temps normatif de service du navire Срок службы судна, устанавливаемый государственными или ведомственными документами Источник: ГОСТ 23346 78:… …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»