Перевод: с русского на французский

с французского на русский

расстоянию

  • 1 блокировка с разграничением по расстоянию

    n

    Dictionnaire russe-français universel > блокировка с разграничением по расстоянию

  • 2 величина, обратная межплоскостному расстоянию

    Dictionnaire russe-français universel > величина, обратная межплоскостному расстоянию

  • 3 следование с промежутками по расстоянию

    n
    eng. (поездов) succession d'espaces, (поездов) succession de parcours

    Dictionnaire russe-français universel > следование с промежутками по расстоянию

  • 4 фрахт, исчисляемый пропорционально пройденному судном расстоянию

    n
    law. fret de distance, fret proportionnel

    Dictionnaire russe-français universel > фрахт, исчисляемый пропорционально пройденному судном расстоянию

  • 5 относительное отверстие

    1. ouverture relative

     

    относительное отверстие
    (3345)
    Абсолютное значение отношения удвоенного расстояния от оптической оси до точки преломления или отражения меридионального луча, параллельного оптической оси в пространстве предметов и проходящего через край апертурной диафрагмы, к заднему фокусному расстоянию системы.
    [ ГОСТ 7427-76]

    относительное отверстие
    Нрк светосила
    Отношение диаметра входного зрачка к фокусному расстоянию.
    [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно-технической терминологии. 1970 г.]

    относительное отверстие
    По ГОСТ 7427-76.
    Примечание
    Максимальное значение относительного отверстия маркируют на съемочном фотографическом объективе в виде 1: K или диафрагменного числа K
    [ ГОСТ 25205-82

    Недопустимые, нерекомендуемые

    Тематики

    • оптика, оптические приборы и измерения
    • физическая оптика
    • фотоаппараты, объективы, затворы

    Обобщающие термины

    • Основы геометрической оптики. Элементы и свойства оптических систем

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > относительное отверстие

  • 6 расходомер жидкости (газа)

    1. débitmètre

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Русско-французский словарь нормативно-технической терминологии > расходомер жидкости (газа)

  • 7 эксцентриситет массы

    1. excentricité de masse

     

    эксцентриситет массы
    Радиус-вектор центра рассматриваемой массы относительно оси ротора.
    Примечания.
    1. Рассматриваемой массой может являться масса ротора или любая другая локально расположенная масса.
    2. Модуль эксцентриситета массы равен расстоянию от оси ротора до центра рассматриваемой массы, а угловое положение радиуса-вектора этой массы удобно определять в цилиндрической системе координат, связанной с осью ротора.
    3. Для n-опорного ротора можно рассматривать эксцентриситет массы части ротора, расположенной между двумя соседними опорами.
    [ ГОСТ 19534-74]

    Тематики

    EN

    DE

    FR

    13. Эксцентриситет массы

    D. Schwerpunktsexzentrizitat

    Е. Mass eccentricity

    F. Excentricite de masse

    Радиус-вектор центра рассматриваемой массы относительно оси ротора.

    Примечания:

    1. Рассматриваемой массой может являться масса ротора или любая другая локально расположенная масса.

    2. Модуль эксцентриситета массы равен расстоянию от оси ротора до центра рассматриваемой массы, а угловое положение радиуса-вектора этой массы удобно определять в цилиндрической системе координат, связанной с осью ротора.

    3. Для n-опорного ротора можно рассматривать эксцентриситет массы части ротора, расположенной между двумя соседними опорами

    Источник: ГОСТ 19534-74: Балансировка вращающихся тел. Термины оригинал документа

    Русско-французский словарь нормативно-технической терминологии > эксцентриситет массы

  • 8 недалёкий

    1) ( по расстоянию) peu éloigné

    недалёкое путеше́ствие — petit voyage

    на недалёком расстоя́нии (от...) — à une petite distance (de...)

    2) ( по времени) récent

    в недалёком про́шлом — naguère, récemment, dans un passé récent

    в недалёком бу́дущем — dans un avenir proche, prochainement, bientôt

    недалёкий челове́к — homme borné, croûte f, croûton m

    ••

    он недалёк от и́стины — il est près de la vérité

    * * *
    adj
    1) gener. médiocre, simple d'esprit

    Dictionnaire russe-français universel > недалёкий

  • 9 дистанционная защита

    1. protection de distance

     

    дистанционная защита
    -

    [В.А.Семенов Англо-русский словарь по релейной защите]

    дистанционная защита
    Защита с относительной селективностью, срабатывание и селективность которой зависят от измерения в месте ее установки электрических величин, по которым путем сравнения с уставками зон оценивается эквивалентная удаленность повреждения
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    дистанционная защита
    Защита, чье действие и селективность основаны на локальном измерении электрических величин, по которым рассчитываются эквивалентные расстояния до места повреждения в пределах установленных зон.
    [ http://docs.cntd.ru/document/1200069370]

    дистанционная защита
    Защита, принцип действия и селективность которой основаны на измерении в месте установки защиты электрических величин, характеризующих повреждение, и сравнении их с уставками зон.
    [Циглер Г. Цифровая дистанционная защита: принципы и применение. М.: Энергоиздат. 2005]

    EN

    distance protection
    distance relay (US)

    a non-unit protection whose operation and selectivity depend on local measurement of electrical quantities from which the equivalent distance to the fault is evaluated by comparing with zone settings
    [IEV ref 448-14-01]

    FR

    protection de distance
    protection à sélectivité relative de section dont le fonctionnement et la sélectivité dépendent de la mesure locale de grandeurs électriques à partir desquelles la distance équivalente du défaut est évaluée par comparaison avec des réglages de zones
    [IEV ref 448-14-01]

    Дистанционные защиты применяются в сетях сложной конфигурации, где по соображениям быстродействия и чувствительности не могут использоваться более простые максимальные токовые и токовые направленные защиты.
    Дистанционной защитой определяется сопротивление (или расстояние - дистанция) до места КЗ, и в зависимости от этого защита срабатывает с меньшей или большей выдержкой времени. Следует уточнить, что современные дистанционные защиты, обладающие ступенчатыми характеристиками времени, не измеряют каждый раз при КЗ значение указанного выше сопротивления на зажимах измерительного органа и не устанавливают в зависимости от этого большую или меньшую выдержку времени, а всего лишь контролируют зону, в которой произошло повреждение. Время срабатывания защиты при КЗ в любой точке рассматриваемой зоны остается неизменным. Каждая защита выполняется многоступенчатой, причем при КЗ в первой зоне, охватывающей 80-85% длины защищаемой линии, время срабатывания защиты не более 0,15 с. Для второй зоны, выходящей за пределы защищаемой линии, выдержка времени на ступень выше и колеблется в пределах 0,4-0,6 с. При КЗ в третьей зоне выдержка времени еще более увеличивается и выбирается так же, как и для направленных токовых защит.
    На рис. 7.15 показан участок сети с двухсторонним питанием и приведены согласованные характеристики выдержек времени дистанционных защит (ДЗ). При КЗ, например, в точке К1 - первой зоне действия защит ДЗ3 и ДЗ4 - они сработают с минимальным временем соответственно t I3 и t I4. Защиты ДЗ1 и ДЗ6 также придут в действие, но для них повреждение будет находиться в III зоне, и они могут сработать как резервные с временем t III1 и t III6 только в случае отказа в отключении линии БВ собственными защитами.


    4610
    Рис. 7.14. Размещение токовых направленных защит нулевой последовательности на участке сетей и характеристики выдержек времени защит:
    Р31-Р36 - комплекты токовых направленных защит нулевой последовательности


    4611
    Рис. 7.15. Защита участка сети дистанционными защитами и характеристики выдержек времени этих защит:
    ДЗ1-ДЗ6 - комплекты дистанционных защит; l3 и l4 - расстояния от мест установки защит до места повреждения


    При КЗ в точке К2 (шины Б) оно устраняется действием защит ДЗ1 и ДЗ4 с временем t II1 и t II4.
    Дистанционная защита - сложная защита, состоящая из ряда элементов (органов), каждый из которых выполняет определенную функцию. На рис. 7.16 представлена упрощенная схема дистанционной защиты со ступенчатой характеристикой выдержки времени. Схема имеет пусковой и дистанционный органы, а также органы направления и выдержки времени.
    Пусковой орган ПО выполняет функцию отстройки защиты от нормального режима работы и пускает ее в момент возникновения КЗ. В качестве такого органа в рассматриваемой схеме применено реле сопротивления, реагирующее на ток I р и напряжение U p на зажимах реле.
    Дистанционные (или измерительные) органы ДО1 и ДО2 устанавливают меру удаленности места КЗ.
    Каждый из них выполнен при помощи реле сопротивления, которое срабатывает при КЗ, если
    4612
    где Z p - сопротивление на зажимах реле; Z - сопротивление защищаемой линии длиной 1 км; l - длина участка линии до места КЗ, км; Z cp - сопротивление срабатывания реле.
    Из приведенного соотношения видно, что сопротивление на зажимах реле Z p пропорционально расстоянию l до места КЗ.
    Органы выдержки времени ОВ2 и ОВ3 создают выдержку времени, с которой защита действует на отключение линии при КЗ во второй и третьей зонах. Орган направления OHM разрешает работу защиты при направлении мощности КЗ от шин в линию.
    В схеме предусмотрена блокировка БН, выводящая защиту из действия при повреждениях цепей напряжения, питающих защиту. Дело в том, что если при повреждении цепей напряжение на зажимах защиты Uр=0, то Zp=0. Это означает, что и пусковой, и дистанционный органы могут сработать неправильно. Для предотвращения отключения линии при появлении неисправности в цепях напряжения блокировка снимает с защиты постоянный ток и подает сигнал о неисправности цепей напряжения. Оперативный персонал в этом случае обязан быстро восстановить нормальное напряжение на защите. Если по какой-либо причине это не удается выполнить, защиту следует вывести из действия переводом накладки в положение "Отключено".

    4613
    Рис. 7.16. Принципиальная схема дистанционной защиты со ступенчатой характеристикой выдержки времени

    Работа защиты.

    При КЗ на линии срабатывают реле пускового органа ПО и реле органа направления OHM. Через контакты этих реле плюс постоянного тока поступит на контакты дистанционных органов и на обмотку реле времени третьей зоны ОВ3 и приведет его в действие. Если КЗ находится в первой зоне, дистанционный орган ДО1 замкнет свои контакты и пошлет импульс на отключение выключателя без выдержки времени. При КЗ во второй зоне ДО1 работать не будет, так как значение сопротивления на зажимах его реле будет больше значения сопротивления срабатывания. В этом случае сработает дистанционный орган второй зоны ДО2, который запустит реле времени ОВ2. По истечении выдержки времени второй зоны от реле ОВ2 поступит импульс на отключение линии. Если КЗ произойдет в третьей зоне, дистанционные органы ДО1 и ДО2 работать не будут, так как значения сопротивления на их зажимах больше значений сопротивлений срабатывания. Реле времени ОВ3, запущенное в момент возникновения КЗ контактами реле OHM, доработает и по истечении выдержки времени третьей зоны пошлет импульс на отключение выключателя линии. Дистанционный орган для третьей зоны защиты, как правило, не устанавливается.
    В комплекты дистанционных защит входят также устройства, предотвращающие срабатывание защит при качаниях в системе.

    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-4.html]

     

    Тематики

    Синонимы

    EN

    DE

    • Distanzschutz, m

    FR

    Русско-французский словарь нормативно-технической терминологии > дистанционная защита

  • 10 длина шерсти

    1. longueur de la laine

     

    длина шерсти
    Протяженность отдельных волокон или штапеля шерсти, соответствующая наибольшему расстоянию между их концами в распрямленном, но не растянутом состоянии.
    [ ГОСТ 30724-2001]

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > длина шерсти

  • 11 допуск посадки по диаметру конуса

    1. tolérance d'ajustement conique

     

    допуск посадки по диаметру конуса
    Сумма допусков диаметров наружного и внутреннего сопрягаемых конусов.
    Примечание
    Данный термин применяют для посадок с фиксацией путем совмещения конструктивных элементов сопрягаемых конусов или по заданному осевому расстоянию между их базовыми плоскостями.
    [ ГОСТ 25548-82( CT СЭВ 1779-79)]

    Тематики

    Обобщающие термины

    EN

    FR

    Русско-французский словарь нормативно-технической терминологии > допуск посадки по диаметру конуса

  • 12 кегль (кегель) шрифта

    1. corps

     

    кегль (кегель) шрифта
    Размер шрифта, соответствующий расстоянию между верхней и нижней гранями литеры, измеряемому в пунктах.
    Примечание
    Различают кегли: бриллиант - 3 пункта, диамант – 4 пункта, перл - 5 пунктов, нонпарель – 6 пунктов, миньон - 7 пунктов, петит – 8 пунктов, боргес - 9 пунктов, корпус – 10 пунктов, цицеро - 12 пунктов, миттель - 14 пунктов, терция - 16 пунктов, текст - 20 пунктов.
    [ ГОСТ Р 7.0.3-2006]

    Тематики

    • издания, основные виды и элементы

    Обобщающие термины

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > кегль (кегель) шрифта

  • 13 коническая посадка

    1. ajustement conique

     

    коническая посадка
    Характер конического соединения, определяемый размерами зазоров или натягов в коническом соединении, получающихся после фиксации взаимного осевого положения сопрягаемых конусов.
    Примечание
    По способу фиксации взаимного осевого положения сопрягаемых конусов конические посадки подразделяются на: посадки с фиксацией путем совмещения конструктивных элементов сопрягаемых конусов (черт.a); посадки с фиксацией по заданному осевому расстоянию Zpf между базовыми плоскостями сопрягаемых конусов (черт.b); посадки с фиксацией по заданному взаимному осевому смещению сопрягаемых конусов от их начального положения (черт.c); посадки с фиксацией по заданному усилию запрессовки Fs, прилагаемому в начальном положении сопрягаемых конусов (черт.d).
    2712

    Черт.a
    2713

    Черт.b

    2714

    Черт.c

    2715
    Черт.d

    [ ГОСТ 25548-82( CT СЭВ 1779-79)]

    Тематики

    Обобщающие термины

    EN

    FR

    Русско-французский словарь нормативно-технической терминологии > коническая посадка

  • 14 конусность

    1. conicité

     

    конусность (C)
    Отношение разности диаметров двух поперечных сечений конуса к расстоянию между ними.
    Примечания
    1. Конусность может быть определена как отношение разности диаметров большого и малого оснований к длине конуса
    2700
    2. Конусность, как правило, указывают в виде отношения 1:χ, где χ - расстояние между поперечными сечениями конуса, разность диаметров которых равна 1 мм, например, C=1:20.
    2697
    1 - малое основание; 2 - заданное поперечное сечение; 3 - большое основание.
    [ ГОСТ 25548-82( CT СЭВ 1779-79)]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > конусность

  • 15 оптическая сила системы

    1. puissance optique

     

    оптическая сила системы (Ф)
    Отношение показателя преломления в пространстве изображений к заднему фокусному расстоянию системы 3346.
    [ ГОСТ 7427-76]

    Тематики

    • оптика, оптические приборы и измерения

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > оптическая сила системы

  • 16 фокусное расстояние съемочного объектива

    1. longueur focale

     

    фокусное расстояние съемочного объектива
    фокусное расстояние

    Заднее фокусное расстояние съемочного фотографического объектива.
    Примечание
    Номинальное фокусное расстояние в миллиметрах, маркируют на съемочном фотографическом объективе.
    [ ГОСТ 25205-82

    фокусное расстояние объектива
    Определяет угловые поля зрения телевизионной камеры (горизонтальный и вертикальный углы зрения), которые также зависят от формата камеры. Широкому углу зрения соответствуют небольшие фокусные расстояния (2,8-5 мм), узкому углу зрения соответствуют большие фокусные расстояния (25-75 мм и более). "Нормальный" угол зрения соответствует фокусному расстоянию равному диагональному размеру ПЗС матрицы и эквивалентен углу зрения человеческого глаза. При выборе объектива его формат должен быть равен формату камеры (ПЗС матрицы камеры) или превосходить его.
    [ http://datasheet.do.am/forum/22-4-1]

    фокусное расстояние
    Расстояние между оптическим центром линзы и главной фокусной точкой.
    [ http://www.vidimost.com/glossary.html]

    EN


    Параллельные тексты EN-RU

    focal length
    This refers directly to the visual angle, and is measured in millimetres. Short focal lengths provide wide shooting angles, while long focal lengths provide telephoto lens functions with narrow viewing angles.

    [Legrand]

    фокусное расстояние
    Фокусное расстояние выражается в миллиметрах и непосредственно связано с углом обзора. Короткофокусные объективы имеют широкий угол обзора, длиннофокусные – являются телеобъективами с малым углом обзора.

    [Интент]


    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > фокусное расстояние съемочного объектива

См. также в других словарях:

  • начисление платы по расстоянию — начисление платы по зонам тарификация по расстоянию тарификация по зонам — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы начисление платы по… …   Справочник технического переводчика

  • близко по расстоянию — нареч, кол во синонимов: 1 • недалеко (37) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • Разрешающая способность РЛС по расстоянию — наименьшее расстояние между объектами, расположенными на одном направлении от РЛС, при котором эти объекты наблюдаются на экране индикатора кругового обзора раздельно. EdwART. Толковый Военно морской Словарь, 2010 …   Морской словарь

  • метод определения количества нефти в резервуаре по расстоянию от кровли резервуара до уровня нефти в нем — (применяется в случае, когда дно резервуара засорено осадками) [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN outage gauge …   Справочник технического переводчика

  • направление суммирования по одинаковому расстоянию взрыв-прибор — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN common offset direction …   Справочник технического переводчика

  • тариф по расстоянию — Тарифная сетка, в которой стоимость услуг определяется в зависимости от удаленности вызываемого абонента. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]… …   Справочник технического переводчика

  • Эшелонирование — Одна из задач службы управления воздушным движением  эшелонирование воздушных судов Эшелонирование  создание инте …   Википедия

  • относительная — 3.1.24 относительная vmin или Y (relative vmin or Y): Отношение максимальной нагрузки Emax к минимальному поверочному интервалу весоизмерительного датчика vmin. Это отношение характеризует разрешающую способность весоизмерительного датчика, не… …   Словарь-справочник терминов нормативно-технической документации

  • Объектив — Объектив …   Википедия

  • Эшелонирование (авиация) — Одна из задач службы управления водушным движением  эшелонирование воздушных судов) Эшелонирование  создание интервалов по высоте и расстоянию между находящимися в полёте воздушными судами с целью предотвращения опасного сближения и… …   Википедия

  • Интерференция — (физ.) содействие или противодействие двух или большего числа волн, происходящих от колебательных, периодически повторяющихся движений. Волны (см.) могут происходить в жидкостях, твердых телах, газах и эфире. В первом случае И. волн видима… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»